

Working with what we know – presence-only / ecological niche models in marine mammal science

Kristin Kaschner, Colin MacLeod, Laura Mandleberg, Ross Comptom

Sea Around Us Project, Fisheries Centre, University of British Columbia, Canada & FTZ Büsum, Kiel Christian-Albrechts-University, Germany School of Biological Sciences (Zoology), University of Aberdeen, UK

Outline

- What are presence-only models?
- Why do we use them?
- Which ones are there?
- Do they work?
- What can we do with them?

What are they?

- Predict ecological niches
- Use only presence data

Why do we use them?

- Data paucity
- Absence data issues
- Niche modeling vs. distribution

Data paucity

Data paucity

OBIS-SEAMAP (http://seamap.env.duke.edu/species)

- compilation & storage of marine mammal occurrence data
- out of 115 species, geo-referenced / effort corrected data
 - available/accessible for ~ 50%
 - representative coverage = ~ 2 %

W	٧H	Y?	

Model evaluation Presence-absence confusion matrix

	Recorded presence	Recorded absence
Predicted presence	a (true presence)	b (false presence)
Predicted absence	c (false absence)	d (true absence)

Absence Data Issues Model evaluation

Presence-absence confusion matrix

	Recorded presence	Recorded absence
Predicted presence	a (true presence)	b (false presence)
Predicted absence	c (false absence) Omission error / Model overfitting	d (true absence) Commission error / Model overprediction

W	٧H	Y?	

Model evaluation Presence-absence confusion matrix

	Recorded presence	Recorded absence
Predicted presence	a (true presence)	b (false presence)
Predicted absence	c (false absence)	

Absence Data Issues

No animals in deeper waters!

Absence Data Issues

Absence Data Issues

Absence Data Issues

Absence Data Issues

Absence Data Issues

WHY?	Absence Data Issues Example: 100 trials								
	Spe	ecies #	1			Sp	ecies #	2	
	Variable A	Variable B	Variable	С		Variable A	Variable B	Variable	С
Presence	.20	.80	0			.32	.16	.52	
	×	×	×	-		×	×	×	
Bias	.8	.1	.1		(in-s	.5	.5	0	
	=	=	=	Ç		=2-	=	=	
Obs. rate	.16	.08	0	X		.16	.08	0	
Observed	16	8	0			16	8	0	
				M. N	lakamu	ira, CON	ABIO, 200)5	

Ecological Niche vs Distribution

Hastie *et al*. (2001)

Ecological Niche vs Distribution

Hastie *et al*. (2001)

Ecological Niche vs Distribution

Prop/Std

Geographic space (2 dimensions)

Ecological space (n dimensions / hypervolume)

J. Soberon, CONABIO, 2005 GBIF Ecological Niche Modelling Workshop, KU

Which ones are out there?

Envelope models

- BioClim
- DOMAIN
- Fuzzy bioclimatic envelope model
- RES*

Machine-learning

- Garp**
- Maxent**
- ENFA (Biomapper)*

* Models have been applied to and tested for marine mammals
** Preliminary applications to marine mammals

Which ones are out there?

Web-based applications

AquaMaps*

WHICH?

- KGS-Mapper**
- WhyWhere?

* Models have been applied to and tested for marine mammals
** Preliminary applications to marine mammals

Ecological Niche Models

Geographic space

Ecological / Environmental space

WHICH? BioClim / Climate Envelope Range

- Based on presence cells
- Very simple & intuitive
- No interactions between variables
- Unweighted variables
- Binary predictions
- No extrapolations
- Tends to overpredict

Lindenmayer et al. 1991 *J. Biogeog.* 18: 371-383. Arcscript: http://arcscripts.esri.com/details.asp?dbid=13745

Relative Environmental Suitability Model (Fuzzy Bioclimatic Envelope Model)

- Based on relative occurrences
- Very simple, transparent & intuitive
- Expert knowledge based (no point data required)
- No interactions between variables
- Unweighted variables
- Continuous output
- Tends to overpredict

Kaschner et al. 2006, *MEPS* / www.seaaroundus.org Skov & Svenning, 2004, *Ecography*, 27:366-380

Relative Environmental Suitability Model (Fuzzy Bioclimatic Envelope Model)

Assigned habitat usage categories: Depth, SST, Ice edge

- Based on relative occurrences
- Very simple, transparent & intuitive
- Expert knowledge based (no point data required)
- No interactions between variables
- Unweighted variables
- Continuous output
- Tends to overpredict

Kaschner et al. 2006, *MEPS* / www.seaaroundus.org Skov & Svenning, 2004, *Ecography*, 27:366-380

DOMAIN

- Based on presence cells
- Cluster algorithm in environmental space
- No interactions between variables
- Unweighted variables
- Non-binary predictions
- Tends to overfit

Carpenter et al. 1993 *Biodiv. Conservation* 2: 667-680. Freeware: http://www.cifor.cgiar.org/docs/_ref/research_tools/domain/

GARP Genetic Algorithm of Rule-set Prediction

- Based on presence cells
- Machine learning / automated model optimization (not transparent)
- Generates pseudo-absence data
- Optimization using training / test data sets
- Interactions between weighted variables
- Non-binary predictions
- Tends to overpredict?

Stockwell & Noble 1992, *Math. & Comp. in Simulation* 33:385-390 Freeware: http://www.lifemapper.org/desktopgarp/

GARP Genetic Algorithm of Rule-set Prediction

- Based on presence cells
- Machine learning / automated model optimization (not transparent)
- Generates pseudo-absence data
- Optimization using training / test data sets
- Interactions between weighted variables
- Non-binary predictions
- Tends to overpredict?

Stockwell & Noble 1992, *Math. & Comp. in Simulation* 33:385-390 Freeware: http://www.lifemapper.org/desktopgarp/

Maxent Maximum entropy

- Based on presence cells
- Machine learning / automated model optimization (not transparent)
- Optimization using training / test data sets
- Interactions between weighted variables
- Non-binary predictions
- Tends to overfit?

Phillips et al. 2006, *Ecological Modelling* Freeware: http://www.cs.princeton.edu/~schapire/maxent/

Maxent Maximum entropy

- Based on presence cells
- Machine learning / automated model optimization (not transparent)
- Optimization using training / test data sets
- Interactions between weighted variables
- Non-binary predictions
- Tends to overfit?

Phillips et al. 2006, *Ecological Modelling* Freeware: http://www.cs.princeton.edu/~schapire/maxent/ **ENFA** Ecological Niche Factor Analysis

Based on presence cells

- Compares species occurrence to all available habitat
- Multivariate (Interactions between weighted variables)
- Non-binary predictions (HIS)

Species occurrence cells

Available habitat

Hirzel et al. 2002, *Ecology* 83: 2027-2036. Biomapper freeware: http://www2.unil.ch/biomapper/

ENFA Ecological Niche Factor Analysis

Specialization

- Based on presence cells
- Compares species occurrence to all available habitat
- Multivariate (Interactions between weighted variables)
- Non-binary predictions (HIS)

Marginality

Hirzel et al. 2002, *Ecology* 83: 2027-2036. Biomapper freeware: http://www2.unil.ch/biomapper/

ENFA Ecological Niche Factor Analysis

80°

 70°

60°

50°

40°

Compton, 2004, MRes Thesis, U of Plymouth MacLeod, 2005, PhD Thesis, U of Aberdeen

 20°

 10°

0°

10°

30°

AquaMaps (Coming soon....)

Nangdones conserves (and facilitat) - Marcardt Industrial Explor Autoral (Chaine (S. C. + C. H. C. ind Laker and been a Warmer Market of Markows. · Sugary Catters in Pro-an Busset (12) · Surpost Statemany The offic Computer Generated Distribution Map of Neophoca cinerea (unchecked) Distribution. Marcolai Lage M Laidraads 10- H Nac Watting -onlos Productive of About Adoutings Wheney comparison is an initial state Designer Parcel 0.00-1.00 8.40-1.79 Create your eventent. 8.40 - 3.88 to welcoal data tay init 5.00-3.00 8.81-8.14

Has produced by the CHUR or exponent resuperriseded at http://fileman.oni-ktol.de/

Kaschner et al, in prep, www.fishbase.de

AquaMaps (Coming soon....)

Nangdunen einenen (uns freihenf) - Martistell Informet Eigher Autoral (Chaine (S. C. + C. H. C. ind Laker and been a Warmer Market of Markows. · Sugary Catters in Pro-an Busset (12) · Surpost Statemany The offic Computer Generated Distribution Map of Neophoca cinerea (unchecked) Distribution. Marcolai Lage M Laidraads 10- H Nac Watting -onlos Productive of About Adouting to the story we adaptively in an initial state Debbien Percent 0.00-1.00 8.40-1.79 Create gaar seek to ap-8.40 - 3.88 to writing the tare tare 5.00-3.00 8.81-8.14

Has produced by the CHUR 1 repairing temport theted at http://fileman.oni-ktel.de/

Kaschner et al, in prep, www.fishbase.de

f Nargforn course (an finited) - Manual Halarest Explore

AquaMaps (Coming soon....)

water (Chine C C = 3 m E) panel pi QuePrare & Westerst Made of Muchael one needed (1) Merce and the LAbout Annual and L Chase "Create Your Own Map Computer Generated Distribution. Area restrictions: EACAraas 57, 71, 81 Felagic: Faine Re-calculate Envelope and Good Calls Baseding Bax (NSV/E) 0 75 Restore Default Values 155 Environmental envelope: Mile Prof Man (ODE) Max Phil Min (1080) P Depts (n) 0 10 100 1000 (enlarge) CO") TED R 10 15 20 25 **Lentarpel** 💀 Salente desub Save Changes [eritatue] Pemary Production [enlarge] 1000 P Ive Ethye Distance Inni 1000 2000 8000 8000 fertiarge! Has Vetting -origi R Claterce to Land (km) Probability of second range [entance] 0.00-1.00 8.40-1.79 Re-generate Map Data Takes 3-5 mins 8.40-1.00 5.00-3.00 201-214 View Map tax produced by the CMAR y -----Number of Strain / Wilsonian and nonmental envelope in # 01View point map

Kaschner et al, in prep, www.fishbase.de

Do they work? Model Evaluations

- Test statistics
- Cross-validation
- External testing
- Comparison with other models

Test statistics

	Recorded presence	Recorded absence		
Predicted presence	a (true presence)	b (false presence)		
Predicted absence	c (false absence)	d (true absence)		

Sensitivity: Proportion of observed presences correctly predicted a/(a + c)

> R. Pearson, AMNH, 2005 GBIF Ecological Niche Modelling Workshop, KU

Test statistics

	Recorded	Recorded absence
Predicted presence	a (true presence)	b (false presence)
Predicted absence	c (false absence)	d (true absence)

Sensitivity: Proportion of observed presences correctly predicted a/(a + c)

Specificity: Proportion of observed (or assumed) absences correctly predicted d/(b + d)

R. Pearson, AMNH, 2005 GBIF Ecological Niche Modelling Workshop, KU

Test statistics: Receiver Operator Curve

Test statistics

	Recorded presence	Recorded absence		
Predicted presence	a (true presence)	b (false presence)		
Predicted absence	c (false absence)	d (true absence)		

Cohen's Kappa:

 $k = \frac{\left[(a+d) - \left(\left((a+c)(a+b) + (b+d)(c+d)\right)/n\right)\right]}{\left[n - \left(\left((a+c)(a+b) + (b+d)(c+d)\right)/n\right)\right]}$

R. Pearson, AMNH, 2005 GBIF Ecological Niche Modelling Workshop, KU

Compton, 2004, MRes Thesis, U of Plymouth

RES category

Kaschner et al, 2006, MEPS

Model Comparison PCA **ENFA**

Harbour porpoise

\$7:00

562.40

55 20

Mandelbaum, 2005, MSc Thesis, U of Aberdeen

Model Comparison

Mandelbaum, 2005, MSc Thesis, U of Aberdeen

DO THEY

WORK?

Mandelbaum, 2005, MSc Thesis, U of Aberdeen

Do they work? Limitations

• Presence cells vs. encounter rates

• Effort / Sampling biases

WORK? Presence cells vs Encounter Rate

Maxent prediction (IWC whaling data)

Kaschner et al, in prep

WORK? Presence cells vs Encounter Rate

Maxent prediction (IWC whaling data)

Kaschner et al, in prep

WORK? Presence cells vs Encounter Rate

Maxent prediction (IWC whaling data)

Kaschner et al, in prep

Sampling Biases

Minke whale

Blue whale

Humpback whale

A

В

Sampling Biases

Minke whale

Humpback whale

В

С

Sampling Biases

What can we do with them? Potential Applications

- Biodiversity Mapping
- Management / Research Prioritiziation
 - Risk mitigation
 - Marine mammal-fisheries interactions
 - Marine Protected Areas
 - Climate change

What can we do with them? Potential Applications

Biodiversity Mapping

Wednesday, 15:15

- Management / Research Prioritiziation
 - Risk mitigation
 - Marine mammal-fisheries interactions
 - Marine Protected Areas
 - Climate change

Management / Research Prioritiziation

- Risk mitigation

- Marine mammal fisheries interactions
- Marine Protected Areas
- Climate change

- Management / Research Prioritiziation
 - Risk mitigation

- M. densirostris
 - All Mesoplodon Spp.
- Marine mammal fish
- Marine Protected Ai
- Climate change

MacLeod, 2005, PhD Thesis, U of Aberdeen

Management / Research Prioritiziation

- Risk mitigation
- Marine mammal-fisheries interactions

- Marine Protected Areas
- Climate change

Kaschner et al, accepted, CJFAS

Management / Research Prioritiziation

- Risk mitigation
- Marine mammal fisheries interactions
- Marine Protected Areas

- Climate change

Kaschner, 2006, Ecology of Seamounts

Management / Research Prioritiziation

- Risk mitigation
- Marine mammal fisheries interactions
- Marine Protected Areas

- Climate change

CONCLUSIONS

Conclusions

Presence-only / Ecological niche models

- require less data / maximize available data
- less affected by false absences
- more general, useful to investigate large scale patterns & ecological interactions
- time & cost efficient starting points
- can supplement small scale studies and help to focus research and management efforts

Acknowledgements

- Ed Gregr, MMRU, UBC, Vancouver
- Anita Gilles & Roger Mundry, FTZ Buesum
- Instructors & Participants of the GBIF Ecological Niche Modelling Workshop, 5-9 Dec 2005, Lawrence, Kansas

