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ABSTRACT

An asymptotic method for coupling circulations in basins to hydraulically controlled overflows is introduced.
The method is applicable when the forcing, dissipation, and coupling with the overflow are weak, in which case
the lowest order solution for the homogeneous or 1½-layer model consists of the natural basin modes including
gravity, inertia–gravity, potential vorticity, Helmholtz, and steady geostrophic modes. At the next order of
approximation, the mode amplitudes are found to vary slowly with time as the result of forcing, dissipation,
interior nonlinear mode interactions, and, most importantly, coupling with the overflow. Even when the latter
are absent, the overflow dynamics generally introduce nonlinearity.

Although the basin dynamics are assumed linear to lowest order, the overflow is intrinsically nonlinear. To
couple the two systems, the overflow model must be adapted to serve as a nonlinear boundary condition on the
basin flow. To do so, a rotating-channel model introduced by Whitehead et al. valid for relatively shallow sills
is employed. Although not the central focus, corresponding formulations are derived for straits acting as geo-
strophic controls or which are dominated by bottom drag.

The principle aim of Part I is to derive the evolution equations governing the coupling between basin and
sill. Parts II and III of this work contain a number of examples intended to illustrate the general method and
provide insight into physical phenomena associated with hydraulically drained, time-dependent flow in deep
basins such as those that occur in the Nordic seas.

1. Introduction

Evidence of hydraulic control in the Denmark Strait,
the Faroe Bank Channel, the Strait of Gibraltar, and a
number of other oceanic straits has prompted numerous
hydraulic models in the past two decades.1 Since these
models are intrinsically nonlinear, many simplifications
must be made and one of the most far-reaching involves
the upstream flow. Typically, it is assumed that the flow
originates from a reservoir that is infinite in extent, thereby
containing an inexhaustible supply of mass, and in which

1 Reviews can be found in the book of Baines (1995); in Vol. 133,
No. 4 (1990), of Pure and Applied Geophysics (R. Hughes, Ed.); in
the review of Pratt and Lundberg (1991); and in the book edited by
Pratt (1990). Also see recent research articles (Killworth 1994; Dal-
ziel 1991 and references contained therein).
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the vorticity or potential vorticity is a constant, often zero.
For single-layer flows, the product of such a calculation
is a relationship between the outflow transport, the sill
height or minimum strait width, and the Bernoulli function
for the flow (often expressed in terms of the reservoir
surface elevation far upstream).

In reality, the circulation in the upstream basin is a
product of the forcing and dissipation therein as well as
the hydraulic control. Ideally, one would like to calculate
the properties of the outflow as functions of the forcing,
dissipation, and geometry, and not as a function of the
Bernoulli function (which is itself controlled by the forc-
ing, dissipation, and geometry). Furthermore, all oceanic
basins contain time-dependent flows, and it is difficult to
model this time dependence in a reasonable way when the
basin is infinite in extent. For example, observations of
deep outflows through the Denmark Strait (Dickson et al.
1990) and Strait of Gibraltar (Bryden and Kinder 1991)
show very little seasonal dependence in transport, despite
that the processes creating the outflow water are presum-
ably seasonal. It would be difficult to explore this issue
using a model with an infinite upstream basin, as forced
time dependence might simply radiate far upstream.

There is also a range of interesting scientific issues con-
cerning basin circulations set up by overflows, including
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the general character of the interior circulation and possible
boundary currents. Exactly how are overflows fed and
what path does the fluid take from the (convective or other)
source region to the strait entrance? The effect of the
overflow on the normal modes of oscillation and their
mutual interactions is relevant to basin energy cascades.
The rates of leakage of mass and wave energy from the
basin are tied into the issue of seasonal time dependence
at the sill.

These considerations suggest the need for exploration
of models that couple strait dynamics to forced, dissipative
flows in finite basins. In general, such models will be
enormously complicated and probably tractable only
through numerical means. However, the use of several
simplifying assumptions has allowed us to formulate a
coupled model that is analytically tractable, or at least
amenable to sufficient reduction in complexity that the
basic physics can often be illuminated. The purpose is to
allow exploration of physical processes that involve cou-
pling between the basin and the strait, which may be dif-
ficult to extract from numerical solutions. The method is
designed to complement (but not replace) the inevitable
numerical model in actual case studies.

The primary assumption used is that the outflows are
weak compared to the recirculating transports in the basin
interior. Specifically, it is required that the transport ve-
locity (depth-integrated velocity) at the strait entrance is
weaker than the typical interior transport velocity by the
small factor e. This situation can be arranged by placing
a shallow sill or narrow width contraction at some location
downstream of the entrance, or through the introduction
of strong bottom friction in the strait. The blocking or
choking produced by any of these means will reduce the
entrance transport velocities as required but still allow for
relatively large velocities in the strait interior. The defi-
nition of e will depend on the particular strait model used.

The second approximation is that forcing and dissipa-
tion produce effects that are at most O(e) in the appropriate
nondimensional measure. [If forcing and dissipation were
allowed to enter the problem at O(1), they would over-
whelm the influence of the straits and defeat our attempts
to isolate coupled processes.] In addition, we consider ba-
sin motions of sufficiently weak amplitude that interior
nonlinear interactions arise at O(e) or smaller. Finally, we
assume the fluid to be homogeneous (or with 1½-layer
stratification), though the technique can be extended to
multilayer systems.

To the lowest order of approximation, the basins may
be considered completely closed and the circulation un-
forced and linear. The motion can thus be represented as
a sum of natural modes, including inertia–gravity, Kelvin,
and Rossby-type oscillations as well as a continuum of
steady geostrophic modes (provided closed geostrophic
contours exist). Some of the properties of the oscillatory
modes are reviewed in section 2. The amplitude Aj of each
mode is allowed to evolve on a slow timescale t 5 et as
determined at the next order of approximation, where the
outflows come into play along with forcing, dissipation,

and possible nonlinear interactions. As described in section
3, a solvability condition imposed on the O(e) equations
produces a first-order ordinary differential equation for
each Aj(t).

If steady geostrophic motion is possible, the same pro-
cedure must be carried out for the associated continuum
of modes. The Helmholtz mode, a uniform variation of
the surface elevation, is also included in this analysis.
Although mass conservation prevents the Helmholtz mode
from acting in a closed basin with no sources or sinks,
inflows and outflows will generally excite the mode (Miles
1971). It is first necessary to determine the synthesis of
Helmholtz and geostrophic modes from arbitrary initial
data, a process that has not been done for free-surface (or
reduced gravity) flow with general bottom topography.
The steps are laid out in section 4 followed by derivation
of an integro–differential equation determining the slow
time dependence of the geostrophic motion. An alternative
form of this equation well suited to numerical algorithms
is also derived. For the special case in which the bottom
elevation and Coriolis parameter are constant and the os-
cillatory mode amplitudes Aj are all zero, it is shown that
f-plane quasigeostrophic theory is obtained.

An important point to be made in connection with the
analysis is that the outflow conditions and forcing and
dissipation, though all weak, determine the eventual dis-
tribution of natural mode amplitudes and thus the complete
interior circulation. Coupling with the strait acts slowly
but is of paramount importance over long timescales. In
problems with forcing and dissipation, the effects of the
initial conditions generally fade with time and the ultimate
solution is determined by the forcing, dissipation, and
overflow dynamics.

In order to incorporate the strait dynamics into the the-
ory, the applicable hydraulic model must link the flow at
the strait entrance to that at the controlling sill or width
contraction. This linkage allows the control to be posed
as a boundary condition on the basin flow. Furthermore,
it must be shown that constricting the control section re-
duces the transport velocity at the entrance as measured
by the small parameter e. These steps are carried out in
section 5 for a strait of rectangular cross section containing
a shallow sill. (‘‘Shallow’’ means that the sill height is
nearly as large as the entrance thickness of the outflowing
layer.) Under these conditions, the rotating hydraulic mod-
el of Whitehead et al. (1974) gives the outflow transport
as a nonlinear function of the lowest order surface (or
interface) elevation at the entrance. The result takes dif-
ferent forms for various rotation strengths. It is shown that
determination of the outflow transport completely specifies
the boundary conditions required. If the flow in the strait
is not hydraulically controlled, conditions in the basin or
sea downstream of the strait can be felt in the upstream
basin. In such cases, the throughflow may be blocked or
choked by other means, such as strong bottom friction,
and the machinery outlined above will remain valid. Al-
though hydraulically controlled outflows remain our main
focus, we derive the boundary conditions and e values for
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FIG. 1. Definition sketch of basin and strait.

several strait models that lack hydraulic control (also sec-
tion 5).

Some readers may wonder why the normal mode ap-
proach is used rather than the Green’s function solution
common in problems involving oscillations in harbors cou-
pled with open seas (e.g., Miles 1971; Garrett 1975). The
first point that should be made in regard to this issue is
the necessity of restricting attention to strait flows that are
highly choked. If this restriction is relaxed, the equations
for the interior flow become nonlinear (as we show in
section 5a), and their solutions must satisfy a nonlinear
boundary condition at the strait entrance, which precludes
analytical treatment, Green’s function or otherwise. Trac-
tability generally is available only when the basin is closed
to lowest order. Once this approximation is made (and the
forcing and dissipation necessarily assumed weak), slowly
varying normal modes are the most natural and familiar
solution representation. These remarks apply mainly when
hydraulic controls are present. Other strait formulations
lead to linear problems, including cases where strong fric-
tional effects or linear wave dynamics dominate (as in the
harbor problem). Here, forcing and dissipation may be
considered finite and Green’s function techniques provide
a more general solution representation.2

Part II (Pratt 1997) of this work is devoted to appli-
cations involving steady deep flows in basins fed by var-
ious sources, subject to friction in the basin interior, and
drained by overflows. Part III concentrates on time-de-
pendent flows. In both studies, comparisons with known
features of deep and intermediate flows in the Greenland,
Iceland, and Norwegian Seas are made.

2. Basin modes

We begin by introducing the governing equations with
weak forcing and dissipation and by discussing their low-
est order approximations, the linear shallow water equa-
tions. We then review several important results regarding
normal mode solutions to the latter, including proof that
the mode frequencies are real and development of an or-
thogonality principle. The orthogonality relationship (2.13)
is particularly important for later development of the equa-
tions coupling the mode amplitues to the overflow dy-
namics.

Consider a basin of arbitrary shape and undisturbed
depth H(x, y) (Fig. 1), connected to other basins or oceans
by straits or gaps. Formally, we will consider a geometry
with one strait, but the technique is easily extended to
include multiple straits as explained later. As suggested in
Fig. 1b, the definition of the strait ‘‘entrance,’’ the line
separating the basin and strait, is arbitrary: the line could
plausibly lie at sections A or B. The overriding consid-

2 In practice, further assumptions are often necessary to simplify
the Green’s integrals to the point where physical intuition can be
aided. The most common (e.g., Garrett 1975) is that the strait is
vanishingly narrow.

eration is that the strait should be sufficiently narrow that
the flow is approximately unidirectional there. We would
choose B rather than A as the entrance since motions
between B and D should tend to be more unidirectional
than those from A to B.

The deep fluid in the basin is assumed homogeneous.
Its upper surface lies at z̃ 5 H0 1 (x̃, ỹ, t ) and can be˜h̃
considered a free surface or an interface separating an
inactive upper layer, in which case the value of gravity g
is reduced in proportion to the relative density difference.
[Variables which have nondimensional counterparts use

) to denote the dimensional version. Table 1 contains a(˜
list of notations.] The horizontal velocity components are
denoted by ũ and and the corresponding transport ve-ỹ
locities, ũH and by Ũ and Ṽ. The Coriolis parameterỹH,
f is allowed to vary with ỹ.˜

The starting points for the calculation are the shallow-
water equations for the transport velocities

˜˜ ˜ ˜ ˜˜ ˜U 1 (U ·=)(U/H) 1 f k 3 U 5 2gH=h̃ 1 F(x̃, ỹ, t )t̃

(2.1)

˜ ˜h̃ 1 = · [U(1 1 h̃/H)] 5 w̃ (x̃, ỹ, t ), (2.2)t̃ p

where U 5 (U, V), F̃ represents forcing and dissipation,
and w̃p is a positive downward, cross-interface velocity
designed to mimic the effects of deep convection or, in
the case of a free surface, precipitation minus evaporation.

We now introduce the following nondimensional vari-
ables based on timescale , length scale Ld 5 (gH0)1/2/21f0

f0 (the Rossby radius of deformation), surface displace-
ment scale N , and velocity scale (gH0)1/2N /H0:

1/2 ˜(x, y) 5 (x̃, ỹ) f /(gH ) , t 5 t f0 0 0

1/2h 5 h̃/N , u 5 ũ /[(gH ) N /H ]0 0

1/2˜U 5 uH/H , F 5 F /e f [(gH ) N ]0 0 0

˜w 5 w̃ /e f N , f 5 f / f ,p p 0 0
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TABLE 1. List of notations. (All variables dimensionless unless
otherwise indicated.)

Symbol Description

(;) Dimensional variable. A few other spe-
cially indicated variables without til-
des are also dimensional.

x, y, z Eastward, northward, upward coordi-
nates.

H(x, y) Undisturbed dimensional basin depth.
H0 Basin depth scale. Also the maximum

undisturbed basin depth.
Ld (g H0)1/2/f0, the Rossby radius.
h(x, y, t) Surface or interface displacement.
N Scale for h(x, y, t).
(u, y) Horizontal velocity.
U 5 (U,V) 5 H(u, y) Horizontal tranpsort.
Ug 5 (Ug, Vg) and hg Velocity and displacement for geo-

strophic modes (including the Helm-
holtz mode).

e Small parameter measuring degree of
constriction of strait.

Ro Rossby number, also 5 N/H0 by our
scaling.

( )(0), ( )(1) O(0) and O(e) terms in asymptotic ex-
pansion.

g Gravity or reduced gravity.

(y) 5 fo f(y)f̂ Dimensional Coriolis parameter. On an f
plane the dimensionless Coriolis pa-
rameter f is 5 1.

F Momentum forcing vector.
wp Evaporation, precipitation, or entrain-

ment velocity (positive downward).
Uk(x, y), Vk(x, y), zk(x, y) Normalized structure functions for basin

mode transport and displacement.
vk Basin mode frequency.
t Slow time (5 et).
Aj(t) Basin mode amplitude.
{ }j See remarks following Eq. (3.7).
( )* Complex conjugate.
( )e Denotes variable evaluated at strait en-

trance.
W Strait width (in cases of uniform

width.).
Ws Strait width at sill.
hs Sill elevation above entrance elevation.
He Layer thickness at strait entrance.
Hp Potential thickness.
Hs Mean layer thickness in strait.
hr In WLK theory, hr is the free surface or

interface displacement at right wall
(facing downstream) of strait near en-
trance (see Fig. 2). In the present as-
ymptotic model hr is nearly constant
across the strait entrance.

Dh, Dha Difference in actual and isostatic sur-
face (or interface) level between the
two ends of the strait.

Us Cross-sectional average transport veloci-
ty in strait.

Ls Length of strait.
Rf Linear drag coefficient.
n, l Outward unit normal and tangent vector,

either to boundary or to geostrophic
contour.

A Area of basin.
C Geostrophic (fH0/H 5 constant) contour.
Ac Area bounded by fH0/H contour.
Ce The contour formed by the basin edge.
a fH0/H.

where f0 is a characteristic value of f and e is a small˜
parameter measuring the degree of constriction of the
strait. In nondimensional terms (2.1) and (2.2) now be-
come

H
U 1 Ro(U ·=)(UH /H) 1 f k 3 U 5 2 =h 1 eFt 0 H0

(2.3)

h 1 = ·U 1 Ro= · (hUH /H) 5 ew , (2.4)t 0 p

where Ro 5 (velocity scale)/ f0 (length scale) 5 N /H0

for our scaling. The boundary condition is that U ·n, the
normal component of U, vanishes along the outer rim
of the basin except at the strait entrance, where U ·n is
assumed O(e).

We now write

(0) (1)U 5 U 1 eU 1 · · ·
(0) (1)h 5 h 1 eh 1 · · ·

and, in the subsequent ordering, regard the Rossby num-
ber Ro as being O(e) or smaller. To the lowest order of
approximation (2.3) and (2.4) are just the homogeneous
shallow water equations

H
(0) (0) (0)U 1 f k 3 U 5 2 =h (2.5)t H0

(0) (0)h 1 = ·U 5 0. (2.6)t

The corresponding boundary condition along the full
basin edge is

(0)U ·n 5 0. (2.7)

The lowest order motion can be described in terms
of the usual natural modes:

(0)  U U (x, y)   j`   
(0) iv tjV 5 Re A V (x, y) e . (2.8) O   j j  j50 (0)h z (x, y)   j 

In textbook examples, where the horizontal structure
functions Uj, Vj, and zj are separable, the summation is
made over two indices.

The issue of orthogonality, which is crucial both to the
synthesis of modes from arbitrary initial conditions and
to eventual coupling with the strait, can be addressed by
writing the equations for the horizontal structure functions:

iv U 1 f k 3 U 5 2(H/H )=z (2.9)j j j 0 j

iv z 1 = ·U 5 0 (2.10)j j j

along with the complex conjugate forms

2iv*U* 1 f k 3 U* 5 2(H/H )¹z* (2.11)k k k 0 k

2iv*U* 1 = ·U* 5 0. (2.12)k k k

Taking ( H0/H)·(2.9) 1 (UjH0/H)·(2.11) 1 (2.10) 1U* z*k k
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zj(2.13), integrating the result over the area A of the basin,
and applying the boundary condition (2.7) leads to

(v 2 v*) [z z* 1 (H /H)U ·U*] ds 5 0. (2.13)j k EE j k 0 j k

A

If k 5 j, then vk 5 and the frequencies are thereforev*k
real. If k ± j and vk ± vj then (2.13) gives an orthogonality
condition in terms of area integration. However, if fre-
quency multiplicity exists (vk 5 vj for j ± k), it is still
possible to construct orthogonal eigenfunctions corre-
sponding to each degenerate root, a consequence of the
self-adjoint nature of the system (Platzman 1972). Other
properties of the basin modes, including distribution of
frequencies, were originally analyzed by Veltkamp (1960)
and are summarized by Platzman (1972). In particular, it
can be shown that for f-plane motion ( f 5 1) with uniform
depth H 5 H0, superinertial (|v| . |1|) frequencies are
discrete and infinite in number. Multiple modes sharing
the same frequency may exist, but the multiplicity is finite.
In the subinertial (|v| # |1|) range the spectrum is discrete
and contains a finite number of modes, each having finite
multiplicity. The sole exception is the root v 5 0, cor-
responding to steady geostrophic motion, for which a con-
tinuous distribution of modes may exist. When H or f is
variable, the number of subinertial modes becomes infinite,
either through an infinite number of discrete frequencies
or through a certain frequency with infinite multiplicity or
both.

The orthogonality relation (2.13) can be used to syn-
thesize any oscillatory (vj ± 0) mode from arbitrary initial
data. Steady ‘‘modes’’ (vj 5 0) will also generally exist
and additional conditions are required for their synthesis.
The simplest mode is a uniform displacement of the free
surface or interface with no associated horizontal motion
and is often referred to as the Helmholtz mode. Although
it can be removed in single-basin problems through re-
definition of the reference elevation, the mode is nontri-
vially present in coupled problems. If the basin contains
some closed ‘‘geostrophic’’ contours (along which fH0/H
is constant), a continuum of steady geostrophic solutions
is also possible. According to (2.8) the interface displace-
ment due to these modes and the Helmholtz mode is A0j0

where A0 is constant. To simplify the notation somewhat,
we represent A0j0 by hg and, likewise, set A0U0 5 Ug and
A0V0 5 Vg. The procedure for synthesis of these modes
from arbitrary initial data is discussed by Greenspan
(1969) for circulation in a container with a rigid lid. The
present free-surface (or interface) problem, which is a bit
more involved, is taken up in section 4.

3. The alteration of basin modes by a strait

This and the next section contain the key results, name-
ly, the relationships governing the slow time evolution of
the normal mode amplitudes. In this section we develop
the evolution equations for the oscillatory (vk ± 0) modes.
It is possible for the reader to skip the technical details

and proceed directly to the result [Eq. (3.5)] and its in-
terpretation, immediately following, as an energy equation.
For each mode amplitude, there is a first-order (in the slow
time variable) differential equation containing forcing
terms associated with the outflow, the explicit forcing and
dissipation, and nonlinear interactions with other modes.
In order to evaluate these forcing terms, one must use
information about the outflow boundary condition (section
5). It is also possible that one must simultaneously com-
pute the evolution of the modes for which vk 5 0, and
this is discussed in section 4.

At the O(e) approximation of the expansion introduced
in the previous section, the effects of the strait, the forcing
and dissipation, and nonlinear mode interactions come into
play. Though weak, these influences ultimately determine
the distribution of mode amplitudes (and therefore the total
solution) for the particular problem at hand. In accordance
with the usual outcome of perturbation techniques we an-
ticipate that the weak forcing, dissipation, and nonlinearity
will produce secular growth in time of the O(e) solutions,
an effect we will attempt to remove by introducing a slow
time dependence in the O(1) solutions. Formally, we let
Aj 5 Aj(t), where t 5 et, and use this slow time depen-
dence to remove any secular terms. The compatibility con-
dition determining Aj(t) is developed in this section for
the oscillatory modes and in section 4 for the geostrophic
modes. In many problems most of the desired information
concerning the physics of the coupled processes will be
contained in the evolution equations for Aj(t), and it will
not be important to explicitly solve for the O(e) fields.
This is true in problems involving forced steady circula-
tions with inflows and outflows, unforced geostrophic ad-
justment, problems involving time-dependent forcing over
broad frequency bands, or forcing at resonant or near-
resonant3 frequencies. In the subinertial range where nat-
ural frequencies are densely packed, it will often be the
case that any forcing frequency is resonant or near-reso-
nant. If the secular terms are absent (as in the case of
nonresonant forcing) and the initial state motionless, the
entire O(1) solution is zero and the perturbation approach
may provide no inherent simplification. In some cases,
motions may arise with amplitudes involving fractional
powers of e, and these require special treatment. One ex-
ample is the ‘‘arrested topographic wave’’ of Csanady
(1978), which is discussed in Part II. Even when the O(1)
solution is nonzero, some analysis of the O(e) fields may
be necessary in order to gain insights into Lagrangian
aspects of the flow field or to compute western boundary
currents (also see Part II).

To O(e), Eqs. (2.3) and (2.4) are

3 Near resonance means that the forcing frequency minus the near-
est natural frequency is O(e).
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(1)]U
(1) (1)1 f k 3 U 1 (H/H )=h0]t

(0)]U
(0) (0)5 2 2 (Ro/e)(U ·=)(U H /H) 1 F(x, y, t, t)0]t

(3.1)
(1)]h

(1)1 = ·U
]t

(0)]h
(0) (0)5 2 2 (Ro/e)= · (h U H /H) 1 w (x, y, t, t).0 p]t

(3.2)

The boundary condition is that U(1) ·n 5 0 away from
the strait entrance, whereas U(1) ·n is specified by the
strait formulation at the entrance.

The terms on the right-hand side of (3.2) depend on
predetermined forcing and dissipation and on the lowest
order solutions. Some of these terms may excite a resonant
response in the O(e) fields leading to secular growth of

the solutions in t. Such behavior would eventually inval-
idate our asymptotic expansion, and the offending terms
must be removed by restricting the slow time dependence
of the lowest order solutions. [This procedure is discussed
by Bender and Orszag (1978, chapter 11) in connection
with ordinary differential equations, and our analysis is
based on the same principles.] To do so, it is first necessary
to identify the resonant terms using the property that such
terms must project spatially and temporally onto the ho-
mogeneous solutions to (3.1) and (3.2). That is, a resonant
term will have exp[ivkt] time dependence, where vk is the
frequency of any normal mode, and must have a spatial
structure with nonzero projection onto that normal mode.
Therefore, one may proceed by multiplying (3.1) and (3.2)
by (H0/H) and , respectively, and adding the prod-U* z*j j

ucts. [Recall that the latter are the complex conjugates of
the lowest order horizontal structure functions and that the
multiplication is the same procedure used to derive the
orthogonality relationship (2.13).] Integrating the results
over the area of the basin and applying the boundary
condition (2.7) lead to

 W(1) (0) (0) U ·U*] U*·]U /]t ]hj j(1) (1)  2 iv 1 h z* ds 5 2 [z*U ·n] ds 2 1 z* ds j EE j E j e EE j1 2 [ ]]t (H/H ) (H/H ) ]t0 0 A 0 A

Ro H0 (0) (0) (0) (0)2 U*· (U ·=)(U H /H) 1 j*= · (h U H /H) dsEE j 0 j 01 2[ ]e HA

1 (U*·FH /H 1 w z*) ds. (3.3)EE j 0 p j

A

The subscript e denotes evaluation at the entrance of the
strait and ds represents integration across the dimen-W∫0

sionless width W of the entrance, clockwise around the
basin edge.

Any terms on the right-hand side of (3.3) with iv tje
time dependence will produce a solution growing al-
gebraically in t. One such term is the second integral,
which may be rewritten

(0)U*·U] j (0)1 z*h dsEE j[ ]]t (H/H )0A

U*·U]A j jj iv tj5 e 1 z*z ds (3.4)EE j j[ ]]t (H/H )0A

by applying the orthogonality condition (2.13) to the ex-
pansion (2.8). The other integrals on the right-hand side of
(3.3) may also have time dependence. To avoid reso-iv tje
nance, all such terms must be removed, and it follows that

W]A Ro Hj 0(1) (0) (0) (0) (0)5 2 [z*U ·n] ds 2 U*·U ·= (U H /H) 1 z*= · (h U H /H) dsE j e EE j 0 j 05 1 2[ ]]t e H0 A

2|U |j 21 [U*·FH /H 1 w z*] ds 1 |z | ds. (3.5)EE j 0 p j EE j6@ [ ](H/H )j 0A A
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The operator { }j selects the coefficients of any terms
having time dependence in the bracket. The case jiv tje
5 0 is excluded and will be considered separately in
section 4. Note that (3.5) can be interpreted as an energy
balance, with the right-hand side being a normalized
sum of terms quantifying work done on the jth mode
by forcing F, by the inflows and outflows we and U(1) ·n,
and by other modes through the nonlinear interactions.

In evaluating the right-hand side of (3.5) zj and Uj

are given by the known, closed-basin modes and F and
wp are prespecified or given in terms of O(1) quantities.
The normal component of the O(e) entrance velocity
U(1) ·n is supplied by the strait formulation. If multiple
straits connect to the basin, (3.5) will contain a sum of
entrance width integrals. When linear forms for U(1) ·n,
F, and wp are used, the numerator in (3.5) will generally
contain terms proportional to Aj. If vj is a multiple fre-
quency, shared by modes j and k for instance, depen-
dence on Ak will also occur.4 Amplitudes of modes in
different basins sharing the same frequency can also
arise in the term [ U(1) ·n]e if the strait flow is notj*j
hydraulically controlled. If [U(1) ·n]e, F, or ve are non-
linear in the O(1) modes, the numerator of (3.5) may
contain nonlinear dependencies on the amplitudes of
modes having frequencies other than vj. For hydrauli-
cally controlled outflow the dependence will be nonlin-
ear unless further approximations are made. Finally, if
(Ro/e) is O(1), nonlinearities may arise from mode in-
teractions in the basin interior [the middle term in the
numerator of the right-hand side of (3.5)].

Platzman (1984) obtained a relation analogous to
(3.5) in his treatment of World Ocean modes. Instead
of a strait, he had a World Ocean continental shelf across
which wave radiation could occur. His discussion in-
volves a discretized model but the distinction is only
superficial. In particular, his equation (12.9) is a dis-
cretized form of (3.5) in which the nonlinear interaction
terms are absent, wp 5 F 5 0, and where the strait
entrance condition is replaced by a linear radiation con-
dition.

4. Evolution of the geostrophic ‘‘mode’’

In this section, evolution equations for the slow time
dependence of the Helmholtz and geostrophic modes
are derived. Unlike the oscillatory modes, each of which
is identified with a discrete spatial structure, the geo-
strophic solutions are continuously distributed: any ge-
ostrophically balanced flow circulating around closed
contours of constant fH0/H is a solution. Nevertheless,

4 In studies using actual bathymetry (e.g., Platzman 1972; Candela
and Lozano 1994), it is rare to find frequency multiplicity apart from
v 5 0. In idealized geometries, however, multiplicity is quite com-
mon. For example, in a square basin with flat horizontal bottom and
constant f, any mode having x- and y-mode numbers (n, m) will, by
symmetry, share its frequency with the mode (m, n).

the procedure used to obtain the slow-time evolution of
these solutions is similar to that for the oscillatory
modes. As before, how the geostrophic modes are ini-
tialized must first be determined, given an arbitrary ini-
tial state. Doing so requires the development of a kind
of orthogonality relation allowing the oscillatory modes
to be eliminated from the initial state. The relation is
obtained by performing a circulation integral around
each closed geostrophic contour and showing that the
circulation (or potential circulation) associated with the
oscillatory modes is zero. Next, the evolution equation
for the geostrophic mode is obtained. As before, terms
leading to secular growth in t of the O(e) fields must
be identified and suppressed, and this is done by per-
forming circulation integrals of the O(e) equations over
each closed geostrophic contour. For the Helmholtz
mode a similar set of operations is carried out using
conservation of mass, rather than potential circulation,
as the guiding constraint. [A reader who wishes to skip
the technical details may proceed directly to the evo-
lution equations (4.5) and (4.8) for the geostrophic and
Helmholtz modes and the accompanying physical in-
terpretations.] Finally, an alternate form of the geo-
strophic evolution equation, written in geostrophic co-
ordinates and advantageous for numerical computations
involving basins of complex topography, is given by
(4.6).

The geostrophic and Helmholtz modes are contained
in the fields denoted by hg(x, y, t) and Ug(x, y, t) and
that t dependence is not necessarily separable from the
(x, y) dependence. In the following, repeated use is made
of the fact that hg is constant along geostrophic contours,
as follows from (2.9) with vj 5 0:

H
f k 3 U 5 2 =h .g gH0

The geostrophic/Helmholtz solution is particularly
important as it carries all excess mass, a property which
can be shown by integrating (2.10) over the area of the
basin and applying the boundary condition Uk ·n 5 0
on the periphery. The result

v z ds 5 0 (4.1)k EE k

A

shows that the net surface displacement for all but the
steady (vk 5 0) modes is zero. The Helmholtz and geo-
strophic modes are therefore crucial to any problem in-
volving exchange of mass between basin.

a. Synthesis from initial data

In the case where the upper boundary is rigid and the
geostrophic contours are closed, Greenspan (1969) has
shown that the geostrophic modes can be synthesized
from arbitrary initial data by using the property that the
oscillatory modes carry no net potential circulation. We
can obtain a generalized result for a free upper boundary
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by first multiplying (2.5) by H0/H, taking the curl of the
result, and integrating over any area Ac bounded by a
closed geostrophic contour C. (Geostrophic motion in
regions of boundary-intersecting geostrophic contours
is nil.) From this result one subtracts the area integral
of (2.6) multiplied by fH0/H yielding

(0)] U H0k ·= 3 dsEE[]t HAc

(0)2 ( fH /H) h ds 5 0. (4.2a)0 C EE ]
Ac

The modal version of this equation can be obtained by
performing the same sequence of operations on (2.9)
and (2.10), leading to

iv k ·= 3 (U H /H) dsk EE k 0[
Ac

2 ( fH /H) z ds 5 0. (4.2b)0 C EE k ]
Ac

This relation shows that the potential circulation (term
in braces) about any geostrophic contour of any oscil-
latory (vk ± 0) mode is zero.

The remaining procedure is discussed by Greenspan
(1969) for circulation in a container with a rigid (though
not necessarily horizontal) lid, in which case the free
surface term is absent from (4.2). The generalization of
his result is straightforward. To begin with, the geo-
strophic solution is projected onto the initial potential
vorticity using (4.2a and 4.2b):

k ·= 3 (U (x, y, 0)H /H) dsEE g 0

Ac

fH02 h (x, y, 0) dsEE g1 2H AC c

(0)5 k ·= 3 (U (x, y, 0, 0)H /H) dsEE 0

Ac

(0)2 ( fH /H) h (x, y, 0, 0) ds. (4.3)0 C EE
Ac

If fH0/H is nonuniform, the integral equation (4.3)
must be solved for each area Ac in order to obtain the
initial distribution of geostrophic velocity and surface
elevation. In cases where the geometry as well as the
initial total velocity and elevation possess certain sym-
metries, it may be straightforward to do so directly. In
more complicated cases advantage can be taken of the
fact that hg is constant along geostrophic contours and
the corresponding functional dependence can be sought.
The simplest case arises when all the closed geostrophic

contours in the basin have unique fH0/H values so that
hg ( fH0/H, 0) is single valued.

In general, the geostrophic contours will occur in a
nest with the central contour fH0/H 5 ( fH0/H)0 en-
closing zero area. Under these conditions (4.3) may be
rewritten as

dh (a, 0)d J(a) g
2 A9(a)h (a, 0) 5 (I(a)/a)9,c g1 2da a da

(4.4)

where a represents fH0/H and I(a) and J(a) are given
by (A.5) and (A.6) of the appendix. The steps leading
to (4.4) are detailed in the appendix.

The two integration constants in the solution to the
second-order equation equation (4.4) can normally be
evaluated by a condition of boundedness at the central
contour a0 and the condition that the solution contains
all net initial surface displacement [implied by (4.1)].

If the basin contains multiple nests of closed contours,
(4.4) must be solved separately in the different regions
of monotonic fH0/H and the individual solutions must
be matched.

b. Compatibility condition for geostrophic solutions

The t dependence of the steady modes is obtained by
performing the same sequence of operations on (3.1)
and (3.2) that was used to derive (4.3). The result is the
following integral differential equation

] H fH0 0U · lds 2 h dsR g EE g[ ]]t H Hc Ac

H fH0 05 F · lds 2 v dsR EE p5 H Hc Ac

R ] fH0 0(0) (0) (0)2 (u ·n) u · l 2 h ds , (4.5)R 6[ ]e ]n Hc 0

where { }0 selects only the t-independent terms, u(0) ·n
is the cross-contour (ageostrophic) velocity, u(0) · l is the
clockwise positive along-contour velocity, ](u(0) · l)/]n is
the normal (outward) derivative of the latter, and s mea-
sures distance positive clockwise around the contour.
Equation (4.5) is a version of the circulation theorem
stating that the slow change in potential circulation is
associated with the net tangential force F ·dl about the
contour, the net entrainment velocity over the enclosed
area, and the net inflow of relative vorticity and interface
displacement by the cross-contour velocity u(0) ·n. If the
horizontal velocity is geostrophic, u(0) ·ug, then u(0) ·n
vanishes and the terms multiplied by Ro/e disappear.
Thus, the interior nonlinear interaction terms vanish for
geostrophic flow in the presence of continuously vary-
ing fH0/H contours. Nonlinearities may still result from
the boundary conditions, as shown below, or from non-
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linear dependencies in the forcing function F. If fH0/H
is uniform within a finite area so that all closed contours
have constant fH0/H, ug ·n need no longer vanish and
nonlinear interactions occur. This situation arises in the
quasigeostrophic limit of the strait model as shown in
section 4c.

An alternative form of (4.5) may be obtained by ex-
pressing hg as a function of fH0/H (or a) and assuming
single valuedness as before. To do so, integrate (4.5) with
respect to t, apply Eqs. (A.1) and (A.2), divide by a,
and differentiate the result with respect to a, leading to

]h] J(a) dAg c2 hg1 2]a a ]a da

t] 1
5 K(a, t9) dt9 1 d(I(a)/a) da, (4.6)E1 2]a a 0

where

K (a, t9)

5 k ·=EE5
Ac

FH RoH0 0 (0) (0)3 2 (U ·=)(U H /H) ds0[ ]H eH

Ro
(0) (0)2 a w 2 = · (h U )H /H) ds .EE p 0 6[ ]e 0Ac

(4.7)

Our experience with simple analytical examples has
been that it is easier to use the more primitive form
(4.5) to solve for hg and that (4.6) proves more ad-
vantageous in complicated examples requiring numer-
ical algorithms. In either case, two boundary condi-
tions need to be specified and one will generally con-
tinue to be provided by a requirement of boundedness
at the central contour. The second condition can be
obtained by integrating (3.2) over the area A of the
basin. After applying boundary conditions, using (4.1),
and suppressing secular terms, one obtains

W]
(1)h ds 5 w ds 2 U ·n ds ,EE g EE p E5 6]t 0A A 0

(4.8)

which is nothing more than a mass budget. An alter-
native condition, which is convenient to apply when a
velocity component (rather than hg) is the dependent
variable, can be derived by applying (4.5) at the outer
contour corresponding to the basin edge (i.e., set Ac 5
A). After using Green’s theorem and the divergence
theorem, applying boundary conditions, and using
(4.8),

] H0 U · l dsR g1 2]t HCe

WH fH0 0 (1)5 F · l ds 2 U ·n ds, (4.9)R EH HCe 0

where Ce denotes the basin edge (including the strait
entrance) and l is a unit tangent to Ce. Equation (4.9)
is a form of the circulation theorem for the basin as a
whole. If the basin contains boundary-intersecting geo-
strophic contours, one simply sets Ug 5 0 along such
contours. If the boundary itself is not a geostrophic
contour, (4.8) continues to hold, or (4.9) can be applied
by considering Ce to be the outermost closed geostrophic
contour. If H is zero along Ce, as will occur in all cases
where the side walls are nonvertical, (H0/H)Ug should
simply be thought of as ug (the geostrophic velocity)
and (4.5) and (4.9) should be reformulated accordingly.

A more difficult circumstance arises when several
nests of geostrophic contours are present, for then hg is
no longer a single-valued function of fH0/H. In such
cases, (4.5) or (4.6) must be solved separately in the
individual nests and their hg values matched at common
boundaries.

c. Reduction to quasigeostrophic theory

Finally, it is easy to deduce f-plane quasigeostrophic
theory from (4.5). First, one must pose geostrophic ini-
tial conditions so that no oscillatory modes are excited,
and U (0) and h(0) may be replaced by Ug and hg on the
right-hand side. Next, one assumes that f and H are
uniform ( f 5 1 and H 5 H0) over the entire basin so
that any closed contour is a constant fH0/H contour.
Under this condition all integrands in (4.5) must balance
pointwise throughout the basin, leading to

]y ]u] Ro g g
1 u ·= 2 2 h 5 k ·= 3 F 2 w ,g g p1 21 2]t e ]x ]y

the f-plane, quasigeostrophic potential vorticity equa-
tion.

5. Treatments of straits

We now give examples of how some of the more
widely used laws for strait and sill flows can be adapted
for use in the asymptotic theory. For self-consistency it
must be possible to configure the strait such that the
normal component of entrance transport velocity is non-
dimensionally small:

Ũ · ne (1)5 eU ·n K 1,e1/2(gH ) N0

where the definition of e depends on the strait model.
Furthermore, the O(e) transport velocity ·n must be(1)Ũe

expressible in terms of known quantities such as O(1)
fields or prescribed forcing, or in terms of quantities
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FIG. 2. Definition sketch showing strait with rectangular section
exiting from basin.

that can be calculated from other compatibility relations
in neighboring basins. Most of our attention will be
devoted to the adaption of a rotating hydraulic model
due to Whitehead et al. (1974, hereafter WLK). Later
we consider strait formulations based on theories for
frictionally or geostrophically controlled throughflow.

In all the cases discussed below, the along-strait ve-
locity component is assumed to be in geostrophic bal-
ance so that the transport scales with the difference in
the square of the surface elevation across the strait. An
O(1) variation of h(0) across the strait entrance therefore
implies O(1) transport velocity at the strait entrance in
violation of the underlying assumption Ue ·dn 5 O(e).
Use of geostrophic strait formulations therefore requires
that we restrict attention to situations in which h(0) is
constant (or nearly so) across the entrance. If the basin
flow is geostrophic and the entrance lies along a geo-
strophic contour, then the interior dynamics ensure that
h(0) is constant, as desired. If the entrance does not lie
along a geostrophic contour, it can often be redefined
to do so. For time-dependent interior flows, the entrance
width W must be assumed much smaller than the typical
scale of variation of h(0), eliminating modes of fine
cross-entrance horizontal structure from consideration.
In all cases the horizontal structure function zj(x, y) must
be nearly constant across the entrance, and the term

W

(1)[z*U ·dn] dsE j e

0

appearing in (3.5) may therefore be approximated by
W

(1)[z*] U ·n ds,j e E e

0

where [ ]e is the value of evaluated at any conve-z* z*j j

nient location across the entrance. With this simplifi-
cation evaluation of (3.5) requires specification of the
total outflow transport relation but not information about
the entrance velocity distribution. The only other place
where the outflow condition enters the formulation is
(4.8) [or its alternate form (4.9)], where, again, the total
transport relation is required. Hence, determination of
the lowest order basin flow requires that one know only
the total transport relation and not the actual velocity
distribution.

a. Inviscid, hydraulically controlled outflows
according to WLK

The basic result due to WLK can be described as
follows. Referring to Fig. 2a, consider a uniformly ro-
tating flow in a channel of rectangular cross section that
spills over a sill. The fluid thickness at the sill crest is
assumed to be much less than the upstream thickness
so that severe vortex squashing is implied for the fluid
as it approaches the sill. Under these conditions, hy-
draulic control theory determines the total dimensional
volume transport as

3/23/2 2 2˜2 f W0 s1/2˜ ˜T 5 W g h̃ 2s r1 2 [ ]3 8g

2 1/2˜[if W , (2g9h̃ / f ) ], (5.1a)s r 0

where W̃s is the channel width at the sill and is theh̃r

elevation of the free surface above the sill measured
along the right-hand wall (facing downstream) as in-
dicated in Fig. 2b. [In adapting (5.1a) to our model,

may be measured at any location across the entrance.]h̃r

In Eq. (5.1a) the layer thickness is assumed nonzero
across the entire sill width, which holds as long as W̃s

, ( / )1/2. If the latter condition fails, implying22g9h̃ fr 0

that the left-hand edge of the current has separated from
the side wall, (5.1a) is replaced by

2g9h̃ r 2 1/2˜ ˜T 5 [if W . (2g9h̃ / f ) ]. (5.1b)s r 02 f 0

There is some question as to whether separated sill flow
can actually occur under conditions of hydraulic control
with rectangular geometry [see Stern (1980) and Pratt
(1987) for evidence to the contrary], and caution should
be exercised in using (5.1b).

We now assume that the length of the strait is suf-
ficiently small that the flow therein may be considered
quasi-steady. It is also assumed that the strait geometry
varies gradually in the alongaxis direction so that the
streamlines at any cross section are nearly parallel. Near
the strait entrance, the scales characterizing the basin
flow should continue to hold, and thus the dimensionless
transport corresponding to (5.1a) or (5.1b) is

3/2 3/2 2 2˜ ˜2 W f Ws 0 s1/2Ro h 2 ,r1 2 1 2[ ]3 L 8gNd

W̃s 1/2 1/2, (2Ro) h ) (5.2a) r˜ LT d5
1/2Ro(gH ) H L 10 0 d 2Roh ,r2

W̃s 1/2 1/2 $ (2Ro) h ). (5.2b)rL d
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In either case the dimensionless transport is proportional
to a small parameter (Ro or Ro1/2), consistent with the
basic assumption of weak outflow. The requirement of
(5.2a) can only be satisfied if W̃s/Ld is O(Ro1/2) so that
the dimensionless transport is actually O(Ro) in either
case.

In summary, the small parameter e characterizing the
strength of the outflow is Ro. Nonlinear self-interaction
terms arise in (3.5) at the same order of approximation
as the outflow term. The latter is given by

W

(1)z*U ·n dsE j

0

3/2 3/2 22 W Ws s(0)h 2r1/21 2 1 2[ ]3 Ro 8Ro

1/2 (0)1/2 W , (2Ro) h (5.3a)s t


5 [z*]j e
1

(0)2h ,r2
1/2 (0)1/2W . (2Ro) h , (5.3b) s r

where Ws 5 W̃s/Ld and Ws/Ro1/2 is understood to be O(1).
In the limit of weak rotation (or vanishing strait width),
Ws/Ro1/2 5 W̃s f0/(gN )1/2 → 0 and the above expression
can be approximated by

3/2W 2 Ws(1) (0)3/2z*U ·n ds 5 [z*] h ,E j j e r1/21 2 1 23 Ro0

W̃ fs 0 → 0 . (5.4)
1/21 2(gN )

b. Frictionally dominated outflows

When friction is significant in the strait, a spatially
averaged version of the alongstrait momentum equation
is often used as a model. A typical example (Candela
and Lozano 1994) is (in dimensional terms)

˜]U gHs s ˜5 2 (Dh̃ 2 Dh̃ ) 2 R U , (5.5)e a f s˜]t Ls

where Ũs and Hs are the width-averaged transport ve-
locity and depth, both assumed uniform over the length
Ls of the strait. A linear drag law with coefficient Rf is
assumed and and are the difference in actualDh̃ Dh̃e a

and isostatic surface levels between the two ends of the
strait.

Nondimensionalizing (5.5) leads to

ŨseU ·n 5e 1/2(gH ) N0

1/22(gH ) H f L ]u0 s 0 s s5 (Dh 2 Dh ) 1 ,e a 1/2[ ]R L H (gH ) ]tf s 0 0

(5.6)

where Hs(y) is the strait depth, usually assumed to be
constant and us 5 Us H0/Hs is the nondimensional strait
velocity. For Ls # (gH0)1/2/ f0, the entrance transport ve-
locity is constrained by the parameter

1/2(gH ) H0 se 5 ,
R L Hf s 0

which is small for sufficiently large R f. For e K 1 and
f0Ls/(gH0)1/2 K 1, the total transport is approximated by

W

U ·n dy 5 2(Dh 2 Dh )W, (5.7)E e e a

0

where W is the dimensionless strait width, assumed con-
stant.

c. Inviscid, geostrophically controlled outflows

Geostrophic control (Garrett and Toulany 1982) is
based on the premise that the cross-strait change in sur-
face or interface displacement cannot be greater than
Dh. Since the cross-strait change in h determines the
geostrophic transport, the result is a transport bound
whose value can be obtained by defining

1/2(gH ) H0 se 5
Wf H0 0

and using (5.7). Models of fluctuating flow in straits
have suggested that geostrophic control is valid only
within certain frequency ranges (Pratt 1991; Hannah
1992) and under certain geometries (Wright 1987).

The models for frictionally and geostrophically con-
trolled flow both imply coupling with the downstream
basin. As opposed to the situation with regard to single-
layer hydraulic control, reversals of total transport are
permitted.

The results of this section are summarized in Table 2.

6. Discussion

We believe that the compatibility conditions devel-
oped herein [(3.5), (4.5), (4.8), or the alternate forms
(4.6) and (4.9)] could form the basis for investigations
of a wide variety of physical processes occurring in
semienclosed seas or basins. The underlying equations
can be viewed as an extension of quasigeostrophic the-
ory in which the basic (geostrophic) state has been gen-
eralized to include natural basin modes. Applications
include steady circulations set up by basin flow fed from
above and subject to dissipation (see Part II) as well as
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TABLE 2. Examples of strait models.

Setting* ∫ U · n ds(1)W0 e

Small
parameter, e

1. Nonrotating, 1D, hydraulically
controlled

(⅔)3/2(Ws/Ro1/2)h3/2
r

0
(h . 0)(0)

r

(h # 0)(0)
r

Ro
N

51 2
H0

2. Rotating, hydraulically controlled,
uniform potential vorticity

2Ws3/2 1/2 (0) 3/2(⅔) (W /Ro )[h 2 ]s r 8Ro
½(h )2(0)

r

0

1/2 (0) 1/2([(2Ro) (h ) ] . Wr s
1/2 (0) 1/2([(2Ro) (h ) ] , W ,r s

. 0)(0)hr

# 0)(0)(hr

N
Ro 51 2

H0

N
Ro 51 2

H0

3. Geostrophic control (0)(Dh 2 Dh )We a
1/2H )g 0( Hs

W f H0 0

4. Frictionally dominated (0)(Dh 2 Dh )We a
1/2H )g 0( Hs

R L Hf s 0

* Cross sections are generally assumed rectangular. Other restrictions may apply, as described in the text.

forced and free oscillations in the presence of a hy-
draulic control (Part III). Although calculations are eas-
iest when the horizontal structure functions of the modes
are known analytically, as will be the case in certain
idealized geometries, the use of complicated geometry
or topography presents no intrinsic restriction; the nor-
mal modes are found numerically and the compatibility
equations are simply formulated with numerically de-
termined coefficients. Finally, applications are not lim-
ited to problems involving straits and sills. Our evo-
lution equations could also be used to explore resonant
interactions between Kelvin and Rossby modes and oth-
er issues involving nonlinear circulations in closed ba-
sins.

Having said this, we should also point out that there
are many types of problems where our theory will be
invalid or will fail to provide any fundamental simpli-
fication. First of all, the normal mode representation will
generally not be useful for highly localized features such
as isolated eddies set up by individual convection chim-
neys. Such features do not feel the basin geometry
strongly and the high normal modes needed to synthe-
size them are less likely to conform to the parameter
restrictions required by most outflow models. The large-
scale accumulation of mass by a group of chimneys
would be a more suitable forcing mechanism. If the
forcing, dissipation, or inflows and outflow are nondi-
mensionally strong our method can only hope to provide
intuition into certain dynamical aspects. Also, situations
may arise in which the O(1) solutions are identically
zero and one must calculate the O(e) solutions to capture
the leading physical effects. An example would be a
case with periodic and zero-mean forcing at a nonre-
sonant frequency (±vj for any j) and with no modes
initially present. The lowest order finite response would
be contained in the O(e) fields and would have to be
calculated directly from Eqs. (3.1) and (3.2). We note,
however, that the dense packing of mode frequencies

about v 5 O means that any subinertial forcing will be
either resonant or near-resonant. In summary, the meth-
od would seem best suited for situations in which the
forcing is subinertial and affects a significant fraction
of basin area.

Even in cases where the O(1) solution is nonzero, it
may be desirable to compute certain aspects of the O(e)
solution, depending on what type of information is de-
sired. In Part II, for example, we find that calculation
of parcel trajectories from the basin interior to the strait
entrance requires some consideration of the O(e) fields
near the boundaries.

Although other rotating hydraulic models exist
(e.g., Gill 1977; Dalziel 1991; Killworth 1992), the
WLK model is the only one that is both consistent
with simplified dynamics assumed in the basin and
does not predetermine the potential vorticity distri-
bution of the escaping fluid. (The WLK model is not
restricted to zero potential vorticity as sometimes
thought.) This model requires the sill height to be
nearly as large as the layer thickness near the entrance.
If the sill is not high, and the choking mechanism is
instead provided by a width contraction, another mod-
el must be used. Gill’s (1977) work is applicable in
this case but is restricted to uniform potential vortic-
ity. This state of affairs highlights the need for de-
velopment of general hydraulic laws which, in par-
ticular, can provide an entrance condition for arbitrary
potential vorticity distributions.
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APPENDIX A

Derivation of (4.4)

Start by rewriting the integrals in (4.3) as follows:

U Hg 0
k ·= 3 dsEE 1 2HAc

U H 1g 0
5 ·d l 5 =h ·dnR R gH fc c

]h1 fHg 05 = ·dnR 1 2f ]( fH /H) Hc 0

]h 1 fHg 05 = ·dn (A.1)R 1 2]( fH /H) f Hc0

and

fH0 h dsEE gH Ac

( fH /H)0fH dA0 c5 h d( fH /H), (A.2)E g 0H d( fH /H)0( fH /H)0 0

where n and l represent outward normal and tangential
unit vectors to the contour C and all expressions are
evaluated at t 5 0. Substituting these expressions into
(4.3) leads to

adh (a, 0) dAg cJ(a) 2 a h dã 5 I(a), (A.3)E gda dã
a0

where a represents fH0 /H,

1
J(a) 5 =a ·dn (A.4)E fc

and

(0)U (x, y, 0, 0)H0I(a) 5 k ·= 3 dsEE 1 2HAc

fH0 (0)2 h (x, y, 0, 0) ds. (A.5)EE1 2H AC c

In the rigid-lid case considered by Greenspan (1969),
the free surface term (A.2) is absent and (A.3) reduces to

dh (a, 0) I(a)g
5 , (A.6)

da J(a)

where hg should be interpreted as a pressure. In the more
general case, differentiation of (A.3)/a yields (4.4).
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