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ABSTRACT

The continuous dynamical modes of the exchange flow in the Bab al Mandab are computed in an attempt to
assess the hydraulic character of the flow at the sill. First, an extended version of the Taylor–Goldstein equation
for long waves that accounts for cross-channel topographic variations, is developed. A series of calculations
using idealized background velocity U(z) and buoyancy frequency N(z) are presented to illustrate the effects of
simple topographic cross sections on the internal modes and their speeds. Next, hydrographic and direct velocity
measurements from April to November 1996 using moored CTDs and a bottom-mounted ADCP are utilized to
construct monthly mean vertical profiles of N 2(z) and at the U(z) sill. An analytical approximation of the true
topography across the strait is also constructed. The observed monthly mean profiles are then used to solve for
the phase speeds of the first and second internal modes. Additional calculations are carried out using a selection
of ‘‘instantaneous’’ (2-h average) profiles measured during extremes of the semidiurnal tide. The results are
compared with a three-layer analysis of data from the previous year.

Many of the authors’ conclusions follow from an intriguing observation concerning the long-wave phase
speeds. Specifically, it was nearly always observed that the calculated speeds c21 and c1 of the two waves
belonging to the first internal mode obey c21 , Umin , Umax , c1, where Umin and Umax are the minimum and
maximum of the velocity profile. An immediate consequence is that neither wave has a critical level. For monthly
mean profiles, each of which have Umin , 0 , Umax, the flow is therefore subcritical (the phase speeds of the
two waves have opposite signs). For instantaneous profiles this relationship continues to hold, although the
velocity profile can be unidirectional. Thus the flow can be critical (c21 5 0 and/or c1 5 0) or even supercritical
(c21 and c1 have the same sign) with respect to the first mode. Similar findings follow for the second baroclinic
mode phase speeds (c22 and c2). The authors conclude that hydraulically critical flow is an intermittent feature,
influenced to a great extent by the tides. It is noted that the phase speed pairs for each mode lie very close to
Umin and Umax. As suggested by the analysis of idealized profiles, this behavior is characteristic of flows that are
marginally stable, perhaps as a result of prior mixing. This suggestion is supported by Richardson number (Ri)
profiles calculated from the monthly mean and instantaneous data. Middepth values of Ri were frequently found
to be O(1) and sometimes ,1/4, a result consistent with the presence of mixing over portions of the water
column.

1. Introduction

The general characteristics of the thermohaline cir-
culation in the Red Sea and neighboring Gulf of Aden
strongly suggest that the exchange flow in the con-
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necting strait, the Bab al Mandab (BAM, Fig. 1), is
hydraulically controlled. The Red Sea thermocline is
very shallow, lying mainly above the (;165 m) sill
depth (Maillard and Soliman 1986; Garrett et al. 1995)
and the outflowing Red Sea water spills though the
BAM and down into the Gulf of Aden (Fedorov and
Mechanov 1988; Bower et al. 2000) in a manner rem-
iniscent of flow spilling over a dam. The importance of
understanding this presumed control (its location, the
wave mode or modes involved, the locations of hy-
draulic jumps and other mixing agents, etc.) has been
mentioned in connection with a variety of recent work
on the Red Sea (Maxworthy 1997; Tragou and Garrett
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FIG. 1. The Bab al Mandab: B2 marks the position of the ADCP
and T–S mooring.

1997; Tragou et al. 1999; and especially Maxworthy
1997 and Smeed 1997, 2000).

Pratt et al. (1999, hereafter referred to as PJMK) re-
cently assessed the internal hydraulics of the flow in the
BAM by fitting a three-layer idealization of the ex-
change flow to density and velocity data. The reader is
referred to the introduction of that paper and to Smeed
1997 for a more thorough discussion of the geometry
of the strait and the seasonal character of the exchange
flow. The data was collected (Murray and Johns 1997)
as part of the first deployment of an April 1995–No-
vember 1996 field program employing CTD moorings
and bottom mounted ADCPs, deployed at the Hanish
Sill section and Perim Narrows section of the strait (Fig.
1). The three-layer model was used to calculate the long-
wave propagation speeds of first and second internal
modes at the sill and narrows. Surprisingly, the results
indicated that the flow was substantially subcritical with
respect to the first internal mode at the narrows, the
location of strongest exchange velocities. As it turns
out, the subcritical character of the flow is due to the
large layer depths at the narrows, a feature that tends
to enhance the speed of internal waves relative to the
background flow. At the sill, where the velocities are
weaker but the layer depths shallower, the nonsummer
flow was found to be marginally subcritical with respect
to the first mode, possibly indicating a section of critical
flow (and hydraulic control) nearby. Another surprise
finding was that the flow during nonsummer months was
nearly critical with respect to the second internal mode
at the sill (and possibly the narrows). The vertical struc-
ture of this mode suggests that the corresponding hy-
draulic control might regulate the composition of the

Red Sea outflow, particularly the relative contributions
of upper Red Sea deep water and Red Sea intermediate
water.

The study of PJMK raised a number of issues and
was subject to several limitations, many of which are
addressed in the present study. First of all, the velocity
and density structure in the BAM does not have a dis-
tinct layer character. The velocity varies continuously
and the density, while relatively uniform near the top
and bottom of the water column, varies continuously
and smoothly in the interior. There are no obvious in-
terfaces and PJMK were forced to vary the positions of
their model interfaces over what was believed to be
reasonable bounds in order to make uncertainty esti-
mates in the computed phase speeds. Second, there were
a number of gaps in the hydrographic data that were
filled from extrapolation or historical sources. Finally,
all calculations were based on monthly mean vertical
profiles, so little information about instantaneous flows
and the effects of tides and other sources of time-de-
pendence was found.

Since PJMK was published, data from the second
deployment (April through November 1996) has be-
come available. Although this dataset is limited by the
fact that no hydrographic measurements were taken at
the narrows, the measurements at the sill are more com-
plete than those from the first deployment. (This is for-
tuitous since the results of PJMK seem to indicate the
sill as the most likely location of hydraulic control with
respect to the first mode.) The completeness of the ve-
locity and hydrographic measurements at the sill allows
us to compute the first and second continuous dynamical
modes and their phase speeds. In order to do so we first
extend the theory for calculating long-wave modes to
include the possibility of variable cross-channel bottom
topography. We suspect that topography is important in
the BAM because the outflowing Red Sea Water is con-
fined to a narrow deep channel running along the center
of the strait, as shown in Fig. 2a. The computed phase
speeds allow us to make determinations regarding the
hydraulic character (subcritical, supercritical, or critical
with respect to different modes) of the flow. We do this
using both monthly mean profiles and a selection of
‘‘instantaneous’’ profiles. The latter are really 2-h av-
erage profiles that coincide with maximum tidal inflow
and outflow and with different states of net (barotropic)
inflow/outflow due to longer period disturbances. The
calculated phase speeds may imply vertical mixing, and
we discuss this in connection with calculations of the
Richardson number over the water column.

The connection between long waves and hydraulic
behavior is well understood in layered models, and the
reader is referred to Smeed (2000) and PJMK for dis-
cussion of this issue in relation to the BAM. In contin-
uously stratified flows, which exhibit more complex be-
havior and are more difficult to model, this connection
is not as well established. Nevertheless, it is clear that
signals propagating from the Indian Ocean into the Red
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FIG. 2. (a) Bottom topography across the Hanish Sill section. The observer faces toward the
Red Sea. The insert shows a local, flat-bottom approximation to the topograhy at the deepest point
that can be used to prevent the function T(z) from becoming singular. (b) The actual topography
(solid line) with a piecewise-linear approximation (dashed line). The end points of the dashed
line segments are given by A 5 (223 km, 150 m), B 5 (210 km, 125 m), C 5 (4 km, 110 m),
and D 5 (14 km, 120 m), all referenced to the deepest point of the cross section. At the sill, the
bottom is approximated by a horizontal section 100 m long. The channel terminates in vertical
side walls when the depth becomes less than 10 m (not shown) and this results in a total width
of approximately 50 km.

Sea potentially influence features like the structure of
the Red Sea thermocline, the composition of the outflow,
and perhaps even elements of the horizontal circulation.
It is therefore important to assess the ability of these
signals to reach the Red Sea. If certain types of signals
are unable travel northwest through the BAM, then the
Red Sea possesses a degree of isolation and self-deter-
mination that goes hand-in-hand with hydraulic control.
If all signals can travel in this direction, than the BAM
flow would not be hydraulically controlled, and one
might expect features like the depth of the Red Sea
thermocline to be imposed largely by the vertical density
structure of the Gulf of Aden and Indian Ocean. In brief,

there is sufficient motivation for calculating the phase
speeds of these signals at the sill even though one may
not have a particular model of hydraulic behavior for a
continuously stratified exchange flow in hand.

A number of calculations and results are new and
distinguish this work from PJMK. First, we introduce
a method for calculating the continuous, dynamical, in-
ternal long-wave modes in the presence of arbitrary,
cross-channel topography by deriving an extended ver-
sion of the Taylor–Goldstein equation for long waves.
Second, we employ a few idealized profiles of channel
topography, background velocity and N 2 to illustrate
some of the basic features of long-wave modes expected
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in exchange flows over typical topography. Third, we
document certain observed features, including monthly
mean and selected 2-h average velocity, stratification,
and Richardson number for the second deployment
(April–November 1996). (PJMK used data from the first
deployment, which spanned June 1995–March 1996).
Fourth, we compute the lowest two dynamical modes,
their phase speeds, and the corresponding uncertainty
bars for the second deployment monthly mean sill flows
and use the results to asses the criticality of the exchange
flow. (In order to overlap the first deployment and de-
velop a full year of results, we also perform the cal-
culations for a block of first-deployment months.) Fi-
nally, to gain some insight into the effects of time de-
pendence, we perform the same calculations for a se-
lection of instantaneous flows.

2. An extended Taylor–Goldstein equation for long
waves

The BAM outflow is largely confined to a deep central
trough whose width is much less than the width of the
strait (PJMK). This topographic feature can be seen in
the Hanish Sill cross section shown in Fig. 2a. We for-
mally analyze the general effects of cross-channel to-
pographic variations by considering the propagation of
long, internal gravity waves in a channel with laterally
varying but longitudinally uniform bottom elevation.
The waves are linear and propagate in a stratified back-
ground flow with velocity U(z) and density r0(z). The
channel is aligned in the x direction and the bottom
elevation h(y) has a single minimum with respect to the
cross-channel coordinate y. As shown in Fig. 2a, the
width of the channel at any elevation z is denoted b(z).
If several minima in h(y) are present, then b(z) is un-
derstood to represent the sum of the widths of the in-
dividual topographic troughs.

Let r, u, and p denote small perturbations from the
density, x velocity, and hydrostatic pressure of the back-
ground flow, and let y and w denote the associated lateral
and vertical velocity components. Employing the Bous-
sinesq approximation, the linearized, inviscid, hydro-
static equations of motion describing these fields are
then given by

] ] dU ]p
r 1 U u 1 w 5 2 (2.1)0 1 2[ ]]t ]x dz ]x

] ] ]p
r 1 U y 5 2 (2.2)01 2]t ]x ]y

]p
5 2rg (2.3)

]z

] ] dr01 U r 1 w 5 0 (2.4)1 2]t ]x dz

]u ]y ]w
1 1 5 0. (2.5)

]x ]y ]z

We seek waves for which r, p, u, and w are uniform
in y, implying that the isopycnal surfaces rise and fall
uniformly across the channel. Such solutions are dy-
namically consistent only in the limit of long wave
length compared to channel width.1 Integrating (2.5)
across the channel at any z and applying the conditions
w 5 y(dh/dy) at the two side walls leads to

]u ]w
1 1 T(z)w 5 0, (2.6)

]x ]z

where T(z) 5 b21db/dz 5 d(lnb)/dz.
Now let (u, w, r, p) 5 Re[(ũ(z), w̃(z), ,r̃(z)

p̃(z))eik(x2ct)], so that (2.1), (2.3), (2.4), and (2.6) become

r dU0r (U 2 c)ũ 1 w̃ 5 2p̃ (2.7)0 ik dz

dp̃
5 2r̃g (2.8)

dz

w̃ dr0(U 2 c)r̃ 1 5 0 (2.9)
ik dz

]w̃
ikũ 1 1 Tw̃ 5 0. (2.10)

]z

Eliminating all variables in favor of w̃ and neglecting
derivatives of r0(z) unless multiplied by g leads to

2 2 2d w̃ N d U d
(U 2 c) 1 2 w̃ 1 [(U 2 c)Tw̃]

2 2[ ]dz U 2 c dz dz

5 0, (2.11)

where N 2 5 2 g dr0/dz.21r0

The geometry of the cross section is contained in the
parameter T(z). If the cross section is rectangular (T 5
0), the Taylor–Goldstein equation for long waves is re-
covered. For the calculations presented later, we will
assume a rigid-lid boundary condition at the upper sur-
face (z 5 zT) and thus w̃(0) 5 w̃(D) 5 0, where z 5 0
denotes the elevation of the deepest point in the channel
and z 5 D denotes the upper surface elevation.

In further analysis it will be convenient to nondi-
mensionlize (2.11) by scaling U and c by an unspecified
background velocity scale U0, w̃ by an unspecified ver-
tical velocity scale W, and z, h, and y by D. (Thus,
dimensional N 2 is replaced by N 2D2/ and dimensional2U 0

T by DT.) The dimensionless problem for the vertical
structure of the modes then becomes

1 If the wavelength l is large compared to the channel width b,
then the continuity equation suggests that y /u 5 O(b/l ). The mo-
mentum equations (2.1) and (2.2) then suggest that the along-channel
pressure gradient is larger than the cross-channel pressure gradient
by the same ratio. Under this condition, it not difficult to show from
(2.1)–(2.5) that cross-channel gradients in the dependent variables
remain negligible if they are initially zero.
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FIG. 3. Various idealized topographic profiles along with their nondimensional T(z) [5D times
dimensional T(z)].

2 2 2d w̃ N 1 d U
1 2 w̃

2 2 2[ ]dz (U 2 c) (U 2 c) dz

1 d
1 [(U 2 c)Tw̃] 5 0 (2.12)

(U 2 c) dz

with

w̃(0) 5 w̃(1) 5 0. (2.13)

In case studies of geophysical interest, where b
smoothly goes to zero as z → 0, T(z) typically has a
z21 singularity. For example, let h(y) } near y 5mây
0, so that b 5 azm, where m 5 m21 and a 5 2 . It21/mâ
follows that T(z) 5 (d/dz) ln(azm) 5 m/z. Figure 3
shows some idealized shapes with corresponding T(z).
The topographic shapes shown in Figs. 3c,d have finite
b at z 5 0 and thus avoid the singularity. For numerical
purposes, the singularity can be avoided by approxi-
mating the actual bottom topography at z 5 0 by a short
horizontal section, as suggested in the inset of Fig. 2a.
This subject discussed further in appendix A.

The broken dashed line in Fig. 2b shows an approx-
imation to the Hanish Sill topography (solid curve) used
in our calculations. The deepest part is represented by
a 100-m long horizontal section at 160-m depth. The
slopes of the side walls are varied in a piecewise-con-

stant manner in order to fit the actual topography. Above
a level z0 the side walls become vertical (T 5 0). The
dimensionless shape function describing the approxi-
mate topography is

21(z 1 0.0193) (0 # z , 0.668)
21(z 2 0.5947) (0.668 , z , 0.762)

T(z) 5
21(z 2 0.6440) (0.762 , z , z )0

0 (z , z # 1), 0

(2.14)

where z0 5 15/16.

3. Examples of modes in idealized systems

Since our assessment of the hydraulics of the BAM
sill flow is centered on signal propagation, it is important
to understand in advance what types of signals are pos-
sible and what restrictions exist on their phase speeds.
We therefore begin this section by reviewing the prop-
erties of solutions to the original Taylor–Goldstein equa-
tion. Unless noted otherwise, these results apply directly
to our extended, long-wave version of Eq. (2.12) pro-
vided that the singularity in T(z) at z 5 0 is no worse
than 1/z. That is, the cross-sectional geometery of the
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TABLE 1. Phase speed eigenvalues for three idealized topographies.

Case |c61|/N |c62|/N |c63|/N

T(z) 5 0 (Rectangular bottom)
T(z) 5 1/(z 1 a) (Trapezoid

with a 5 1)
T(z) 5 1/z (Triangular bottom)

0.318

0.312
0.261

0.159

0.158
0.143

0.106

0.105
0.103

channel has not been found to alter basic theorems about
phase speed bounds and the Richardson number crite-
rion for instability. Proofs showing the extension of pre-
vious results [such as Howard’s (1961) semicircle the-
orem] to the new equation have been developed by J.
Deng, L. Howard, L. Pratt, H. Deese and C. K. R. T.
Jones (unpublished manuscript) but these are beyond
the scope of the present paper. The influence of topog-
raphy on the structure and propagation of wave modes
becomes evident through specific examples, and we pre-
sent several later in this section.

As summarized by Drazin and Reid (1981) and
Baines (1995) the solutions of the (original) Taylor–
Goldstein equation with N 2 . 0 depend crucially on the
minimum value of the Richardson number

2N (z)
Ri 5

2(dU/dz)

over the water column. If (Ri)min . 1/4, then there is a
countable infinity of discrete neutral modes. These can
be thought of as internal gravity waves that have been
modified by the background shear. Denoting the cor-
responding eigenfunctions and eigenvalues by [w̃j(z),
cj], it can be shown that

NmaxU 2 , c , c , c , · · · , Umin 21 22 23 min2 2 1/2(p 1 k )

, U , · · · , c , c , cmax 3 2 1

Nmax, U 1 ,max 2 2 1/2(p 1 k )
(3.1)

and cj → Umin as j → 2` and cj → Umax as j → `.
Thus the wave speeds lie outside the range of the basic
velocity but within a finite factor (p21Nmax for long
waves) of the velocity extremes. Finally, it can also be
shown that the jth eigenfunction w̃j(z) has exactly |j| 2
1 zero crossings in 0 , z , 1.

The discrete neutral modes are important as they pro-
vide a connection with layered systems. An n-layer hy-
draulic model has n normal modes and these are anal-
ogous to the first n discrete modes of a continuous sys-
tem. This analogy can break down when (Ri)min , 1/4
in which case the flow may be unstable (Miles 1961).
Neutrally stable discrete modes can still exist but their
number may be finite, even zero. Their phase speeds
continue to lie outside the range of the basic velocity.
In addition, there may be a finite number of nonsingular
unstable modes (with conjugate damped partners). Ac-
cording to the semicircle theorem, the real part of the
phase speed for such a mode will lie within the range
of the background velocity. Finally there can be a finite
number of marginally stable2 neutral modes that have
real phase speeds c in the range of the background ve-

2 That is, contiguous to an unstable mode.

locity and therefore have critical levels zc such that U(zc)
5 c. If the value of the Richardson number at the critical
level is .1/4, w̃(z) oscillates rapidly in the neighborhood
of zc (Booker and Bretherton 1967).

In addition to the discrete modes, a continuous spec-
trum of neutral modes will exist with critical levels. At
these critical levels, w̃(z) will have a singularity no
worse than a discontinuity in the first derivative. To the
best of our knowledge, the role that these waves might
play in the hydraulic behavior of the flow is unknown.
However, one can easily examine the behavior of Cou-
ette flow (which has a continuous spectrum but no des-
crete modes) in the presence of an obstacle and show
that there can be no hydraulic control. This calculation
is presented in appendix B.

Now consider some examples of long-wave modes
in idealized systems, starting with the case U(z) 5 0
and N 5 const. Here the eigenvalues arise in pairs,
designated j 5 61, 62, etc., with cj 5 2c2j. If the
channel cross-section is rectangular (T 5 0) then cj 5
6N/jp and w̃j(z) 5 aj sin(jpz). The vertical structure
function w̃j(z) is the same for each of the waves having
the same |j|, but the phase relation between w̃j(z) and
the pressure p̃j(z) differ for each pair. When a back-
ground velocity is present and (Ri)min . 1/4, it is still
possible to group the waves in pairs. Although w̃j(z)
generally differs from w̃2j(z), the number of zero cross-
ings is the same for each. Thus, we will consider each
|j| as designating a vertical mode, recognizing that each
such mode is associated with two waves.

Next, consider the topographic function T(z) 5 1/(z
1 a), a 5 y0/(y1 2 y0), corresponding to a trapezoid
with bottom and top dimensions y0 and y1. A triangle
results from the limit a → 0, a rectangle from a → `.
Solutions to (2.12) with U 5 0 and N 2 5 const take
the form

N(z 1 a) N(z 1 a)
w̃ (z) 5 C J 1 C Y , (3.2)j 1j 1 2 j 11 2 1 2|c | |c |j j

where J1 denotes the Bessel function of first kind and Y1

denotes Weber’s Bessel function of the second kind, both
of order 1. Application of the boundary conditions (2.13)
yields a transcendental relation for the eigenvalues cj,
and Table 1 summarizes these speeds for rectangular,
trapezoidal (with a 5 1), and triangular topography. As
one moves from the case of a rectangular channel (for
which cj 5 6N/jp) to a trapezoid, and eventually to a
triangle, the phase speed for each mode decreases. This
trend is not surprising: the average depth of the fluid
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FIG. 4. (a) The phase speeds for modes |j| 5 1, 2, 3, and 4 of the
background state U(z) 5 Umax(2z 2 l ), N 2 5 const, and rectangular
topography T(z) 5 0. The speeds are plotted against the Richardson
number (which is constant with z). Note that cj 5 2c2j. (b) The
vertical structure functions for modes |j| 5 1, 2, 3 for Ri 5 4.25 and
Ri 5 16.25.

decreases in each case. There is also a tendency for the
wave modes, particularly the higher ones, in trapezoidal
or triangular geometry, to be intensified near the bottom,
as evidenced by the decay of the Bessel functions for
large arguments: J1(z) → 2/(pz) cos(z 2 3p/4) andÏ
Y1(z) → 2/(pz) sin(z 2 3p/4) as z → `.Ï

Some insight into the influence of a background flow
can be gained by considering a linear shear flow U(z)
5 Umax (2z 2 1) with N 2 5 const, contained in a rect-
angular channel (T 5 0). The value of Ri is uniform
and for Ri , 1/4 the flow is stable and has no discrete
modes (Case 1960). For Ri . 1/4 the discrete modes
are given (Baines 1995) by

1/2
Umaxw̃ (z) 5 1 1 (1 2 2z)j [ ]cj

  Umax1 1 (1 2 2z)  cj
3 sin m ln ,  

Umax1 1  
cj  

where

cj 5 coth( jp /2m), j 5 61, 62, · · ·

and where m 5 (Ri 2 1/4)1/2. The phase speeds for | j|
5 1, 2, 3, and 4 are plotted as a function of Ri in Fig.
4a. As Ri → 1/4 from above, the positive phase speeds
converge to the value Umax (and the negative phase
speeds to 2Umax) so that the propagation speeds accu-
mulate around the upper and lower limits of the velocity
range. This behavior is quite important in interpretating
later results for the BAM data.

Figure 4b shows w̃j(z) for j 5 1, 2, and 3 at values
Ri 5 4.25 and 16.25. Decreasing the value of Ri causes
the zero crossings to migrate upward in the water col-
umn so that the wiggles become confined near the top
boundary. (For the negative j modes, the wiggles would
become densely packed at the bottom of the water col-
umn.) The rapid oscillations are associated with the
emergence of a critical level at z 5 1 (or z 5 0), which
occurs for each mode as Ri → 1/4. This behavior, which
was elluded to above, clearly raises an important issue
concerning resolution of the higher modes. As Ri is
reduced toward 1/4, the eigenfunctions for different j
look alike over most of the depth range (as shown by
the upper trio of solutions in Fig. 4b). The differences
can be distinguished only in a narrow band at the top
(or bottom) of the water column.

A final example combining topographic elements
with shear effects arises from consideration of

tanh(4z 2 2)
U(z) 5 U , (3.3a)max tanh(2)

T(z) 5 1/z (3.3b)

with N 2 5 const. This background state consists of an

exchange flow in a channel with a triangular cross sec-
tion. The phase speeds of the first few modes have been
calculated numerically and the results are presented in
Figs. 5a,b. As the minimum value of Ri (which here
occurs at middepth) is reduced from large to O(1) val-
ues, the phase speeds of the modes converge to 6Umax

in a manner similar to those of the case just described.
Figure 5a shows this behavior for the phase speeds of
the wave pairs for the (j 5 61, 62, and 63). Unlike
the constant shear, rectangular geometry case, however,
these modes do not disappear when (Ri)min 5 1/4 but,
instead, continue to (Ri)min 5 0. The vertical structure
of the modes (not shown) is similar to what was ob-
served in the previous example with the zero crossings
migrating toward the level of Umin and Umax, here the
bottom and top of the channel, as (Ri)min → 0.

The convergence of cj and c2j just above and below
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FIG. 5. Phase speed (a) normalized by the maximum velocity Umax,
for modes |j| 5 1, 2, 3 of the velocity profile U(z) 5 Umax tanh(4z 2
2)/tanh(2), with triangular topography (T(z) 5 1/z), and N 2 5 const.
The results are plotted against the minimum Richardson number,
which occurs at middepth. (b) Enlarged portion of (a) near the origin
and showing Im(c)/Umax for the unstable mode and its damped partner
(solid lines). This mode has Re(c)/Umax ù 0.40 over the range shown,
which gives a critical level just below middepth. The dashed lines
give Im(c)/Umax for the same mode in the presence of rectangular
bottom topography [T(z) 5 0]. This mode has a critical level at z 5
0.5.

Umin and Umax as the stability of the flow is reduced can
be anticipated by writing (3.1) is a slightly different
form. Consider a velocity profile of fixed shape in that
Umax can be increased or decreased but remains pro-
portional to Umin. Dividing (3.1) by Umax or Umin leads
to the dimensionless bounds

1/2c c c R3 2 1 bulk1 , · · · , , , , 1 1
U U U pmax max max

and
U c c cmax 21 22 231/21 2 R , , , , · · · , 1,bulkpU U U Umin min min min

where R has been set to zero and

2NmaxR 5 .bulk 1 2U /Dmax

As the overall Richardson number Rbulk is reduced, all
of the cj approach Umax from above and all of the c2j

approach Umin from below. (Of course, some or all of
the discrete neutral modes may cease to exist as Rbulk is
reduced.)

The background state (3.3) also has an unstable nor-
mal mode, and we briefly note the effect of topographic
variations on this instability. For a rectangular cross
section [T(z) 5 0] a mode with complex c first appears
at (Ri)min ù 0.17. The upper dashed curve of Fig. 5b
shows Im(c) as a function of (Ri)min and reveals a max-
imum Im(c) ù 0.32Umax at (Ri)min ù 0. With the tri-
angular topography, the unstable mode appears at a low-
er (Ri)min (ù0.09) and has a smaller maximum
(ù0.09Umax). The implication is that the topography T(z)
5 1/z has a stabilizing influence on long waves, al-
though this has not been tested in connection with other
velocity profiles.

This section contains quite a bit of information, and
we now reemphasize some of the behavior that could
be of importance in the interpretation of results from
the BAM or other straits. The first concerns the general
effect of ‘‘realistic’’ topography, meaning any cross sec-
tion containing significant decreases in width with
depth. With U 5 0 and N 2 5 const, realistic topography
causes a moderate reduction in c below the case of a
rectangle (Table 1). The topographic influence on c in
the presence of nontrivial U(z) is more difficult to de-
scribe simply. In any case, one should proceed under
the assumption that topography will be at least mod-
erately important in most straits of geophysical interest.
Second, propagating modes in the presence of topog-
raphy are subject to the same phase speed bounds that
govern modes in a rectangular channel. For instance,
the speeds of discrete neutral modes must lie outside
the extremes Umin and Umax of the velocity profile. As
the bulk Richardson number becomes small, these
speeds accumulate just outside of Umin and Umax. Under
these conditions each mode nearly has a critical level.
An important consequence of the phase speed bounds
for an exchange flow (Umax . 0 and Umin , 0) is that
all cj are nonzero. Therefore, such a flow cannot be
hydraulically critical (cj 5 0) with respect to any dis-
crete neutral mode. If the velocity profile becomes tem-
porarily unidirectional through the action of a barotropic
tide, say, then hydraulic criticality is possible. The oc-
currence of phase speeds just outside the range of the
basic velocity and the occurrence of critical flow only
when the velocity profile is unidirectional is exactly the
situation we observe in the BAM.

4. Monthly mean stratification, velocity, and
Richardson number

As part of the second deployment, temperature and
conductivity were measured using five Seacats moored
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TABLE 2. Coefficients for su fit [Eq. (4.1)].

Month/
1996 s1 s2 s3 s4

Apr
May
Jun
Jul
Sep
Oct
Nov

25.944
25.723
25.154
25.010
25.047
25.817
26.216

2.578
2.798
3.030
3.160
3.008
2.517
2.207

72.0
68.0
60.0
52.0
56.0
69.5
78.0

28.0
26.0
42.0
42.0
40.0
21.5
20.0

FIG. 6. The right frames show analytical fits to the monthly mean su and the left frames show
the associated N 2 (in s21) for months 4, 8, and 11 of 1996. The analytical fit was obtained using
(4.1) for each month but 8, where a piecewise linear fit was used. The measurements of su were
by CTDs moored at the sill and are indicated by points in the right-hand frames.

at depths of 23 m, 51 m, 62 m, 114 m, and 142 m at
the position marked B2 in Fig. 1. We computed monthly
mean values of su at each of these levels and then least
square fitted the five values for months April–July and
September–November 1996 to the curve

su(z) 5 s1 1 s2{tanh[(z 2 s3)/s4]}. (4.1)

The coefficients sn for each month are listed in Table
2. For month 8, when the flow includes a significant
surface outflow and the Gulf of Aden intrusion is lower
in the water column (as discussed below), (4.1) does
not sufficiently describe the flow; we instead utilized a
piecewise linear fit. The fitted su(z) for months 4, 8,

and 11 are shown along with the associated dimensional
N 2 in Fig. 6.

We calculated monthly mean ADCP velocity profiles
with 10-m vertical resolution extending from 10-m to
130-m depth as shown in Fig. 7. We linearly extrapo-
lated from neighboring points to obtain velocities at 0
m, 140 m, and 150 m (represented by crosses in Fig.
7). During the nonsummer months the exchange flow
is characterized by moderate surface inflow (positive
velocity) and significantly stronger deep outflow. As
noted by PJMK, the inflow velocity is weaker because
it is spread over a much larger cross-sectional area than
the outflow, the latter being confined to the central to-
pographic trough. In fact, the inflow and outflow volume
transports nearly cancel, as required by the overall mass
balance for the Red Sea.3 During the ‘‘summer’’ (months
6, 7, 8, and 9) the deep outflow is attenuated while the
inflow lies lower in the water column. Only during
months 8 and 9 is there a clear surface outflow.

The Richardson numbers for each month are dis-

3 Replenishment of water lost to evaporation requires a net inflow
of only a few centimeters per second.
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FIG. 7. Monthly mean ADCP sill velocities (cm s21) for months 4–11 of 1996. Dots indicate
measurements averaged over 10-m bins while 3’s indicate values filled in using a linear ex-
trapolation. The depth below surface is in meters.

played in Fig. 8 along with uncertainty bars.4 (At
depths where the uncertainty is quite small, the central
estimated value is represented by a dot.) In addition
to analyzing the second deployment months (April–
November 1996), we reappraise months November
1995–March 1996 of the first deployment. Since we
do not have stratification data from the first deploy-
ment, we utilize N 2(z) from both April 1996 and No-
vember 1996 in our calculations of Ri, resulting in
larger uncertainty bars for these months.

4 Uncertainty bars reflect uncertainties due to the finite difference
approximation of the shear, different extrapolation schemes used at
the top and bottom of the water column, and alternative fits to the
density data used for the month of August. See appendix C for details.

Although instability is formally possible only for

Ri , 1/4,

values of about one or less can be suggestive of prior
mixing. Such values occur during all months except
June, July, August and September 1996, all four of
which are characterized by relatively weak flows. Com-
parison of Figs. 7 and 8 shows that the smallest Ri for
a given month generally occur within 10–20 m of the
mean interface (the zero crossing of mean velocity pro-
file). The position of this mean interface between in-
flowing Gulf of Aden water and deeper outflowing Red
Sea water ranges from 35 m in winter to 110 m in
summer. (The latter roughly corresponds to the depth
of the lower maxima in the August N 2 , as shown in
the middle left panel of Fig. 6.) Although some very
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FIG. 8. Richardson number, Ri 5 N 2/(dU/dz)2, for the monthly mean flows over Nov 1995–Nov 1996 (11/
95–11/96). A horizontal bar at a particular depth gives the range in uncertainty in the estimated value of Ri
at that depth due to interpolation or extrapolation of the velocity and N 2 measurements (see appendix C).
Dots represent calculations for which the uncertainty bars are tiny. When no values appear, such as for most
of the depths in month 6/96 the minimum Ri is . 5. The results for 7/97 are not shown since Ri . 5 at all
levels.

low estimates of Ri appear in the top 20 m and bottom
30 m of the water column in several months, the un-
certainty is magnified at these depths because both the
shear and stratification are weak and the velocity data
is extrapolated (see appendix C).

5. Criticality of the monthly mean sill flow with
respect to the first and second internal modes

Winters and Riley (1992) developed a numerical code
to solve the Taylor–Goldstein equation in finite differ-
ence form. Using the same second-order difference op-
erators we have modified the code to include the to-
pographic term present in our extended, long-wave ver-
sion of this equation (2.12). Given the fitted monthly
mean N 2 profiles (Fig. 6) and the monthly mean veloc-

ities (Fig. 7) specified at 15 levels, we have calculated
the vertical modes using 15 interior grid points. This
number is sufficient to resolve the first and second ver-
tical modes as verified by our tests using analytical pro-
files with known solutions. Since the horizontal velocity
profiles have at most two zero crossings, the first two
vertical modes appear to be the ones of greatest im-
portance for the hydraulics of the exchange flow. In the
following description we continue to use the convention
that j 5 1n and j 5 2n denote waves belonging to
mode n whose speeds in the absence of a background
velocity obey cn 5 2c2n.

Figure 9 shows the propagation speeds for j 5 61
and j 5 62 modes for each month. The speeds are
represented by arrows which point to the right (left) if
the wave propagates towards the Red Sea (Gulf of



2526 VOLUME 30J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 9. The arrows indicate phase speeds cj for the first and second internal modes (j 5 61, 62) based on the
monthly mean sill velocity and stratification. For each month listed the four arrows give the speed and direction of
modes j 5 61 (left column) and j 5 62 (right column, in m s21). The circles indicate the extremes Umin and Umax of
the velocity profile. The results in the unshaded region include second deployment measurements in which full strat-
ification was known. The shaded region covers first deployment measurements in which the velocity but not the
stratification was known. The results were obtained using stratification from Apr and Nov 1996 (4/96 and 11/96).
Uncertainty estimates based on varying the stratification and velocity profiles (as described in appendix C) and on
estimates of numerical error are less than 8 cm s21 in each case.

Aden). For a given mode, a pair of arrows pointing in
opposite (the same) directions indicates subcritical (su-
percritical) flow with respect to that mode. If one or
both of the arrows has zero length, the flow is critical
with respect to that mode. The two circles on each set
of arrows represent the extremes (Umin and Umax) of the
mean velocity profile for that month. Speed uncertain-

ties are within 68 cm s21 for each month. Our estimates
of uncertainty are due to extrapolation of the velocity
profiles, fitting of the density profiles, the presence of
a residual barotropic flow in the total transport, and
expected numerical errors (see appendix C for full dis-
cussion).

We first draw the reader’s attention to the results based
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on second deployment (months 4–11 in 1996) data,
which are shown in the unshaded part of Fig. 9. In all
second deployment months the flow is subcritical with
respect to both modes, although there are some instances
when flow is moderately close to a critical state with
respect to one or both modes. This can be seen during
months 4, 5, 10, and 11; c1 and c2 (the speeds of the
two waves propagating into the Red Sea) are consid-
erably reduced in relation to their partners c21 and c22.
For example, in month 11 c21 is 21.37 m s21 and c11

is 0.34 m s21 so that signal propagation in the direction
of the Red Sea is relatively slow. For the second mode,
the speeds are 21.04 and 0.24 m s21, respectively, lead-
ing to a similar interpretation. During the summer
months (6–9) there is an imbalance favoring the wave
propagating toward the Red Sea. For example, month
8 has speeds (c22 5 20.34, c2 5 0.58) indicating rel-
atively slow propagation towards the Gulf of Aden. As
noted by PJMK and explained in the introduction, it is
somewhat surprising to find subcritical flow at the sill
as it appears to be the most likely point of hydraulic
control in the BAM.

For completeness we have recomputed c61 and c62

from the first-deployment months (Nov 1995–Mar 1996)
using our continuous model. This calculation incorpo-
rates direct, monthly mean ADCP data along with the
stratification from April 1996 and November 1996.
(Complete stratification during the first deployment was
unavailable.) The results are shown in the shaded region
of Fig. 9. Again, we see that the flow is subcritical with
respect to both modes, but that the speeds of the waves
attempting to enter the Red Sea are small, possibly in-
dicating a nearby control section. These results imply a
slightly subcritical flow, whereas PJMK indicate that the
flow is right at the critical point with respect to mode 2.

The modes for each month display a common be-
havior in their relationship to the measured velocity pro-
file. The phase speeds always lie outside, in some cases
barely outside, the window of the velocity extremes.
This can be seen in Fig. 9, in both the shaded and
unshaded regions, as each arrow stretches beyond the
circles representing the background velocity extremes.
Since the phase speeds are never inside that window,
there are no critical levels with respect to these modes.

In summary, the flow is subcritical with respect to
each mode, though barely so in the winter months. The
phase speeds based on monthly mean data lie outside
the extremes of monthly mean velocity for each month,
therefore critical levels do not arise. The mismatch in
the magnitude of the negative and positive extremes of
background velocity lead to similar mismatches in the
propagation speeds for the two waves belonging to a
particular mode. For the second mode, the phase speeds
for most months lie very close to these extremes, sug-
gesting incipient critical level behavior. This behavior
is reflected in the positions of the zero crossings of
w̃(z)(not shown), which lie close to the levels of the
velocity extremes.

6. Criticality with respect to instantaneous flows

The sill flow in the BAM is strongly influenced by
diurnal and semidiurnal tides and by subtidal distur-
bances. The subtidal disturbances typically have periods
of a few days to a few weeks and are forced in part by
wind stress variations over the strait (Seidler 1968). The
detailed nature of the fluctuations are the subject of a
separate investigation on the new Bab al Mandab data;
here we simply note that they can be comparable in
strength to the mean flows in the strait and at times can
cause the top-to-bottom flow to be unidirectional. All
of these features are apparent in the Fig. 10 time his-
tories of ADCP velocity at three depths over months
August–November 1996. We have made several phase
speed calculations based on two-hour mean velocity
profiles and instantaneous stratifications observed at
various times during this period. These calculations are
presented in order to show how dramatically the criti-
cality of the instantaneous flow can depart from the
monthly mean. A comprehensive study of time depen-
dence is beyond the scope of this work.

We have computed phase speeds for ten realizations
of the 2-h mean flow, corresponding to the daily extreme
of the tidal ebb and flood on five selected days. These
days are indicated on the Figs. 10a and 10b time series.
The 2-h mean velocity profiles from two of these days
are displayed in Figs. 11a,b. Figure 11a shows the re-
sults for 10 August 1996, which falls during a period
of average tides and little subtidal activity. Even in the
presence of such moderate tides, the maximum tidal
flood (Red Sea inflow), which occurs at hour 17, is
strong enough to reverse the normal deep and shallow
outflows for August, creating inflow over the entire wa-
ter column. Figure 11b shows the same information for
18 November, which falls during a period of strong
outflow at 20-m depth due to a subtidal disturbance (see
the Fig. 10b time record, in which 18 November is
marked). In this case, top-to-bottom outflow occurs
throughout the entire day.

The Richardson number profiles for the maximum
flood and ebb on 18 November (hours 13 and 19) are
shown in Fig. 12. Excluding values near the top and
bottom (which are subject to large uncertainty due to
extrapolation of the velocity), the lowest values range
from 0.20 to 0.46 at maximum ebb, and from 0.08 to
0.29 at maximum flood. (The lowest value found for
the monthly mean flow for this month was 0.25.) These
values occur at depths from 30 m to 60 m. (Depths
without marked values have Richardson numbers that
are large enough to be off the horizontal scale of the
figure.)

Figure 13 shows the phase speeds for instantaneous
flows on the five selected days. For each day two results
are shown corresponding to the maximum tidal flood
(top set of arrows) and ebb (bottom set of arrows). Apart
from 10 August critical and/or supercritical flows occur
during the maximum ebb tide on all four days (the lower
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FIG. 11. Two-hour mean ADCP velocity profiles in centimeters per second on (a) 10 Aug 1996 and (b) 18 Nov 1996. The maximum flood
(into the Red Sea) and ebb occur on 10 Aug at hours 17 and 23 respectively. On 18 Nov the maxiumum flood and ebb occur at hours 13
and 19.

set of arrows). The circles in Figure 13 indicate the
extremes of the 2-h mean velocity and it can be seen
that in all cases but one (mode 2 on 13 November), the
phase speeds continue to lie just outside Umin and Umax.
Critical levels are thereby avoided, as was the case for
the monthly means. These results indicate that the tidal
and subtidal motions easily push the flow into a critical
or supercritical regime with respect to both modes. The
criticality of the flow is evidently a strongly intermittent
feature.

Estimation of the average propagation speed based
on the characteristic depth and velocity along the BAM
axis yield values on the order of 1 m s21 for a first or
second baroclinic mode. The corresponding average
travel distance over the 12-h tidal period is ù40 km,
which is only a fraction of the 180 km length of the
BAM. A signal propagating from the Gulf of Aden into
the Red Sea would therefore spend many tidal cycles
in the strait. The results of this section suggest that the
direction of propagation can be temporarily, and perhaps
permanently, reversed by intermittent supercritical con-
ditions. The implications for hydraulic control are dis-
cussed further below.

7. Discussion
By developing an extended version of the Taylor–

Goldstein equation for long waves [see Eq. (2.12)], we

have gained the ability to calculate the topographically
modified, internal–gravity modes for given profiles of
velocity and density. An application of the equation to
given velocity and stratification at a cross section of a
particular strait simply requires formulation of the to-
pographic function T(z) 5 b21 db/dz. Our central con-
clusions concerning the first and second baroclinic
modes calculated at the BAM sill follow from an in-
triguing constraint observed for the long-wave phase
speeds. Specifically, we nearly always observe that the
speeds c2j and cj of the two waves belonging to the first
(j 5 1) or second (j 5 2) vertical mode obey

c2j , Umin , Umax , cj, (7.1)

where Umin and Umax are the minimum and maximum of
the velocity profile. No unstable long waves are found.
An immediate consequence is that none of the waves
have critical levels. Further, for the monthly mean pro-
files, each of which have Umin , 0 , Umax, the flow
must be subcritical. For instantaneous profiles (7.1) con-
tinues to hold, although the velocity profile can be uni-
directional, allowing for critical (cj 5 0) or even su-
percritical (c2j and cj have the same sign) conditions.
We conclude that hydraulically critical flow at the sill
is an intermittent feature largely at the mercy of tidal
and subtidal motions.

Our analysis of idealized profiles suggests that the
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FIG. 12. Richardson number at depth intervals for tidal extremes
(hours 13 and 19) 18 Nov 1996. The top frame corresponds to the
maximum flood tide (entering the Red Sea) while the bottom frame
corresponds to the maximum ebb tide. Uncertainty bars were obtained
by varying the velocity and stratification extrapolation near the top
and bottom of the water column, as explained in appendix C. The
resulting uncertainty bars at depths of 10, 20, 130, 140, and 150 m
are quite large. Also, the absence of a Ri value at a particular depth
means that the value is .3.0.

observed frequent proximity of the phase speeds to Umin

and Umax may be a characteristic of flows that are mar-
ginally stable, perhaps as a result of prior mixing. Rich-
ardson numbers calculated from the monthly mean and
instantaneous profiles seem to be consistent with this
hypothesis. Middepth values of Ri were frequently
found to be ,1 and sometimes ,1/4.

When the flow is critical with respect to a particular
wave, the vertical structure of that wave gives an in-
dication of the manner in which the flow is being con-
trolled. For example, we would expect that critical con-
trol with respect to a wave that is bottom trapped would
involve regulation of the deepest part of the flow. PJMK
found a nearly critical, second vertical mode that was
bottom intensified in terms of the layer transports in
their 3-layer model. They understood this structure to
indicate the existence of a mode-2 control on the winter
transport of Upper Red Sea Deep Water. Unfortunately,
comparisons with the vertical structures of the contin-
uous modes found here are difficult. For one thing, our
mode-2 waves for the monthly mean winter flow are
not critical. For another, the critical mode-2 waves that
we have found for instantaneous conditions involve
background velocity profiles quite different from the
mean velocity profiles that PJMK based their results on.
In brief, it is difficult to find a basis for comparison.

This study raises a number of other issues that need
to be addressed on a basic level. The most obvious
concerns the significance of critical flow in a highly
time-dependent setting. If it is indeed the case, as our
results suggest, that the criticality of the BAM sill flow
is highly intermittent, what does this mean for overall
hydraulic control of the exchange flow?5 [One of the
few modeling efforts to address this problem is Hel-
frich’s (1995) study, but the special nature of the flows
involved make it difficult to relate the results to the
BAM.] Clearly, the fundamental issues concerning sig-
nal propagation and regions of influence must still hold.
If the long internal waves of a certain mode are unable
to propagate into the Red Sea from the Gulf of Aden,
then a certain degree of self-determination (a central
feature of hydraulic control) is implied for the Red Sea.
As we noted earlier, a first or second baroclinic wave
propagating from the Gulf of Aden into the Red Sea
would spend at least two or three tidal cycles in the
strait. The direction of propagation might even be tem-
porarily reversed by intermittent supercritical condi-
tions, or the information carried by the wave might be
lost due to encounters with hydraulic jumps. Clearly, a
determination of whether long waves can propagate all
the way through the strait in the presence of fluctuating
currents is a matter that requires analysis of the flow
along the entire strait, not just at the sill.

A second mystery, which is avoided in the present
problem but which is of great concern for the critical
control of steady exchange flows in general, concerns
the presence of critical levels. If a steady, continuously
stratified exchange flow is hydraulically controlled at
some section, then the wave that is stationary there has
a critical level zc at the zero crossing of the velocity
profile. Such a wave will generally be unstable. This
situation is avoided in two-layer models of exchange
flow, where the velocity is always nonzero, and in con-
tinuously stratified unidirectional flow (e.g., Armi and
Williams 1993) in which stationary waves have no crit-
ical levels. Remarkably, long-wave critical layers are
also avoided in our BAM observations; stationary waves
only arise at the sill when the flow is unidirectional.
Nevertheless, we might consider a hypothetical, steady
exchange flow with continuously varying velocity and
stratification. To what extent do the classical ideas about
hydraulic control apply when stationary long waves oc-
cur in such a flow?

Some guidance might be gained from the literature
on severe downslope winds in the atmosphere (e.g., Pel-
tier and Clark 1979; Smith 1985) in which both hy-
draulic behavior and critical levels can arise. Instability
and wave breaking about the critical level can result in
the formation of a homogeneous wedge of fluid at and

5 This is hardly a new issue, having been placed at the top of the
list of items for future study at a NATO workshop on sea straits in
1989 (see Pratt 1990).
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FIG. 13. Phase speeds of first and second modes for tidal extremes on dates 10 Aug; 26 Oct; 10, 13, 18 Nov 1996.
As in Fig. 11, arrows represent the phase speeds and circles sit on the extremes (Umin and Umax) of the velocity profile
used to calculate that particular mode. For each day the upper set of arrows corresponds to maximum flood tide and
the lower set of arrows corresponds to maximum ebb tide. Uncertainty estimates (as described in appendix C) are less
than 8 cm s21 for all calculations. Note that only one calculation (the flood tide, mode 2 result form 13 Nov) shows
the presence of a critical level (a phase speed within the range of the velocity). However, the difference between the
maximum velocity and the phase speed for this realization is within the uncertainty estimate.

immediately downstream of the mountain crest. The
base of the wedge acts as a perfect reflector of wave
energy, dynamically insulating the underlying fluid from
the flow aloft. This underlying fluid spills down the
slope in the manner of a supercritical reduced-gravity
layer. Hydraulic supercriticality can be diagnosed by
solving the Taylor–Goldstein equation in this layer, sub-
ject to the condition for a pliant upper boundary. This
upper boundary is simply the base of the homogeneous
wedge. Laboratory and numerical demonstrations of the
formation of the wedge appear in Wilkinson and Wood
(1985) and Bachmeister and Pierrehumbert (1988), re-

spectively. An analytical model for the evolution of the
lower layer is discussed by Smith (1985).

In the BAM, the processes just described would pre-
sumably lead to a layer of homogeneous fluid about the
zero crossing of the velocity profile. However, such ho-
mogenization is not observed; the zero crossing of the
velocity tends to lie within the continuously stratified
intermediate depths of the water column (e.g., Fig. 6 of
PJMK), at least where velocity measurements have been
made (the sill and narrows). Also, the development of
a critical level into a perfectly reflecting boundary is a
process that takes time and it is not clear how this de-
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velopment would occur in the presence of tides. Nev-
ertheless, there are reasons that one might pursue the
meteorological analogy further. First, Richardson num-
bers #O(1) are observed at levels close to the zero
crossing of the monthly mean velocity. Such values are
consistent with prior mixing though, as noted above,
they are not associated with outright homogenization.
Second, there is a layer of relatively homogeneous fluid
that forms on the downslope south of the narrows, name-
ly the stationary wedge of Gulf of Aden Intermediate
Water (GAIW) that exists for most of the year (Smeed
1997).6 This wedge bears remarkable similarity to the
wedge of homogeneous fluid that forms around the crit-
ical level in meteorological simulations (e.g., Bach-
meister and Pierrehumbert 1988), laboratory experi-
ments (Wilkinson and Wood 1985), and other field stud-
ies (Farmer and Armi 1999). One difficulty with this
analogy is that GAIW is colder than both the surface
inflow and underlying outflow, so that it cannot have
been formed as a result of mixing between the two.
Also, estimates of wave speeds based on PJMK’s three-
layer model suggest that the flow is substantially sub-
critical just upstream of this wedge.
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APPENDIX A

Finite Difference Approximation of the
Topographic Term in (2.12)

Winters and Riley (1992) discuss the second-order
finite difference representation of the Taylor–Goldstein
equation and its extended version including viscosity
and thermal diffusivity. Our (2.12) has been solved nu-
merically by first multiplying that equation by (U 2 c)2

and then employing same second-order representations
used by Winters and Riley. In differencing our new
topographic term

d
(U 2 c) [(U 2 c)Tw̃]

dz

it should be kept in mind that T may be singular at the
channel bottom z 5 0. At this point, the behavior of
T(z) will normally be known analytically, either because
the entire cross section is idealized (as in out example
with trapezoidal topography) or because actual topog-
raphies will have to be analytically approximated. To
the extent that this analytical representation is trust-
worthy, it is dangerous to approximate d[(U 2 c)Tw̃]/dz
as [Uj11Tj11wj11 2 Uj21Tj21wj21]/2Dz (where j is a grid
point index on a grid of spacing Dz) since this repre-
sentation becomes inaccurate where T(z) singular. In-
stead, the differentiation should first be performed term
by term and the result differenced, leading to the rep-
resentation

dT
(U 2 U )T w 1 (U 2 c)w 1 (U 2 c)T (w 2 w )j11 j21 j j j j j j j11 j211 2dz

jd
2[(U 2 c)Tw] 5 1 O(Dz) .

dz 2Dz

This form allows the analytical value of dT/dz to be
specified directly.

APPENDIX B

Couette Flow over an Obstacle

Consider an inviscid, homogeneous, two-dimen-
sional flow with uniform shear v over an obstacle of
elevation h. In order to remove free surface gravity
waves, the fluid is bounded above by a rigid plate of
constant elevation zT . In the long-wave (hydrostatic)
limit the vorticity v is dominated by the term ]u/]z
and therefore

u(z) 5 u 0(x) 1 (z 2 h(x))v,

where u 0 is the ground-level velocity. Conservation of
volume flux Q 5 u dz then requires thatzT#h

1
2Q 2 (z 2 h) vT2

u 50 (z 2 h)T

so that there is a unique u 0 , and therefore a unique
velocity profile, for each given value of the bottom
elevation h. The hydrostatic pressure along the bottom
can be computed from the Bernouli equation:

2p (u )0 05 B 2 2 gh,`r 2

where B` denotes the value of the Bernoulli constant
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along the bottom streamline. Since the pressure p 0 is
the same at equal values of h on either side of the
obstacle, the total form drag by the obstacle is zero
and the obstacle can exercise neither hydraulic control
nor upstream influence.

APPENDIX C

Uncertainty Estimates

We attempted to estimate uncertainties in the phase
speed calculations by varying features in the velocity
and stratification we were uncertain about over rea-
sonable ranges. For example, we varied the way in
which the ADCP velocity profile, which is known
only to within 15 m of the surface and 20 m of the
bottom, was extrapolated. In one case we extrapolated
linearly to the top and bottom using the uppermost or
lowermost known pairs. In another, we linearly ex-
trapolated using half the slope determined from the
method just described. Our analytical fit of su (z) was
very accurate for all months except August; after at-
tempting a number of analytical fits, we settled on a
piecewise linear fit for August. For months November
1995–March 1996, ADCP data was collected, but cor-
responding CTD data was not. We therefore utilized
fits for su (z) from November 1996 and April 1996 in
analyzing this first deployment data. The uncertainty
resulting from any of these variations was typically
a few centimeters per second or less.

Another source of uncertainty arose from the pres-
ence of a residual barotropic flow in the area-inte-
grated transport over the sill sections. That is, we
calculated the area integral of u(z) using the ADCP
values of u, assuming them to be y independent and
using our idealized topography [Eq. (2.5)]. We then
divided the result, a volume transport, by the cross-
sectional area to get an average velocity u . As ex-
plained by PJMK, u should be positive and less than
a few centimeters per second in order to account for
Red Sea annual evaporation and observed sea level
changes due to seasonal atmospheric pressure fluc-
tuations. The calculated u was, in fact, this small dur-
ing all months except June and July 1996, where u
ù 6–7 cm s21 . These values were simply included in
the uncertainty bar estimates.

The final source of uncertainty considered was nu-
merical error due to the limited number (15) of ver-
tical grid points. Using the numerical results for the
hyperbolic tangent U(z) and triangular bottom profile
discussed in section 3 we performed some variable
resolution runs with first and second modes having
vertical scales comparable to those calculated nu-
merically. These calculations indicate propagation
speed errors of 1%–3%.

The total uncertainty estimate for a given mode was
obtained simply by adding the magnitudes of the in-
dividual uncertainties together. This final value

ranged from 1–8 cm s21 . The same components were
considered in calculating uncertainties in the instan-
taneous modes, with the exception of the residual bar-
otropic flow, which is expected to be large for the
tidal extremes and was therefore not included in un-
certainty bars.
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