Cosmic abundances, nucleosynthesis and origin of the elements

- The cosmic abundance of the elements
 - general patterns
- Creating the universe
 Primordial nucleosynthesis
- The birth, life and death of a star
 - Origins and fusion modes
 - The end results
 - Nucleosynthesis

Cosmic abundances, nucleosynthesis and origin of the elements

- The cosmic abundance of the elements – general patterns
- Creating the universe
 - Primordial nucleosynthesis
- The birth, life and death of a star – Origins and fusion modes
- The end results
 - Nucleosynthesis

Stellar Birth

- Initial inhomogeneities or some compression of the otherwise homogeneous gas cloud
 - $-\operatorname{collision}$ of clouds
 - or a shock wave
- · gravitational self attraction and collapse
 - accelerates with time
 - collapse ==> heating

The onset of fusion:

- If gas is hot enough
 - nuclei moving fast enough to overcome mutual repulsion due to like (positive) nuclear charges
- · and if gas is dense enough
 - many collisions per unit time to allow reactions to proceed
- then nuclei can begin to hit each other and "stick together" with strong nuclear force

Hydrogen "burning"

- The first/best viable energy source
- Rate ~ T⁴
- lasts most of the star's life (n x 10⁸⁻⁹ y)*
- makes He from H
- eventually runs out...
 - the star begins to cool
 - \hdots and starts to collapse further
 - -... compression leads to additional heating

*Inversely related to stellar size: big candles burn faster

Living in the balance: what makes the star "tick"

- The enemy:
 - relentless gravitational pull to implode
 - Lower efficiency (B.E. slope decreases) and higher cost $(Z_1 Z_2 \mbox{ increases})$
 - heat loss due to:
 - · electromagnetic radiation (light) into space
 - neutrino losses from beta-decay (p => n)
- The defense:
 - use strong nuclear force to fuel fusion
 - heat produced from fusion:
 - creates heat and pressure to balance gravity and prevent further collapse
 - further collapse raises temperature (energy to overcome coulomb barriers) and pressure (reaction rates)

A highly evolved stellar profile

- (for M > 11 M_S)
- The star has an shell or onion-like character
 - with hotter shells near the core
 - cooler shells on the outside
 - H-burning on the outer shell
 - He, C, O, Si burning inward
 - Ultimate core is Fe-Ni
- It can't last:
 - lifetime is measured in hours...
- Further fusion is fundamentally fruitless – neutrino losses are relentless
- the star has nowhere to go...

Structure of an Evolved Massive Star

inner core

- turns endothermic above Fe-Ni maxium in B.E. curve
- Collapses in milliseconds
 - relativistic speeds
- compresses to nuclear density (10¹⁵g cc⁻¹)
- becomes a giant nucleus
 stopped from further
- collapse by fermionic degeneracy forces & coulomb repulsion...
- beta decays!

Collapse & rebound produces mechanical shockwave that is too weak to blow outer shell of star off: something else does it...

SN1987A

Core collapse produces neutrinos for two reasons: (1) Promptly, by beta-decay (e⁻ capture by protons → neutrons) (2) Delayed, by "pair production" to cool down*

*the collapsed stellar core is initially a hot plasma containing n, p, γ (the last carries heat) but none can escape due to scattering off each other. The γ 's can "dump energy" by pair production, which produces a particle and its antiparticle (to conserve charge and parity) traveling in opposite directions (to conserve momentum). But the only particle/antiparticles that can escape are neutrinos.

* "Delayed" vs. "Prompt" means a matter of seconds...

Gaseous shell ejected into surrounding space, lit up by subsequent x-ray emissions

Neutrinos from SN 1987A

- How do you "detect" a neutrino?
 - Have a very large target
 - Eliminate "non-events"
 - Be very very patient
 - E.g., Super-Kamiokande
 - Cherenkov radiation* detector
 - 50,000 tons ultrapure water (40 m diam., 40 m high)
 - 1000 m underground

*photonic "sonic boom"

Cosmic abundances, nucleosynthesis and origin of the elements

- The cosmic abundance of the elements
 - general patterns
- Creating the universe

 Primordial nucleosynthesis
- The birth, life and death of a star
 - Origins and fusion modes
 - The end results
 - Nucleosynthesis

*the Chandrasekhar limit: below this electron degeneracy will prevent collapse and a white dwarf will form

A Stellar Nurserv

- Material from nearby supernovae rapidly mixed into clouds
- Intense UV from young/massive stars creates bubbles in nebulae
- Shockwave of growing bubbles cause gravitational collapse and star seeding
- UV stripping photo-evaporates collapsed material
- Late stage nucleosynthesis pelts baby stars with fresh material

Hester et al. 2004 Science 304, p1116

Planetary system nursery. Hubble Space Telescope wide-field camera observation of a field in th southern portion of the Trifid Nebula illustrating several of the observational consequences of the star-formation scenario discussed. The inset (an enlargement of the region indicated by the small yellow box) showa a YSO-bearing EGG seen as it is evolving into a "proplyd". Evidence for triggered star formation in the region indices the HT399 jet, which arises from an embedded source immediately interior to the ionization front, and the presence of a 0.5-Jy water maser. Clustering of YSOs, especially around the remains of a largely evaporated column in the upper left of the field is evidence of pockets of triggered star formation that have been overrun by the ionization front.

And the beat goes on...

- ²⁶Al has a half-life of only 730,000 years (short compared to
- the universe) It must have been
- produced recently in
 - nucleosynthetically active regions

Sky map of 26Al gamma-ray emissions

Cosmic abundances, nucleosynthesis and origin of the elements

- The cosmic abundance of the elements
 - general patterns
- Creating the universe
 Primordial nucleosynthesis
- The birth, life and death of a star
 - Origins and fusion modes
 - The end results
 - Nucleosynthesis