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Lecture 3: Radiometric Dating – Simple Decay 
The oldest known rocks on Earth: 4.28 billion years - Nuvvuagittuq belt region, N  
Quebec on the shores of Hudson Bay.  O Neil et al., Science 321 (2008) 1828-1831. 

Terminology 

Radioactive:  unstable nuclide, decays to a daughter nuclide (stable or unstable) 

Radiogenic:  a nuclide that is the product of decay 

Cosmogenic:  produced by interaction of cosmic rays with matter 

Anthropogenic:  produced artificially 

Primordial:  existed at the beginning of the Solar System 

Activity (A):  A = ! ",  the activity of a nuclide is shown in round brackets (A) 

Secular equilibrium:  (A)1 = (A)2 = (A)3     or    !1"1  =  !2"2  =  !3"3 

Closed system:  system with walls impermeable to matter 

 

Simple Radioactive Decay 
 

Radioactive decay is a stochastic process linked to the stability of nuclei.  The rate of change in the number of 
radioactive nuclei is a function of the total number of nuclei present and the decay constant !. 
   

- dN / dt = ! N 
 

The sign on the left hand is negative because the number of nuclei is decreasing.  Rearranging this equation yields 
 

- dN / N = ! dt 
 

and integrating yields 
- ln N = ! t + C 

 
C is the integration constant.  We solve for C by setting N = N0 and t = t0.  Then 
 

C = - ln N0 
Substituting for C gives 

- ln N = ! t – ln N0 
We rearrange 

ln N – ln N0 = – ! t 
Rearrange again 

ln N/N0 = – ! t 
Eliminate the natural log 

N/N0 = e -! t 
And rearrange 

N = N0 e -! t 
 

Simple Decay: Radioactive Parent !! Stable Daughter 
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Half-lives 
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D* = N0 (1 - e-"t) 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1000 

0 1 2 3 4 5 6 7 8 9 10 

D0 



9/12/12 

2 

…continue… 
 
Unfortunately, we don t know N0 a priori, but decayed N have produced radiogenic daughters D*.   
 
Therefore                       D* = N0 – N 
 
Replacing N0 with N e ! t yields                     D* = N e ! t – N 
 
Rearranged           D* = N (e ! t – 1)     or, for small ! t,          D* = N ! t ,  
 
The number of daughter isotopes is the sum of those initially present plus those radiogenically produced. 

 
      D = D0 + D* 

Therefore,    D = D0 + N (e ! t – 1)     or, for small ! t,          D = D0 + N ! t ,  
This is the basic radioactive decay equation used for determining ages of rocks, minerals and the isotopes 
themselves.  D and N can be measured and ! has been experimentally determined for nearly all known 
unstable nuclides.  The value D0 can be either assumed or determined by the isochron method. 
 
For small !t we can simplify with a Taylor series expansion 
 

  e!t = 1+ !t + (!t)2/2! + (!t)3/3! + … ,  simplifies to e!t = 1+ !t  , for small !t  
 
 

 

…continue… 
 

The half-life, that is the time after which half of the initially present radioactive atoms have decayed (N = 1/2 
N0 at t = T1/2) is 

 
T1/2 = ln 2 / ! 

 
Sometimes you will also find reference to the mean life #, that is the average live expectancy of a radioactive 
isotope 

$
# = 1 / ! 

 
The mean life is longer than the half-life by a factor of 1/ln 2 (1.443).  For the derivation of # see page 39 of 
Gunter Faure s book Principles of Isotope Geology. 
 

The Isochron Method 
Consider the decay of 87Rb to 87Sr 

 

87
37Rb % 87

38Sr +       +       +   
 
 
Substituting into the decay equation 

87Sr = 87Sr0 + 87Rb (e!t - 1) 
 
Dividing by a stable Sr isotope, 86Sr 

 

87Sr/86Sr = (87Sr/86Sr)0 + 87Rb/86Sr (e !t - 1) 
 
In a diagram with axes  x = 87Rb/86Sr and  y = 87Sr/86Sr this equation defines a line, y = mx + b 
With the slope 

   m = (e !t - 1) 
 
and constant b, the initial ratio 
 

   b = (87Sr/86Sr)0 
 

Prerequisites: 

1. Isotopic homogeneity at start (identical 87Sr/86Sr) 

2. Chemical variability at start (variable Rb/Sr) 

3. Closed system from t=0 to t=T 

84Sr             86Sr    87Sr   88Sr 
 85Rb            87Rb 

Neutrons % 

http://www.nndc.bnl.gov/chart/ 

87Rb/86Sr 

87Sr 
86Sr 

m = (e!t - 1) 

b & 
' 

!slope -1 

Mixing 
The mass balance of any element is determined by input (usually from a number of sources) and removal (usually 
a number a sinks).  Mixing is thus a fundamental process in quantifying the elemental and isotopic composition of 
a reservoir.  If we mix two components (A and B) in different proportions, a mixing parameter (f) can be defined 
as 
 

(1)   f = A / (A + B) 
 
The concentration (C) of any element in the mixture (M) is then 
 

(2)   CM = CA f + CB (1 - f) 
 
If A and B are mixed in various proportions (f), the concentration in the mixture (CM) is a linear function of f. 
 

(3)   CM = f (CA - CB) + CB 
 
The mixing parameter f can be calculated from the concentration of an element in the mixture if the end-member 
concentrations are known.  It is important to understand that mixing is considered an instantaneous process in 
these models.  It therefore does not matter whether the input is spatially homogenous along the ocean shores or 
concentrated in one spot.  This is, obviously, a simplification - in reality the distribution of sources does matter 
and point sources can lead to local deviations from "average" values. 
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Two components with two elements 
 

In the next step we consider mixing two components (A and B) with two elements (1 and 2).  The concentrations of 
element 1 and 2 in A and B are then CA1, CA2, CB1 and CB2, respectively.  The concentration of element 2 in a 
mixture (CM2) of A and B is related to the concentration of element 1 in the mixture (CM1) according to 

 
(4)  CM2 = CM1 [(CA2 - CB2)/(CA1 - CB1)] + [(CB2 CA1 - CA2 CB1)/(CA1 - CB1)] 
 
This equation represents a straight line in coordinates CM1 and CM2. 
All mixtures of component A and B, including the end-member compositions, lie on this line.  Therefore, an array 
of data points representing mixing of two components can be fitted with a mixing line.  If the concentration of one 
of the two elements in the end-members is known, above equation can be used to calculate the concentration of the 
other element.  In addition, the mixing parameter f can be calculated. 

Two components with different isotopic composition 
(e.g., Isotope Dilution) 

 
We can expand the above equation even further and include mixing of two components with different isotopic 
compositions.  The most convenient way of setting up mass balances for isotopes is to start with only one isotope.  
The number of atoms of isotope 1 of element E in a weight unit of the mixture is given by 

 
(5)  I1EM = (CEA AbI1EA N f / AWEA) + [CEB AbI1EB N (1 - f) / AWEB] 
 
with  I1EM      = number of atoms of isotope 1 of element E per unit weight in the mixture 

 CEA       = concentration of element E containing isotope 1 in component A 
 CEB       = concentration of element E containing isotope 1 in component B 
 AbI1E A  = atomic abundance of isotope 1 of element E in component A 
 AbI1E B  = atomic abundance of isotope 1 of element E in component B 
 N          = number of atoms per mole (Avogadro number 6.022045 x 1023) 
 AWEA   = atomic weight of element E in component A 
 f            = mixing parameter (see above) 

 
A similar equation can be set up for the number of atoms of isotope 2 of element E and the two equations can be 
combined.  This manipulation eliminates the Avogadro number and allows us to deal with isotope ratios 
 
(6)   I1E   CEA AbI1EA f AWEB + CEB AbI1EB (1 - f) AWEA 

 ------ M        =  ------------------------------------------------------------------------------------- 

 I2E   CEA AbI2EA f AWEB + CEB AbI2EB (1 - f) AWEA 
 

To make life (and math) easier it is generally assumed that the atomic weights (and thus the isotopic 
abundance) of element E are identical in the two components A and B.  This approximation simplifies the 
above equation.  WARNING: This approximation is justified only if the isotopic composition of element E is 
very similar in A and B.  For many isotope systems this approximation introduces only small errors (e.g., if the 
Sr-isotopic composition of component A = 0.700 and that of component B = 0.800, the corresponding atomic 
weights vary by less than 1%).  For some isotope systems with large dynamic range in isotope compositions 
this assumption is not valid and the full mixing equation has to be used. 
 
Assuming that  AWEA =  AWEB (i.e., AbI1EA = AbI1EB and AbI2EA = AbI2EB) 
the mixing equation becomes 
 
(7)   I1E              CEA AbI1E A f + CEB AbI1EB (1 - f) 

 ------ M     =    ------------------------------------------------------------- 

 I2E               AbI2E A [CEA f + CEB (1 - f)] 
 
This equation can be rearranged using equation (2) and substituting 
 

 (I1E / I2E)M                =   RM 
 (AbI1EA / AbI2EA)A      =   RA 
 (AbI1EB / AbI2EB)B       =   RB, 

 
Then 
 

(8)   R M  =  RA (CEA f / C EM) + RB [CEB (1 - f) / CEM] 
 

After eliminating (f) from the equation and rearranging again, the equation becomes 
 
(9)       R M = { [CEA CEB (RB - RA)] / [CEM (CEA - CEB)] + [CEA RA - CEB RA] / [CEA - CEB]} 
 
and can be further simplified to 
 

(10)    RM = x / CEM + y 
 
where the constants x and y replace the appropriate portions of the above equation. 
This is the equation of a hyperbola in coordinates of RM and CEM that can be linearized by plotting RM versus  
1/CEM, i.e., the isotope ratio of the mixture versus its inverse concentration. 
  
It is important to understand that this line will only be a straight line in a plot RM versus 1/CEM if the 
assumption AWEA = AWEB is justified.  In all other cases, differences in the isotope abundance of each 
component cannot be neglected and RM has to be plotted against the concentration of an isotope of element E 
rather than the concentration of element E itself.  One example is a plot of 87Sr/86Sr versus 87Rb/86Sr, also 
known as an isochron diagram.  In such a diagram a linear array of data points either  

represent mixture of two components, or 
has age significance (slope being equal to [e!# - 1]). 

The ambiguity in the interpretation of mixing lines and isochrons in such diagrams haunts isotope 
geochemists. 
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Mixing of two components with two elements (1 and 2) of different isotopic composition (R) in coordinates R1 
and R2 are generally hyperbolic.  This is shown in the next figure, using Sr and Nd as an example (from Dickin, 
1995, in this example: c = crust, m = mantle, xc = fraction crust). 
 
Only in the special case when the ratios of the concentration of the two elements in the two components are 
equal (e.g., [CNd / CSr]A = [CNd / CSr]B), mixing lines will be straight lines.  A more detailed treatment of this 
problem can be found in chapter 9 in Faure (1986) and chapter 1 in Albarede (1995). 
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Measurement Uncertainties 
    All measurements are afflicted with uncertainties.  For large number of events, binomial distributions 
asymptotically approach Gaussian (or normal) distributions.  The spread in events (here numerical values of 
isotope ratios, count rates or ion currents) is equal to (N.  According to Gaussian statistics about 2/3 of the 
results lie within the range N ± (N (one standard deviation), about 95% lie within the range N ± 2(N (two 
standard deviations), and ~99% lie within the range N ± 3(N.  The fractional uncertainty is thus (N/N, or 1/
(N.  If you measure twice as long (N*) you get twice as many events 

 N* = 2N 
 
the fractional uncertainty is        ((2N)/2N = 1/((2N) 
 
i.e.          =  (1/2 * 1/(N 
 
reducing the fractional uncertainty only by ~30%.  The fractional uncertainty improves only as the square 
root of time (or ion current).  If you attempt to improve the uncertainty by a factor of two, you need to 
measure four times as long, or measure a four-times stronger ion current. 
    In order to evaluate if uncertainties associated with small ion beam intensities significantly affect the 
measured ratios it is often helpful to assume that all uncertainties are associated with uncertainties in the 
smallest ion current (least abundant isotope).  By assuming an arbitrary uncertainty in the measurement of 
this ion current you can plot an error trend on plots of isotope ratio versus another isotope ratio (same 
isotope in the denominator, i.e. m2 = m4, if m1 and m3 are isotopes in the numerator).  This trend is often 
distinct from a instrumental fractionation trend and helps to assess what process dominates the uncertainty 
of your analysis. 
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