Lecture 3: Radiometric Dating - Simple Decay

The oldest known rocks on Earth: 4.28 billion years - Nuvvuagittuq belt region, N^{\prime} Quebec on the shores of Hudson Bay. O'Neil et al., Science 321 (2008) 1828-1831

Simple Radioactive Decay

Radioactive decay is a stochastic process linked to the stability of nuclei. The rate of change in the number of radioactive nuclei is a function of the total number of nuclei present and the decay constant λ.

$$
-\mathrm{dN} / \mathrm{dt}=\lambda \mathrm{N}
$$

The sign on the left hand is negative because the number of nuclei is decreasing. Rearranging this equation yields

$$
-\mathrm{dN} / \mathrm{N}=\lambda \mathrm{dt}
$$

and integrating yields

$$
-\ln N=\lambda t+C
$$

C is the integration constant. We solve for C by setting $\mathrm{N}=\mathrm{N}_{0}$ and $\mathrm{t}=\mathrm{t}_{0}$. Then

We rearrange
$\ln \mathrm{N}-\ln \mathrm{N}_{\mathrm{o}}=-\mathrm{\lambda}_{\mathrm{t}}$
Rearrange again
$\ln N N_{0}=-\lambda$
Eliminate the natural log
$\mathrm{N} \mathrm{N}_{0}=\mathrm{e}^{-\lambda \mathrm{t}}$
And rearrange
$\mathrm{N}=\mathrm{N}_{0} \mathrm{e}-\mathrm{Al}_{1}$

Terminology

Radioactive: unstable nuclide, decays to a daughter nuclide (stable or unstable)
Radiogenic: a nuclide that is the product of decay
Cosmogenic: produced by interaction of cosmic rays with matter
Anthropogenic: produced artificially
Primordial: existed at the beginning of the Solar System
Activity (A): $\mathrm{A}=\lambda \mathrm{N}$, the activity of a nuclide is shown in round brackets (A)
Secular equilibrium: $(A)_{1}=(A)_{2}=(A)_{3}$ or $\lambda_{1} \mathrm{~N}_{1}=\lambda_{2} \mathrm{~N}_{2}=\lambda_{3} \mathrm{~N}_{3}$
Closed system: system with walls impermeable to matter

Simple Decay: Radioactive Parent \Rightarrow Stable Daughter

...continue...

Unfortunately, we don't know N_{0} a priori, but decayed N have produced radiogenic daughters D^{*}.

...continue...

The half-life, that is the time after which half of the initially present radioactive atoms have decayed $(\mathrm{N}=1 / 2$ N_{0} at $=\mathrm{T}_{12}$) is

$$
\mathrm{T}_{1 / 2}=\ln 2 / \lambda
$$

Replacing N_{0} with $\mathrm{N} \mathrm{e}^{\lambda \text { t }}$ yields $\quad \mathrm{D}^{*}=\mathrm{Ne}^{\lambda 1}-\mathrm{N}$
Rearranged $\quad D^{*}=N\left(e^{\lambda t}-1\right) \quad$ or, for small $\lambda t, \quad D^{*}=N \lambda t$,
The number of daughter isotopes is the sum of those initially present plus those radiogenically produced
isotope

The mean life is longer than the half-life by a factor of $1 / \ln 2(1.443)$. For the derivation of τ see page 39 of
Gunter Faure's book Principles of Isotope Geology. Gunter Faure's book Principles of Isotope Geology.

$$
\begin{array}{lll}
\text { Therefore, } & \mathrm{D}=\mathrm{D}_{0}+\mathrm{N}\left(\mathrm{e}^{\lambda t}-1\right) & \text { or, for small } \lambda \mathrm{t},
\end{array} \quad \mathrm{D}=\mathrm{D}_{0}+\mathrm{N} \lambda \mathrm{t},
$$

Therefore, $\quad D=D_{0}+N\left(e^{\lambda 1-1}-1\right)$ or, for small $\lambda t, \quad D=D_{0}+N \lambda t$,
This is the basic radioactive decay equation used for determining ages of rocks, minerals and the istope This is the basic radioactive decay equation used for determining ages of rocks, minerals and the isotopes
themselves. D and N can be measured and λ has been experimentally determined for nearly all known unstable nuclides. The value D_{0} can be either assumed or determined by the isochron method.

For small λt we can simplify with a Taylor series expansion
$e^{\lambda t}=1+\lambda t+(\lambda t)^{2} / 2!+(\lambda t)^{3} / 3!+\ldots$, simplifies to $e^{\lambda t}=1+\lambda t$, for small λt

The Isochron Method

Mixing

The mass balance of any element is determined by input (usually from a number of sources) and removal (usually a number a sinks). Mixing is thus a fundamental process in quantifying the elemental and isotopic composition of a reservoir. If we mix two components (A and B) in different proportions, a mixing parameter (f) can be defined
as
(1)
$\mathrm{f}=\mathrm{A} /(\mathrm{A}+\mathrm{B})$

The concentration (C) of any element in the mixture (M) is then
(2) $\quad C_{M}=C_{A} f+C_{B}(1-f)$

If A and B are mixed in various proportions (f), the concentration in the mixture $\left(C_{N}\right)$ is a linear function of f.
(3) $\quad \mathrm{C}_{\mathrm{M}}=\mathrm{f}\left(\mathrm{C}_{\mathrm{A}}-\mathrm{C}_{\mathrm{B}}\right)+\mathrm{C}_{\mathrm{B}}$

The mixing parameter f can be calculated from the concentration of an element in the mixture if the end-member concentrations are known. It is important to understand that mixing is considered an instantaneous process in these models. It therefore does not matter whether the input is spatially homogenous along the ocean shores or concentrated in one spot. This is, obviously, a simplification - in reality the distribution of sources does matter and point sources can lead to local deviations from "average" values.

Two components with two elements

In the next step we consider mixing two components (A and B) with two elements (1 and 2). The concentrations of element 1 and 2 in A and B are then $C_{A 1}, C_{A 2}, C_{B 1}$ and $C_{B 2}$, respectively. The concentration of element 2 in a mixture $\left(C_{M}\right)$ of A and B is related to the concentration of element 1 in the mixture $\left(C_{M}\right)$ according to
(4) $\quad \mathrm{C}_{\mathrm{M} 2}=\mathrm{C}_{\mathrm{M} 1}\left[\left(\mathrm{C}_{\mathrm{A} 2}-\mathrm{C}_{\mathrm{B} 2}\right) /\left(\mathrm{C}_{\mathrm{A} 1}-\mathrm{C}_{\mathrm{B} 1}\right)\right]+\left[\left(\mathrm{C}_{\mathrm{B} 2} \mathrm{C}_{\mathrm{A} 1}-\mathrm{C}_{\mathrm{A} 2} \mathrm{C}_{\mathrm{B} 1}\right) /\left(\mathrm{C}_{\mathrm{A} 1}-\mathrm{C}_{\mathrm{B} 1}\right)\right]$

This equation represents a straight line in coordinates $\mathrm{C}_{\mathrm{M} 1}$ and $\mathrm{C}_{\mathrm{M} 2}$.
All mixtures of component A and B, including the end-member compositions, lie on this line. Therefore, an array of data points representing mixing of two components can be fitted with a mixing line. If the concentration of one of the two elements in the end-members is known, above equation can be used to calculate the concentration of the other element. In addition, the mixing parameter f can be calculated.

Two components with different isotopic composition (e.g., Isotope Dilution)

We can expand the above equation even further and include mixing of two components with different isotopic compositions. The most convenient way of setting up mass balances for isotopes is to start with only one isotope. The number of atoms of isotope 1 of element E in a weight unit of the mixture is given by
(5) $\quad I 1_{\text {EM }}=\left(C_{\text {EA }} A b_{\text {IIEA }} N f / A W_{E A}\right)+\left[C_{\text {EB }} A b_{\text {IIEB }} N(1-f) / A W_{E B}\right]$
with $\quad I_{I_{\mathrm{EM}}} \quad=$ number of atoms of isotope 1 of element E per unit weight in the mixtur $\mathrm{C}_{\mathrm{EM}}=$ concentration of element E containing isotope 1 in component A $\begin{aligned} & \mathrm{C}_{\mathrm{EB}}=\text { concentration of element } \mathrm{E} \text { containing isotope } 1 \text { in component } \mathrm{B} \\ & \mathrm{Ab} \\ & \\ & \text { IEA }\end{aligned}=$ atomic abundance of isotope 1 of element E in component A
$\mathrm{Ab}_{\text {IIE }}=$ atomic abundance of isotope 1 of element E in component B
$\mathrm{N}=$ number of atoms per mole (Avogadro number 6.022045×10^{23})
$\begin{array}{ll}\mathrm{AW}_{\mathrm{EA}} & =\text { atomic weight of element E in component } \mathrm{A} \\ \mathrm{f} & =\text { mixing parameter (sec above) }\end{array}$
A similar equation can be set up for the number of atoms of isotope 2 of element E and the two equations can be combined. This manipulation eliminates the Avogadro number and allows us to deal with isotope ratios
(6)

To make life (and math) easier it is generally assumed that the atomic weights (and thus the isoto abundance) of element E are identical in the two components A and B . This approximation simplifies the above equation. WARNING: This approximation is justified only if the isotopic composition of element E is very similar in A and B. For many isotope systems this approximation introduces only small errors (e.g., if the
ffer eliminating (f) from the equation and rearranging again, the equation becomes Sr-isotopic composition of component $\mathrm{A}=0.700$ and that of component $\mathrm{B}=0.800$, the corresponding atomi
(9) $\mathrm{R}_{\mathrm{M}}=\left\{\left[\mathrm{C}_{\mathrm{EA}} \mathrm{C}_{\mathrm{EB}}\left(\mathrm{R}_{\mathrm{B}}-\mathrm{R}_{\mathrm{A}}\right)\right] /\left[\mathrm{C}_{\mathrm{EM}}\left(\mathrm{C}_{\mathrm{EA}}-\mathrm{C}_{\mathrm{EB}}\right)\right]+\left[\mathrm{C}_{\mathrm{EA}} \mathrm{R}_{\mathrm{A}}-\mathrm{C}_{\mathrm{EB}} \mathrm{R}_{\mathrm{A}}\right] /\left[\mathrm{C}_{\mathrm{EA}}-\mathrm{C}_{\mathrm{EB}}\right]\right\}$ weights vary by less than 1%). For some isotope systems with large dynamic range in isotope composition and can be further simplified to
this assumption is not valid and the full mixing equation has to be used.

the mixing equation becomes

This equation can be rearranged using equation (2) and substituting

$$
\begin{aligned}
& \left(11_{\mathrm{E}} / / 2_{\mathrm{E}}\right)_{\mathrm{M}} \quad=\mathrm{R}_{\mathrm{M}}
\end{aligned}
$$

hen
(8)
$R_{M}=R_{A}\left(C_{E A} f / C_{E M}\right)+R_{B}\left[C_{E B}(1-f) / C_{E M}\right]$
(10) $\mathrm{R}_{\mathrm{M}}=\mathrm{x} / \mathrm{C}_{\mathrm{EM}}+\mathrm{y}$
here the constants x and y replace the appropriate portions of the above equation.
his is the equation of a hyperbola in coordinates of R_{M} and C_{EM} that can be linearized by plotting R_{M} versus $1 / \mathrm{C}_{\mathrm{EN}}$, i.e., the isotope ratio of the mixture versus its inverse concentration.
It is important to understand that this line will only be a straight line in a plot R_{M} versus $1 / \mathrm{C}_{\mathrm{EM}}$ if the assumption $\mathrm{AW}_{\mathrm{EA}}=\mathrm{AW}_{\mathrm{EB}}$ is justified. In all other cases, differences in the isotope abundance of each omponent cannot be neglected and R_{M} has to be ploted against the concentration of an isotope of element ather than the concentration of element E itself. One example is a plot of $87 \mathrm{Sr}_{\mathrm{r}} / 86 \mathrm{~s}$.
represent mixture of two components, or
has age significance (slope being equal to [$\mathrm{e}^{\text {xt }}-1$].
The ambiguity in the interpretation of mixing lines and isochrons in such diagrams haunts isotope eochemists.

Measurement Uncertainties

All measurements are afflicted with uncertainties. For large number of events, binomial distributions asymptotically approach Gaussian (or normal) distributions. The spread in events hhere numerical values of isotope ratios, count rates or ion currents) is equal to N . According to Gaussian statistics about $2 / 3$ of the
cesults lie within the range $\mathrm{N} \pm \sqrt{ } \mathrm{N}$ (one standard deviation), about 95% lie within the range $\mathrm{N} \pm 2 \mathrm{~N}$ (two tandard deviations), and $\sim 99 \%$ lie within the range $\mathrm{N} \pm 3 / \mathrm{N}$. The fractional uncertainty is thus $\sqrt{ } \mathrm{N} / \mathrm{N}$, or 1 N . If you measure twice as long (N^{*}) you get twice as many events
$\mathrm{N}^{*}=2 \mathrm{~N}$
the fractional uncertainty is $\quad V(2 \mathrm{~N}) / 2 \mathrm{~N}=1 / \sqrt{(2 N})$
i.e.
$=\sqrt{ } 1 / 2 * 1 / \sqrt{ } \mathrm{N}$
reducing the fractional uncertainty only by $\sim 30 \%$. The fractional uncertainty improves only as the square oot of time (or ion current). If you attempt to improve the uncertainty by a factor of two, you need to oot of time (or ion current). If you attempt to improve the uncertaianty by
measure four times as long, or measure a four-times stronger ion current.
In order to evaluate if uncertainties associated with small ion beam intensities significantly affect the neasured ratios it is often helpfful to assume that all uncertainties are associated with uncertainties in the
mallest ion current (least abundant isotope). By assuming an arbitrary uncertainty in the measurement of smalest on current (least abundant isotope). By assuming an arbitrary uncertainty in the measurement
this ion current you can plot an error trend on plotts of isotope ratio versus another isotope ratio (same isotope in the denominator, i.e. $m_{2}=m_{4}$ if m_{1} and m_{3} are istotopes in the numerator). This trend is offer istinct from a instrumental fractionation trend and helps to assess what process dominates the uncertainty
ofyour analysis. of your analysis.

