

Uses for Mass Spectrometers

- Trace element determination – sensitivity & isolation
- Quantitative analysis

 reproducibility & separation, isotope dilution
- Molecular structure determination – deconstruction of molecules
- · Material identification and separation
- Isotope abundance determination
- Isotope mass determination

In addition

- Sample preparation and introduction system
 - Often integrated into machine
 - Depends on sample type and machine type
- Data gathering and processing system
 - Digitization of analog signals
 - Counting of ions
- Instrument control
 - Control of all parts
 - Automation and book-keeping
 - More reliable, cost effective, humane

1

Decisions to make

- Sample character: gas, liquid or solid, purity?
- How abundant is the material?
- Isotopic abundance: similar or drastically different?
- Range: do isotope ratios vary a lot or a little?
- Are there isobaric (molecular or nuclear) interferences?
- Are there "matrix effects"?
- Do we need to know the "absolute" ratio?

Figures of Merit

- Resolution: smallest difference in mass
- Sensitivity: how small a signal can be discerned?
- Blank: what do you get with no sample at all?
- Abundance sensitivity: the smallest isotopic ratio
- Stability and reproducibility
- Speed and throughput
- Discrimination and accuracy
- How much does a measurement depend on the presence or absence of other species?
- Memory effect? Does the system hold a grudge?

Resolution

- Are there interfering isobars?
 - How small a mass difference can you distinguish?
- Caveat emptor: watch the definitions!
- You can separate entangled peaks if you know the peak shape very well
 - Not trivial to do...

- Ion Sources

 Electron impact, TI, ICP, SI
- Analyzers
 - E & M sectors, QMS, TOF, Ion Traps
- Detectors
 - Faraday cups & electron multipliers
- Data Acquisition
 - Electrometers, ADC, statistics

Thermal Ionization Source Solid sample dissolved and concentrated into a few drops Deposited on a refractory filament COATING THICKNESS 0.0001 ON 0.00254 CM FILAMENT - Often with 2ndary coatings to control release characteristics D(T.) - 10"* CM*/SEC Filament heated in an ion source D(T_s) = 2.5 = 10"" CM²/SEC - Diffusion of material to surface CHPIERE - Volatilization Ionization - Usually multiple filaments TIME (SEC tal plot of ion current vs. time for sample atoms b fusion source (Rec. 1971).

Inductively Coupled Plasma Source

- For "direct" injection of solutions
 - Amenable to automation
 - Simpler chemistry (?)
- Ionization ~ 100%
- Process:
 - Ar from liquid Ar source
 - Torch made of quartz (high temp!)
 - electrostatic ignition of Ar
 - Maintenance of plasma by RF (1-2 KW)
 - Nebulization of solution into Ar flow
 - Coaxial flows of Ar (for cooling too)
 - lon extraction by "skimmers" (cooled)
 - Skimmers interface vacuum to Ar pressure
- Issues: matrix effects
- Recent developments with laser ablation

Measurements I: Mass spectrometry

- Introduction
 - Uses, criteria, commonalities
- Ion Sources

 Electron impact, TI, ICP, SI
- Analyzers - E & M sectors, QMS, TOF, Ion Traps
- Detectors – Faraday cups & electron multipliers
- Data Acquisition
 - Electrometers, ADC, statistics

Mass Analyzers

- Magnetic and Electric Sectors
 - Most common for isotope studies
- Time of Flight – Simple designs
- Quadrupolar Mass Analyzers
 - Robust rapid scanners
- Ion Traps

 Compact and emerging tools

- Complicated optical solutions
 Integrated Mathieu equations
- Compact and robust
- Low voltage
- Fast scanners
- Wide range
- Constant resolution vs Mass

Measurements I: Mass spectrometry

- Introduction
 - Uses, criteria, commonalities
- Ion Sources
 Electron impact, TI, ICP, SI
- Analyzers

 E & M sectors, QMS, TOF, Ion Traps
- Detectors – Faraday cups & electron multipliers
- Data Acquisition
 - Electrometers, ADC, statistics

Faraday Cups

- For intense ion beams
 From 10⁻¹⁵ 10⁻⁹ ampere range
- Very simple: collect charge
 - Bleed through electrometer
 - Easily created arrays of cups
- Watch for secondary electrons
 - From beam in cup
 - From beam outside of cup
 - Secondary electron suppression plates

Measurements I: Mass spectrometry

- Introduction
 - Uses, criteria, commonalities
- Ion Sources
 Electron impact, TI, ICP, SI
- Analyzers

 E & M sectors, QMS, TOF, Ion Traps
- Detectors

 Faraday cups & electron multipliers
- Data Acquisition – Electrometers, ADC, statistics

Measurement of ion currents

- From Faraday Cup
 - Electrometers (usually FET input)
 - Use feedback resistors
 - Inherent noise
 - Intrinsic time constant
- From S.E.M.
 - If "current mode", use with electrometers
 - First order gain dependence on SEM history
 - If "pulse mode", use preamplifier/discriminator and fast counting electronics

Measurement of ion currents

- Pulse mode SEM already digital (ions/sec)
- Electrometer outputs need to be converted to digital
 - Either ADC (16-24 bit DACs now available)
 - Or VFC (longer term integrators, highly linear, good for ratiometric measurements)