- Limits to detection/measurement
- Gas source mass spectrometry
- AMS
- Standardization
- Abundance measurements
- Isotopomeric interference
- Measuring half-lives

Limits to Detection/Measurement

- Ionization is fundamentally a *Probabilistic Process*
 - Just like radioactive decay
 - So is transmission through the analyzer
- · There is an intrinsic statistical uncertainty
 - Proportional to the number of counts^{1/2} in an interval
 - Just like radioactive decay

An example: helium isotopes

- You are limited by the number of ions you count in the sample
- A typical experiment: count for ~ 1000 seconds
 Total counts ~ 10⁶ → Typical uncertainty ~0.1%

1

- Limits to detection/measurement
- Gas source mass spectrometry
- AMS
- Standardization
- Abundance measurements
- Isotopomeric interference
- Measuring half-lives

Gas Source Mass Spectrometers

- · Dynamic vs. static mode of operation
 - Dynamic (mass spec pumped continuously)
 - · Matched/calibrated dual viscous leaks*
 - · Larger sample requirement
 - · Rapid cycling between standard & unknown
 - Very precise: e.g., stable oxygen, carbon, nitrogen, & sulfur isotopes
 - Static
 - · Introduction into vacuum envelope (arrested pumping)
 - Smaller samples, more sensitivity
 - For ion counting limitations
 - Matrix and pressure effects

*hopefully non isotopically fractionating

Lecture 14 Measurements II: Mass spectrometry

- · Limits to detection/measurement
- Gas source mass spectrometry
- AMS
- Standardization
- Abundance measurements
- Isotopomeric interference
- Measuring half-lives

<u>Need Negative</u> C ions created off graphite targets from 8 KV Cs beam (no negative N ions): sputter beam creates heat/plasma at pressed target (mixture of Fe and C) interface

- Limits to detection/measurement
- · Gas source mass spectrometry
- AMS
- Standardization
- Abundance measurements
- Isotopomeric interference
- Measuring half-lives

Instrument Standardization is Critical

- Mass spectrometers are "ratiometric" instruments
 - Because many processes (esp. ionization) is parametric (depends on unknown factors)
- · Standards must be
 - Uniform
 - Readily available
 - Relevant (for a specific problem)

Standard choice is related to problem

- For example:
 - Oxygen isotopes: PDB vs SMOW vs atmospheric oxygen
 - Must convert between reference standards
 - Beware of delta notation: just because a standard is 44‰ different you don't subtract 44‰ (you divide by 1.044 !)
 - Sulfur isotopes: Canyon Diablo Troilite
 - Gotcha! Started with SO₂ methodologies (poor precision), but SF₆ methods showed it was heterogeneous.

Lecture 14 Measurements II: Mass spectrometry

- · Limits to detection/measurement
- Gas source mass spectrometry
- AMS
- Standardization
- Abundance measurements
- Isotopomeric interference
- Measuring half-lives

Peak Height Manometry

- Assume instrument has linear* response as a function of sample size
 - Assumes reproducible, unbiased delivery to instrument
 - Fraught with challenges if not quantitative
 - First order dependence on yield and instrument sensitivity changes
 - Limited by electronics, vacuum quality, etc. to about 0.1-1%

*or a smooth, reproducible, quantifiable function determined by varying size standards

Peak Height Manometry and Isotope Dilution

- Since MS is basically ratiometric:
 - It measures ratios better than peak heights
 - Use ISOTOPE DILUTION:
 - Add an aliquot of isotopically "different" spike to sample
 - · Compare mixture to comparable standard
 - · Solve multiple equations (in isotope ratios) for size
 - Need at least 2 isotopes, preferably more
 - Depends on isotope ratio difference of spike
 Propagation of errors!

- Limits to detection/measurement
- · Gas source mass spectrometry
- AMS
- Standardization
- Abundance measurements
- Isotopomeric interference
- Measuring half-lives

Mass 44: 12C16O2

Mass 45: ¹³C¹⁶O₂, ¹²C¹⁷O¹⁶O

Mass 46: ¹³C¹⁷O¹⁶O, ¹²C¹⁸O¹⁶O, ¹²C¹⁷O₂

Mass 47: $^{13}C^{18}O^{16}O,\ ^{13}C^{17}O_2,\ ^{12}C^{18}O^{17}O$

Mass 48: ¹³C¹⁸O¹⁷O, ¹²C¹⁸O₂

Mass 49: ¹³C¹⁸O₂

Isotopes distributed randomly. See "Isotopic Contributions to Ion Currents in Molecular-Ion Multiplets." The task is to convert observed, ion-current ratios to isotope ratios.

Lecture 14 Measurements II: Mass spectrometry

- · Limits to detection/measurement
- · Gas source mass spectrometry
- AMS
- Standardization
- Abundance measurements
- Isotopomeric interference
- Measuring half-lives

Recent half-life checks by this method: ¹⁴C, ¹⁰Be, ⁶⁰Fe

Lecture 14 Measurements II: Mass spectrometry

- · Limits to detection/measurement
- Gas source mass spectrometry
- AMS
- Standardization
- Abundance measurements
- Isotopomeric interference
- Measuring half-lives