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Preface 
 

 
The fiftieth year of the program was dedicated to Nonlinear Waves, a topic with many 
applications in geophysical fluid dynamics.  The principal lectures were given jointly by 
Roger Grimshaw and Harvey Segur and between them they covered material drawn from 
fundamental theory, fluid experiments, asymptotics, and reaching all the way to detailed 
applications. These lectures set the scene for the rest of the summer, with subsequent 
daily lectures by staff and visitors on a wide range of topics in GFD.  It was a challenge 
for the fellows and lecturers to provide a consistent set of lecture notes for such a wide-
ranging lecture course, but not least due to the valiant efforts of Pascale Garaud, who 
coordinated the write-up and proof-read all the notes, we are very pleased with the final 
outcome contained in these pages.  
 
This year’s group of eleven international GFD fellows was as diverse as one could get in 
terms of gender, origin, and race, but all were unified in their desire to apply their 
fundamental knowledge of fluid dynamics to challenging problems in the real world.  
Their projects covered a huge range of physical topics and at the end of the summer each 
student presented his or her work in a one-hour lecture.  As always, these projects are the 
heart of the research and education aspects of our summer study. 
 
During the summer we also had a couple of special events, namely the public Sears 
Lecture given by Geoff Spedding from USC on animal propulsion entitled “Flight at 
small scales”, and a one-day special workshop and celebration in honour of Lou 
Howard’s 80th birthday entitled “Nonlinear excursions”.  These well-attended events 
brought together old and new friends and a good time was had by all.  
 
This summer also had its share of unscheduled surprises, but the enthusiasm and tenacity 
of our fellows was able to overcome all, be it rained-out softball training sessions or 
advisors that had to disappear abruptly to attend to robbed houses at the other end of the 
country.  At the end it all came together, and the final days were marked by a happy 
reunion of everyone and a graceful farewell party, despite a somewhat disappointing 
outcome of the Fellow-Staff softball match. 
 
Special thanks go to a number of people who served to make the program flow smoothly. 
Jeanne Fleming, Kathy Ponti and Penny Foster all helped run the Walsh Cottage office 
and performed exceptional administrative work for the many visits and lectures. Jeanne 
Fleming was responsible for assembling and preparing this volume. Janet Fields helped 
with all aspects of the academic programs for the fellows and as usual did a superb job.  
 
We extend our sincere thanks to the National Science Foundation for support for this 
program under Grant OCE-0824636 and to the Office of Naval Research, Processes and 
Prediction Division, Physical Oceanography Program, under Grant N00014-09-10844. 
 
Oliver Bühler and Karl Helfrich, 
Co-Directors 
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Lecture 1: Introduction to Linear and Non-Linear Waves

Lecturer: Harvey Segur. Write-up: Michael Bates

June 15, 2009

1 Introduction to Water Waves

1.1 Motivation and Basic Properties

There are many types of waves. Here, we will be paying particular attention to water waves
as they provide a concrete, physical example of a dynamical system that exhibits many of
the mathematical concepts that have been developed in recent years, including,

• linear stability,

• nonlinear stability,

• solitons,

• complete integrability,

• chaos,

• sensitive dependence on initial data,

• singularities,

• blow-up in finite time, and

• deterministic versus probabilistic models.

Water waves evolve on a timescale that humans can naturally relate to (as opposed to,
say, optical waves). Furthermore, since we are hosted by the Woods Hole Oceanographic
Institution, water waves are a fitting phenomenon to examine.

For the purposes of these notes, we shall pay particular attention to surface water waves,
that is, those that you would feel if you were in a boat on the surface, or that you might
observe if you were at the beach.

Surface water waves have their maximum displacement at the surface (decreasing expo-
nentially with depth) and are approximately periodic. Furthermore, they propagate with
little dissipation [1], that is, they lose very little energy to the surrounding environment as
they propagate. As a result, they can propagate very long distances. Surface water waves
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z = −h(x, y)

z = η(x, y, t)−gez

ez

ex, ey

u = u(x, y, z, t)

Figure 1: The shaded region indicates the solid earth boundary, the dashed line indicates
mean sea level (z = 0) and the solid line represents the free surface. h is the distance from
mean sea level to the ocean floor, and η(x, y, t) is the deviation of the free surface from
mean sea level and g is acceleration due to gravity.

are also dispersive, in that waves of different wavelengths travel at different speeds.

There are a number of other oceanic waves that will be ignored in this discussion,
including,

• sound waves (or pressure waves) which arise from the compressibility of seawater.
Pressure wave speeds are O(1500ms−1), which is much greater than, say, the 2004
Tsunami which propagated at less than 200ms−1,

• internal waves (see Lectures 6 and 11), which arise due to variations in fluid density,
have periods in the order of hours (recall surface waves have periods of order seconds),

• inertial waves (which include Rossby Waves), which are due to the rotation of the
Earth and have periods greater than 12 h.

1.2 Derivation of the Governing Equations

Following Stokes[2], we derive some equations representing the evolution of the displace-
ment of the sea surface height, η = η(x, y, t), from a rest position at z = 0 and for the
velocity throughout the fluid domain, u = u(x, y, z, t), where −h(x, y) < z < η(x, y, t) (h
is the depth of the ocean floor), with t > 0 and η + h > 0.

Here (x, y, z) denote fixed, laboratory coordinates with z indicating the vertical coordi-
nate and x and y denoting horizontal coordinates. This is illustrated in Figure 1. We can
denote the location of a fixed fluid parcel as x(t) = {x(t), y(t), z(t)} and the velocity of a
fluid parcel,

u(x, t) = (u, v,w) =

(

Dx

Dt
,
Dy

Dt
,
Dz

Dt

)

, (1)

where D

Dt
is the material derivative, or in other words, the derivative that follows the fluid

parcel in a Lagrangian perspective of fluid motion. The material derivative may be written
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in Eulerian form as,
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (2)

For instance, the material derivative for the z component of velocity is,

Dw

Dt
=

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
. (3)

To set about deriving equations governing η and u, we assume that the water (again,
following Stokes [2]),

• is incompressible (which precludes sound waves),

• has uniform density (which precludes inertial waves),

• is not affected by the rotation of the Earth (which precludes inertial waves),

• is inviscid,

• and finally that gravity is uniform and is anti-parallel with ez.

Note that the theory can be expanded to include all of the neglected effects (Lectures 6
and 11 analyse the case of internal waves, while Lecture 15 discusses the effect of viscous
damping on the fluid motion).

In addition, we assume that the flow is irrotational. This assumption does not change
the governing equations but restricts the types of initial conditions considered, and therefore
the types of solutions obtained.

We begin with mass conservation, noting that the net mass flux into an arbitrary volume
V must be zero by incompressibility, so that

∫∫

∂V

ρu · n̂ds = 0 (4)

where ∂V is the surface bounding the volume, ds an infinitesimal area on that surface, and
n̂ the unit normal vector to the surface. Using the divergence theorem, and the fact that
we have assumed a uniform density, ρ = constant, we may rewrite equation (4) as

ρ

∫∫∫

V

∇ · udV = 0. (5)

This expression is valid for all choices of V . We can thus say that the fluid velocity is
divergence free

∇ · u = 0. (6)

We now examine the assumption that the flow is irrotational. The vorticity of the fluid
is defined by

ω = ∇× u. (7)

If we assume that the vorticity is zero, then we can define a velocity potential φ = φ(x, t)
such that

u = ∇φ. (8)
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Recall from vector calculus that the curl of a gradient is identically zero, thus, if the vorticity
of the flow is non-zero, then the velocity potential does not exist. Combining the definition
for the velocity potential with the conservation (divergence) equation shows that φ is a
solution of Laplace’s equation

∇2φ = 0. (9)

We have not yet discussed the validity of the irrotational assumption. To investigate
this, we first state the Navier-Stokes equations,

ρ
Du

Dt
+ ∇p + ρgez = µ∇2

u. (10)

If we neglect viscosity by setting µ = 0, we regain Euler’s equation,

Du

Dt
+

∇p

ρ
+ gez = 0. (11)

If we then take the curl of Euler’s equation, we find an expression for the time evolution of
vorticity,

Dω

Dt
=

∂ω

∂t
+ u · ∇ω = ω · ∇u (12)

showing that if the vorticity is zero at t = 0, it remains so for all subsequent time.

We now examine Bernoulli’s Law. We first rewrite the material derivative as

Du

Dt
=

∂u

∂t
+

1

2
∇|u|2 − u × ω , (13)

where we have made use of equation (2) and of the vector identity u · ∇u = 1

2
∇|u|2 − u ×

∇× u. Since we have assumed that the initial vorticity is zero and we have shown that it
shall remain so, the third term on the right is identically zero. As a result, Euler’s equation
becomes,

∇

{

∂φ

∂t
+

1

2
|∇φ|2 +

p

ρ
+ gz

}

= 0. (14)

Integrating this expression gives

∂φ

∂t
+

1

2
|∇φ|2 +

p

ρ
+ gz = F (t) , (15)

where F (t) is an additive constant. Note that since the velocity potential is defined up to
an arbitrary additive function of time, we may absorb F (t) into ∂φ

∂t
. As such, we may set

F (t) = 0 in (15) without loss of generality, and thus recover the well-known Bernoulli’s Law.

We assume that the bottom boundary is impermeable, and thus, enforce a “no-normal
flow” boundary condition,

u · ∇ {z + h(x, y)} = 0 at z = −h(x, y) , (16)
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where ∇{z + h(x, y)} is the normal vector to the bottom surface. Using the definition of
the velocity potential, equation (8), we obtain,

∂φ

∂z

∂z

∂z
+

∂φ

∂x

∂h

∂x
+

∂φ

∂y

∂h

∂y
= 0

∂φ

∂z
+ ∇φ · ∇h = 0 . (17)

On the surface, z = η(x, y, t), we require the continuity of the pressure field p. Just
above the surface, there are two contribution to pressure: a pressure due to the weight of
the atmosphere and a pressure given by the surface tension, which conceptually acts like an
elastic membrane stretched over the surface of the water. The surface tension is evaluated
from the Young-Laplace equation. Hence,

p = pair − σ∇ · n̂ at z = η(x, y, t) , (18)

where σ is a constant, with units Nm−1, and n̂ is the surface normal unit vector. From here
on, we assume that pair = 0, again without loss of generality. Note that we are ignoring the
effects of wind. Vector calculus tells us that

n̂ =
∇η

√

1 + |∇η|2
. (19)

Using (18) in Bernoulli’s Law (15) gives us the dynamic boundary condition on the free
surface,

∂φ

∂t
+

1

2
|∇φ|2 + gη =

σ

ρ
∇ ·

{

∇η
√

1 + |∇η|2

}

. (20)

We obtain a kinematic boundary condition by assuming that a material element on the free
surface stays on the free surface,

D

Dt
(z(t) − η(x, y, t)) = 0. (21)

Noting that Dz
Dt

= w = ∂zφ and Dη
Dt

= ∂tη + u · ∇η, we obtain

∂η

∂t
+ ∇φ · ∇η =

∂φ

∂z
, (22)

when evaluated at z = η.

To summarize, the governing equations are

∂φ

∂t
+

1

2
|∇φ|2 + gη =

σ

ρ
∇ ·

{

∇η
√

1 + |∇η|2

}

on z = η(x, y, t)

∂η

∂t
+ ∇φ · ∇η =

∂φ

∂z
on z = η(x, y, t)

∇2φ = 0 −h(x, y) < z < η(x, y, t)

∂φ

∂z
+ ∇φ · ∇h = 0 on z = −h(x, y).
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The first equation relates the evolution of the velocity potential for a material element
on the surface to the restoring force of gravity and the surface tension. The second equation
describes the kinematic evolution of the free surface. The third equation is the continuity
equation, where we have assumed that the fluid is incompressible and irrotational. The
last equation is a statement that we do not allow any flow across the impermeable bottom
boundary.
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Lecture 2: Concepts from Linear Theory

Lecturer: Harvey Segur. Write-up: Alireza Mashayekhi and Michael Bates

June 15, 2009

1 Introduction

Figure 1: Ship waves from WW II battleships shown on the left (from Water Waves by
Stoker [3]) and a toy boat on the right from (Introduction to Water Waves by Crapper [1]).
Kelvin’s (1887) method [2] of stationary phase predicts both.

Figure 1 shows the wave patterns observed in the wake of ships and boats, which are
among the few kinds of waves that are well-explained by linear theory. In this lecture,
we study linear theory by starting from the nonlinear equations of water waves derived in
Lecture 1, linearizing them, and exploring some fundamental concepts which emerge from
the linearized equations such as the phase and group velocities and particle orbits. The
predictions from linear theory also help distinguish between cases where surface tension
effects are negligible (gravity waves) and where they dominate (capillary waves). Different
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characteristics of shallow and deep water waves (such as particle paths in each case) are
also pointed out.

2 Nonlinear equations of motion

Starting from nonlinear equations of motion for an irrotational flow with no wind forcing
derived in Lecture 1, we know that

∂tη + ∇φ · ∇η = ∂zφ, (1)

∂tφ +
1

2
|∇φ|2 + gη =

σ

ρ
∇ ·

(

∇η
√

1 + |∇η|2

)

, (2)

have to be satisfied at the surface, defined as z = η(x, y, t). The first relation is the
kinematic boundary condition while the second one is the Bernoulli’s law expressing the
dynamic boundary condition at the surface. For the interior flow, the Laplace equation

∇2φ = 0 − h(x, y) < z < η(x, y, t), (3)

needs to be satisfied and the bottom boundary condition is

∂zφ + ∇φ · ∇h = 0, on z = −h(x, y). (4)

For small amplitude waves, the nonlinear terms in (1) and (2) can be neglected to linearize
the problem around the state of rest. Further simplifications can be achieved by arguing
that to first order the boundary conditions can be evaluated at z = 0 rather than z = η.
This can be justified by expanding (1) and (2) in a Taylor series around z = 0 and keeping
linear terms only. For example the ∂zφ in (1) yields

∂φ

∂z
|z=η=

∂φ

∂z
|z=0 +η

∂2φ

∂z2
|z=0 +... ≃

∂φ

∂z
|z=0 . (5)

Applying these simplifications and assuming a flat bottom (h=const) leads to the following
set of linearized equations:

∂tη = ∂zφ, on z = 0, (6)

∂tφ + gη =
σ

ρ
∇2η on z = 0, (7)

∇2φ = 0 − h < z < 0, (8)

and

∂zφ = 0, on z = −h. (9)
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The goal is to solve (8) for the interior flow subject to the conditions (6), (7), and (9).
As a warm-up problem, let us first find solutions to (8) assuming that φ is known on the
upper boundary. For example, if

φ(x, y, 0, t) = a sin(kx), (10)

at the top boundary and (9) at the bottom boundary, the solution is

φ(x, y, z, t) = a
cosh(k(z + h))

cosh(kh)
sin(kx). (11)

If the top boundary condition is changed to

φ(x, y, 0, t) = a sin(kx) cos(ly), (12)

then

φ(x, y, z, t) = a
cosh(κ(z + h))

cosh(κh)
sin(kx) cos(ly), (13)

where κ2 = k2 + l2.
For simplicity, the problem can be rewritten in complex variables. Hence if the function

φ takes the form

φ(x, y, 0, t) = ℜ{a eikx+ily} on z = 0. (14)

then

φ(x, y, z, t) = ℜ

{

a
cosh(κ(z + h))

cosh(κh)
eikx+iky

}

. (15)

in the whole domain. Finally, note that if φ is time-dependent on the boundary, it can be
expressed as a linear combination of components in the form of (14), so that the solution
will be the equivalent linear combination of the respective solutions (15):

φ(x, y, z, t) = ℜ

{
∫∫∫

Φ(k, l, ω)
cosh(κ(z + h))

cosh(κh)
eikx+ily−iωtdk dl dω

}

, (16)

leading to an equivalent expression for η:

η(x, y, t) = ℜ

{
∫∫∫

H(k, l, ω) eikx+ily−iωtdk dl dω

}

. (17)

Next, (16) and (17) can be used to satisfy the boundary conditions (6) and (7) at the surface
to find the linearized dispersion relation for the frequency ω:

ω2 =

(

g +
σ

ρ
κ2

)

[κ · tanh(κh)] , κ2 = k2 + l2. (18)

Since the expression obtained for ω depends on the wave number, it is called a “dispersion”
relation. If a system of linear evolution equations has a dispersion relation, then that
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relation encodes all of the information about wave propagation from the partial differential
equations (but not from their boundary or initial conditions).

From this point on, we restrict our attention to 2-D motions. For a linearized 2-D case
(∂y ≡ 0), the dispersion relation (18) reduces to

ω2 =

(

gh +
σ

ρ
k2h

)[

tanh(kh)

kh

]

· k2, (19)

and we may choose,

ω(k) =

√

gh +
σ

ρ
k2h ·

√

tanh(kh)

kh
· k. (20)

The general solution of the 2-D linear problem can then be written in the form of a sum
over all components like those in (16) and (17):

φ(x, z, t) =
1

2π

∫

∞

−∞

Φ
−
(k)

cosh(k(z + h))

cosh(kh)
ei(kx−ω(k)t)dk +

1

2π

∫

∞

−∞

Φ+(k)
cosh(k(z + h))

cosh(kh)
ei(kx+ω(k)t)dk, (21)

and

η(x, t) =
1

2π

∫

∞

−∞

iω(k)

g + σ
ρ
k2

Φ
−
(k)ei(kx−ω(k)t)dk −

1

2π

∫

∞

−∞

iω(k)

g + σ
ρ
k2

Φ+(k)ei(kx+ω(k)t)dk. (22)

The first integrals in (21) and (22) correspond to waves traveling to the right and the
second integrals correspond to leftward-travelling waves.

3 Phase velocity and group velocity

The “phase velocity” for each wavenumber k in (22) is defined by

cp(k) =
w(k)

k
≥ 0, (23)

where ω(k) was defined by the dispersion relation (20). The phase speed is the velocity with
which the crest of each wave travels. If the phase speed varies with k, each wave travels
with its own velocity and they progressively disperse. In contrast if all waves travel with
the same velocity, then the system is called “non-dispersive”. Sound waves are examples of
non-dispersive waves.

Another velocity can be defined which is called the “group velocity”:

cg =
dw

dk
. (24)
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This is the velocity with which the energy of the waves propagates and is not necessarily
equal to the wave’s phase velocity. To see this, consider adding two waves with slightly
different wavenumbers k, k + δk (δk ≪ k) and frequencies ω(k), ω(k + δk) ≈ ω(k)+ dω

dk
· δk.

The combination of the two waves has the form

η(x, t) = sin{kx − ωt} + sin{(k + δk)x − (ω + cgδk)t}

= 2 sin{(k +
δk

2
)x − (ω +

cgδk

2
t} · cos

{

δk

2
x −

cgδk

2
t

}

(25)

⇒ η(x, t) ≈ 2 sin{k(x − cpt)} · cos

{

δk

2
(x − cgt)

}

. (26)

Figure 2: Formation of a wave group by linear combination of two waves

The sin(k(x−cpt)) term corresponds to the fast oscillations (shown in Figure 2) moving
with the phase speed cp = ω/k. The amplitude of this wave is modulated by a slowly varying
function cos{ δk

2
(x − cgt)} which has a longer wavelength 4π/δk and propagates at a speed

cg = dω/dk. Multiplication of a rapidly varying and a slowly varying wave in (25) leads to
periodic wave groups (Figure 2). The individual wave components travel with the phase
speed cp while the envelope of the wave group travels with the group speed cg. For a
wave with a phase speed larger than the group speed, the wave crests appear from behind
the wave envelope at the nodal point, progress forward, and disappear at the front nodal
point. For cp < cg the reverse is true. Thus, following the crest of the largest wave in a
wave envelope shows that it only dominates the group for a limited time due to the slow
modulation. For this reason, a surfer would not be able to enjoy riding a large wave for a
long time unless the phase and group velocities were almost the same. In this scenario, the
large wave almost holds its shape as it travels with the group. Since no energy can pass
through the nodal points, the wave energy can only travel with the group velocity and not
the phase velocity.

4 Gravity waves

In most oceanographic applications, surface tension is negligible. In this section, we there-
fore restrict our attention to the case where the surface tension does not play an important
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role, so that equation (20) reduces to

ω(k) =
√

gh ·

√

tanh(kh)

kh
· k, (27)

which is the dispersion relation for “gravity waves”. Figure 3 shows the plot of the frequency
ω versus k. The slope of the straight line connecting a point on the curve and the origin
is the phase velocity ω/k while the slope of the tangent to the curve at that point is the
group velocity dω/dk. The bottom panel shows the phase velocity and the group velocity
curves. The peak of the phase speed curve corresponds to the fastest moving wave. For
gravity waves, the longest waves travel fastest and with the maximum speed of

√
gh. This

can be obtained from (27) by letting kh → 0 or by calculating the slope of the dispersion
curve in the kh → 0 limit. It is important to note that the maxima of the phase and group
velocity curves do not necessarily coincide.

Figure 3: (left) Determining the group and phase velocities from the dispersion curve.
(right) Phase and group velocity.

To have an idea of the maximum phase speed of gravity waves in nature, the maximum
wave speed in the bay of Bengal (a potential tsunami region with a depth of 3500 m) is 185
m/s (ie. 670 km/hr=415 mi/hr). The deepest point in the ocean (near Guam) is around
11,000m deep which is deeper than the height of Mt. Everest (8848 m). The fastest gravity
wave in the ocean can have a velocity of 328 m/s (1182 km/hr = 734 mi/hr). Although this
is very close to speed of sound in the air, it is considerably slower than the speed of sound
in water which is 1450 m/s (at 10oC).

Finally, note that two limiting cases can be considered to simplify the dispersion relation
(27). For h/λ ≫ 1 (or hk ≫ 1), the dispersion relation and its corresponding phase velocity
reduce to

ω =
√

gk, (28)

cp =
ω

k
=

√

g

k
, (29)
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since tanh(x) → 1 for x → ∞. This is called the “Deep Water” approximation and implies
that deep-water waves are dispersive. It should be noted that kh needs not be very large
for this approximation to hold as tanh(kh) = 0.94138 for only kh = 1.75 and tanh(kh) =
0.999993 for kh = 2π. In the “Shallow Water” limit on the other hand, we have kh ≪ 1.
Since tanh(x) → x as x → 0, the dispersion relation and phase velocity relations for gravity
waves take the form of

ω =
√

gh · k (30)

cp = cg =
√

gh, (31)

which implies that shallow water waves are approximately non-dispersive and all travel
with the same speed at a similar depth. This makes waves in shallow enough waters good
candidates for surfing, a fact well-known by surfers.

5 Waves with surface tension

The dispersion relation (20) includes the surface tension and can be used to find the general
expression for the phase speed:

cp =

√

(

g

k
+

σk

ρ

)

tanh(kh) =

√

(

gλ

2π
+

2πσ

ρλ

)

tanh(
2πh

λ
), (32)

where λ = 2π/k is the wavelength. Figure 4 shows the plot of the phase speed versus the
wavelength to demonstrate the effect of surface tension. As seen in equation (32), surface
tension increases the phase speed for all wavenumbers, a fact which can easily be interpreted
on physical grounds since tension increases the restoring force on the free surface. However,
Figure 4 shows that this effect is only noticeable for short waves (λ < λmin). For deep water
waves(tanh(kh) ≃ 1), the phase velocity takes the form

cp =
ω

k
=

√

g + σ
ρ
k2

√

|k|
(33)

and the wavelength of the slowest wave (cmin) can be obtained by setting dcp/dλ = 0
yielding

cmin =

[

4gσ

ρ

]1/4

at λmin = 2π

√

σ

ρg
. (34)

For air-water interface at 20oC, cmin and λmin take the values of 23.2 cm/s and 1.73
cm respectively. As the figure shows, this implies that waves with wavelengths of a few
centimeters or less are affected by surface tension. These waves are called “capillary” waves
and are often referred to as “ripples”. For wavelengths of few millimeters surface tension is
the dominating factor with the effect of gravity being negligible. For waves longer than a
few centimeters gravity plays the dominant role. As mentioned earlier and also shown on
the figure, gravity waves have a maximum speed of

√
gh. As the figure shows, for every
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Figure 4: Phase velocity vs wavelength for surface gravity waves.

(long) gravity wave, there is a (short) capillary wave with the same phase speed. Remote
sensing of ocean waves depends on this fact. One can also plot the graph of the group
velocity versus the wavelength and observe that the group velocity also has a minimum, at
a wavelength slightly different from that of the phase velocity.

It should also be noted that there are capillary waves which can travel faster than the
fastest gravity waves although they are very small and rapidly dissipate in the presence of
viscosity. Another point shown on the figure is that for gravity waves, long waves travel
faster than short waves while the opposite is true for capillary waves. To show this, Figure
5 demonstrates the propagation of gravity waves (left) and capillary waves (right) in deep
water. Clearly, long gravity waves travel faster at the outer front of the wave trains in the
left panel while the shorter capillary waves travel faster and form the front in the right
panel. Since the effect of surface tension on capillary waves guarantees a minimum group
speed, the innermost waves seen in the right panel of Figure 5 (darkest ring) are the ones
which travel with the minimum possible group velocity and form the inner boundary of the
wave pattern. This leaves a flat interior region.

6 Particle paths

In this section, we investigate fluid particle paths for a wave traveling to the right with a
constant phase speed cp(k). Assuming the rest position of the particle to be (x0, z0), and
its instantaneous position to be (x = x0 + x1, z = z0 + z1), the equations of motion for the
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Figure 5: Propagation of surface gravity waves on the left (from Water Waves by Stoker
[3]) and capillary waves on the right (Courtesy of Diane Henderson).

particle are:

Dx

Dt
=

Dx1

Dt
= u(x, z, t) = a cos(kx − ω(k)t)

cosh(k(z + h))

cosh(kh)
, (35)

Dz

Dt
=

Dz1

Dt
= w(x, z, t) = a sin(kx − ω(k)t)

sinh(k(z + h))

cosh(kh)
. (36)

Note that these two equations describe the motion of the fluid particle based on a velocity
field obtained from linear theory. The approximate particle paths can be obtained using
these ODEs by making some additional simplification. For small-amplitude waves, one can
assume the particle displacement (x1, z1) away from its neutral position (x0, z0) to be small.
The particle velocity is then the same as that of the neutral position to linear order so that

Dx1

Dt
= u(x, z, t) = a cos(kx0 − ω(k)t)

cosh(k(z0 + h))

cosh(kh)
, (37)

Dz1

Dt
= w(x, z, t) = a sin(kx0 − ω(k)t)

sinh(k(z0 + h))

cosh(kh)
. (38)

Integrating in time we get

x1 = x(t) − x0 ≈ −
a

ω
sin(kx0 − ω(k)t)

cosh(k(z0 + h))

cosh(kh)
, (39)

z1 = z(t) − z0 ≈
a

ω
cos(kx0 − ω(k)t)

sinh(k(z0 + h))

cosh(kh)
. (40)

The above two relations can be combined to give
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(x(t) − x0)
2

cosh2(k(z0 + h))
+

(z(t) − z0)
2

sinh2(k(z0 + h))
=

a2

ω2
(41)

which indicates that the particle orbits are ellipses to the first order. It should be noted
that for deep water waves the orbits are nearly circular as cosh(k(z0 +h)) ≈ sinh(k(z0 +h))
for kh ≫ 1. Meanwhile, for shallow water waves the orbits become thin ellipses with
their major axes almost independent of the depth. Figure 6 shows the motion of marked
fluid particles over one wave period. Orbits are nearly circular near the top of this flow,
progressively becoming thin ellipses towards the bottom boundary. Stokes [4] showed that
at second order, there is a slow drift near the free surface (Stokes drift ). The drift is visible
in Figure 6 by inspecting some of the larger orbits near the top.

Figure 6: Motion of marked fluid particles over one wave period From [5].
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Lecture 3: Introduction to Non-Linear Waves

Lecturer: Roger Grimshaw, Write-up: Alireza Mashayekhi

June 15, 2009

1 Introduction

The aim of this lecture is to introduce briefly the various kinds of nonlinear equations which
have been proposed as models of water waves. These equations are presented here on physi-
cal grounds, and are derived more formally in following lectures. We begin by summarizing
the properties of linear waves, and under which limits the linear approximations are thought
to break down. Then, we investigate these limits and discuss basic nonlinear water wave
equations.

1.1 Linear water waves

A one-dimensional linear wave can be represented by Fourier components

u = ℜ{A exp(ikx − iωt)} , (1)

where k is the wavenumber, ω is the frequency, and A is the amplitude. Both ω and A may
be functions of k. The linear wave dynamics are determined by the dispersion relation

ω = ω(k), (2)

the form of which depends on the circumstances. In the instance of surface water waves
where surface tension is negligible, we saw in Lecture 2 that the dispersion relation is

ω2 = gk tanh(kh) (3)

where g is gravity and h is the still water depth. Note that there are two branches of the
dispersion relation ±ω, corresponding to leftward and rightward traveling waves respec-
tively. Depending on the physical system considered there may be any number of branches
of solution. For stable waves, ω is real for all real valued k.

We also saw that there are two important velocities when considering waves,

cp =
ω

k
(4)

cg =
dω

dk
, (5)
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where cp is the phase velocity and cg is the group velocity. For dispersive waves, these
two velocities are not the same. The phase velocity is the speed at which the phase of the
wave propagates (for instance, a wave crest). Meanwhile, the wave energy propagates at
the group velocity. The energy, E, of each Fourier component is usually given by the form,

E = F (k)|A|2. (6)

As will be seen in subsequent lectures, in the case of water waves the energy is given by
E = g|A|2/2.

As time evolves in a linear dispersive system, each Fourier component propagates at its
own phase velocity and thus, a group of waves of mixed k disperses. Meanwhile, the effect of
non-linearities becomes important, typically leading to three possible scenarios depending
on the waves considered:

1. long waves: for k → 0, the dispersion relation is only weakly dispersive as ω =
c0k+O(k3) (see equation 3). This dispersion is comparable with the weakly nonlinear
effects in modulating the amplitude of the wave.

2. wave packets: when the wave energy is concentrated about a finite wavenumber, k0

say, dispersion is also weak and the wave group propagates with approximately a
uniform group velocity. Again, the weak dispersion is comparable with the weak
nonlinearity and modulates the amplitude of the wave group.

3. resonant wave interaction: due to non-linearities, two linear waves of wavenumber k1

and k2 may interact to form another wave k0 = k1 + k2. In the instance where there
is resonance with ω0 ≈ ω1 + ω2, this can potentially be a strong effect in amplifying
and/or modulating the waves. This third scenario is discussed in other lectures.

1.2 The Korteweg-de Vries Equation

The Korteweg-de Vries (KdV) equation [6] is used to consider the weakly nonlinear, weakly
dispersive behavior of the long wave case discussed in the previous section, that is, when
k → 0. If we use a Taylor expansion about kh = 0 of the dispersion relation (3), and retain
the first two non-trivial terms only, we get an approximate dispersion relation with error
O(k5),

ω = c0k − βk3. (7)

where c0 is the limit of both phase and group velocity as k → 0. Identifying −iω with ∂/∂t,
and ik with ∂/∂x for each Fourier component, we deduce that the evolution equation for u

is:
ut + c0ux + βuxxx = 0. (8)

In the long-wave approximation the dominant terms are the first two, showing that the
wave nearly propagates with constant velocity c0 except for the weak dispersion (the third
term).
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The original system being nonlinear, we expect that the dispersion term is balanced
by another weak, but this time nonlinear term. The exact identification of the correct
nonlinear term requires a formal study of the original equations, which will be done in the
following lectures. For the moment, it is sufficient to say that a term of the form µuux

suitably balances the dispersive term, hence introducing

ut + c0ux + µuux + βuxxx = 0, (9)

which is the KdV equation. We can simplify the equation by performing the transform
x → x− c0t, which puts the observer in a reference frame moving with velocity c0, in which
case

ut + µuux + βuxxx = 0. (10)

Equation (10) is an integrable equation, a fact established in the 1960’s. The principle
solution of the KdV equation are solitons. Solitons are solitary waves, that is, they are
isolated, steadily propagating pulses given by,

u = asech2(γ(x − V t)), (11)

where V = µa/3 = 4βγ2 is the soliton velocity in the moving frame.

Solitons form a one-parameter family of solutions, parameterized for example by their
amplitude a. The speed, V , is proportional to the amplitude and is positive when β > 0.
Conversely, V is negative when β < 0. The soliton wavenumber γ is proportional to the
square root of a. As such, large-amplitude waves are thinner and travel faster. Note that
solitons are waves of elevation when µβ > 0 and of depression when µβ < 0.

A consequence of integrability means that the initial-value problem is solvable, with
methods such as the Inverse Scattering Transform (IST) for a localized initial condition
(see Lecture 5). The generic outcome the initial value problem is a finite number of solitons
propagating in the positive x direction and some dispersing radiation propagating in the
negative x direction (when µβ > 0).

1.3 Nonlinear Schrödinger equation

To deal with the nonlinearity associated with the wave envelopes mentioned in section 1.1
we assume that the solution is a narrow-band wave packet, where the wave energy in Fourier
space is concentrated around a dominant wavenumber k0. The dispersion relation ω = ω(k)
can then be approximated for k ≈ k0 by

ω − ω0 = cg0(k − k0) + δ(k − k0)
2, (12)

where ω0 = ω(k0), cg0 = cg(k0) and δ = cgk(k0)/2, and we recall that cg(k) = dω/dk, so
that cgk = ωkk. This translates to an evolution equation for the wave amplitude

i(At + cg0Ax) + δAxx = 0, (13)

where u = ℜ[A exp(ikx − iωt)]. Here it is assumed that the envelope function A(x, t) is
slowly-varying with respect to the carrier phase kx−ωt. The dominant term is At+cg0Ax ≈
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0, showing that the wave envelope propagates with the group velocity cg0, modified by the
effect of weak dispersion due to the term Axx. This equation is well-known in quantum
mechanics as the Schrödinger equation. As for the KdV equation, the small dispersion
effect introduced in (13) needs to be balanced by nonlinearity. In this case, the lowest
possible nonlinearity has to be a cubic term of the form ν|A|2A, for some constant ν. This
form can be roughly argued on the grounds that the associated phase for all the terms in
(13) should be the same, eikx−iωt. By contrast, a quadratic term for example would have
phase e2ikx−2iωt or no phase at all (e.g. as in the |A|2 term). A proper derivation of the
NLS is presented later in this lecture series.

Thus the model evolution equation for the wave envelope is the nonlinear Schrödinger
equation (NLS), expressed here in the reference frame moving with speed cg0 (as before,
transform x → x − cg0t),

iAt + ν|A|2A + δAxx = 0. (14)

Like the KdV equation, (14) is a valid model for many physical systems, including notably
water waves and nonlinear optics, a result first realized in the late 1960’s. Remarkably,
and again like the KdV equation, it is also an integrable equation through the IST, first
established by Zakharov and collaborators in 1972 ([9]). Equation (14) also has soliton
solutions, and the single soliton or solitary wave solution has the form

A(x, t) = a sech(γ(x − V t)) exp(iKx − iΩt), (15)

γ2 =
νa2

2δ
, V = 2δK, and Ω = δ(K2 − γ2). (16)

This solution forms a two-parameter family, the parameters being the amplitude, a,
and the “chirp” wavenumber K; however, K amounts to a perturbation of the carrier
wavenumber k to k + K, |K| ≪ |k|, and so can be removed by a gauge transformation.
Note that this soliton solution exists only when δν > 0 which is the so-called focusing case.

2 Higher space dimensions

2.1 The 2D dispersion relation

In two space dimensions the wavenumber becomes a vector k = (k, l) and the dispersion
relation is then in the form of

ω = ω(k) = ω(k, l), (17)

where the wave phase is k · x−ωt = kx+ly−ωt. The phase velocity is the vector c = ωk/κ2,
where κ = |k|. The group velocity becomes the vector

cg = ∇k · ω =

(

∂ω

∂k
,
∂ω

∂l

)

. (18)

Note that in general, the group velocity and the phase velocity differ in both magnitude
and direction.
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For water waves the dispersion relation is

ω(k, l) = gκ tanh κh. (19)

This is an example of an isotropic medium, where the wave frequency depends only on the
wavenumber magnitude, and not its direction. In this case the group velocity is parallel to
the wavenumber k, and hence parallel to the phase velocity, with a magnitude cg = dω/dκ.

2.2 Kadomtsev-Petviashvili equation

The Kadomtsev-Petviashvili equation (KP equation [5]) is the two-dimensional extension
of the KdV equation for isotropic systems. In the reference frame moving with the linear
long-wave phase speed c0 aligned with the x-direction, the KP equation is

(ut + µuux + βuxxx) +
c0

2
uyy = 0. (20)

Equation (20) assumes that there is weak diffraction in the y-direction, that is ∂/∂y ≪ ∂/∂x.
The linear terms can be deduced from the linear dispersion relation ω = ω(κ), κ = (k2 +
l2)1/2, where it is assumed that l2 ≪ k2. In the long-wave limit we then have κ ≈ k+ l2/2k,
so that

ω ≈ c0k − βk3 +
c0 l2

2k
... . (21)

Identifying, as in Section 1.2, −iω with ∂/∂t, ik ∼ ∂/∂x, and il ∼ ∂/∂y, we see that (20)
follows. When c0β > 0, the system is referred to as the “KPII” equation, and it can be
shown that the solitary wave solution (11) is stable to transverse disturbances. This is the
case for water waves. On the other hand if βc0 < 0, (20) is the “KPI” equation for which
the 1D solitary wave is unstable; instead this equation supports fully 2D “lump” solitons.
Like the KdV equation, both KPI and KPII are integrable equations.

2.3 Benney-Roskes equation

Finally, for systems with an isotropic dispersion relation, the NLS equation can also be
extended to two dimensions. In the reference frame moving with the group velocity cg0

aligned with the x-direction

iAt + ν|A2|A + δAxx + δ1Ayy + QA = 0. (22)

where Q is a functional of the amplitude A(x, t). This equation deserves a little discussion.
The linear term in (22) can be found by expanding the dispersion relation as in the one-
dimensional case (12), so that for k ≈ k0 ≈ l ≈ 0,

ω − ω0 = cg0(k − k0) + δ(k − k0)
2 + δ1l

2, (23)

where, as before δ = ωkk(k0, 0)/2 = cgk(k0, 0)/2 and δ1 = ωll(k0, 0) = cg0/2k0.
The final term QA on the other hand arises from the 2D extension of the cubic term.

The quantity Q depends on |A|2 only, a quantity which does not oscillate, and is therefore
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typically called the “wave-induced mean flow”. The term QA is then interpreted as the
effect of mean flows, generated by the nonlinear wave stresses, back on the wave-packet
amplitude A(x, t). The precise form of Q depends on the particular physical system being
considered. For water waves, where c0

2 = gh, it has been shown that

(

1 −
c2

g0

c2

0

)

Qxx + Qyy + ν1|A|2yy = 0. (24)

Note that if we set the y−derivatives to 0 in this equation then Qxx = 0, and the Q term
vanishes thus recovering the NLS equation.

The resulting system (22, 24) form the Benney-Roskes equations [1], also known as the
Davey-Stewartson equations. Note that for water waves δ < 0, δ1 > 0 and cg0 < c0, so that
(22) is hyperbolic, but (24) is elliptic.

[8] [4] [3] [7] [2]
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Lecture 4: Zhakharov Formulation of Water Waves

Lecturer: Harvey Segur. Write-up: Andrew Stewart

June 16, 2009

Hamiltonian mechanics is an alternative formulation of the laws of classical mechanics
that was developed by William Rowan Hamilton in the early 19thcentury. It is desirable
to express mathematical systems in Hamiltonian form, as this brings us one step closer to
determining whether they are completely integrable. We first present a brief overview of
Hamiltonian systems, then demonstrate that the problem of inviscid surface water waves
presented in the previous lectures is in fact Hamiltonian. We conclude by discussing the
consequences of this result in terms of integrability.

1 Review of Hamiltonian systems

We begin with a brief introduction to Hamiltonian mechanics and the properties of Hamil-
tonian systems. The interested reader is referred to [1] for a more comprehensive discussion
of this topic.

1.1 Formal definition

A system of 2N first-order ordinary differential equations is said to be Hamiltonian if there
exist N pairs of coordinates in the phase space,

{pj(t), qj(t)} , j = 1, 2, . . . ,N, (1)

and a real-valued Hamiltonian function

H(p(t),q(t), t),

where p(t) = (p1(t), . . . , pN (t))T and q(t) = (q1(t), . . . , qN (t))T , such that the original
equations expressed in this coordinate system are:

q̇j =
dqj
dt

=
∂H

∂pj
, ṗj =

dpj

dt
= −

∂H

∂qj
, j = 1, . . . ,N. (2)

While not all systems of 2N equations are Hamiltonian, many commonly known exam-
ples are. For example, consider the equation of a nonlinear oscillator,

d2θ

dt2
+ ω2θ + αθ3 = 0, (3)
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where ω,α ∈ R. This equation describes for example the gravity-driven evolution of the
angle θ of a pendulum with the downward vertical, for small angles |θ| ≪ 1. Indeed, for an
undamped pendulum of unit length, Newton’s second law states that

d2θ

dt2
= −g sin θ = −g

(

θ − 1

6
θ3

)

+ O
(

θ5
)

, (4)

which reduces to (3) for small angles (i.e. neglecting terms of O
(

θ5
)

) and setting ω2 = g

and α = −g/6. Choosing q(t) = θ(t) and p(t) = θ̇(t), we now express (3) as the following
system of first-order ordinary differential equations,

ṗ = −ω2q − αq3, q̇ = p. (5)

We find that an appropriate choice of H is

H (p(t), q(t), t) = 1

2
p2 + 1

2
ω2q2 + 1

4
αq4, (6)

and it is readily verified that the Hamiltonian equations (2) yield the equations of motion
(5) upon evaluation of the partial derivatives of H.

1.2 Properties of Hamiltonian systems

The Hamiltonian is frequently, but not always, the total energy of the system. In the case
of the nonlinear oscillator H is exactly the constant total energy E, which may be seen by
multiplying (3) by θ̇ and integrating,

E =
1

2
θ̇2 +

g

2
θ2 −

g

24
θ4 = H(θ̇, θ, t).

An essential property of a Hamiltonian system is that the ‘flow’ of the coordinates (1)
in the phase space is volume-preserving. Consider a system of M time-dependent variables
xj(t), j = 1, . . . ,M governed by M first-order ordinary differential equations,

dxj

dt
= vj (x, t) , j = 1, . . . ,M. (7)

The vector x(t) = (x1(t), . . . , xM (t))T may be thought of as the coordinates of a “fluid”
particle in M -dimensional phase space, and v(x, t) = (v1(x, t), . . . , vM (x, t))T as the fluid
velocity vector. The fluid is “incompressible”, so volume is preserved if

∇ · v = 0. (8)

Now suppose that M = 2N and that (7) is a Hamiltonian system satisfying (2) with
pj = x2j−1 and qj = x2j for j = 1, . . . ,N . Then

∇ · v =

M
∑

j=1

∂vj

∂xj
=

M
∑

j=1

∂

∂xj

(

dxj

dt

)

=

N
∑

j=1

∂

∂pj

(

dpj

dt

)

+
∂

∂qj

(

dqj
dt

)

=

N
∑

j=1

∂

∂pj

(

−
∂H

∂qj

)

+
∂

∂qj

(

∂H

∂pj

)

= 0.
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The final equality above requires that H has continuous 2nd partial derivatives with respect
to pj and qj. Thus every sufficiently continuous Hamiltonian system meets the “incom-
pressibility” condition and thereby preserves volume. Note that (8) is a necessary, but not
sufficient, condition for a system to be Hamiltonian. A more comprehensive discussion of
this property may be found in [1], page 69.

1.3 Extension to continuous variables

We now extend Hamiltonian mechanics to systems that depend on continuous variables,
such that the discrete pj(t) and qj(t) are replaced by functions p(x, t) and q(x, t). Consider
the following nonlinear wave equation with periodic boundary conditions,

θtt = c2θxx − ω2θ − αθ3, (9)

where θ = θ(x, t) and θt denotes partial differentiation with respect to t. We proceed as
we did with the nonlinear oscillator, first seeking an energy equation. Multiplying (9) by θt

and integrating with respect to x over the domain considered yields
∫

{

θtθtt + ω2θθt + αθ3θt + c2θxθxt − c2 (θtθx)x
}

dx = 0,

where the second derivative in x has been split to allow integration by parts. The final
term in the integrand may be integrated exactly with respect to x, and disappears due to
the periodic boundary conditions. The remaining terms then form an exact derivative with
respect to t, which leads to the following energy equation,

E [θt, θ, t] =

∫

{

1

2
(θt)

2 + 1

2
c2(θx)

2 + 1

2
ω2θ2 + 1

4
αθ4

}

dx,
dE

dt
= 0,

where E is now a functional of θt, θ and t. Following the method of Section 1.1, we guess
that a suitable Hamiltonian is H = E, and choose

p(x, t) = θt(x, t), q(x, t) = θ(x, t).

The new functions p and q are called the conjugate variables. The Hamiltonian functional
of the system is then

H [p, q, t] =

∫

{

1

2
p2 + 1

2
c2(qx)2 + 1

2
ω2q2 + 1

4
αq4

}

dx. (10)

If (10) is indeed the correct Hamiltonian for this system, then we expect to recover the
nonlinear wave equation (9) via a set of equations analogous to (2), namely

dq

dt
=
δH

δp
,

dp

dt
= −

δH

δq
, (11)

where δ/δp denotes a variational derivative with respect to p. For a small change δp of the
function p in the functional H, the variational derivative δH/δp is defined as the coefficient
of δp in the leading-order contribution to the integrand in the following expression:

H [p+ δp, q, t] −H [p, q, t] =

∫
{(

δH

δp

)

δp + O
(

(δp)2
)

}

dx.
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In the case of the nonlinear wave equation (10) it is straightforward to show that

δH

δp
= p =

dq

dt
,

but δH/δq requires more work. Taking a small variation δq, we find that the integrand of
δH contains a derivative of δq,

H [p, q + δq, t] −H [p, q, t] =

∫

{

c2qx (δq)x + (ω2q + αq3)δq + O
(

(δq)2
)}

dx.

In order to express the integrand as a sum of terms proportional to powers of δq, we must
integrate the first term by parts,

∫

{

c2qx(δq)x
}

dx =

∫

{

c2 (qxδq)x − c2qxxδq
}

dx = −

∫

{

c2qxxδq
}

dx,

where the final equality follows by noting that once integrated, the boundary term vanishes.
Indeed, for the perturbed functions p+ δp and q+ δq to satisfy the boundary conditions of
the original problem, it is sufficient to require that the perturbations (both δq and δp) are
zero on the boundary. Hence,

δH

δq
= −c2qxx + ω2q + αq3 = −

dp

dt
,

and so H is a Hamiltonian for the nonlinear wave equation.

2 Water waves as a Hamiltonian system

We now turn our attention to the equations of inviscid, incompressible, irrotational water
waves propagating on a free fluid surface. Many attempts were made to prove that this
system is Hamiltonian, but it was Vladimir Zakharov who finally published the Hamiltonian
structure in 1968[2]. The full details of the following can be found, albeit in a compacted
form, in Zakharov’s paper.

2.1 The inviscid water wave problem

Consider an incompressible, irrotational, inviscid fluid of constant density ρ with velocity
u(x, y, z, t) and pressure p(x, y, z, t). The fluid lies above a rigid, impermeable lower bound-
ary z = −h(x, y), and has a single-valued surface at z = η(x, y, t) that is subject to surface
tension (with coefficient σ). In all that follows, we restrict our study to a finite-size domain
with periodic boundary conditions, although a similar proof can be derived for an infinite
domain with φ and η going to 0 at ±∞. This set-up is illustrated in Figure 1. In the
first lecture of this series we showed that this system is governed by the following set of
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Figure 1: Capillary-gravity waves on the surface of an inviscid, incompressible, irrotational
fluid of constant density.

equations and boundary conditions,

∂η

∂t
+ ∇φ · ∇η =

∂φ

∂z
on z = η(x, y, t), (12a)

∂φ

∂t
+ 1

2
|∇φ|2 + gη =

σ

ρ
∇ ·







∇η
√

1 + |∇η|2







on z = η(x, y, t), (12b)

∇2φ = 0 −h(x, y) < z < η(x, y, t), (12c)

∂φ

∂z
+ ∇φ · ∇h = 0 on z = −h(x, y), (12d)

where φ(x, y, z, t) is the velocity potential defined as ∇φ = u. The Hamiltonian structure
for this system is developed entirely in terms of the surface variables η(x, y, t) and a new
function ψ,

ψ(x, y, t) = φ(x, y, η, t),

the velocity potential at the free surface. This approach is plausible because although
the entire system is time-dependent, the time-derivatives only appear in the boundary
conditions at the free surface. That is, if at a given time t = t0, η(x, y, t0) and ψ(x, y, t0)
are known, then the solution in the rest of the fluid domain is determined uniquely by the
boundary conditions and Laplace’s equation (12c). The functions η and ψ are therefore
plausible conjugate variables for the Hamiltonian.

We obtain an energy equation for the inviscid water wave equations by multiplying (12c)
by ∂φ/∂t and integrating over −h(x, y) ≤ z ≤ η(x, y, t),

∫ η

−h

φt∇
2φdz = 0.

Integrating by parts, we apply Leibniz’s rule and the boundary conditions (12a), (12b) and
(12d) to obtain the following conservation law for the energy,

∂E

∂t
+ ∇

H
· F = 0, (13)
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where

E(x, y, t) =

∫ η

−h

1

2
|∇φ|2dz + 1

2
gη2 +

σ

ρ

(

√

1 + |∇η|2 − 1
)

,

F(x, y, t) = −

∫ η

−h

φt∇H
φdz −

σ

ρ

ηt∇η
√

1 + |∇η|2
, (14)

are the energy flux and energy density respectively, and ∇
H

= (∂/∂x, ∂/∂y, 0)T is the two-
dimensional gradient vector. Note that this derivation takes a little work, and that an
additional constant was added to E to set E = 0 if both φ and η are identically 0.

We obtain the expression for the total conserved energy of the system by integrating
(13) over the horizontal domain R ⊂ R

2,

∂

∂t

∫∫

R

E dxdy +

∫

∂R

F · n̂ds = 0,

where we have applied Green’s theorem to express the second term as an integral over the
boundary ∂R. Recalling that the system has periodic boundary conditions, the integral
over ∂R vanishes, showing that the total energy of the system is constant:

∫∫

R

E dxdy = constant. (15)

2.2 Hamiltonian structure

We now show that the inviscid water wave problem is Hamiltonian, and that the correct
Hamiltonian is simply the total energy given by (15). We define

H [η, ψ] =

∫∫

R

dxdy

{
∫ η

−h

1

2
|∇φ|2dz + 1

2
gη2 +

σ

ρ

(

√

1 + |∇η|2 − 1
)

}

, (16)

and seek to show that the Hamilton equations,

∂η

∂t
=
δH

δψ
,

∂ψ

∂t
= −

δH

δη
, (17)

are equivalent to the boundary conditions at the free surface, (12a) and (12b).
As the Hamiltonian (16) is a functional of η and ψ, it is practical to express the boundary

conditions at z = η in terms of the surface variables. It is also desirable that their form
should be similar to that of the Hamilton equations (17). We therefore rearrange (12a) and
(12b) in terms of η, ψ and the component of the velocity normal to the free surface n̂η · ∇φ
(where n̂η is the vector normal to the z = η surface). Let

F (x, y, z, t) = z − η(x, y, t),

such that F (x, y, z, t) = 0 defines the free surface. The gradient vector ∇F is then normal
to the surface, so we may write the normal unit vector as

n̂η =
∇F

|∇F |
=

(−ηx,−ηy, 1)
T

√

1 + |∇η|2
.
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The velocity normal to the surface is then

∇φ · n̂η =
−∇φ · ∇η + φz

√

1 + |∇η|2
, (18)

Substituting (12a) in the above and rearranging leads to the following alternative form for
the kinematic boundary condition,

∂η

∂t
=

√

1 + |∇η|2 [n̂η · ∇φ]z=η (19)

Having expressed for ∂η/∂t purely in terms of surface variables, we now seek a similar
expression for the time derivative of ψ, our other conjugate variable. We first apply the
chain rule for differentiation as follows,

∂ψ

∂t
=
∂φ

∂t

∣

∣

∣

∣

z=η

+
∂η

∂t

∂φ

∂z

∣

∣

∣

∣

z=η

=
∂φ

∂t

∣

∣

∣

∣

z=η

+
∂φ

∂z

∣

∣

∣

∣

z=η

[

∂φ

∂z
−∇φ · ∇η

]

z=η

,

where the final equality follows from (12a). Substituting this into (12b) leads to the following
expression for the dynamic boundary condition,

∂ψ

∂t
+

1

2

[

(

∂φ

∂x

)2

+

(

∂φ

∂y

)2

−

(

∂φ

∂z

)2
]

z=η

+

[

∂φ

∂z
(∇φ · ∇η)

]

z=η

+ gη −
σ

ρ
∇ ·







∇η
√

1 + |∇η|2







= 0. (20)

Although we are unable to write ∂ψ/∂t purely in terms of surface variables, we shall see
that in fact we are still able to obtain this equation from the Hamiltonian.

Our task is now to show that the Hamilton equations (17) are equivalent to the rewritten
kinematic and dynamic boundary conditions at the free surface, (19) and (20). Let us first
consider variations of the Hamiltonian with respect to η. Remembering that φ implicitly
depends on η, we find that

H [η + δη, ψ] −H [η, ψ] =

∫∫

R

dxdy

{
∫ η+δη

η

1

2
|∇(φ+ δφ)|2 dz (21)

+

∫ η

−h

∇φ · ∇δφdz + gη δη +
σ

ρ

∇η · ∇δη
√

1 + |∇η|2

}

+ O
(

(δη)2
)

.

Here we have expanded the expressions in the integrand in the small variations δη and δφ,
retaining only first-order terms. We may resolve the first term in the integrand of (21) by
noting that, by the definition of integration,

∫ η+δη

η

1

2
|∇(φ+ δφ)|2 dz =

[

1

2
|∇(φ+ δφ)|2

]

z=η
δη+O

(

(δη)2
)

= 1

2
|∇φ|2

∣

∣

∣

z=η
δη+O

(

(δη)2
)
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for infinitesimally small variations δη. In the final term of (21) we may integrate by parts
and apply Green’s theorem to obtain the following,

∫∫

R

dxdy

∫ η

−h

σ

ρ

∇η · ∇δη
√

1 + |∇η|2
dz =

∫

∂V

σ

ρ

δη∇η
√

1 + |∇η|2
·n̂ ds−

∫∫∫

V

∇·

{

σ

ρ

∇η
√

1 + |∇η|2

}

δη dV.

where V denotes the volume bounded by R in the horizontal direction, and by −h and η in
the vertical direction. Here the first term vanishes due to the periodic boundary conditions,
leaving only the second term to contribute to δH.

The second term of (21) requires more work. We note first that

∫∫∫

V

∇φ · ∇δφdV =

∫∫∫

V

∇ · (δφ∇φ) dV

because ∇2φ = 0 everywhere in the fluid from (12c). We then apply the divergence theorem
to this integral to transform it into an integral over the fluid boundaries ∂V ,

∫∫∫

V

∇ · (δφ∇φ) dV =

∫∫

∂V

δφ∇φ · n̂ds =

∫∫

δφ [∇φ · n̂η]z=η dsη. (22)

where ds denotes an infinitesimal area of the fluid boundary ∂V , while dsη denotes an
infinitesimal area on the free surface only. The final equality follows because the component
of the velocity normal to the surface vanishes at z = −h (12d), and because the lateral
boundary terms cancel out in this periodic domain, so that in fact we are left with an
integral over the free surface z = η. Noting that we may expand variations in φ due to
variations in η at the free surface as

δφ =
∂φ

∂z

∣

∣

∣

∣

z=η

δη on z = η,

we transform the integral on the free surface to an integral over x and y only, using the
following expression for an infinitesimal area,

∫∫

dsη =

∫∫

R

√

1 + |∇η|2 dxdy. (23)

and our expression for the normal velocity at the free surface (18). We thus obtain

∫∫

δφ [n̂η · ∇φ]
z=η

dsη =

∫∫

R

dxdy

[

∂φ

∂z
δη

(

∇φ · ∇η −
∂φ

∂z

)]

z=η

.

Collecting together the above results yields the following expression for the variation of the
Hamiltonian with respect to η,

δH =

∫∫

R

dxdy







[

1

2
|∇φ|2 +

∂φ

∂z

(

∇φ · ∇η −
∂φ

∂z

)]

z=η

+ gη −
σ

ρ
∇ ·





∇η
√

1 + |∇η|2











δη.

(24)
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Thus, the Hamilton equation
∂ψ

∂t
= −

δH

δη

is exactly equivalent to the dynamic boundary condition on the free surface (20).
Let us now consider variations of the Hamiltonian with respect to ψ. The form of (16)

is such that only the first term in the integrand (the kinetic energy) depends on ψ,

H[η, ψ + δψ] −H[η, ψ] = δ

∫∫∫

V

1

2
|∇φ|2dV.

However, the dependence of this term on ψ is not initially clear, so we proceed by noting
that

∇φ · ∇φ = ∇ · (φ∇φ) ,

because ∇2φ = 0 everywhere in the fluid from (12c). We use this to rewrite our expression
for the kinetic energy and apply the divergence theorem, which yields the following surface
integral,

∫∫∫

V

1

2
|∇φ|2dz =

∫∫

∂V

1

2
φ∇φ · n̂ds

where again ∂V is the surface bounding the fluid and ds is an infinitesimal area of that
surface. By a similar argument as was used to derive equation (22), the surface integral
vanishes on the horizontal and bottom boundaries, leaving only an integral over the free
surface. Transforming back to an integral over the horizontal domain using (23) yields

∫∫

1

2
φ∇φ · n̂dsη =

∫∫

R

dxdy 1

2
ψ [∇φ · n̂η]z=η

√

1 + |∇η|2. (25)

All that now remains is to relate [∇φ · n̂η]z=η to ψ. Using a Dirichlet-to-Neumann map, it
can be shown that there exists a symmetric Green’s function of two variables G(x, y;µ, ν)
such that

[∇φ · n̂η]z=η
=

∫∫

ψ(µ, ν, t)G(x, y;µ, ν) dsη =

∫∫

R

dµ dν ψ(µ, ν, t)G(x, y;µ, ν)S(µ, ν, t),

(26)
where we have written S(x, y, t) =

√

1 + |∇η(x, y, t)|2 for convenience. We may now find
δH/δψ by substituting this into (25) as follows,

δ

∫∫

R

dxdy 1

2
ψ [∇φ · n̂η]z=η S(x, y, t)

= δ

∫∫

R

dxdy 1

2
ψ(x, y, t)S(x, y, t)

∫∫

R

dµ dν ψ(µ, ν, t)G(x, y;µ, ν)S(µ, ν, t).

Taking variations with respect to ψ and neglecting terms of O
(

(δψ)2
)

yields

1

2

∫∫

R

dxdy S(x, y, t)

∫∫

R

dµ dν G(x, y;µ, ν)S(µ, ν, t)

× [ψ(µ, ν, t)δψ(x, y, t) + ψ(x, y, t)δψ(µ, ν, t)]
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Finally, we use the property that the Green’s function is symmetric, so we may rewrite this
as,

∫∫

R

dxdy S(x, y, t)δψ(x, y, t)

∫∫

R

dµ dν ψ(µ, ν, t)G(x, y;µ, ν)S(µ, ν, t)

=

∫∫

R

dxdy
√

1 + |∇η|2 [∇φ · n̂η]z=η
S(x, y, t)δψ,

where the second equality follows from (25). Thus,

δH

δψ
=

√

1 + |∇η|2 [∇φ · n̂η]z=η
=
∂η

∂t
, (27)

as required, and so (16) is indeed the correct Hamiltonian for water waves.

3 Summary

In this lecture we have studied the foundations of Hamiltonian mechanics, and we have
shown that the problem of inviscid, irrotational surface waves is Hamiltonian. It is desirable
to formulate a system as a Hamiltonian because this immediately confers a number of
useful properties. The fact that the “flow” in phase space is volume-preserving means that
asymptotic stability of the system is impossible – only neutral stability is possible. It also
means that we can not have attractors or repellers (“sources” and “sinks”) in phase space.
These properties make the system suitable for symplectic integration, a form of numerical
integration that makes use of the preservation of volume in phase space.

An important property of a Hamiltonian formulation is that it allows us, in some cases,
to identify systems of equations that are completely integrable, thus guaranteeing that
the system can be solved explicitly. The following procedure is due to Liouville, and is
described in more detail in [1]. We begin by defining the Poisson bracket {A,B}. For a
Hamiltonian system of 2N ordinary differential equations (ODEs) with conjugate variables
(p1, . . . , pN , q1, . . . , qN ), the Poisson bracket for any pair of functions on the phase space is

{A,B} =

N
∑

j=1

∂A

∂pj

∂B

∂qj
−
∂A

∂qj

∂B

∂pj
.

The Hamiltonian system of these 2N coupled ODEs is said to be completely integrable if
(i) the Hamiltonian does not depend explicitly on time, and (ii) the equations admit N
constants of the motion Pj (for j = 1, . . . ,N) that are functionally independent of each
other and that are “in involution”, i.e.

{Pj , Pk} = 0 for any pair j, k = 1, . . . ,N.

Suitable combinations of these constants of motion are called “action variables”. Conjugate
on them are N “angle variables”, Qj (for j = 1, . . . ,N). The action and angle variables
provide an alternative complete set of 2N coordinates on the phase space.
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Note that while the Hamiltonian H might depend on all of the original variables
(p1, . . . , pN , q1, . . . , qN ), it must now be independent of the angle variables since the ac-
tion variables are constants of motion. Indeed,

dPj

dt
= −

∂H

∂Qj
= 0, for j = 1, . . . ,N,

so that
H = H(P1, . . . , PN )

only, and Pj(t) is constant. The other half of Hamilton’s equations,

dQj

dt
=
∂H

∂Pj
, for j = 1, . . . ,N,

can be integrated trivially because ωj = ∂H/∂Pj is necessarily constant, so

Qj(t) = ωjt+ φj, for j = 1, . . . ,N.

The set of functions Pj(t) and Qj(t) for j = 1, . . . ,N , as derived above, form the complete
solution of the system for all time.

The geometry on the phase space is as follows. The N action variables define an N-
dimensional manifold within the 2N-dimensional phase space. The trajectory of any solution
must remain on this (time-independent) manifold for all time. If the manifold is compact,
then one can show that it must be an N-dimensional torus, and that the solution must
be either periodic or quasiperiodic in time. The N angle variables provide coordinates
on the manifold (whether that manifold is a torus or not), and the solution consists of
uniform translation along a straight line on the manifold. Thus, in terms of the action-
angle variables, the solution of a completely integrable problem is very simple. However,
note that the canonical transformation between the action-angle variables and the original
variables (p1, . . . , pN , q1, . . . , qN ) can be complicated, so this inherently simple motion can
appear quite complex when viewed in terms of the original variables.

How does this discussion of completely integrable Hamiltonian systems relate to the
equations of surface water waves? As discussed above, these equations are Hamiltonian,
but no one has shown that they are completely integrable (at least, not yet). However, in
Lecture 5 we show that in some particular limit, the water wave problem is approximated by
the Korteweg-de Vries (KdV) equation. Zakharov and Faddeev [3] took an important step in
the development of soliton theory when they showed that the KdV equation can be viewed
as a completely integrable, nonlinear Hamiltonian system with an infinite-dimensional phase
space. In lecture 7, we discuss the Kadomtsev-Petviashvili (KP) equation, which is a natural
generalization of the KdV equation; the KP equation is also completely integrable. In Lec-
ture 13, we discuss the “three-wave equations”, which approximate the water wave equations
in another limit; these coupled equations are also completely integrable. In Lecture 14, we
discuss the nonlinear Schrödinger equation, which approximates the water wave equations
in yet another limit, and, once again, completely integrable (in one spatial dimension).

Completely integrable Hamiltonian systems are apparently rare: most Hamiltonian sys-
tems are not integrable. Before the discovery of soliton theory in the 1960s, no nontrivial
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examples were known of nonlinear Hamiltonian partial differential equations that are com-
pletely integrable. Now we know of infinitely many examples of such equations, but very
few of them are relevant to problems of physical interest. So it is remarkable that the water
wave problem has so many approximations that are completely integrable. But we live in
a remarkable world.

References

[1] V. Arnold, Mathematical methods of classical mechanics, Springer, 1989.

[2] V. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep

fluid, Journal of Applied Mechanics and Technical Physics, 9 (1968), pp. 190–194.

[3] V. Zakharov and L. Fadeev, Kortweg-de-vries equation: a complete hamiltonian

system, Funct. Annal. Pril., 5 (1971), p. 18.

34



Lecture 5: Waves in shallow water, part I: the theory

Lecturer: Harvey Segur. Write-up: Nicolas Grisouard

June 16, 2009

1 Introduction

We saw in Lecture 2 a linearized model of water waves, in which all waves (necessarily) have
very small amplitude, and the longest waves (with wavenumbers near k = 0) propagate
with essentially no dispersion. The next step towards a more realistic description of water
waves is to introduce weakly dispersive and weakly nonlinear effects. The derivation of the
Korteweg – de Vries (KdV) equation, which follows this approach, is the topic of the first
part of this lecture. The properties of the KdV equation are presented in a second part,
followed by a third part which discusses the accuracy of this equation for water waves in
real-life settings and its relevance as an approximation of the water wave equations.

Let us recall the notations used so far:

• Cartesian coordinate system of variables (x, y, z), the origin of z being the mean
altitude of the free-surface,

• position of a particle at a given time: x = (x(t), y(t), z(t))

• position of the free-surface: z = η(x, y, t),

• position of the bottom: z = −h(x, y),

• fluid velocity in the interior of the fluid: u(x, y, z, t) = (u, v,w),

• density of water: ρ,

• surface tension: σ.

Let us also recall the approximations made so far, which still apply in this study:

• water is incompressible (∇ · u = 0),

• uniform density (ρ(x, y, z, t) = ρ),

• no rotation,

• constant gravity vector pointing downwards,

• no viscous effects,

• irrotational flow (∇× u = 0), allowing us to define a velocity potential φ as u = ∇φ.
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The four equations of motion for the waves under these assumptions are:

∂tη + ∇φ · ∇η = ∂zφ on z = η(x, y, t), (1)

∂tφ+
1

2
|∇φ|2 + g η =

σ

ρ
∇ ·







∇η
√

1 + |∇η|2







on z = η(x, y, t), (2)

∇2φ = 0 for − h(x, y) < z < η(x, y, t), (3)

∂zφ+ ∇φ · ∇h = 0 on z = −h(x, y). (4)

2 Derivation of the KdV equation

The following derivation of the KdV equation uses a general method to derive approximate
models of waters waves, such as the Kadomtsev – Petviashvili (KP) equation or the Nonlin-
ear Schrödinger (NLS) equation. It consists of four steps starting from what is considered
as the exact set of equations of the problem. These four steps reflect the outline of this
section:

1. to identify an appropriate limit of the problem. As mentioned earlier, we consider
here 1D, long, weakly nonlinear waves.

2. to scale the equations in order to make these limits explicit,

3. to expand these equations in order to solve them approximately, order by order,

4. to introduce multiple scales as needed and solve the equations correctly.

Useful references for this section are Ablowitz & Segur [1] and Dauxois & Peyrard [7].

2.1 Limit of interest for KdV (or KP)

In this problem, a is the amplitude scale of η and Lx the characteristic scale along x. Five
assumptions are made:

1. the propagation is along x only, implying that the partial derivatives along y are equal
to zero. If it is only approximately true, then one can obtain the KP equation instead
of KdV (see Lecture 3).

2. flat topography (h = constant),

3. shallow water (or long wave or weak dispersion) approximation: the horizontal scale
of the waves is large compared with the mean water height. We then define δ such
that h = δLx with δ ≪ 1,

4. weak nonlinearity: a is small compared to h but finite. We define ε such that a = εh

with ε≪ 1,

36



5. weak nonlinear and weak dispersive effects balance: in the KdV case, it implies ε =
O(δ2).

The final point requires some clarification. The procedure outlined above in points 1 through
4 introduces two small parameters, ε and δ. Both are dimensionless and assumed to be
small compared with unity, but little is know a priori on how they compare in size with
each other. An “honest” procedure from here on would be to carry out a expansion of the
original equations in both parameters ε and δ and deduce the correct scaling between the
two numbers for which weakly nonlinear and weakly dispersive effects are comparable in size
at the first non-linear order in the expansion. This method is unfortunately mathematically
cumbersome.

For the sake of clarity, in these lectures, we use previous results which yielded the
correct scalings, namely ε = O(δ2). This assumption is revisited and discussed in Section
2.4. Hence, in the rest of the lecture, we set ε = δ2 and only retain ε as the scaling
parameter.

2.2 Variable scaling

As announced at the beginning of this section, we introduce new non-dimensional variables
(to be recognized by ∗) in order to make the previous assumptions explicit. The vertical
coordinates is scaled by the total water height:

z = hz∗.

Following Section 2.1, we now rescale the horizontal variable with Lx = h/δ and the ampli-
tude of the perturbation η with a = εh, and use the identity ε = δ2:

x = Lx x
∗ =

hx∗
√
ε
, η = a η∗ = ε h η∗.

The linear phase speed of infinitely long waves
√
gh can be used to define a characteristic

speed. As the motion is driven by the free-surface and as the free-surface motion is very
gentle, the characteristic fluid velocity is also very gentle compared to the phase speed of
the linear wave. We choose the ratio of the two typical velocities to be of O(ε), and carry
this scaling over to the velocity potential:

u = u∗ε
√

gh ⇒ φ = h
√

ε g hφ∗.

Finally, a characteristic timescale is naturally defined as the characteristic period of the
linear waves:

T =
Lx√
gh

=

√

h

gε
⇒ t∗ =

√

gε

h
t.

In the new coordinate system, the solutions of the problem (η∗, u∗ and φ∗ for example) are
now functions of the re-scaled variables x∗ and t∗, and of the parameter ε, e.g.

η∗ = η∗(x∗, t∗; ε), φ∗ = φ∗(x∗, z∗, t∗; ε), u∗ = u∗(x∗, t∗; ε), . . .
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2.3 Solve equations approximately, order by order

2.3.1 Approximate velocity field

Let us go back to the original function φ for a moment and write φ as a convergent Taylor
series near the bottom boundary (i.e. a series in z + h) :

φ(x, z, t) =

∞
∑

n=0

(h+ z)n

n!
φ(n)(x, t) (5)

where we use the notation φ(n)(x, t) = ∂nφ/∂zn|x,t,z=−h. If we take the Laplacian of the
last equation and use (3), we find that:

∇2φ =

∞
∑

n=0

(h+ z)n

n!

[

∂2φ(n)

∂x2
+ φ(n+2)

]

= 0. (6)

Each term of the sum being independent, in order to satisfy this equation, one has to make
sure that for each n, and at each point (x, t),

∂2φ(n)

∂x2
+ φ(n+2) = 0. (7)

Equation (4) tells us that φ(1) ≡ 0 since ∂φ/∂z = 0 at z = −h for a flat bottom boundary.
As a consequence, it follows from equation (7) that for each n being odd, φ(n)(x, t) ≡ 0.
Let’s define φ0(x, t) ≡ φ(0). Equation (7) can be used recursively starting from n = 0 to
find all of the functions φ(n)(x, t) for n even:

φ(2m)(x, t) = (−1)m
∂2mφ0

∂x2m
.

We can now rewrite φ as:

φ(x, z, t) = φ0(x, t) +

∞
∑

m=1

(−1)m

(2m)!
(h+ z)2m ∂

2mφ0

∂x2m

or as φ = h
√

ε g h

[

φ∗0(x
∗, t∗; ε) +

∞
∑

m=1

(−ε)m

(2m)!
(1 + z∗)2m ∂2mφ∗

0

∂(x∗)2m

]

(8)

in terms of the rescaled variables. We have not made any extra approximation so far,
meaning that equation (8) provides an exact form of φ∗ (provided the series converges).

If we differentiate equation (8) along the two directions and only retain the terms of the
first two orders, we find:

u(x, z, t) = ε
√

g h

[

û∗(x∗, t∗; ε) −
ε

2
(1 + z∗)2

∂2û∗

∂(x∗)2
+O(ε2)

]

(9)

where we defined û∗ = ∂φ∗
0
/∂x∗,

w(x, z, t) =
√

ε g hw∗ = −ε
√

ε g h

[

(1 + z∗)
∂û∗

∂x∗
−
ε

6
(1 + z∗)3

∂3û∗

∂(x∗)3
+O(ε2)

]

(10)
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2.3.2 At the free surface

We now focus on equations (1) and (2). They both involve η and φ, or in other words
η∗(x∗, t∗; ε) and φ∗(x∗, z∗, t∗; ε). The other variable to be solved for is û∗(x∗, t∗; ε). We only
have to solve these equations order-by-order and for that purpose, we expand η∗ and û∗ in
power series in ε:

η∗(x∗, t∗; ε) = η1(x
∗, t∗; ε) + ε η2(x

∗, t∗; ε) +O(ε2) (11)

and û∗(x∗, t∗; ε) = u1(x
∗, t∗; ε) + ε u2(x

∗, t∗; ε) +O(ε2) (12)

Equation (1), in non-dimensional form, is:

ε
∂η∗

∂t∗
+ ε2u∗

∂η∗

∂x∗
= w∗ on z∗ = εη∗. (13)

Using equations (10), (11) and (12) to expand (13) in a power series of ε until O(ε2), we
find:

ε
∂η1

∂t∗
+ ε2

∂η2

∂t∗
+ ε2u1

∂η1

∂x∗
= −ε

∂u1

∂x∗
− ε2

∂u2

∂x∗
− ε2 η1

∂u1

∂x∗
+
ε2

6

∂3u1

∂(x∗)3
. (14)

Note that we have kept the multiplicative ε factor everywhere to emphasize the order to
which the equation is valid.

We also have to expand the dynamical equation of the free-surface (2). In non-dimensional
variables, this equation reads:

ε
∂φ∗

∂t∗
+
ε

2

(

ε (u∗)2 + (w∗)2
)

+ ε η∗ = ε2
σ

ρgh2

∂

∂x∗















∂η∗

∂x∗

√

1 + ε3
∣

∣

∣

∂η∗

∂x∗

∣

∣

∣

2















on z∗ = εη∗ (15)

If we differentiate the latter along x∗ to eliminate φ∗, we get

ε
∂u∗

∂t∗
+
ε2

2

∂ (u∗)2

∂x∗
+
ε

2

∂ (w∗)2

∂x∗
+ ε

∂η∗

∂x∗
= ε2

σ

ρgh2

∂2

∂(x∗)2















∂η∗

∂x∗

√

1 + ε3
∣

∣

∣

∂η∗

∂x∗

∣

∣

∣

2















on z∗ = εη∗

(16)
And finally, using the Taylor expansions (9) and (12), an approximation of this equation

up to O(ε2) reads:

ε
∂u1

∂t∗
−
ε2

2

∂3u1

∂t∗ ∂(x∗)2
+ε2

∂u2

∂t∗
+
ε2

2

∂
(

u2

1

)

∂x∗
+ε

∂η1

∂x∗
+ε2

∂η2

∂x∗
= ε2

σ

ρgh2

∂3η1

∂(x∗)3
.εη∗(x∗, t∗). (17)

Note that in this last equation, because of the Taylor-expansion performed, ui and ηi do
not depend on z.
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2.3.3 Free-surface equations, lowest order

If we reduce equations (14) and (17) to their O(ε) terms, we get

∂η1

∂t∗
+
∂u1

∂x∗
= 0 and

∂u1

∂t∗
+
∂η1

∂x∗
= 0. (18)

At this order, these two equations can be written in the form of two d’Alembert wave
equations and the solutions can be decomposed into leftward and rightward components,
namely:

η1 = f(x∗ − t∗) + F (x∗ + t∗), (19)

u1 = f(x∗ − t∗) − F (x∗ + t∗). (20)

F and f are the same for both u1 and η1 as equations (18) are strongly coupled. This
expression shows that, to O(ε), the system recovers the well-known behavior of linear non-
dispersive water waves, and there is no evidence at this order that either η1 or u1 depends
on ε. In the following section, we assume η1 and u1 are indeed independent of ε, and see
where this approximation takes us.

2.3.4 Free-surface equations, next order

Now balancing the terms in equations (14) and (17) that are O(ε2), we get a more complex
behavior:

∂η2

∂t∗
+
∂u2

∂x∗
=

1

6

∂3u1

∂(x∗)3
−
∂(u1η1)

∂x∗
, (21)

and
∂u2

∂t∗
+
∂η2

∂x∗
=

(

σ

ρgh2
−

1

2

)

∂3η1

∂(x∗)3
−

1

2

∂u2

1

∂x∗
. (22)

where (18) was used to replace ∂u1/∂t
∗ by −∂η1/∂x

∗.
The fact that u1 and η1 can be written as a combination of rightward- and leftward-

traveling functions indicates that we may make the following change of variables:

(x∗, t∗) → (r, s) = (x∗ − t∗, x∗ + t∗),

∂

∂x∗
→

∂

∂r
+

∂

∂s
,

∂

∂t∗
→ −

∂

∂r
+

∂

∂s
.

so that

η1(x
∗, t∗) = f(r) + F (s) (23)

u1(x
∗, t∗) = f(r) − F (s). (24)

If we rewrite equations (21) and (22) according to the new variables r and s, we get:

−
∂η2

∂r
+
∂η2

∂s
+
∂u2

∂r
+
∂u2

∂s
=

1

6

(

d3f

dr3
−

d3F

ds3

)

−
df2

dr
+

dF 2

ds
, (25)

−
∂u2

∂r
+
∂u2

∂s
+
∂η2

∂r
+
∂η2

∂s
=

(

σ

ρgh2
−

1

2

)(

d3f

dr3
+

d3F

ds3

)

−
1

2

df2

dr
−

1

2

dF 2

ds
+ f

dF

ds
+ F

df

dr
.

(26)
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Addition and subtraction of these two equations give:

2
∂(η2 + u2)

∂s
=

(

σ

ρgh2
−

1

3

)

d3f

dr3
︸︷︷︸

+

(

σ

ρgh2
−

2

3

)

d3F

ds3
−

3

2

df2

dr
︸︷︷︸

+
1

2

dF 2

ds
+ f

dF

ds
+ F

df

dr
,

(27)

2
∂(η2 − u2)

∂r
=

(

σ

ρgh2
−

2

3

)

d3f

dr3
+

(

σ

ρgh2
−

1

3

)

d3F

ds3
︸︷︷︸

+
1

2

df2

dr
−

3

2

dF 2

ds
︸︷︷︸

+f
dF

ds
+ F

df

dr
.

(28)

When integrated along s and r respectively, the underbraced terms in equations (27) and
(28) are multiplied by s and r respectively, which means that they diverge when t∗ → ∞.
To be more specific, as we are talking about terms of O(ε2) compared to terms of O(ε), the
power series in ε no longer converges when εt∗ ∼ 1. The other terms remain bounded as
t∗ → ∞ and therefore do not cause any trouble.

One way to eliminate this problem would be to make sure that the underbraced terms
cancel each other, leading to differential equations that do not include temporal derivative.
The consequence would be that the condition should be satisfied also for the initial condition,
which would be too restrictive.

2.4 Introducing the slow time-scale

In order to eliminate this problem, we need to go back to Section 2.3.3 and re-examine
the assumption that u1 and η1 do not depend on ε. Note that if u1 and η1 depend on
another, slowly-varying variable in addition to x∗ and t∗, then derivatives with respect to
that slow variable would not appear at O(ε) in equation (17). We therefore introduce a
slow time-scale τ , of the kind

τ = εαt∗.

This new variable effectively captures the possible ε dependence of η∗ and û discussed in
Section 2.2, and carries over to the coefficients in their respective Taylor expansions as

ηj(x
∗, t∗; ε) → ηj(x

∗, t∗; τ) and uj(x
∗, t∗; ε) → uj(x

∗, t∗; τ)

For example, the first-order functions u1 and η1 are now expressed as

η1(r, s; τ) = f(r, τ) + F (s, τ) (29)

u1(r, s; τ) = f(r, τ) − F (s, τ). (30)

Finally, any temporal derivative ∂/∂t∗ then becomes

∂

∂t∗
→

∂

∂t∗
+ εα

∂

∂τ
.

All that remains to be done is to select the relevant value for α. Going back to equa-
tions (14) and (17), note that each ∂/∂t∗ term results in the addition of an extra “slow”
temporal derivative that is εα-times smaller than the “fast” derivative. Taking the simplest
possible case of α = 1, the procedure adds one extra O(ε2) term in each equation. In par-
ticular, this results in the addition of respectively −∂τη1 and −∂τu1 to the right hand sides
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of equations (21) and (22). Tracking these changes further down, equations (25) and (26)
acquire extra −∂τ (f + F ) and −∂τ (f − F ) terms in their Rhs respectively, which finally
leads to this alternative set of equations for u2 and η2:

2
∂(η2 + u2)

∂s
=

(

σ

ρgh2
−

1

3

)

∂3f

∂r3
−

3

2

∂f2

∂r
− 2

∂f

∂τ
+ F(r, s, τ), (31)

2
∂(η2 − u2)

∂r
=

(

σ

ρgh2
−

1

3

)

∂3F

∂s3
−

3

2

∂F 2

∂s
+ 2

∂F

∂τ
+ G(r, s, τ), (32)

F and G being the sum of all terms in equations (27) and (28) respectively that do not
cause any unphysical growth. It is now possible to eliminate all of the other terms in the
Rhs of each equations by requiring:

2
∂f

∂τ
+ 3 f

∂f

∂r
+

(

1

3
−

σ

ρgh2

)

∂3f

∂r3
= 0, (33)

and − 2
∂F

∂τ
+ 3F

∂F

∂s
+

(

1

3
−

σ

ρgh2

)

∂3F

∂s3
= 0. (34)

These equations are two KdV equations, each one being related to either a rightward or
leftward propagating wave. It is interesting to notice that both are written in the reference
frame that is moving at the linear long-wave velocity (and it has been the case since the
definition of s and r).

The KdV equation can be physically interpreted in the following sense. If we ignore the
dispersive term in the KdV equation (i.e. the third derivative term), it simply reduces to
the inviscid Burgers equation, which is known to generate shock waves as the nonlinear term
tends to steepen the wavefronts. In the full KdV, this effect is balanced by the dispersive
term, which by contrast tends to spread the horizontal extent of the fronts. As we see from
the equation, these two counteracting effects act on the slow timescale only, emphasizing
how important the introduction of this extra timescale was. The balance between nonlinear
and dispersive effects has been ensured in Section 2.1 by the fact that ε = O(δ2), which
might a priori seem arbitrary. It is in fact a very stable feature of the system dynamics,
in the sense that this balance is often eventually reached. If it is not the case, the system
simply does not evolve into solitons. As a matter of fact, this balance is a property of
solitons much more general than the KdV model.

3 Properties of the KdV equation

3.1 What did Korteweg and de Vries know? First properties.

It is possible to rescale equation (33) to cast it in its canonical form:

∂ν

∂τ
+ 6ν

∂ν

∂ξ
+
∂3ν

∂ξ3
= 0. (35)

This equation supports, among others, the following spatially localized type of solutions:

ν(ξ, τ) = 2p2sech2
[

p(ξ − 4p2τ + ξ0)
]

, (36)
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with the hyperbolic secant defined as sech = 1/ cosh and 2p2 the amplitude of the wave.
First note the wave has a positive propagation speed 4p2 in the moving reference frame

and that this speed is proportional to the amplitude of the wave. Going back to the fixed
reference frame of the laboratory, it means that such waves propagate faster than the linear
long waves, especially when they are of high amplitude. Such waves are called solitons.

When looking for non-localized solutions, it is still possible to find solutions of permanent
form by introducing the Jacobi elliptical functions or cnoidal functions, which give the
following set of solutions :

ν(ξ, τ) = 2p2cn2
[

p(ξ − 4p2τ + ξ0);κ
]

+ ν0. (37)

When κ = 0, cn = cos and when |κ| → 1, cn → sech. In other words, when κ varies from 0
to 1, the waves transform from regular sinusoidal waves to waves with flatter troughs and
sharper crests. This is in fact what happens for example as waves approach the coast, when
the nonlinearity increases, as can be seen in Figure 1.

Figure 1: Waves approaching the coast of Callao (Peru). It is possible to see that as the
waves approach, their crests sharpen whereas their troughs flatten (Google Earth, around
12◦01′ S, 77◦09′ W).

De Vries’s PhD thesis ([8]) was published in 1894 and Korteweg and de Vries’s article
in 1895 ([13]). After having introduced their equation, having determined its periodic
solutions using elliptical functions and having proved that solitons can arise out of long
waves, Korteweg and de Vries stopped their work on this subject.
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Interest in these nonlinear waves rose again after 1953 when Fermi, Pasta and Ulam ran
one of the first numerical experiments in history, trying to know how a crystal evolves to-
wards thermal equilibrium. In numerical experiments, they injected energy into the longest
Fourier mode that fit in their periodic domain, and expected that this energy would be
redistributed among all modes so that their system would tend to thermal equilibrium.
Instead, they found that the energy spread into the first few modes of the system, but then
returned almost entirely into the initial mode. This happened over and over again, and is
now known as “Fermi-Pasta-Ulam recurrence”. This work was published in a Los Alamos
technical report in 1955 ([9]) and it took 10 years until Zabusky & Kruskal (1965) ([19])
explained this phenomenon, introducing the concept (and the name) of soliton and reviving
the KdV equation. Other names would further add their contribution to that (now) grow-
ing theory: Gardner, Miura, Greene. . . Let us bring up two of the most major properties
associated with the KdV equation.

3.2 Infinite number of conservation laws

Here we only consider localized solutions of KdV, with ν infinitely differentiable and rapidly
decreasing towards 0 as |ξ| → ∞. A conservation law is a relation of the form

∂(density)

∂τ
+
∂(flux)

∂ξ
= 0.

Miura (1968) ([14, 15]) proved that KdV has an infinite number of conservation laws,
such as:

∂ν

∂τ
+

∂

∂ξ

(

3ν2 +
∂2ν

∂ξ2

)

= 0,

∂ν2

∂τ
+

∂

∂ξ

(

4ν3 + 2ν
∂2ν

∂ξ2
−

1

2

(

∂ν

∂ξ

)

2
)

= 0,

∂

∂τ

(

ν3 −
1

2

(

∂ν

∂ξ

)

2
)

+
∂

∂ξ

(

9

2
ν4 + 3ν2

∂2ν

∂ξ2
− 6ν

(

∂ν

∂ξ

)

2

−
∂v

∂ξ

∂3v

∂ξ3
+

1

2

(

∂2v

∂ξ2

)2
)

= 0,

...

This infinite number of conservation laws makes any solution of KdV very constrained.

3.3 Inverse scattering transform

Useful references for this section are again Ablowitz & Segur [1] for the derivation and
Dauxois & Peyrard [7] for the similarities with quantum mechanics.

Let us now take an apparently unrelated detour, and introduce the time-invariant
Schrödinger equation:

∂ξξψ + (λ+ ν(ξ, τ))ψ = 0, (38)

where the function ν(ξ, τ) is assumed to be infinitely differentiable and rapidly decreasing
towards 0 as |ξ|2 → ∞. Note that this equation is called “time-invariant” by contrast with
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the standard Schrödinger equation discussed in Lecture 3, which contains a term of the kind
iψt. As such, ν can be viewed as a localized potential which depends on the parameter τ ,
and as we shall see, this parameter could also be viewed as a timescale much slower than t.
There are two kinds of bounded solutions to this problem:

• localized (trapped) solutions associated with discrete negative eigenvalues λn

• oscillatory solutions associated with positive eigenvalues λ = k2, in the continuous
spectrum

To see this, simply note that if |ν| goes to 0 rapidly as |ξ| goes to infinity, then (38) reduces
to ∂ξξψ = −λψ as |ξ| → ∞. The corresponding eigenmodes ψ then either tend to e±ikξ

with k =
√
λ (solutions which exist for all values of λ > 0), or to the exponential solutions

e±
√
−λξ (in which case only a discrete number of values of λ exist for which the solution is

bounded).
One way of solving this equation of course, if ν(ξ, τ) is known, is to integrate it in space

for every value of τ . Generally speaking, the eigenmodes and eigenvalues depend on τ .
Let’s then ask the two following questions: (1) What conditions does the potential ν

have to satisfy for the eigenvalues to be independent of τ? Under these conditions of course,
only the mode shape varies with τ which leads to the following question: (2) Can we derive
a simpler evolution equation for a given mode as a function of τ , which does not rely on
solving (38)?

The answer to both questions is fairly simple. Firstly, note that the only plausible
evolution equation for a single mode to stay in its own phase space is

∂τψ = Aψ +B∂ξψ. (39)

(since (38) is a linear second-order equation), where A and B do not depend on ψ, but
depend on ν of course. For this equation to hold as an equivalent solution of (38), a simple
compatibility condition must be satisfied: ∂τ∂

2

ξψ = ∂2

ξ∂τψ. A few manipulations reveal that
this compatibility condition is equivalent to

λτ = −ντ −Aξξ + 2Bξ(λ+ ν) +Bνξ and

Bξξ = −2Aξ (40)

where A and B are themselves functions of ν. For λτ to be zero, ν has to satisfy the PDE

ντ =
Bξξξ

2
+ 2Bξ(λ+ ν) +Bνξ. (41)

In other words, any choice of the functional B yields a potential ν solution of (41) which
has the desired property that the respective eigenvalues of the Schrödinger equation are
independent of τ .

The relationship between the results presented above and the KdV equation becomes
apparent as soon as one notes that (41) recovers KdV provided

B = 4λ− 2ν. in which case A = α+ ∂ξν (42)
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where α is an arbitrary constant. This fundamental point now provides a unique means to
solve the KdV equation using Inverse Scattering Theory.

Indeed, note that as |ξ| → ∞, equation (39) reduces to the very simple linear equation
ψτ = αψ + 4λψξ. Hence, if lim→±∞ ψ(ξ, τ) is known at time τ = 0, simple linear PDE
methods provide us with analytical expression for lim→±∞ ψ(ξ, τ) at any time τ . This
information, called the “scattering data”, is all that is needed to reconstruct the “scattering
potential” ν(ξ, τ) at every time τ provided it is available for every eigenvalue of the system
(in both the continuous and in the discrete part of the spectrum). This inversion process is
called Inverse Scattering Theory.

We have therefore outlined the steps towards a novel method of computing solutions of
the KdV:

1. at the initial time, given the initial condition (potential shape) ν(ξ, τ = 0), solve
equation (38) to calculate all the eigenmodes ψ(ξ, 0) and associated eigenvalues λ. As
it has been said previously, we ensured when choosing A and B in equation (39) that
the λn’s are invariant in time,

2. using (39) applied as |ξ| → ∞, calculate the time evolution of the scattering data.

3. invert the scattering data at any time to reconstruct the shape of the potential ν.

It can be shown that each negative eigenvalue of the Schrödinger equation represents a
soliton solution of the KdV, while the continuous spectrum represents oscillatory wave
trains.

Any initial condition that is bounded and smooth for all ξ, and that decreases rapidly
enough as |ξ| → ∞, therefore generates a KdV solution consisting of a finite number of
solitons (the negative discrete eigenvalues), plus an oscillatory wave train. It is easy to
construct special initial conditions that generate only solitons, and other initial conditions
that generate nothing but solitons (see Section 4.1).

Finally, note that this method is sometimes referred to as a “nonlinear Fourier analysis”
as these two methods are somehow similar. In the Fourier analysis of a linear problem
where a solution u of a PDE associated with a dispersion relationship ω = ω(k) has to be
found, the three equivalent steps are:

1. at the initial time, calculate the Fourier transform of u:

ũ(k) =

∫

+∞

−∞
u(x, t = 0) e−ikxdx,

which determines the importance of each k component. This distribution is “frozen”
in time,

2. compute the evolution in time of each component. This is very easy to do as only
plane waves have to be considered, the result being ũ(k) ei(kx−ω(k)t),

3. reconstruct u at any time by summing all the k’s / inverting the Fourier transform:

u(x, t) =
1

2π

∫

+∞

−∞
ũ(k) ei(kx−ω(k)t) dk.
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4 Accuracy of the KdV equation

After deriving the KdV equation, the next natural step is to check whether it adequately
models the behavior of inviscid water wave in the limit of long, weakly nonlinear waves.

4.1 KdV vs. experiment

Eight years after the rediscovery of the KdV equation by Zabusky & Kruskal (1965), Ham-
mack (1973) [10] and Hammack & Segur (1974, 1978) [11, 12] published results comparing
the solutions of the KdV equation with nonlinear wave profiles in an experimental tank.
The apparatus, described in Figure 2, consists of a piston able to generate up– or down-
ward displacement and moved by a motor that is able to generate a fairly broad range of
modulations.

Figure 2: Description of Joe Hammack’s apparatus for the generation of localized waves: a
piston is able to move up and down to generate water displacements. From [11].

Three different experiments with positive mean displacement of the piston are presented
in Figure 3.

In the first experiment, the piston moves monotonically upwards. The resulting free-
surface displacement is therefore step-shaped on top of it and evolves into a train of four
solitons, followed by a small oscillatory tail as the wave propagates down the tank.

In the second experiment, the constant upward motion of the piston is modulated by a
sine wave, which has the same period as the time it takes for the piston to move up. Close
to the piston, the free-surface displacement is quite different from the previous experiments
with the presence of additional “noise”, i.e. short, small waves superimposed on the previous
step-shaped displacement. Interestingly, far away from the piston, we find again the same
four solitary waves as in the first experiment.

In the third experiment, the motion of the piston is modulated with a sine wave of much
higher frequency. The “noise” is initially much stronger but as the waves propagate, the
“noise” propagates slower than the larger, nonlinear waves and disperses. Away from the
piston, the solitary waves are recovered.

These experimental results can be understood from an analysis of the KdV equation
using the Ist. Solving equation (38), using the measured initial shape of the wave from
the experiments (i.e., at x/h = 0), reveals that there are exactly four negative eigenvalues,
and therefore exactly four solitons in the wave form that evolved from these initial data.
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This statement holds for any of the three initial conditions shown in Figure 3, and the
experimental results confirmed that four solitons indeed eventually emerge.

We saw in Lecture 3 (see also equation (36) that solitons with larger amplitudes travel
faster, so it follows that the 4 solitons generated from the initial data will necessarily be
ordered by amplitude for large τ , with the largest one in front. The experiments confirmed
this prediction. Moreover, recall from Lecture 3 again that the KdV solutions predict a
unique relationship between the amplitude and the shape of the solitons. Measurements
of the amplitude of the solitons at large time, and comparison of the associated predicted
profiles with the measured profiles again reveals good agreement.

Figure 3: Various experiments resulting in the generation of KdV solitons (the general
motion of the piston is positive). From top to bottom: – piston motion, – free-surface
displacement on top of the piston, – free-surface displacement in three other locations
further away from the piston. From left to right: three different types of piston motion.
From [11].

When the piston is moved downwards (ν(ξ, 0) < 0) it is possible to show that there are
no discrete negative eigenvalues of (38), only modes with eigenvalues from the continuous
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spectrum. As a result, we expect no generation of solitons, as can indeed be seen in Figure 4,
only an oscillatory wave train. It can be seen that the amplitude is still quite large but with
no implication on the appearance of solitons. This is a general result for the KdV equation:
when the initial disturbance is a depression instead of an elevation, for surface waves long
enough for the surface tension not to be significant, no solitary waves of depression can
arise, only the continuous spectrum (cf. Section 3.3). Interestingly, if the waves are short
enough for the surface tension to be significant, a surface wave of depression can correspond
to an attractive potential that allows for depression solitons to exist. This corresponds to

the inversion of the sign of (1

3
− σ

ρgh2 ) in e.g. Equations (33) and (34), ρgh2

σ
being the Bond

number of the problem.

Figure 4: Experiment with a negative displacement of the piston: no solitons are generated,
although the waves are large enough to produce nonlinear effects. From top to bottom:
free-surface displacement in five locations with increasing distance from the piston. Arrows
emphasize on the propagation of various linear wave packets. From [11].

4.2 KdV vs. full water wave equations

The question of how well the KdV equation approximates the water waves in the limit of
long, nonlinear waves won’t be discussed here. For more details, see [16], [20], [6, 5, 3, 4,
17, 2, 18].
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5 Conclusion

This lecture was the occasion to derive the Korteweg – de Vries (KdV) equation using
an asymptotic expansion of the inviscid, two-dimensional water waves in the long, weakly
nonlinear limit. This expansion, restricted to the first nonlinear and dispersive terms, is
derived assuming that these weak terms balance. This balance then provides a physical
explanation of the fact that there exist solutions of the KdV that can propagate without
any change in their shape: the solitons or solitary waves.

This equation has peculiar properties. It has an infinite number of conservation laws,
making any of its solutions very constrained. It can be solved using the Inverse Scattering
Transform (Ist), an exact method which involves solving the equation in three linear steps
instead of the original nonlinear problem. This method sorts the solutions of KdV into
two different categories: solitary waves that only arise in finite numbers and a continuous
spectrum of linear, dispersive waves. This method is also useful to understand that no
solitary waves can emerge out of an initial depression of the surface, unless the capillary
effects are significant enough.

In a series of experiments by Hammack & Segur in the 70’s, the accuracy of the KdV
equation for two-dimensional, long and weakly nonlinear waves has been investigated, with
good qualitative agreement with the predictions of the Ist and also a good quantitative
agreement when dissipative correction is added.
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Lecture 6: Derivation of the KdV equation for surface and

internal waves

Lecturer: Roger Grimshaw. Write-up: Erinna Chen, Hélène Scolan, Adrienne Traxler

June 17, 2009

1 Introduction

We sketch here a different derivation of the Korteweg–de Vries equation, applicable to a
wider range of problems, including internal waves and waves in sheared flows in addition to
surface water waves. After beginning with the Euler equations and discarding small terms,
the problem is reduced to a superposition of various modes — but through dispersion,
after sufficient time has passed each mode becomes isolated, so we may consider solitary
wave (soliton) solutions. The problem is then treated with an asymptotic expansion in
small parameters characterizing the amplitude and dispersion. To first order we recover the
linear long wave solutions, and to second order we find that the amplitude evolves according
to the KdV equation. The extended KdV (eKdV) equation is discussed for critical cases
where the quadratic nonlinear term is small, and the lecture ends with a selection of other
possible extensions.

2 Derivation for surface and internal waves: Basic Setup

In the basic state, the motion is assumed to be two-dimensional and the fluid has a den-
sity ρ0(z), a corresponding pressure p0(z) such that the background state is hydrostatic
(p0z(z) = −gρ0), and a horizontal shear flow u0(z) in the x-direction. In this lecture we
consider only the case where the bottom is flat (h is constant). Extensions considering
variable depth are possible and lead to a variable-coefficient KdV equation (see Lecture 9).

The equations of motion relative to this basic state are the Euler equations:

ρ0(ut + u0ux + wu0z) + px = −ρ0(uux + wuz) − ρ(ut + u0ux + wu0z + uux + wuz) (1)

pz + gρ = −(ρ0 + ρ)(wt + u0wx + uwx + wwz) (2)

g(ρt + u0ρx) − ρ0N
2w = −g(uρx + wρz) (3)

ux + wz = 0 (4)

Here (u0 + u, w) are the velocity components in the (x, z) directions, ρ0 + ρ is the density,
p0 + p is the pressure and t is time. The equations are arranged such that for linear long
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waves all terms on the right hand side can be neglected (this statement is proved in Section
4). Here N(z) is the buoyancy frequency, defined by

ρ0N
2 = −gρ0z. (5)

The boundary conditions are
w = 0 at z = −h, (6)

p0 + p = 0 at z = η, (7)

w = ηt + u0ηx + uηx at z = η. (8)

It is useful to use the vertical particle displacement ζ as the primary dependent variable.
ζ is readily measured in the ocean and is related to the buoyancy frequency. The vertical
particle displacement is defined by

Dζ

Dt
= ζt + u0ζx + uζx + wζz = w. (9)

The perturbed density field is given by the difference between the density at the vertical
position a fluid particle originates from, and that of its current location: ρ = ρ0(z − ζ) −
ρ0(z) ≈ gρ0N

2ζ as ζ → 0, where we have assumed that as x → −∞, the density field relaxes
to ρ0(z). Isopycnal surfaces (i.e. ρ0 + ρ =constant) are then given by z = z0 + ζ where z0

is the far-field level. The physical meaning of ζ is clearest on the free surface (z = η). In
terms of ζ, the kinematic boundary condition (8) becomes ζ = η at z = η.

3 Linear long waves

To describe internal solitary waves, we seek solutions whose horizontal length scales are
much greater than h (shallow water, long waves) and whose time scales are much greater
than N−1 (linear behavior). We now solve the Euler equations by omitting the right-hand
side of equations (1-4) and utilizing the linearized free-surface boundary conditions of (7,8).
Solutions are sought in the form

ζ = A(x − ct)φ(z) (10)

Plugging this solution for ζ into the linear Euler equations gives values for the remaining
dependent variables:

u = A ((c − u0)φ)z , p = ρ0(c − u0)
2Aφz, gρ = ρ0N

2Aφ. (11)

Here c is the linear long wave speed, and the modal functions φ(z) are defined by the
boundary-value problem

{ρ0(c − u0)
2φz}z + ρ0N

2φ = 0 for h < z < 0 (12)

φ = 0 at z = −h, (c − u0)
2φz = gφ at z = 0. (13)

Equation (12) is the well-known Taylor-Goldstein equation for perturbations in stratified
shear flows, here expressed in the long-wave limit.
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Typically, the boundary value problem (12,13) has an infinite sequence of linear long-
wave modes solutions, φ±

n (z), n = 0, 1, 2, . . ., with corresponding wave speeds, c±n (z). Here,
the superscript “±” indicates waves with c+

n > uM = max u0(z) and c−n < um = min u0(z).
We shall confine our attention to these regular modes, and consider only stable shear flows.
Mathematically, this implies that we do not consider modes with complex eigenvalues c,
nor modes with c ∈ [um, uM ]. Analogous theory can be developed for singular modes with
um < c < uM .

In general, this boundary value problem has to be solved numerically. Typically, the
n = 0 mode denotes the surface gravity waves for which c scales with

√
gh, while the

n = 1, 2, 3, . . . modes denote internal gravity waves for which c scales with Nh. The surface
mode φ0 has no extrema in the interior of the fluid and takes its maximum value at z = 0.
The internal modes φ±

n (z), n = 1, 2, 3, . . ., have n − 1 extremal points in the interior of
the fluid and φ nearly vanishes near z = 0 (because c2 ≪ gh for internal waves, and using
equation (13)).

The solution of the linearized long wave equations is given asymptotically1 by

ζ ∼
∞

∑

n=0

A±
n (x − c±n t)φ±

n (z) as t → ∞. (14)

Here the amplitudes A±
n are determined from initial conditions. Assuming that the speeds

c±n of each mode are sufficiently distinct, the modes will separate spatially for large times,
so we can consider a single mode in isolation. Henceforth, we shall omit the index n and
assume that the single mode has speed c, amplitude A and modal function φ(z).

4 Asymptotic expansion

Having waited sufficiently long for the modes to separate also implies that hitherto neglected
nonlinear terms may begin to have an effect. The nonlinear effects are balanced by dispersion
(also neglected in linear long wave theory); this balance emerges as time increases and results
in the Korteweg-deVries equation for the wave amplitude.

The formal derivation of the evolution equation requires the introduction of two small
parameters, ε and δ, characterizing the wave amplitude and inverse wave-length, respec-
tively. As seen in Lecture 5, for nonlinearity to be balanced by dispersion (KdV balance), it
is required that ε = δ2 (note that the leading nonlinear term is of order ǫ2 while the leading
dispersive term is of order ǫδ2). It was also shown that the nonlinear dynamics take place
on a slow timescale T .

As in Lecture 5, we first introduce the scaled variables

T = δεt, X = δ(x − ct). (15)

We then assume solutions of the form

ζ = εA(X, T )φ(z) + ε2ζ2 + . . . (16)

1The reason why this is only valid asymptotically and not for all times is a technical issue: the modes

defined do not necessarily form an orthogonal set so additional transient terms must be added to match the

initial conditions in some cases.
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with similar expressions analogous to 11 for the other dependent variables. Plugging these
solutions into the full Euler equations results in the linear long wave solution for the modal
function, φ(z) and the speed, c, at leading order. Since the modal equations (12,13) are
homogeneous, we are free to impose a normalization condition on φ(z). A commonly used
condition is that φ(zm) = 1 where |φ(z)| achieves a maximum value at z = zm. In this case,
the amplitude εA is uniquely defined as the amplitude of ζ to O(ε) at the depth zm.

Continuing the expansion to the next order in ε, it can be shown that this leads to the
following equation for ζ2:

{ρ0(c − u0)
2ζ2Xz}z + ρ0N

2ζ2X = M2, for − h < z < 0 (17)

and the corresponding boundary condition

ζ2X = 0 at z = −h, ρ0(c − u0)
2ζ2Xz − ρ0gζ2X = N2 at z = 0. (18)

The inhomogeneous terms M2, N2 are due to nonlinearity and dispersion, and are known
in terms of the first-order functions A(X, T ) and φ(z). They are given by

M2 = 2{ρ0(c − u0)φz}zAT + 3(ρ0(c − u0)
2φ2

z)zAAX − ρ0(c − u0)
2φAXXX , (19)

N2 = 2{ρ0(c − u0)φz}AT + 3(ρ0(c − u0)
2φ2

z)AAX (20)

Equations (17,18) are identical to the equations defining the modal function (12,13), with an
additional forcing term on the right-hand side in (17). There will be a solution for the forced
equation (17) that satisfies the boundary conditions (18) only if a certain compatibility
condition is satisfied. We can obtain this compatibility condition for example by a direct
construction of ζ2.

Let us first define the linear operator L such that

L(φ) = {ρ0(c − u0)
2φz}z + ρ0N

2φ. (21)

Any pair of functions ψ and φ satisfying the lower boundary condition of the problem
(ψ(−h) = 0 and φ(−h) = 0) also satisfies

∫ z

−h
{ψL(φ) − φL(ψ)}dz = ρ0(c − u0)

2(ψφz − φψz) = W (ψ, φ; z) (22)

where we have defined the Wronskian functional of ψ and φ as

W (ψ, φ; z) ≡ ρ0(c − u0)
2(ψφz − φψz). (23)

If ψ and φ are solutions to the modal equation (12), then Lφ = Lψ = 0 so that

dW

dz
= ψLφ − φLψ = 0 (24)

Hence W (ψ, φ; z) is actually independent of z.
Now, for ζ2X solution of the forced equation (17), we have

φL(ζ2X) − ζ2XL(φ) = φM2 =
dW (φ, ζ2X ; z)

dz
, and (25)
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and similarly for ψ. Integration of (25) and elimination of ξ2Xz results in

φ

∫ z

−h
ψM2dz − ψ

∫ z

−h
φM2dz = ζ2XW (ψ, φ; z), (26)

The general solution of ζ2X is then the sum of a general solution for the unforced problem
plus the particular solution just identified,

ζ2X = A2Xφ + φ

∫ z

−h

M2ψ

W (ψ, φ)
dz − ψ

∫ z

−h

M2φ

W (ψ, φ)
dz. (27)

where we recall that W (ψ, φ) is constant. This general solution for ζ2X was so far obtained
by applying only the boundary condition on the bottom (z = −h). In the process, we have
introduced another modal function ψ and the Wronskian, W . By applying the free surface
boundary condition, and requiring that ψ be linearly independent of φ such that ψ(0)
does not satisfy the upper boundary condition of (17), we can now obtain a compatibility
condition that is independent of ψ and W . Plugging the solution of ζ2X into the free surface
boundary condition in (18), we obtain

ρ(c−u0)
2

{

φz

∫

0

−h

M2ψ

W
dz − ψz

∫

0

−h

M2φ

W
dz

}

−ρ0g

{

φ

∫

0

−h

M2ψ

W
dz − ψ

∫

0

−h

M2φ

W
dz

}

= N2.

(28)
Recalling that ρ(c−u0)

2φz = ρ0gφ at z = 0 from (13), it then follows that the compatibility
condition is

∫

0

−h
M2φdz = [N2φ]z=0. (29)

Here we have obtained the compatibility condition through the direct construction of ζ2.
However, the compatibility condition can be obtained more easily without knowledge of ζ2

(or higher-order ζn), and without the need to introduce an additional function ψ.
The compatibility condition is that the inhomogeneous terms in (17,18) should be or-

thogonal to the solution of the adjoint of the modal equations (12,13). This construction is
fairly straightforward. We first begin by combining equations (22) and (25) into

φM2 = {ρ0(c − u0)
2(φζ2Xz − ζ2Xφz)}z. (30)

Integrating (30) and applying the free-surface boundary condition for the modal function φ
(13) first, then the free-surface boundary condition (18) results in the compatibility condi-
tion (29) found earlier. This last method can easily be applied at any order in the expansion.

Note that the amplitude A2 is left undetermined at this stage; further expansion into
higher orders will result in an evolution equation for A2. In general, solutions for ζn+1 will
result in a compatibility condition and thus, an evolution equation for An.

5 Korteweg-deVries (KdV) equation

Substituting the expressions for M2 and N2 (19, 20) into the compatibility condition (29),
we obtain the evolution equation for A(X, T ), namely the KdV equation

AT + µAAX + λAXXX = 0, (31)
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where the coefficients µ (nonlinearity) and λ (dispersion) depend on the modal function φ:

Iµ = 3

∫

0

−h
ρ0(c − u0)

2φ3

zdz, (32)

Iλ =

∫

0

−h
ρ0(c − u0)

2φ2dz, (33)

where I = 2

∫

0

−h
ρ0(c − u0)φ

2

zdz, (34)

The KdV equation (31) is solved with the initial condition A(X, T = 0) = A0(X) where
A0(X) is determined from linear long wave theory, and is in essence the projection of the
original initial conditions onto the appropriate linear long wave mode. Localized initial
conditions lead to (at sufficiently large time) the generation of a finite number of solitary
waves, or internal solitons.

For waves moving to the right, where c > uM = max u0(z), I and λ are always positive.
For the surface mode, φ(z) > 0 and φ(0) = 1 (no extrema in the interior) we see that µ > 0.
In general, µ can take either sign, and may be zero in some special situations. Explicit
evaluation of the coefficients µ and λ requires knowledge of the modal function, and hence
they are usually evaluated numerically. The modal function is known in several instances,
and we illustrate the process with two simple examples.

5.1 Example 1: Surface water waves with no surface tension

For water waves, we set ρ= constant so that N2 = 0. We also assume that there is no
background shear. The modal solution to equation (12) satisfying the boundary conditions
(13) is then

φ =
z + h

h
for − h < z < 0, c = (gh)1/2. (35)

Note that there are no other modes in this system. Plugging in the modal function into
equations (32-34), the coefficients I, µ and λ are

I =
2ρ0c

h
and µ =

3c

2h
and λ =

ch2

6
. (36)

Thus the KdV equation for water waves is, in the original variables,

ζt + cζx +
3c

2h
ζζx +

ch2

6
ζxxx = 0. (37)

Note that here zm = 0 so we identified A with ζ(x, 0, t), the free surface displacement, to
leading order. For zero surface tension, this is the equation derived by Korteweg and de
Vries in 1895 (and first by Boussinesq in the 1870’s).
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5.2 Example 2: Interfacial waves

For a two-layer fluid, waves may occur at the interface. Let the density be constant with
value ρ1 in an upper layer of height h1 and ρ2 in the lower layer of height h2 = h− h1. We
assume the fluid is stably stratified such that ρ2 > ρ1. The density in the fluid is ρ0(z) =
ρ1H(z + h1) + ρ2H(−z − h1) and the buoyancy frequency is ρ0N

2 = g(ρ2 − ρ1)δ(z + h1).
Here H(z) is the Heaviside function and δ(z) is the Dirac δ-function. For simplicity, we
assume that ρ1 ≈ ρ2, the usual situation in the ocean. As mentioned earlier, the upper
boundary condition for φ(z) then is approximately φ(0) ≈ 0. The modal function is then

φ =
z + h

h2

for − h < z < −h1, φ = −
z

h1

for − h1 < z < 0. (38)

The corresponding coefficients are

µ =
3c(h1 − h2)

h1h2

, λ =
ch1h2

6
, c2 =

g(ρ2 − ρ1)

ρ2

h1h2

h1 + h2

. (39)

When the interface is closer to the free surface than to the bottom (h1 < h2), the nonlinear
coefficient µ for these interfacial waves is negative. For single-layer water waves µ always
remains positive. In the case when h1 ≈ h2, µ nearly vanishes and it is necessary to
introduce higher- order nonlinearity in order to balance the dispersion.

6 Extended Korteweg-deVries equation

As seen in the example of interfacial waves, the quadratic nonlinearity may vanish, and in
this instance, it is necessary to use an extended KdV equation which contains higher-order
nonlinearities and additional terms.

6.1 Higher-order expansions

Proceeding to the next highest order in the asymptotic expansion yields a set of equation
analogous to (17,18) for ζ3, whose compatibility condition then determines an evolution
equation for the second-order amplitude A2. Using the transformation A + εA2 → A,
and then combining the KdV equation (31) with the evolution equation for A2 leads to a
higher-order KdV equation

AT + µAAX + λAXXX + ε(λ1AXXXXX + σA2AX + µ1AAXXX + µ2AXAXX) = 0. (40)

Explicit expressions for the coefficients are known analogs of (32-34). This higher-order
KdV equation is Hamiltonian provided µ2 = 2µ1.

It is important to note that equation (40) is not unique: the near-identity transformation
A → A+ε(aA2 +bAXX) reproduces the same equation (40) to the same order in ε provided
the coefficients are also changed to

(λ1, σ, µ1, µ2) → (λ1, σ − aµ, µ1, µ2 − 6aλ + 2bµ).

Note that (40) at O(1) needs to be used to transform terms of the kind εAAT and εAXXT .
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Furthermore, when µ 6= 0, λ 6= 0, the enhanced transformation

A → A + ε

(

aA2 + bAXX + a′AX

∫ X

AdX + b′XAT

)

(41)

reduces (40) to the KdV equation. From a mathematical point of view, this implies that
KdV is a normal form of the system, or in other words, the lowest order and simplest form
characterizing the dynamics given the long-wave, small amplitude approximation made.
Physically, this implies that for small perturbations with ε ≪ 1, no additional dynamics are
introduced by the higher-order terms.

6.2 Extended KdV equation

A particularly important case arises when the nonlinear coefficient µ is close to zero. In
this case, the near-identity transformation (41) cannot cancel out the the cubic nonlinear
term in the higher-order KdV equation (40) at this order. This identifies this particular
higher-order term as being the most important one in balancing dispersion if µ → 0. The
KdV equation (31) is then replaced by the extended KdV (or Gardner) equation,

AT + µAAX + εσA2AX + λAXXX = 0. (42)

For µ ≈ 0, a rescaling is needed, and the optimal choice is to assume µ is O(δ), and then
replace A with A/δ. The amplitude parameter is δ instead of δ2. The resulting equation in
the canonical form is

AT + 6AAX + 6βA2AX + AXXX = 0. (43)

Like the KdV equation, the Gardner equation is integrable and can be solved using the
Inverse Scattering method. The coefficient β can be either positive or negative, and the
structure of the solutions depends on which sign is appropriate.

6.3 Solitary wave solutions

The solitary wave solutions for the extended KdV equation are given by

A =
a

b + (1 − b) cosh2 γ(x − V t)
, (44)

where V = a(2 + βa) = 4γ2, b =
−βa

(2 + βa)
. (45)

There are two cases to consider. If β < 0, then there is a single family of solutions such
that 0 < b < 1 and a > 0. As b increases from 0 to 1, the amplitude a increases from 0 to a
maximum of −1/β, while the speed V also increases from 0 to a maximum of −1/β. In the
limiting case when b → 1, the solution (44) describes the so-called “thick” or “table-top”
solitary wave, which has a flat crest of amplitude am = −1/β (see Figure 1). If β > 0, then
the family of solutions allows both waves of depression and of elevation. In particular, there
is a region of depression where solutions are not permitted, as indicated by the blue curve
in Figure 1. As the amplitude is reduced, the solution becomes a “breather”, a solitary
wave with periodically-varying amplitude.
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Figure 1: (top) Solitary wave solutions for β < 0. Note that there is a finite amplitude
for the waves. Once this amplitude is achieved, the wave broadens and exhibits a “table
top” behavior, indicated by the blue curve. (bottom) Solitary wave solutions for β > 0.
Solutions can be both waves of elevation and depression. There is a minimum amplitude
for waves of depression as indicated by the blue curve. Because of this, a breather solution
is supported.

60



7 Other long-wave models

So far we have considered simple single-layer water wave examples. For a more realistic
model of the ocean with a stratified near-surface layer lying above a deep ocean with constant
density, a different scaling from the KdV equation is needed. In the surface layer, the long-
wave scaling still holds, but this needs to be matched to a different scaling in the deep
lower layer, where the vertical scale matches the horizontal scale. We therefore introduce a
rescaled layer depth H, with h = H/δ. In this scenario, the KdV equation is replaced by
the intermediate long-wave (ILW) equation

Aτ + µAAX + δL(AX) = 0, (46)

where L(A) = −
1

2π

∫ ∞

−∞
k coth kH exp(ikX)F(A)dk (47)

and F(A) =

∫ ∞

−∞
A exp(−ikX)dX. (48)

Here the nonlinear coefficient µ is again given by (32) with −h now replaced by −∞,
while the dispersive coefficient δ is defined by Iδ = {ρ0c

2φ2}z→∞.In the limit H → ∞,
k coth kH → |k|, the ILW equation (46) becomes the Benjamin-Ono (BO) equation. In the
opposite limit, where H → 0, then (46) reduces to a KdV equation. Both equations are
integrable.
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Lecture 7: Oceanographic Applications.

Lecturer: Harvey Segur. Write-up: Daisuke Takagi

June 18, 2009

1 Introduction

Nonlinear waves can be studied by a number of models, which include the Korteweg–de
Vries (KdV) and the Kadomtsev-Petviashvili (KP) equations. These equations are reviewed
briefly and applied here to investigate the dynamics of surface waves in the ocean. The
resulting tsunami of the Indian Ocean earthquake in 2004 are considered as a specific
example. The tsunami dynamics, as well as wave patterns observed near shore, are explained
by ideas developed in the previous lectures.

2 Review of waves in shallow water

A theory of nonlinear surface waves in shallow water was presented in Lectures 5 and 6.
Relevant aspects of this theory are reviewed first for later discussion of observed waves
in the ocean. Note that the theory, which includes effects due to dispersion, is different
from the hyperbolic partial differential equations called the shallow-water equations, which
describe non-dispersive waves and are presented in Lecture 8.

Consider the water in the ocean as an incompressible, irrotational fluid with velocity
potential φ. A Cartesian coordinate system is adopted with the x and y axes in the hor-
izontal plane and the z axis pointing upwards from the mean level of the fluid. The fluid
lies in the domain bounded below by a prescribed topography, z = −h(x, y), and above by
a free surface to be determined, z = η(x, y, t). In this theoretical framework, the governing
equations at any time t are given by

∇2φ = 0 − h < z < η, (1)

∂η

∂t
+ ∇φ · ∇η =

∂φ

∂z
z = η, (2)

∂φ

∂t
+

1

2
|∇φ|2 + gη = 0 z = η, (3)

n · ∇φ = 0 z = −h. (4)

The velocity potential satisfies the incompressibility condition (1), subject to the boundary
conditions at the top and bottom of the domain. Equations (2) and (3) are respectively
the kinematic and dynamic conditions on the free surface. Gravity g is dominant and
surface tension is neglected in the dynamic condition (3), implicitly restricting the analysis
to waves with horizontal lengthscales much larger than the capillary length scale. Equation
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(4), where n is the unit vector normal to the topography, is the impermeability condition
at the rigid bottom of the ocean.

A theory of nonlinear waves in shallow water is developed by introducing the following
approximations. First, the characteristic variation a in η is small compared to the entire
depth of the water h, under the small-amplitude approximation. Second, waves propagate
in the x direction with a typical wavelength Lx, much longer than the depth of the water.
This is the shallow water or the long wave approximation. Third, the motion is nearly
one-dimensional, provided the horizontal length scale Ly in the transverse direction of the
propagating wave is much longer than Lx. It is assumed that all small effects balance
by order of magnitude such that a/h = O(ǫ), (h/Lx)2 = O(ǫ) and (Lx/Ly)

2 = O(ǫ) or
smaller, where ǫ ≪ 1 is the small parameter in the problem. See Lectures 3, 5 and 6 for the
derivation and discussion of these scalings.

At leading order in ǫ, η satisfies the one-dimensional wave equation given by

∂2η

∂t2
= c2

∂2η

∂x2
, (5)

for constant topography h, where c =
√

gh is the phase speed of the wave. The solution is
a linear combination of traveling waves given by

η = ǫh[f(x − ct; ǫy, ǫt) + F (x + ct; ǫy, ǫt)] + O(ǫ2), (6)

where f and F are amplitudes of the waves that propagate in the positive and negative x
directions respectively. At next order in ǫ, either the KdV or the KP equation is obtained,
depending on whether (Lx/Ly)

2 ≪ O(ǫ) or (Lx/Ly)
2 = O(ǫ) respectively. Waves propagat-

ing along the x axis with (Lx/Ly)
2 ≪ O(ǫ), are one-dimensional and described by the KdV

equation [8]
∂f

∂τ
+ f

∂f

∂ξ
+

∂3f

∂ξ3
= 0, (7)

where τ = ǫt is the slow time variable and ξ = x − ct is the spatial coordinate in the
reference frame of the moving waves. The KdV equation indicates that the wave amplitude
evolves due to nonlinear and dispersive effects, corresponding to the second and third terms
of (7) respectively. Two-dimensional waves, with (Lx/Ly)

2 = O(ǫ), disperse weakly in
the transverse direction of propagation and are described by f(ξ, ζ, τ) satisfying the KP
equation [6] instead

∂

∂ξ

(

∂f

∂τ
+ f

∂f

∂ξ
+

∂3f

∂ξ3

)

+
∂2f

∂ζ2
= 0, (8)

where ζ = ǫy is the slowly-varying coordinate in the y direction. Both KdV and KP
equations are integrable, meaning that they admit soliton solutions. A soliton is a special
type of solitary wave, a localized wave that travels without any change in shape or size.
The soliton has a permanent form in structure even after interacting with another oncoming
soliton. Solitary waves occur frequently because they represent the long-time limit of waves
that arise from a range of initial conditions. The possible appearance of solitary waves in
the ocean is examined below.
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Figure 1: Numerical simulation of surface elevation (red) and depression (blue) of the Indian Ocean,
soon after a series of undersea earthquakes occurred off the coast of Sumatra over an interval of 10
minutes on 26 December, 2004. An animation of the evolving surface of the ocean is available at
http://staff.aist.go.jp/kenji.satake/.
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Variable (units) Magnitude

h (km) 3.5
a (km) 0.001
Lx (km) 100
Ly (km) 1000
c (km/h) 650
u (km/h) 0.2

Table 1: Typical magnitudes of the tsunami triggered on 26 December, 2004, in the Indian
Ocean of depth h. Surface waves with amplitude a, wavelength Lx and width Ly traveled
with phase speed c and fluid speed u.

3 Application to Tsunami waves

The sudden displacement of a large volume of water results in a series of surface waves in
the ocean, called a tsunami. A famous example is the tsunami caused by a series of undersea
earthquakes off the western coast of Sumatra on 26 December, 2004. These earthquakes
occurred near-simultaneously along a 1000 km fault line. The surface elevation and depres-
sion of the ocean, soon after the earthquake, have been reproduced numerically as shown in
Figure 1. The resultant tsunami waves devastatingly struck the coasts of the Indian Ocean
and caused many casualties.

The magnitude of the tsunami in the Indian Ocean is estimated as presented in Table
1. Note that a/h, (h/Lx)2 and (Lx/Ly)

2 are all small with a common order of magnitude
ǫ in the narrow range from 10−2 to 10−3, consistent with the approximations required to
obtain solitary waves governed by the KP equation. However, we know from Lectures 5 and
6 that solitary waves only develop on the long time scale of order 1/ǫ, namely 102 to 103

hours in this case. Given that the tsunami traveled a distance of approximately 1500 km
across the Bay of Bengal with phase speed 650 km/h, the initial displacement of water did
not have sufficient time to evolve into a solitary wave. The tsunami would have needed to
propagate a distance two or three orders of magnitude longer than across the Bay of Bengal
to develop into a solitary wave, as governed by the KdV or the KP equation.

In contrast to the short distance traveled by the tsunami in the Indian Ocean, the
tsunami triggered off the coast of Chile on 22 May, 1960, by the most powerful earthquake
ever recorded, may have developed into solitary waves. The tsunami propagated tens of
thousands of kilometers across the Pacific Ocean and reached the coast of Japan after 22
hours. It is possible that this tsunami developed into solitary waves, which propagated
without change in their structural form.

In the deep and open ocean, the dynamics of tsunami waves are characterized by small
amplitudes and long wavelengths, which are hardly detected by an observer on a boat on the
surface. As the tsunami approaches near shore, the depth of the water decreases, resulting
in a decelerating wave speed at the front while the back of the tsunami maintains speed.
The waves consequently compress horizontally and grow vertically in a process called wave
shoaling. The waves may grow to tens of meters in amplitude, causing much damage when
they reach and strike coastlines.

The tsunami caused by the Sumatra earthquake in 2004 propagated eastwards to the
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Figure 2: The tsunami of 26 December, 2004, approaching Hat Ray Leah beach on the Krabi coast,
Thailand [1].

coast of Thailand with a wave of depression at the front. This reflects the downward
displacement of water on the eastern side of the area where the tsunami originated, as shown
in Figure 1. As shown in Lecture 5, laboratory experiments demonstrate that a downward
displacement of water leads to a wave-train preceeded by a wave of depression[5]. When the
front of the wave of depression arrived in Thailand, the water along the shoreline receded
dramatically and exposed areas that are otherwise submerged, as shown in Figure 2. Soon
after, successive waves of large amplitude struck the coast and destructed the area.

Risks posed to coastlines can be assessed by considering the tsunami in the deep ocean,
from initiation to propagation. Tsunami is generated by a thrust fault, a normal fault
or a landslide. A crucial quantity for estimating the size of the tsunami is the volume of
water displaced by seismic events under the water. The time for the tsunami to propagate
between two given positions, x1 and x2, is estimated by minimizing

∫ x2

x1

ds

c(s)
(9)

over all possible paths from x1 to x2. Note that the shortest distance from x1 to x2 may
not be the path that minimizes (9) because the wave speed c(s) =

√

gh(s) may increase
considerably with position s along another path.

It remains a challenge to predict the detailed dynamics of tsunami, particularly near
the shore. As the tsunami approaches the coast, the dynamics are influenced by effects due
to reflection, refraction and breaking of the waves. The near-shotre shape, size and speed
of the tsunami are still poorly understood.

4 Oscillatory waves in shallow water

In this Section, further insight into waves in shallow water is provided by examining another
special class of waves, which oscillate periodically. Indeed, in contrast to tsunami waves
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Figure 3: Cnoidal waves traveling in the ocean below flying aircrafts (National Geographic, 1933).

which are caused by earthquakes and landslides, most surface waves in the ocean are caused
by storms and winds. These waves oscillate periodically and may develop patterns of
permanent form, which are presented below.

The simplest model of long waves of small amplitude features linear, non-dispersive
waves governed by (5), which all travel with speed

√
gh. For long waves of moderate

amplitude, all traveling in approximately the same direction in water of uniform depth, a
better approximation is the KP equation (8). It can be shown that the KP equation is
completely integrable and admits solutions of the form[7]

f(ξ, ζ, τ) = 12
∂2

∂ξ2
log Θ, (10)

where Θ is a Riemann theta function of genus G. The genus is an integer corresponding to
the number of independent phases in the solution. For example, solutions of genus 1 are
the one-dimensional and periodic cnoidal wave solutions of the KdV equations discussed
in Lectures 3, 5, and 6. Real cnoidal waves are shown in Figure 3; they propagate in the
direction perpendicular to the wave crests with a coherent and permanent structure.

As discussed in Lecture 4, complete integrability guarantees the existence of quasi-
periodic solutions obtained from (10), such as two-phase solutions of the KP equation. They
are described by (10) with a Riemann theta function Θ of genus 2. The surface patterns
are quasi-periodic in the sense that they cannot be characterized by a single period. The
patterns are hexagonal in shallow water, as reproduced in Figure 4. The two-phase solutions
can be interpreted as a combination of two cnoidal waves that meet at an angle, where a
shift in phase occurs due to their interaction. The two-phase solutions agree remarkably
well with surface patterns observed in laboratory experiments, demonstrating that the KP
equation accurately describes real phenomena [3]. The excellent agreement between the
theory and the experiments supports the existence of permanent patterns in the ocean,
such as the approximately periodic patterns observes along the shoreline of Duck, North
Carolina, as shown in Figure 5.
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Figure 4: Two-phase solution of the KP equation propagating in the x direction with weak disper-
sion in the y direction [4].
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Figure 5: Nearly periodic ocean waves with two-dimensional patterns along the shoreline of Duck,
North Carolina.

Several open problems remain regarding these periodic wave patterns. Although it has
been proved that they should exist in water of any depth [2], only the simplest patterns
have ever been discovered. The KP equation admits other periodic solutions of permanent
form with genus G > 2, which have not been explored yet. Another fundamental unsolved
problem concerns the stability of these two-dimensional wave patterns of permanent form. A
stability analysis of the patterns could determine whether one should expect to encounter
them in nature or not, and how frequently. Another important problem is the effect of
variable topography on the wave patterns, as is the case near shore. A better understanding
of these problems could provide useful insight into the dynamics of surface waves in the
ocean.
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Lecture 8: The Shallow-Water Equations

Lecturer: Harvey Segur. Write-up: Hiroki Yamamoto

June 18, 2009

1 Introduction

The shallow-water equations describe a thin layer of fluid of constant density in hydrostatic
balance, bounded from below by the bottom topography and from above by a free surface.
They exhibit a rich variety of features, because they have infinitely many conservation laws.
The propagation of a tsunami can be described accurately by the shallow-water equations
until the wave approaches the shore. Near shore, a more complicated model is required, as
discussed in Lecture 21.

2 Derivation of shallow-water equations

To derive the shallow-water equations, we start with Euler’s equations without surface
tension,

free surface condition : p = 0,
Dη

Dt
=
∂η

∂t
+ v · ∇η = w, on z = η(x, y, t) (1)

momentum equation :
Du

Dt
+

1

ρ
∇p+ gẑ = 0, (2)

continuity equation : ∇ · u = 0, (3)

bottom boundary condition : u · ∇(z + h(x, y)) = 0, on z = −h(x, y). (4)

Here, p is the pressure, η the vertical displacement of free surface, u = (u, v,w) the three-
dimensional velocity, ρ the density, g the acceleration due to gravity, and h(x, y) the bottom
topography (Fig. 1).

For the first step of the derivation of the shallow-water equations, we consider the global
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Figure 1: Schematic illustration of the Euler’s system.

mass conservation. We integrate the continuity equation (3) vertically as follows,

0 =

∫ η

−h

[∇ · u]dz, (5)

=

∫ η

−h

[

∂u

∂x
+
∂v

∂y
+
∂w

∂z

]

dz, (6)

=
∂

∂x

∫ η

−h

udz − u|z=η
∂η

∂x
+ u|z=−h

∂(−h)

∂x
,

+
∂

∂y

∫ η

−h

vdz − v|z=η
∂η

∂y
+ v|z=−h

∂(−h)

∂y
,

+w|z=η − w|z=−h, (7)

=
∂

∂x

∫ η

−h

udz − u|z=η
∂η

∂x
+

∂

∂y

∫ η

−h

vdz − v|z=η
∂η

∂y
+ w|z=η . (8)

where the bottom boundary condition (4) was used in the fourth row. With the surface
condition (1), equation (8) becomes

∂η

∂t
+

∂

∂x

∫ η

−h

udz +
∂

∂y

∫ η

−h

vdz = 0. (9)

For the next step, we make the long-wave approximation, by assuming that the wave
length is much longer than the depth of the fluid. However, we do not assume that pertur-
bations have a small amplitudes, so that nonlinear terms are not neglected. Through the
long-wave approximation, we can neglect the vertical acceleration term in (2), and deduce
the hydrostatic pressure by integrating the vertical component of the momentum equation,

∫ η

z

∂p

∂z
dz = −

∫ η

z

ρgdz

p(x, y, η, t) − p(x, y, z, t) = −ρg(η(x, y, t)) − z)

p(x, y, z, t) = ρg(η(x, y, t) − z). (10)

where we used the surface condition p(x, y, η, t) = 0. Using this expression for the hydro-
static pressure (10) and further assuming that there are no vertical variations in (u, v), the
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Figure 2: Schematic illustration of the shallow-water system.

horizontal momentum equations of the shallow-water system are obtained as follows,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂η

∂x
= 0, (11)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂η

∂y
= 0. (12)

The conservation of mass given by (9) becomes

∂η

∂t
+

∂

∂x
[(η + h)u] +

∂

∂y
[(η + h)v] = 0. (13)

Then, equations (11), (12), and (13) are the shallow-water equations (Fig. 2).
These equations are similar to the equations for gas dynamics in 2-D. Indeed, the equa-

tions describing the dynamics of an inviscid, non-heat-conducting, isentropic (i.e. entropy
is constant and p ∝ ργ) gas are (Kevorkian, 1990, chapter 3.3.4, [2])

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (14)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ ργ−2

∂ρ

∂x
= 0, (15)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ ργ−2

∂ρ

∂y
= 0, (16)

where γ ≡ Cp/Cv is the ratio of specific heats, Cp is the specific heat at constant pressure,
and Cv is the specific heat at constant volume. These equations, (14), (15), and (16), are
the exact analog of the shallow-water equations (13), (11), and (12) if we identify u, v in
both cases, set g(η + h) = ρ, assume flat bottom topography (h = constant), and take
γ = 2.

If we consider the shallow-water equations in a rotating frame (the rotation axis is
perpendicular to x-y plane), the Coriolis term should be added to the momentum equation.
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In that case (Vallis, 2006, chapter 3, [3]),

∂η

∂t
+

∂

∂x
[(η + h)u] +

∂

∂y
[(η + h)v] = 0, (17)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂η

∂x
= 0, (18)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu+ g

∂η

∂y
= 0, (19)

where f is the Coriolis parameter.

3 Mathematical structure

In this section, we explore the mathematical structure of the shallow-water equations.

3.1 Hyperbolic partial differential equations

The shallow-water equations can be written in the matrix form

∂

∂t





η

u

v



 +





u η + h 0
g u 0
0 0 u





∂

∂x





η

u

v



 +





v 0 η + h

0 v 0
g 0 v





∂

∂y





η

u

v



 = −





u∂h
∂x

+ v ∂h
∂y

0
0



 . (20)

The eigenvalues of the first coefficient matrix are

u, u±
√

g(η + h), (21)

and those of the second coefficient matrix are

v, v ±
√

g(η + h). (22)

Since the eigenvalues (21) and (22) are real and distinct, the shallow-water equations are
hyperbolic partial differential equations (PDEs).

The equations admit discontinuous (weak) solutions (see Kevorkian, 1990, chapter 5.3
for details). Such a discontinuity is called a “bore” and approximates a breaking wave.
However, how do waves really break? This question is addressed in more detail in Lecture
21.

3.2 Method of characteristics

Because the shallow-water equations are hyperbolic PDEs, the method of characteristics
can be applied to reduce them to a family of ordinary differential equations.

If we assume v ≡ 0 and ∂
∂y

≡ 0 (i.e. 2-D in x-z plane), the shallow-water equations
become,

∂

∂t
(η + h) + u

∂

∂x
(η + h) + (η + h)

∂u

∂x
= 0, (23)

∂u

∂t
+ u

∂u

∂x
+ g

∂

∂x
(η + h) = g

∂h

∂x
. (24)
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If we define c2(x, y, t) = g(η + h), (23)×g can be written as

∂c2

∂t
+ u

∂c2

∂x
+ c2

∂u

∂x
= 0,

so

c

[

∂(2c)

∂t
+ u

∂(2c)

∂x
+ c

∂u

∂x

]

= 0. (25)

Since c(x, y, t) 6= 0, (25) becomes

∂(2c)

∂t
+ u

∂(2c)

∂x
+ c

∂u

∂x
= 0. (26)

Likewise, (24) can be written as

∂u

∂t
+ u

∂u

∂x
+ c

∂(2c)

∂x
= g

∂h

∂x
. (27)

Then (27) + (26) and (27) − (26) respectively give

∂

∂t
(u+ 2c) + u

∂

∂x
(u+ 2c) + c

∂

∂x
(u+ 2c) = g

∂h

∂x
, (28)

∂

∂t
(u− 2c) + u

∂

∂x
(u− 2c) − c

∂

∂x
(u− 2c) = g

∂h

∂x
. (29)

Equation (28) states that along the curves in the (x, t) plane defined by

dx

dt
= u+ c, (30)

the quantity u+ 2c evolves according to

∂

∂t
(u+ 2c) +

dx

dt

∂

∂x
(u+ 2c) =

d

dt
(u+ 2c) = g

∂h

∂x
. (31)

And also along curves defined by
dx

dt
= u− c, (32)

equation (29) can be written as

∂

∂t
(u− 2c) +

dx

dt

∂

∂x
(u− 2c) =

d

dt
(u− 2c) = g

∂h

∂x
. (33)

Therefore, if h is constant, (u + 2c) and (u − 2c) are Riemann invariants (i.e. functions
remain constant along the curves). If h is h = mx + b, then ∂h/∂x is constant and the
characteristic equations can again be easily integrated, with this time (u + 2c − gmt) and
(u−2c−gmt) being the new Riemann invariants. For more complicated bottom topography
more care must be taken. Finally, note that this method does not generalize to 3-D (x-y-t)
problems.
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3.3 Linearization of the shallow-water equations

To linearize the shallow-water equations, we consider small disturbances about a fluid at
rest. That is,

η = 0 + η′, u = 0 + u′, v = 0 + v′. (34)

By substituting (34) in the shallow-water equations (11), (12), (13) and neglecting the
second-order terms, we obtain the linearized shallow-water equations as follows, (primes
are omitted)

∂η

∂t
+
∂(uh)

∂x
+
∂(vh)

∂y
= 0, (35)

∂u

∂t
+ g

∂η

∂x
= 0, (36)

∂v

∂t
+ g

∂η

∂y
= 0. (37)

Multiplying (35) by
√
g, and both (36) and (37) by

√
h, we obtain,

∂

∂t
(η
√
g) +

∂

∂x
(u
√
h ·

√

gh) +
∂

∂y
(v
√
h ·

√

gh) = 0, (38)

∂

∂t
(u
√
h) +

√

gh
∂

∂x
(η
√
g) = 0, (39)

∂

∂t
(v
√
h) +

√

gh
∂

∂y
(η
√
g) = 0. (40)

If we eliminate u
√
h and v

√
h from the above equations, we obtain the linear 2-D wave

equations,
∂2

∂t2
(η
√
g) = ∇ · [gh · ∇(η

√
g)]. (41)

The phase speed is, as expected from the long-wavelength limit discussed in Lecture 2,
c(x, y) =

√
gh, although this time is explicitly derived for varying bottom topography (i.e.

h is a function of both x and y).
The vorticity equation is derived by defining the vorticity as ω(x, y, t) = ∂v

∂x
− ∂u

∂y
and

calculating ∂
∂x

(40) − ∂
∂y

(39),

∂ω

∂t
= 0. (42)

This means that the vorticity remains constant in time. In general, the velocity field (u, v)
can be decomposed into rotational and irrotational parts, so u and v can be written as

u = −
∂ψ

∂y
+
∂φ

∂x
, (43)

v =
∂ψ

∂x
+
∂φ

∂y
, (44)

where ψ and φ are called streamfunction and velocity potential, respectively. Using (43)
and (44), equation (42) can be written as

∂ω

∂t
=

∂

∂t
(∇2ψ) = 0. (45)
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Calculating ∂
∂x

(39) + ∂
∂y

(40), we obtain

∂

∂t
(∇2φ) +

√
g∇2(η

√
g) = 0. (46)

The rotational part of the velocity field is therefore obtained by integrating the time-
independent vorticity field (45) (i.e. that of the initial conditions), while the irrotational
part is obtained from the solution of (41) and (46). Nevertheless, ψ and φ are not entirely
independent: they “interact” when applying the lateral boundary conditions on the total
velocity field (43,44).

3.4 Tracking Vorticity in 2D

From the nonlinear shallow-water equations (11), (12), and (13), the nonlinear vorticity
equation is derived as

∂ω

∂t
+

∂

∂x
(uω) +

∂

∂y
(vω) = 0. (47)

This time, although ∂ω/∂t 6= 0, the total (integrated) vorticity

∫∫

ω(x, y)dxdy

is conserved. Note that the vorticity equation can be written as

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂v
= −ω

(

∂u

∂x
+
∂v

∂y

)

, (48)

and the equation (13) can be written as

ω

η + h

[

∂

∂t
(η + h) + u

∂

∂x
(η + h) + v

∂

∂y
(η + h)

]

= −ω

(

∂u

∂x
+
∂v

∂y

)

. (49)

From (48) and (49), we obtain

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂v
=

ω

η + h

[

∂

∂t
(η + h) + u

∂

∂x
(η + h) + v

∂

∂y
(η + h)

]

, (50)

which simplifies to

∂

∂t

(

ω

η + h

)

+ u
∂

∂x

(

ω

η + h

)

+ v
∂

∂y

(

ω

η + h

)

= 0. (51)

This illustrate that the quantity

q ≡
ω

η + h
, (52)

is conserved by each fluid particle (water columns). It is called “potential vorticity” and
plays a fundamental role in fluid dynamics. The equation (51) is called Ertel’s theorem
(1942) [1].
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Moreover, let G(ζ) be any differentiable function. Given that,

∂G(ζ)

∂t
=

dG(ζ)

dζ

∂ζ

∂t
, (53)

we obtain

∂G(q)

∂t
+ u

∂G(q)

∂x
+ v

∂G(q)

∂y
=

dG(q)

dq

∂q

∂t
+ u

dG(q)

dq

∂q

∂x
+ v

dG(q)

dq

∂q

∂y
,

=
dG(q)

dq

[

∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y

]

,

= 0. (54)

Therefore any smooth function of q is also conserved by each water column.
From (47) and (54), we obtain

∂

∂t
[ω ·G(q)] +

∂

∂x
[uω ·G(q)] +

∂

∂y
[vω ·G(q)] = 0, (55)

which means that there are infinitely many conservation laws, because G can be chosen
from arbitrary differential functions.

4 Applications: Tsunami

The linearized shallow-water equation derived in the previous section

∂2

∂t2
(η
√
g) = ∇[gh · ∇(η

√
g)], (56)

is a good model for the propagation of tsunami across the open ocean, away from shore.
Indeed, as seen in Lecture 7, the typical depth of the ocean is about 4 km while the wave
length of tsunami is about 100 km. This equation shows that the local speed of propagation
of the Tsunami, in any direction, is

cp = cg =
√

gh(x, y), (57)

with no dispersion.
Closer to the shore, the wave compresses horizontally and grows vertically, so the linear

approximation is no longer valid. The nonlinear shallow-water equations being hyperbolic,
they allow for wave breaking. However, the breaking mechanism is presumably much more
complex than that captured by shallow-water equations. This topic is addressed in more
detail in Lecture 21.

5 Summary so far

Let us complete this lecture by summarizing the various equations and respective assump-
tions made so far. In Lecture 1, we presented the full nonlinear surface water-wave equations.
In Lecture 2, we considered the linear approximation to these equations in the case of flat
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bottom topography, but allowed for waves of any horizontal wavelength. In the following
lectures (4-7), we dropped the linear approximation, and considered the weakly non-linear
case. However, in order to do this we had to focus on long-wavelength dynamics only, with
flat-bottom topography. In this last lecture, we changed approach to consider the effect of
varying bottom topography, and derived the fully nonlinear shallow-water equations (and
its linearized counterpart). These equations also assume long-wavelength perturbations.
However, an additional approximation had to be made in this case, in assuming that the
vertical structure of the flow is entirely uniform (∂u/∂z = 0 = ∂v/∂z).

References

[1] H. Ertel, Ein neuer hydrodynamischer wirbelsatz (a new hydrodynamic eddy theorem),
Meteorolol. Z., 59 (1942), pp. 277–281.

[2] J. Kevorkian, Partial Differential Equations: Analytical Solutions Techniques, Chap-
man & Hall, New York, 1990.

[3] G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-

Scale Circulation, Cambridge University Press, Cambridge, U.K., 2006.

79



Lecture 9 - Nonlinear waves in a variable medium

Lecturer: Roger Grimshaw. Write-up: Hélène Scolan

June 17, 2009

1 Introduction

The usual Korteweg-De-Vries equation, which assumes a uniform background state, is not
sufficient to describe internal solitary waves in the coastal ocean. Indeed, the topography
can vary horizontally, and the waves produced are not clean wave trains. This can be seen
for example in the measurements of currents in the Australian Northwest Shelf reproduced
in Figure 1.

Figure 1: Time series of isotherm displacements and onshore currents are shown from 3 moorings,
(Slope, Break and Shelf), located in 78 to 109 m water depths, and a few kilometers apart at the
outer edge of the Australian Northwest continental shelf. The plots show a variety of nonlinear wave
forms including bores on both the leading and trailing faces of the long internal tide, as well as short
period (approximately 10 minutes, close to the buoyancy period) internal solitary waves. [After
Holloway and Pelinovsky, 2001]. An Atlas of Oceanic Internal Solitary Waves (February 2004) by
Global Ocean Associates Prepared for Office of Naval Research Code 322 PO
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By incorporating a variable medium in the model, one can build the variable coefficient
Korteweg-de Vries equation and find asymptotic and numerical solutions of the problem.

2 Waves in inhomogeneous medium

2.1 Linear waves and wave-action conservation law

First, we recall the properties of linear waves propagating through an inhomogeneous
medium. Because of the presence of the variable background, the usual wave equation
is modified. In many examples, the wave equation becomes

utt − (c2(x)ux)x = 0 (1)

where the wave speed c(x) varies with position (for example c(x) =
√

gh(x) for waves
supported by the shallow-water equations, see Lecture 8).

We assume that the medium is “slowly varying” which means that the lengthscale L
over which the medium changes is greater than the typical wavelength λ (λ ≪ L) and
so the coefficient c(x) can be considered almost constant on the wave scale (c = c(ǫx)
with ǫ ≪ 1). The WKB approximation consists in looking for a solution close to the
solution for a homogeneous medium a exp(−iω(t − x/c)). Using an ansatz of the form
a(x, t) exp(−iω(t − τ(x))) with τ(x) =

∫

dx
c(x)

, and developing an asymptotic expansion in

the powers of ǫ, it can be shown that a(x, t) ∝ 1√
c(x)

(proof in [5] for example).

More generally (i.e. for wave equations not necessarily in the form of (1)), the WKB
asymptotic solution can be written: u ≈ a(x, t)f(t − τ(x))) where τ(x) =

∫

dx
c(x)

and where

the phase t− τ(x) is assumed to vary rapidly compared with the amplitude function a(x, t)
and the speed c(x). Then it can be shown that a(x, t) verifies:

(a2)t + (ca2)x = 0 (2)

This equation is called the wave action conservation law for wavetrains in slowly spatially
varying medium.

The most general form of the wave action conservation law, for waves propagating in a
non-uniform, time-dependent medium which may also sustain a mean flow U is

(

E

ω̂

)

t

+

(

E

ω̂
cg

)

x

= 0, (3)

where E is the wave energy density (which is usually related, but no necessarily equal to
the square of the wave amplitude), ω̂ is the intrinsic frequency defined by

ω̂ = ω − k · U,

(i.e. the frequency of the wave seen by an observer moving with a mean flow if there is one)
and cg the group velocity. For more information about this conservation law see [2]. The
quantity E/ω̂ is called the wave action density, so that the wave action flux is E

ω̂
cg (cg ≈ c

if the medium is weakly dispersive).
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This final equation can be interpreted in the following way: in the limit where ω̂ is
constant (i.e the medium does not vary with time or there is no mean flow) then the wave
action conservation law reduces to an energy conservation law. If ω̂ is not constant, then
energy density is not conserved, but the wave action density E/ω̂ is.

2.2 Non linear waves: variable-coefficient KDV equation

To describe nonlinear internal waves in a variable medium, we begin with the basic non
linear KdV equation:

ut + cux + µuux + βuxxx = 0 (4)

in which we introduce the possibility of a variable background. Thus the linear phase speed
and the coefficients µ and β have a spatial dependency. Furthermore, another term is
needed if we want the variable-coefficient KdV equation to verify the general wave-action
conservation law (3) in the limit where non-linear terms are negligible:

ut + c(x)ux +
cQx

2Q
u + µ(x)uux + β(x)uxxx = 0. (5)

This additional term is written so that in the linear wave theory ut + c(x)ux + cQx

2Q
u = 0

is transformed into (Qu2

c
)t + (Qu2)x = 0. Then, Qu2 can be interpreted as the wave action

flux (and so the wave-action density is Qu2

c
since c ≈ cg in the long wave/weak dispersion

limit). The exact expression for Q depends on the original physical problem considered.

To maintain the balance between terms in the new equation including the effect of
variable medium (5), we need the dispersion term, the non-linearity and the weak inhomo-
geneity term to be of the same order of magnitude. If ∂

∂x
∼ ǫ ≪ 1 and we suppose u ∼ ǫa

and Qx

Q
∼ ǫb, the terms will be of the same order of magnitude if a+b = 2a+1 = a+3 which

gives a = 2 and b = 3. So Qx

Q
scales as ǫ3. This implies that the variable-medium KdV is

only valid in the limit where the medium varies very slowly compared with the horizontal
scale of the wave.

As in the homogeneous KdV, it is useful to recast the governing equations in a moving
coordinate system which follows the propagation of the wave, i.e. perform a change of
variable in which ξ ∼ x/c − t where c is the phase speed. Here, the procedure is slightly
more complex since c may vary with position. By analogy with the WKB approximation
technique, we introduce

τ =

x
∫

0

dx′

c(x′)
,

This change of coordinate can be viewed as a mapping of the original spatial coordinate
into a time-like coordinate, since the new variable τ is simply the travel time between the
original position of the wave and its present location. If we also use the change of variable
X = τ − t, we then have

ut = −uX (6)

ux =
uX

c
+

uτ

c
. (7)
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When the background varies very slowly compared with the size of the wave, it can be
demonstrated that ∂/∂τ ≪ ∂/∂X, so that

ux ≃
uX

c
. (8)

Then, within the balance seen before the equation can be written:

uτ +
Qτ

2Q
u +

µ

c
uuX +

β

c3
uXXX = 0. (9)

The two equations (5) and (9) are asymptotically equivalent and differ just by terms of
O(ǫ7). It is interesting and important to note that the coefficients µ, β and c now vary
with the time-like variable τ . Physically this simply models the fact that as the wave
propagates through the inhomogeneous medium, it “sees” a slowly time-dependent, but
nearly homogeneous background around itself.

The more commonly used form of the KdV equation is obtained by putting A = Q1/2u
which gives the variable-coefficient KdV equation:

Aτ + αAAX + λAXXX = 0 (vKDV)

where α =
µ

c
√

Q
and λ =

β

c3
.

It can be verified that the variable-coefficient KdV has two conservation laws:

d

dτ

∞
∫

−∞

AdX = 0, (10)

d

dτ

∞
∫

−∞

A2dX = 0. (11)

They are often referred as conservation of “mass” and momentum even if these are not the
physical ones. The latter equation is in fact the conservation of the wave action flux. The
former is asymptotically that for the physical mass.

3 Slowly varying periodic waves

3.1 Asymptotic expansion

As we suppose that the medium is slowly varying, we write α = α(T ) and λ = λ(T )
with T = στ with σ ≪ 1. We can develop a multiscale expansion in powers of the small
parameter σ for a modulated periodic wave by looking for solutions of the kind:

A = A0(θ, T ) + σA1(θ, T ) + ...

where A is periodic in the phase θ = k(X − 1

σ

∫ T
V (T )dT ) with a fixed period of 2π, where

k is a fixed constant and V remains to be determined.
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As
∂Ai

∂τ
=

∂Ai

∂θ

∂θ

∂τ
+

∂Ai

∂T

∂T

∂τ
= Aiθ · (−

k

σ
V (T ))+AiT ·σ and

∂Ai

∂X
= kAiθ, the expansion

introduced in the vKDV gives:

O(σ0) : −V A0θ + αA0A0θ + λk2A0θθθ = 0 (12)

O(σ) : −V A1θ + α(A0A1)θ + λk2A1θθθ = −
1

k
A0T (13)

These are ordinary differential equation in θ with T as a parameter. A solution of (12)
can be written:

A0 = a{b(m) + cn2(γθ;m)} + d,

where

b =
1 − m

m
−

E(m)

mK(m)
, αa = 12mλγ2k2, V = αd +

αa

3

{

2 − m

m
−

3E(m)

mK(m)

}

.

This solution is a typical cnoidal wave cn(x;m), which is a Jacobian elliptic function
of modulus m (0 < m < 1). The functions K(m) and E(m) are the elliptic integrals of
the first and second kind, a is the amplitude and d is the mean value of A over one period
γ = K(m)/π, and the spatial period is 2π/k.

This solution contains three free parameters which depend on T : for example the am-
plitude a, the mean level d and the modulus m. We can consider the two limit cases:

• m → 1: This is the solitary wave case.

Indeed, b → 0 and cn2(x) → sech2(x). γ → ∞ and k → 0 with γk = K held fixed.

• m → 0: This gives sinusoidal waves of small amplitude a ∼ m and wavenumber k.

3.2 Modulation equations

To completely describe the solution we must now find how a, d and m depend on the slow
variable T . There are two methods for this: the Whitham avering method or the asymptotic
expansion continued at higher level.

3.2.1 Whitham averaging method

The method is developed as follows:

• Step 1: Determine the three conservation laws for the vKDV equation.

• Step 2: Insert the periodic cnoidal wave into the conservation laws.

• Step 3: Average over the phase θ.
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Conservation laws: We already have the mass and momentum conservation laws (10)
and (11):

∂

∂T

2π
∫

0

Adθ = 0 and
∂

∂T

2π
∫

0

A2dθ = 0. (14)

Since we are dealing with slowly varying waves, an additional conservation law is derived
from the law of “conservation of waves” (or “conservation of crests”). Indeed for slowly
varying waves we have the definitions k = ∂θ

∂X
and ω = −∂θ

∂t
so that:

kT + ωX = 0.

Since ω does not depend on X, k is constant.

Substitution of cnoidal wave into conservation laws.

• The mass equation implies that the mean level d is constant.

• After averaging over θ, the momentum equation produces a relationship between a
and m:

a2







1

2π

2π
∫

0

cn4(γθ;m)dθ − b(m)2







= constant

⇒
a2

m2

{

(2 − 3m)(1 − m) +
(4m − 2)E(m)

K(m)
− 3m2b(m)2

}

= constant

which uniquely determines the evolution of the modulus m:

F (m) ≡ K(m)2{(4 − 2m)E(m)K(m) − 3E(m)2 − (1 − m)K(m)2} = constant
α2

λ2

since α and λ vary with T in a known way.

The function F (m), as seen in Figure 2 for example, is usually a monotically increasing
function of m so if α/λ increases, m increases too. This implies that if the dispersive
coefficient λ tends to zero then m tends to 1 and the waves become more like solitary
waves.

For example for water waves, c =
√

gh, Q = c, µ = 3c/2h and β = ch2/6 which leads
to α/λ ∝ h−9/4 and F (m) ∝ h−9/2. As the wave approaches the beach h → 0 and
m → 1, which means that the wave gradually transforms into a solitary wave. It’s
amplitude goes as h−3/4 so that the surface elevation varies as h−1.
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Figure 2: F (m) in the case of water waves.

3.2.2 Asymptotic expansion continued

To find the conservation laws, we can also alternatively continue the method of asymptotic
expansion to the next order. As A1 must be periodic, we must force the right-hand side of
(13) to be orthogonal to the periodic solutions of the adjoint to the homogeneous operator
on the left-hand side (see the discussion for this point in Lecture 6).

Indeed let us define the operator L as

L = −V
∂

∂θ
+ α(A0. )θ + λk2

∂

∂θ3
.

Then (13) can be written: L(A1) = F where F = −A0T

k
.

By definition, the adjoint L* verifies for any periodic function B and A1:

< BL(A1) >=< A1L
*(B) >

where < >=
∫

2π

0
dθ. Thus if B is a solution of L*(B) = 0, < BF >=< BL(A1) >=<

A1L
*(B) >= 0.
The adjoint equation L*(B) = 0 is :

−V Bθ + αA0Bθ + λk2Bθθθ = 0

B = 1 and B = A0 are two periodic solutions of this equation. A third solution can be
found but is not periodic. So we have two conditions < 1(−A0T

k
) >= 0 and < A0(−

A0T

k
) >=

0 which coincide to the statement that d is constant and to the momentum conservation
law equation (14).
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4 Slowly varying solitary waves

It is important to note that the results for a slowly-varying periodic wave cannot directly
be extrapolated to the solitary-wave case: indeed, the limit m → 1 requires k → 0 and so
the period becomes infinite. Accordingly, the condition that the local period (1/kV ) should
be much smaller than the scale of the variable medium (1/σ) is no longer satisfied.

Thus, we must refine the definition of “slowly-varying” for the case of solitary waves.
The solitary wave will be considered slowly-varying if the half-width is much less than the
scale of the variable medium (1/σ). An asymptotic expansion can then be developed in the
same way as before but with a new expression for the phase:

φ = X −
1

σ

T
∫

V (T )dT.

A is not required to be periodic in φ, and is defined in −∞ < φ < ∞ and bounded in
φ → ±∞. Without changing the problem we can choose λ > 0 so that small-amplitude
waves propagate in the negative x-direction (a transposition A, x with −A, −x gives the
other side). We can also assume A → 0 as φ → ∞ without imposing anything in the other
boundary condition as φ → −∞.

The resulting ODEs of the asymptotic expansion are:

−V A0φ + αA0A0φ + λA0φφφ = 0 (15)

−V A1φ + α(A0A1)φ + λA1φφφ = −A0T . (16)

The solution A0 is now a solitary wave: A = asech2(Kφ) with V = αa
3

= 4λK2 and only
has one free parameter (a for instance). A background d can be added, but is constant and
can be removed by a Galilean transformation.

At the next order, we require that A1 → 0 as φ → ∞. This imposes a new compatibility
equation < B(−A0T ) >= 0 where <>=

∫ ∞
−∞ dφ and with the adjoint equation L*(B) = 0:

−V Bφ + αA0Bφ + λBφφφ = 0.

Among the two possible bounded solutions B = 1 and B = A0, only the latter satisfies
the condition A1 → 0 as φ → ∞. So there is only one orthogonality condition which can
be imposed which corresponds to the right-hand side of (16) being orthogonal to A0 ie
< A0.(−A0T ) >= 0 ie :

∂

∂T

∞
∫

−∞

A2

0dφ = 0. (17)

Even though there is only one equation this time, it is enough to determine the evolution
of the free-parameter a. Substituting the sech2 solution into the condition (17) yields

a3 = constant
α

λ

which agrees with the limit m → 1 of the periodic wave case.
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4.1 Trailing shelf

A problem nevertheless occurs with the preceeding derivation since the vKDV equation has
two conservation laws (momentum and mass) whereas only one condition can be imposed
(17), which happens to coincide with the momentum equation (11). This means that
for solitary waves we can not simultaneously require conservation of the total mass and
momentum. This can also be seen by examining the solution of (16) for A1: indeed if we
integrate in φ, with the boundary condition A1 → 0 as φ → ∞ and A1 → H1 as φ → −∞
and using the properties of A0 we get:

V H1 = −
∂M0

∂T
where M0 =

∫ ∞

−∞
A0 dφ and H1 =

6

αK

aT

a
(18)

which illustrates how the “total mass” changes as the solitary wave propagates.
The solution to this problem consists in constructing a “trailing shelf” As such that

A = A0 + As. As is of small amplitude O(σ) but with a long length-scale O(1/σ) which
has O(1) mass but O(σ) for the momentum. It is located behind the solitary wave and
to leading order has a value independent of T so that As = ǫAs(X) with X = σx for

X < φ(T ) =
T
∫

V (T )dT .

Figure 3: Trailing shelf residing behind the solitary wave.

The trailing shelf is determined by its value at the location X = φ(T ) of the solitary
wave, in particular As(φ(T )) = H1(T ). It can have a negative or positive polarity depending
on the sign of λaT and so on the growth or decay of the wave amplitude. It may be verified
that the slowly-varying solitary wave and the trailing shelf together satisfy conservation of
mass. Continuing the expansion to higher orders in σ reveals how the shelf itself evolves
and generates secondary solitary waves.

4.2 Critical case

If we reconsider the expression for the free parameter a:

a3 = constant
α

λ

we see that there is a critical point when α = 0 where we may expect a dramatic change in
the wave structure. Indeed, the wave amplitude goes to 0 if α → 0, and decreases as |α|1/3
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Figure 4: λ = 1 and α varies from -1 to 1. Upper panel: α = 0. Lower panel: α = 1

while the mass M0 of the solitary wave only grows as |α|−1/3. Meanwhile, the amplitude
As of the trailing shelf grows as |α|−8/3 with the opposite polarity of the wave.

Essentially the trailing shelf passes through the critical point as a disturbance of the
opposite polarity to that of the original solitary wave, which then being in an environment
with the opposite sign of α, can generate a train of solitary waves of the opposite polarity,
riding on a pedestal of the same polarity as the original wave. Figure 4 shows for instance
the possibility of conversion of a depression wave (with a positive shelf) into a train of
elevation waves riding on a negative pedestal. The mean level of the new wave-train is
negative corresponding to the initial negative mass of the depression wave.
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Lecture 10: Whitham Modulation Theory

Lecturer: Roger Grimshaw. Write-up: Andong He

June 19, 2009

1 Introduction

The Whitham modulation theory provides an asymptotic method for studying slowly
varying periodic waves, and is essentially a nonlinear WKB theory. Equations are derived
which describe the slow evolution of the governing parameters for these nonlinear periodic
waves (such as the amplitude, wavelength, frequency, etc.), and are called the modulation
(or Whitham) equations. The Whitham equations have a remarkably rich mathematical
structure, and are at the same time a powerful analytic tool for the description of nonlinear
waves in a wide variety of physical contexts. One of the most important aspects of the
Whitham theory is the analytic description of the formation and evolution of dispersive
shock waves, or undular bores. These are coherent nonlinear wave-structures which resolve
a wave-breaking singularity when it is dominated by dispersion rather than by dissipation.
There are also a number of important connections between the Whitham theory, the inverse
scattering transform (IST), and the general theory of integrable hydrodynamic systems.

Figure 1: Satellite view of a Morning Glory wave

2 KdV Cnoidal waves

Let us consider the Korteweg de Vries (KdV) equation as an example, namely,

ut + 6uux + uxxx = 0 . (1)
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Figure 2: Atmospheric solitary waves near Mozambique

Figure 3: Undular Bore on the Dordogne river

As seen in many of the previous lectures, this equation has a one-phase periodic traveling
wave solution, which is also called the cnoidal wave of the KdV equation (1):

u(x, t) = r2 − r1 − r3 + 2(r3 − r2)cn
2(
√

r3 − r1 θ;m) , (2)

where cn(y;m) is the Jacobi elliptic cosine function defined as

cn(y;m) = cos φ,

with φ satisfying

y =

∫ φ

0

dt
√

1 − m2 sin2 t
.

This form of the wave solution is slightly different from the one introduced in previous
lectures. Here the three parameters are r1 ≤ r2 ≤ r3, and the phase variable θ and the
modulus m ∈ (0, 1) are related to these parameters in the following way:

θ = x − V t , V = −2(r1 + r2 + r3) , (3)

m =
r3 − r2

r3 − r1

, L =

∮

dθ =
2K(m)
√

r3 − r1

, (4)
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where K(m) =
∫

π
2

0

dt√
1−m2 sin

2 t
is the complete elliptic integral of the first kind, and L is

the “wavelength” along the x-axis. When m → 1, cn(y;m) → sech(y) and (2) becomes a
solitary wave; when m → 0, cn(y;m) → cos(y) reducing to a sinusoidal wave (see [6]).

It is sometimes advantageous to use the parameters r1, r2 and r3 instead of more physical
parameters (such as the amplitude, speed, wavelength etc.), as they arise directly from the
basic ordinary differential equation for the KdV traveling wave solution (2). Indeed, if we
substitute (2) into the KdV equation (1), and integrate it once we get

u2

θ = −2u3 + V u2 + Cu + D , (5)

where C,D are constants. This can be transformed to

w2

θ = −4P(w), (6)

where

w =
u

2
−

V

4
, and P(w) =

3
∏

i=1

(w − ri) .

This means that the cnoidal wave (2) is parameterized by the zeros r1, r2, r3 of the cubic
polynomial P(w). In a modulated periodic wave, the parameters r1, r2, r3 are slowly varying
functions of x and t, described by the Whitham modulation equations. These can be
obtained either by a multi-scale asymptotic expansion, or more conveniently by averaging
conservation laws, as described below.

3 Averaged conservation laws

Let us introduce an average over the period of the cnoidal wave (2) as

〈F〉 =
1

L

∮

Fdθ =
1

L

∫ r3

r2

Fdµ
√

−P(µ)
, (7)

for any function F(x, t) such that (7) is finite. It can then be shown that

〈u〉 = 2(r3 − r1)
E(m)

K(m)
+ r1 − r2 − r3 , (8)

〈u2〉 =
2

3
[V (r3 − r1)

E(m)

K(m)
+ 2V r1 + 2(r2

1 − r2r3)] +
V 2

4
, (9)

where E(m) =
∫ π/2

0

√

1 − m2 sin2 θdθ is the complete elliptic integral of the second kind,
and K(m) was described earlier.

Next, recall that the KdV equation has a set of conservation laws (see Lecture 4):

(Pj)t + (Qj)x = 0 , j = 1, 2, 3 , (10)

The averaging (7) procedure, when applied to these laws, yields equations of the kind:

〈Pj〉t + 〈Qj〉x = 0, j = 1, 2, 3 . (11)
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When combined with (8) and (9), the system (11) then describes the slow evolution of the
parameters rj for the cnoidal wave (2).

The first two conservation laws of the KdV equation (1) are

ut + (3u2 + uxx)x = 0 , (12)

(u2)t + (4u3 + 2uuxx − u2

x)x = 0 . (13)

These respectively describe “mass” and “momentum” conservation. The next conservation
law would be that of “energy”, although here only two are needed, since after averaging the
third equation can be replaced by the law for the conservation of waves:

kt + ωx = 0 , where k =
2π

L
, ω = kV . (14)

This must be consistent with the modulation system (11), and can be introduced instead of
any of three averaged conservation laws (11). In fact, any three independent conservation
laws can be used, and will lead to equivalent modulation systems.

4 Whitham modulation equations

In general the Whitham modulation equations have the structure

bt + A(b)bx = 0 . (15)

Here b = (r1, r2, r3)
t, and the coefficient matrix A(b) = P

−1
Q where the matrices P,Q

have the entries Pij = 〈Pi〉rj
and Qij = 〈Qi〉rj

for i, j = 1, 2, 3. The eigenvalues of the
coefficient matrix A are called the characteristic velocities. If all the eigenvalues vj(b) of
A(b) are real-valued, then the system is nonlinear hyperbolic and the underlying traveling
wave is modulationally stable. Otherwise the traveling wave is modulationally unstable.

For this KdV case all the eigenvalues are real so the cnoidal wave is modulationally
stable. It can be shown that

vj = −2
∑

rj +
2L

∂L/∂rj
, j = 1, 2, 3. (16)

The parameters rj have been chosen because they are the Riemann invariants of the
system (15) for the present case of the KdV equation. Thus this system has the diagonal
form

(rj)t + vj(rj)x = 0 , j = 1, 2, 3, (17)

where we recall that vj(r1, r2, r3) are the characteristic velocities (16)

v1 = −2
∑

rj + 4(r3 − r1)(1 − m)K/E ,

v2 = −2
∑

rj − 4(r3 − r2)(1 − m)K/(E − (1 − m)K) ,

v3 = −2
∑

rj + 4(r3 − r2)K/(E − K) .
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5 Limiting cases of Whitham modulation equations

In the sinusoidal wave limit (m → 0), a solution of (17) is r2 = r3,m = 0, v1 = −6r1, v2 =
v3 = 6r1 − 12r3 so that the system collapses to

r1t − 6r1r1x = 0 , r3t + (6r1 − 12r3)r3x = 0 ,

or dt + 6ddx = 0 , kt + ωx = 0 .
(18)

Here −r1 = d is the mean level, r3 − r1 = k2/4 is the wavenumber, and the dispersion rela-
tion is ω = 6dk−k3. An expansion for small m is needed to recover the wave action equation.

In the solitary wave limit (m → 1), a solution of (17) is r1 = r2,m = 1, v1 = v2 =
−4r1 − 2r3, v3 = −6r3, so that the system collapses to

r1t + (−4r1 − 2r3)r1x = 0 , r3t − 6r3r3x = 0 .

or dt + 6ddx = 0 , at + V ax = 0 .
(19)

Now −r3 = d is the background level, 2(r3 − r1) = a is the solitary wave amplitude, and
−4r1 − 2r3 = 6d + 2a = V is its speed.

6 Shocks and undular bores

Let’s now consider the similarity solution of the modulation system (17) which describes an
undular bore developing from an initial discontinuity:

u(x, 0) = ∆ for x < 0 , and u(x, 0) for x > 0 , (20)

where ∆ > 0 is a constant.
When the dispersive term in the KdV equation (1) is omitted, the KdV becomes the

Hopf equation:
ut + 6uux = 0 . (21)

This is readily solved by the method of characteristics and the solution is multivalued,
u = ∆ for −∞ < x < 6∆t and u = 0 for 0 < x < ∞. A shock is needed with speed 3∆.
See Fig. 6 for a solution of this equation with ∆ = 1, at t = 3.

When the dispersive term is retained, the shock is replaced by a modulated wave train
(dispersive shock wave or undular bore). Behind the undular bore u = ∆ (or in terms of the
Riemann invariants r1 = −∆, r2 = r3), while ahead of it u = 0 (r1 = r2, r3 = 0). Because
of the absence of a length scale in this problem, the corresponding solution of the Whitham
modulation system must depend on the self-similar variable τ = x/t alone, which reduces
the system (17) to

(vj − τ)
drj

dτ
= 0 , i = 1, 2, 3 . (22)

Hence two Riemann invariants must be constant, namely r1 = −∆, r3 = 0 while r2 varies
in the range −∆ < r2 < 0, given by v2 = τ .
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Figure 4: A shock solution to Hopf equation (21) equation, for ∆ = 1 (blue) and ∆ = 3
(red).

Figure 5: An undular bore
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Finally, using the expressions (2, 3, 4) for the cnoidal wave, we get the solution for the
undular bore expressed in terms of the modulus m,

x

t∆
= 2(1 + m) −

4m(1 − m)K(m)

E(m) − (1 − m)K(m)
, (23)

u

∆
= 1 − m + 2m cn2(∆1/2(x − V t);m) ,

V

∆
= −2(1 + m) . (24)

The leading and trailing edges of the undular bore are determined from (23) by putting
m = 1 and m = 0: the undular bore is thus found to exist in the zone

−6 <
x

∆t
< 4 . (25)

Note that this solution is an unsteady undular bore which spreads out with time – a steady
undular bore would require some friction. The leading solitary wave amplitude is 2∆,
exactly twice the height of the initial jump. Also the wavenumber is constant. For each
wave in the wave train, m → 1 as t → ∞, so each wave tends to a solitary wave.

7 Rarefraction wave

When ∆ < 0, the initial discontinuity (20) creates a rarefraction wave

u = 0 , for x > 0 ,

u =
x

6t
, for 6∆t < x < 0 ,

u = ∆ , for x < 6∆t .

(26)

This is a solution of the full KdV equation (1), but needs smoothing at the corners with a
weak modulated periodic wave (see Fig. 6).

8 Further developments

1. The Whitham theory can be applied to any nonlinear wave equation which has a
(known) periodic travelling wave solution. These include the NLS equations, Boussi-
nesq equations, Su-Gardner equations.

2. For a broad class of integrable nonlinear wave equations, a simple universal method has
been developed by Kamchatnov (2000), enabling the construction of periodic solutions
and the Whitham modulation equations directly in terms of Riemann invariants.

3. The “undular bore” solution can be extended to the long-time evolution of a system
from arbitrary localized initial conditions, described by Gurevich and Pitaevskii (1974)
(and many subsequent works), and by Lax and Levermore (1983).

4. There have been applications in many physical areas, including surface and internal
undular bores, collisionless shocks in rarefied plasmas (e. g. Earth’s magnetosphere
bow shock), nonlinear diffraction patterns in laser optics, and in Bose-Einstein con-
densates.
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Figure 6: A rarefaction wave, with ∆ = −1, at instant t = 3.
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Lecture 11: Internal solitary waves in the ocean

Lecturer: Roger Grimshaw. Write-up: Yiping Ma.

June 19, 2009

1 Introduction

In Lecture 6, we sketched a derivation of the KdV equation applicable to internal waves,
and discussed the extended KdV equation for critical cases where the quadratic nonlinear
term is small.horizontal direction. In this lecture, we describe internal solitary waves in the
ocean, where the bottom topography may vary from the deep ocean to the shallow seas of
the coastal oceans, and the background hydrography can also vary along the path of the
wave. Hence the asymptotic models must incorporate a variable background state. On
the assumption that this is slowly varying relative to the waves, the outcome is a KdV-
type equation, but with variable coefficients, namely the variable-coefficient extended KdV
(veKdV) equation. When references to Lecture 6 are made, Eq. (n) in Lecture 6 will be
referred to as (6.n) here. The presentation of the properties and results for the veKdV
equation closely follows that of the vKdV equation discussed in Lecture 9.

2 Variable-coefficient extended KdV equation

The ocean has variable depth, as well as variations in the basic state hydrology and back-
ground currents. As seen in the previous lecture, these effects can be formally incorporated
into the theory by supposing that the basic state is a function of the slow spatial variable
χ = ǫ3x. Thus here we assume a depth h(χ), a horizontal shear flow u0(χ, z) with a corre-
sponding vertical velocity field ǫ3w0(χ, z), a density field ρ0(χ, z), a corresponding pressure
field p0(χ, z) and a free surface displacement η0(χ). With this scaling, the slow background
variability enters the asymptotic analysis at the same order as the weakly nonlinear and
weakly dispersive effects, and an asymptotic analysis produces a variable coefficient ex-
tended KdV equation. The modal system is again defined by (6.12-13) (N is the buoyancy
frequency)

{ρ0(c − u0)
2φz}z + ρ0N

2φ = 0 , for − h < z < 0 , (1)

φ = 0 at z = −h , (c − u0)
2φz = gφ at z = 0 , (2)

but now the linear long wave speed c = c(χ) and the modal functions φ = φ(χ, z), where
the χ-dependence is parametric.

With all small parameters removed, the governing equation is

Aτ + αAAξ + α1A
2Aξ + λAξξξ = 0 . (3)
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Figure 1: The basic coordinate system.

where we have moved to the new coordinate system, based on the travel time of the wave
as introduced in Lecture 9, namely

τ =

∫ x dx

c
, ξ = t − τ , (4)

and where the original amplitude A (defined by ζ = A(x − ct)φ(z) where ζ is the vertical
particle displacement) has been replaced by

√
QA. Here Q is the linear magnification

factor, defined so that QA2 is the wave action flux. The linear long-wave speed c, and the
coefficients α,α1, λ depend on x, and hence on the evolution variable τ . The coefficients
α(τ), α1(τ), λ(τ) and Q(τ) are given by

α =
µ

cQ1/2
, α1 =

µ1

cQ
, λ =

δ

c3
, Q = c2I , (5)

in terms of the coefficients in the extended KdV equation (6.42) (in different notations)

AT + µAAX + µ1A
2AX + δAXXX = 0 , (6)

and the definition (6.34)

I = 2

∫

0

−h
ρ0(c − u0)φ

2

z dz . (7)

Unlike the KdV or extended KdV equations, this variable coefficient equation (3) is not
integrable in general, so we must seek a combination of asymptotic and numerical solutions.

2.1 Slowly-varying solitary waves

The veKdV equation (3) possesses two relevant conservation laws,
∫

∞

−∞

Adx = constant , (8)

∫

∞

−∞

A2 dx = constant , (9)
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Figure 2: The family of solitary waves for (a) δµ1 < 0; (b) δµ1 > 0.

representing conservation of “mass” and “momentum” respectively (more strictly speaking,
an approximate representation of the physical mass and wave action flux).

From Lecture 6, the solitary wave family of the eKdV equation (6) is given by

A =
H

1 + B cosh K(X − V T )
, (10)

where V =
µH

6
= δK2 , B2 = 1 +

6δµ1K
2

µ2
, (11)

with a single parameter B. For δµ1 < 0 (Figure 2.1), 0 < B < 1, and the family ranges
from small-amplitude waves of KdV-type (“sech2”-profile as B → 1) to a limiting flat-topped
wave of amplitude −µ/µ1 (“table-top” wave as B → 0). For δµ1 > 0 (Figure 2.1), there
are two branches. One has 1 < B < ∞ and ranges from small-amplitude KdV-type waves
(B → 1), to large waves with a “sech”-profile (B → ∞). The other branch, −∞ < B < 1,
has the opposite polarity and ranges from large waves with a “sech”-profile to a limiting
algebraic wave of amplitude −2µ/µ1. Waves with smaller amplitudes do not exist, and are
replaced by breathers.

In the veKdV equation, we have a family of solitary waves as before, but its parameter
B(τ) now varies slowly in a manner determined by conservation of momentum (9), which
requires

G(B) = constant| α3

1

λα2
|1/2 , (12)

where G(B) = |B2 − 1|3/2

∫

∞

−∞

du

(1 + B cosh u)2
.

The integral term in G(B) can be explicitly evaluated, and so these expressions provide
explicit formulas for the variation of B(τ) as the environmental parameters vary. However,
since the conservation of momentum completely defines the slowly-varying solitary wave,
total mass (8) is only conserved provided one adds a “trailing shelf” (linear long wave)
whose amplitude Ashelf at the rear of the solitary wave is

V Ashelf = −∂Msol

∂τ
, Msol =

∫

∞

−∞

Asol dξ , (13)
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Figure 3: Critical point α = 0, α1 < 0: eKdV case. Here λ = 1, α1 = −0.083 and α
varies from 1 to −1 (that is, the variable coefficient eKdV equation, with a negative cubic
nonlinear coefficient). This shows the conversion of an elevation “table-top” wave into a
depression “table-top” wave, riding on a positive pedestal.

where Asol is the solitary wave solution.
The adiabatic expressions (12, 13) show that the critical points where α = 0 (or where

α1 = 0) are sites where we may expect a dramatic change in the wave structure. There are
two qualitatively different cases to consider.

2.2 Critical point α = 0, α1 < 0

First, as α passes through zero, assume that α1 < 0, 0 < B < 1 at the critical point τ = 0
where α = 0. Then as α → 0, it follows from (12) that B → 0 and the wave profile
approaches the limiting “table-top” wave. But in this limit, K ∼ |α|, and so the amplitude
approaches the limiting value −α/α1. Thus the wave amplitude decreases to zero, the mass
M0 of the solitary wave grows as |α|−1 and the amplitude A1 of the trailing shelf grows as
1/|α|4. Essentially the trailing shelf passes through the critical point as a disturbance of the
opposite polarity to that of the original solitary wave, which then being in an environment
with the opposite sign of α, can generate a train of solitary waves of the opposite polarity,
riding on a pedestal of the same polarity as the original wave (see Figure 3).
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Figure 4: Critical point α = 0, α1 > 0: eKdV case. Here λ = 1, α1 = 0.3 and α varies from
1 to −1 for −T < τ < T (that is, the variable coefficient eKdV equation, with a positive
cubic nonlinear coefficient). This shows the adiabatic evolution of an elevation wave from
τ = −T to τ = T , where its amplitude is too small, and so the wave becomes a breather.

2.3 Critical point α = 0, α1 > 0

Next, let us suppose that at the critical point where α = 0, α1 > 0. In this case, 1 < |B| < ∞
and there are the two sub-cases to consider, B > 1 or B < −1, when the the solitary wave
has the same or opposite polarity to α. Then, as α → 0, |B| → ∞ as |B| ∼ 1/|α|. It follows
from (11) that then K ∼ 1, H ∼ 1/|α|, a ∼ 1,M0 ∼ 1. Therefore, the wave adopts the
“sech”-profile, but has finite amplitude, and so can pass through the critical point α = 0
without destruction. But the wave changes branches from B > 1 to B < −1 as |B| → ∞,
or vice versa. An interesting situation then arises when the wave belongs to the branch
with −∞ < B < −1 and the amplitude is reducing. If the limiting amplitude of −2α/α1

is reached, then there can be no further reduction in amplitude for a solitary wave, and
instead a breather will form (Figure 4).

3 Wave propagation, deformation and disintegration

For real oceanic shelves, there can be wave paths along which the parameters in the veKdV
equation may not vary sufficiently slowly, and they may also contain several critical points.
As a result, an internal solitary wave loses its identity as a soliton within a finite lifetime. In
this section, we describe direct numerical simulations performed using the veKdV equation
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Figure 5: The coefficient of veKdV (3) for the passage of an initial solitary wave of depression
across the North West Shelf of Australia.

(3) with the coefficients calculated for three oceanic shelves: the NWS of Australia, the
MSE (west of Scotland), and the Arctic shelf (in the Laptev Sea). The initial condition is a
typical solitary wave for each shelf. In all simulations, we only use the density stratification
of the coastal zone, and ignore any background current. The notation for the quantities
plotted in the figures is consistent with (3) with λ in (3) denoted as β in the figures.

3.1 North West shelf of Australia

The measured coefficients of the veKdV equation are presented in Figure 5. The hydrology
can indeed be considered as slowly varying because the characteristic horizontal variation
scale of the oceanic parameters (more than 10km) exceeds the characteristic soliton wave-
length (about 1-2km). This shelf is distinguished by the property that the coefficient α of
the quadratic nonlinear term has several sign changes.

A simulation for an initial wave amplitude of 15m is shown in Figure 6. The initial
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solitary wave has negative polarity, and transforms at a distance after 68 km into a nonlinear
dispersive tail and a group of secondary solitons.

3.2 Malin shelf edge

The measured coefficients of the veKdV equation are presented in Figure 7. The coefficient
of the quadratic nonlinear term is everywhere negative. There is only one critical point
at a distance of about 8km associated with the sign change of the coefficient of the cubic
nonlinear term.

A simulation for an initial wave amplitude of 21m is shown in Figure 8. The soliton-like
shape is maintained for a distance of about 20km. Subsequently, the significant decrease of
the dispersion parameter leads to the formation of a shock wave. For distances more than
25km, the borelike disturbance transforms into solitary waves.

3.3 Arctic shelf

The measured coefficients of the veKdV equation are presented in Figure 9. The nonlinear
coefficients, as well as the dispersion parameter, vary significantly but quite slowly. The
coefficient of the cubic nonlinear term is everywhere negative, and increases by three times.
The critical point (a zero value of the coefficient of the quadratic nonlinear term) appears
at the end of the wave path at a distance of 155km.

A simulation for an initial wave amplitude of 13m is shown in Figure 10. Before reaching
the critical point, the solitary wave maintains its soliton-like shape for very long distances
(140 km) as the background varies sufficiently slowly.

4 World map of eKdV coefficients

The previous simulations show the key role played by the coefficients of the veKdV equation.
Thus in Figure 11, we display world maps of these coefficients (same notations as (6)). As
expected, the linear phase speed and the linear dispersive coefficient scale respectively with
h1/2 and h5/2. Hence, as is well known, the largest amplitude internal solitary waves will
generally be found in the shallow seas of the coastal zones. However, the quadratic and
cubic coefficients show considerable variability, with many sign changes, thus emphasizing
again the importance of critical points.
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Figure 6: NWS, initial depression wave of 15m amplitude.
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Figure 7: The coefficient of veKdV (3) for the passage of an initial solitary wave of depression
across the Malin shelf off west coast of Scotland.

Figure 8: Malin Shelf, fission, initial amplitude of 21m.
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Figure 9: The coefficient of veKdV (3) for the passage of an initial solitary wave of depression
across the Arctic shelf off north coast of Russia.

Figure 10: Arctic Shelf, adiabatic, initial amplitude of 13m.
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Figure 11: World map of eKdVcoefficients.
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Lecture 12: Transcritical flow over an obstacle

Lecturer: Roger Grimshaw. Write-up: Erinna Chen

June 22, 2009

1 Introduction

The flow of a fluid over an obstacle is a classical and fundamental problem in fluid mechanics.
When the flow velocity is near the local wave speed, obstacles in the path of this resonant
flow tend to generate interesting wave fields around them. This lecture explores transcritical
flow over a step primarily in the framework of the forced Korteweg-deVries equation using
both asymptotic analysis and numerical simulations. This lecture follows from Lecture 11
in that resonant flow over a step may be resolved with undular bores.

2 Linearized shallow-water theory

Consider one-dimensional shallow-water flow past topography. The flow variables we are
interested in are the total local depth H = ζ + h−F (x) and the depth-averaged horizontal
velocity V . Here ζ is the surface elevation above the undisturbed depth h and the bottom
is located at z = −h + F (x) where F (x) is the obstacle. The fully nonlinear shallow water
equations for conservation of mass and momentum are

ζt + (HV )x = 0, (1)

Vt + V Vx + gζx = −
(H2D2H)x

3H
−

(H2D2F )x
2H

−
FxD2(ζ + F )

2
, (2)

where D =
∂

∂t
+ V

∂

∂x
.

Equation (1) is exact, but equation (2) is a long-wave approximation; the terms on the
right-hand side are the leading-order effects of wave dispersion. They form the Su-Gardner
equations (also known as the Green-Naghdi equations).

If the Su-Gardner equations are linearized about the constant state U, h, where V =
U + u, |u| << V, |ζ| << h, they reduce to the forced linear wave equation

D2

I ζ − c2ζxx − U2Fxx, DI =
∂

∂t
+ U

∂

∂x
, c =

√

gh. (3)

Here c is the linear long-wave speed, and a key parameter is the Froude number, Fr = U/c.
Provided that background flow velocity is not critical (Fr 6= 1), as t → ∞, there is a steady
solution

ζ =
U2

U2 − c2
F (x). (4)
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The solution is a stationary depression over the obstacle for subcritical flow (Fr < 1), and
a stationary elevation for supercritical flow (Fr > 1).

3 Forced Korteweg-deVries equation

The linear solution clearly fails as the flow nears criticality Fr ≈ 1. The wave energy cannot
propagate away from the obstacle. In this case, it is necessary to invoke weak nonlinearity
and weak dispersion. This results in the forced Korteweg-deVries (fKdV) equation.

For water waves, the fKdV equation is, in non-dimensional form with scaling of charac-
teristic length h and velocity c,

−ζt − ∆ζx +
3

2
ζζx +

1

6
ζxxx +

1

2
Fx = 0. (5)

Here ∆ = Fr − 1 measures the degree of criticality, subcritical for ∆ < 0 or supercritical
for ∆ > 0. The equation describes the usual KdV balance between nonlinearity, dispersion
and time evolution, supplemented here by forcing and criticality. The asymptotic regime
where equation (5) holds is characterized by a small parameter ǫ << 1, where a balance
between all terms requires the scaling F ∼ ǫ4, A ∼ ǫ2, ∂/∂x ∼ ǫ4, ∂/∂t ∼ ǫ3, and ∆ ∼ ǫ2.
Note that ζ scales with

√
F and with the detuning ∆, a feature typical of forced resonant

systems.
The canonical form of the fKdV equation,

−At − ∆Ax + 6AAx + Axxx + Fx(x) = 0, (6)

is obtained by putting ζ = 2A/3, ∆ = ∆̃/6, t = 6t̃, F = 2F̃ /9, and then omitting the
“tilde.” Equation (6) is typically solved with the initial condition that A(x, 0) = 0, which
corresponds to the introduction of the topographic obstacle F (x) at t = 0.

4 Transcritical flow over a localized obstacle

Figures (1-3) are a series of solutions with varying criticality (∆) for the canonical form of
the fKdV equation where the forcing function is localized at x = 0 with a maximum height
FM > 0 and is “Gaussian” in shape. In these figures, FM is specifically FM = 1.

In Figures 1-3 it can be seen that solutions of the fKdV equation typically consist of
upstream and downstream nonlinear wavetrains connected by a locally steady solution over
the obstacle. The origin and behavior of the nonlinear wavetrains is due to the structure
of the locally steady solution over the obstacle. Assuming that the dispersionless or “hy-
draulic” limit is applicable in the obstacle region, the linear dispersive term in equation (6)
can be neglected. A result of this is that for all localized F (x) with a maximum height
FM > 0,

6A± = ∆ ∓ (12FM )1/2. (7)

The transcritical regime is thus defined as

|∆| < (12FM )1/2. (8)
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Figure 1: Solution to the fKdV equation (6) at exact criticality, ∆ = 0. The forcing (not
shown in the plot) is located at x = 0 and has a maximum height of FM = 1

Figure 2: Solution to the fKdV equation (6) for a subcritical case, ∆ = −1.5.
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Figure 3: Solution to the fKdV equation (6) for a supercritical case, ∆ = 1.5.

In the transcritical regime, the local steady solution is characterized by a transition from
a constant elevation A− > 0 upstream (x < 0) of the obstacle to a constant depression
A+ < 0 downstream (x > 0) of the obstacle, where ∆ = 3(A+ + A−), independent of the
details of the localized forcing term F (x). The explicit values of A+ and A− are determined
by the forcing term F (x), as shown in Sections 5.1 and 5.2. The upstream and downstream
solutions are solved with undular bores.

4.1 Undular bores

A simple representation of an undular bore can be obtained from the solution of the KdV
equation

At + 6AAx + Axxx = 0 (9)

with the initial condition of a step, A = A0H(−x) with A0 > 0 and H(x) the Heaviside
function. An asymptotic solution can be found using Whitham’s modulation theory. This
formalism was presented in Lecture 10. The relevant asymptotic solution corresponding to
the “step” initial condition is constructed in terms of a similarity variable x/t. The undular
bore wavetrain is located in the region

−6 <
x

A0t
< 4. (10)

Also recall that if the initial condition A0 corresponds to a negative step A0 < 0 then
the undular bore solution does not exist. Instead the asymptotic solution is a rarefaction
wave,

A = 0 for x > 0,

A =
x

6t
for A0 <

x

6t
< 0,
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A = A0, for
x

6t
< A0 < 0. (11)

Small oscillatory wave trains are needed to smooth out the discontinuities in Ax at x = 0
and x

t = −6A0.

4.2 Asymptotic analysis for localized forcing

We now return to the asymptotic solution of the fKdV equation, and resolve the upstream
and downstream transitions by the “undular bore” solutions. Making the appropriate trans-
formations for the upstream wavetrain in (10) (see [2]), the upstream wavetrain (x < 0)
occupies the region

∆ − 4A <
x

t
< min{0,∆ + 6A}. (12)

The upstream wavetrain cannot move beyond the obstacle (at x = 0), and thus is only fully
realized if ∆ < −6A−. Combining this criterion with (7) and (8) defines the regime

−(12FM )1/2 < ∆ < −
1

2
(12FM )1/2 (13)

where a fully developed undular bore solution can develop upstream. On the other hand,
when ∆ > −6A− or

−
1

2
(12FM )1/2 < ∆ < (12FM )1/2 (14)

the undular bore cannot develop beyond the obstacle. A partially formed undular bore
develops upstream, and this is attached to the obstacle.

The downstream wavetrain similarly is constrained to lie in x > 0. The undular bore
solution occupies the zone

max{0,∆ − 2A+} <
x

t
< ∆ − 12A+ (15)

The downstream wavetrain is only fully realized if ∆ > 2A+. Combining this criterion
with (7) and (8), the region where a fully developed downstream undular bore coincides
with (14), the region where the upstream wavetrain is partially formed and attached to
the obstacle. Similarly, when the downstream undular bore (∆ < 2A+) is only partially
developed and attached to the obstacle, the upstream undular bore is fully developed and
detached from the obstacle.

Figures (1-3) show this behavior in the regime defined by (14) where the upstream
wavetrain is partially formed and attached to the obstacle while the downstream wavetrain
is fully developed. In the subcritical case (∆ < 0), the upstream wavetrain weakens and
for sufficiently large |∆| separates from the obstacle (i.e. makes the transition from the
regime defined by (14) to the regime defined by (13)). When this transition is reached, the
downstream wavetrain intensifies and forms a stationary lee wave field. For supercritical
flow (∆ > 0), the behavior is always governed by (14). As |∆| increases the upstream
wavetrain develops into well-separated solitary waves attached at the obstacle while the
downstream wavetrain weakens and moves downstream.

For the case where the obstacle has negative polarity (FM < 0), the upstream and
downstream solutions are qualitatively similar (i.e. can be described in terms of an undular
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Figure 4: Solution to the fKdV equation (6) for exact criticality, ∆ = 0. The forcing (not
shown in the plot) is located at x = 0 and has localized negative forcing FM = −0.1.

bore solution). However, the local solution around the obstacle is transient, and this causes
a modulation of the undular bore solutions seen previously. A typical solution of the fKdV
equation with a negative polarity obstacle is shown in Figure (4). Note the perturbations
in the solution around the obstacle.

5 Transcritical flow over a step

5.1 Asymptotic analysis for positive step forcing

First, consider a broad positive step, where

F (x) =

{

0 for x < 0
FM for x > W

(16)

and F (x) varies monotonically in 0 < x < W , and FM > 0. Strictly F (x) should return
to zero for some L >> W . For this analysis, we ignore this and assume that L → ∞. We
revisit the step of finite length in the numerical simulations of Section 5.3. We now modify
the asymptotic solution found for localized forcing in Section 4 for an infinitely long step.
The first step is to construct the local steady-state solution, using the hydraulic limit. In
the forcing region (0 < x < W ), A = A(x), while otherwise

A = A− for x → −∞, (17)

A = A+ for x → ∞. (18)
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The steady-state fKdV equation (6) ignoring the dispersive term is

−∆Ax + 6AAx + Fx = 0. (19)

Integrating (19) with respect to x results in the equation

−∆A + 3A2 + F = C, (20)

whose solutions are
6A = ∆ ± (∆2 + 12C − 12F )1/2. (21)

Thus, there are two branches to the solution. Applying the far-field limits (17, 18) to
equation (20) yields

C = −∆A− + 3A2

− = −∆A+ + 3A2

+
+ FM . (22)

The constant C is obtained by taking the long-time limit of the unsteady hydraulic
solution. The fKdV equation (6) with no dispersion is a nonlinear hyperbolic equation that
can be solved by the the method of characteristics. This equation written in characteristic
form is

dx

dt
= ∆ − 6A,

dA

dt
= Fx(x) (23)

with the initial condition that A = 0 at t = 0. For a positive step, Fx is zero for x < 0
and x > W and Fx > 0 for 0 < x < W . From (23), all characteristics begin with an initial
slope ∆ and then decrease. The key issue is whether the characteristics ever reach a turning
point (dx/dt = 0, ∆ = 6A).

For ∆ ≤ 0, all characteristics have a negative slope and there are no turning points. In
this case, A+ = 0 and from (22), C = FM and the upper branch must be chosen in (21).
For ∆ > (12FM )1/2, there are also no turning points, and all characteristics have positive
slope. In this case, A− = 0, C = 0 and the lower branch is chosen. For 0 < ∆ < (12Fm)1/2

there is a turning point. Characteristics emerging from the step (0 < x < W ) with F = F0,
0 < 12F0 < 12FM − ∆2 have a turning point and then go upstream into x < 0. From this,
12C = 12FM − ∆2 and from (22), 6A+ = ∆, while A− is then obtained from the upper
branch of (21). In summary, the upstream and downstream solutions for a positive step
forcing are

∆ ≤ 0 : 6A− = ∆ + (∆2 + 12FM )1/2, 6A+ = 0, (24)

0 < ∆ < (12FM )1/2 : 6A− = ∆ + (12FM )1/2, 6A+ = ∆, (25)

∆ > (12FM )1/2 : 6A− = 0, 6A+ = ∆ − (∆2 − 12FM )1/2. (26)

In all cases, the upstream solution A− is a “jump” in the hydraulic limit, and thus needs
to be resolved by an undular bore. The upstream undular bore is located in the region

∆ − 4A <
x

t
< min{0,∆ + 6A}, (27)

the region similar to that for the upstream jump for a localized forcing (12). For a fully
detached undular bore, ∆ + 6A− < 0, and combining this criterion with (24, 25, 26), the
defining regime is

∆ < −2(FM )1/2 < 0. (28)
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In the regime where ∆ + 6A− > 0 but ∆ − 4A− < 0, or

−2(FM )1/2 < ∆ < (12FM )1/2, (29)

the upstream undular bore is only partially formed and is attached to the positive step.
Unlike the localized obstacle, the downstream profile A+ is not a jump (A+ > 0). The
solution downstream is terminated instead by a rarefaction wave.

5.2 Asymptotic analysis for negative step forcing

A similar analysis to Section 5.1 for a positive step can be carried out for a negative step
(FM < 0). The results are

∆ ≥ 0 : 6A− = 0, 6A+ = ∆ − (∆2 − 12FM )1/2 with C = 0, (30)

−(|12FM |)1/2 < ∆ < 0 : 6A− = ∆, 6A+ = ∆ − (|12FM |)1/2 with C = −∆2/12, (31)

∆ < −(|12FM |)1/2 : 6A− = ∆ − (∆2 − 12FM )1/2, 6A+ = 0 with C = FM . (32)

In all cases, the downstream solution A+ in (30-32) is negative and contains a jump. This
jump needs to be resolved by an undular bore, occupying the zone similar to (13)

max{0,∆ − 2A+} <
x − W

t
< ∆ − 12A+. (33)

For a fully detached undular bore (∆ − 2A+ > 0) is obtained in the regime

∆ > −(|3FM |)1/2. (34)

The downstream undular bore is partially attached when ∆ − 2A+ < 0 corresponding to a
regime where

−(|12FM |)1/2 < ∆ < −(|3FM |)12 < 0. (35)

A stationary lee-wave train forms downstream when ∆ < −(|12FM |)1/2. The upstream
solution A− is less than zero, and thus terminated by a rarefaction wave.

5.3 Numerical solutions for the fKdV equation with a step forcing

Combining the results from Sections 5.1 and 5.2, we can now understand the behavior of
flow over a finite-length positive step forcing; that is, a step up, followed by a region of
constant elevation and terminated by a step down. Figure 5 shows numerical simulations
of the fKdV equation for water waves (5) with varying ∆ for a step forcing of the form

F (x) =
FM

2
(tanh γx − tanh γ(x − L)), (36)

where FM = 0.1, γ = 0.25 and L = 50 >> 1. Note these are parameter values for the
unscaled parameters in the water wave formulation.

When the flow is critical (∆ = 0), the theory predicts an upstream undular bore attached
to the obstacle (regime given by (29)) and a fully detached downstream undular bore that
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Figure 5: Numerical simulations of the fKdV equation (5) for the forcing (36), where
FM = 0.1, γ = 0.25, L = 50 ≫ 1 and (a)∆ = 0., (b)∆ = 0.2, (c)∆ = −0.2. Note, to obtain
the correct boundary values given by (28, 29) and (34, 35), the parameters must be scaled
to those for the canonical fKdV (6).
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propagates downstream (34). This is seen in Figure 5a, and is similar to the behavior of
exactly resonant flow over a localized obstacle (Figure 1).

The behavior of a supercritical flow is shown in Figure 5b. Once again, the upstream
undular bore is only partially formed and the downstream undular bore is fully developed
and propagates downstream. The upstream solution however has transitioned from the
solution defined by (24) to that defined by (25); the downstream solution still remains in
the regime given by (34). A rarefaction wave thus propagates downstream from the positive
step at x = 0. The rarefaction wave persists until it reaches the end of the step at x = 50,
and the solution adjusts to a solution predicted for simply a localized forcing (one upstream
undular bore and one downstream undular bore).

Figure 2c shows a numerical simulation for subcritical flow where ∆ = −0.2. In this
case, there is a detached undular bore propagating upstream and a detached downstream
bore that intensifies and propagates slowly. The parameter values in this simulation are
close to the boundaries predicted by the asymptotic theory, and while the upstream bore
falls in the regime (29) given for an attached undular bore, the behavior in the simulation
suggests that the upstream solution actually follows regime (28). Similarly, the downstream
bore should fall into regime (35), but actually follows regime (34). This is attributed to
errors in the estimates of A∓ and the resulting boundaries derived from those quantities.
Note that the downstream solution is in the regime defined by 31 and thus a rarefaction
wave propagating upstream is generated at the negative step (x = 50).

5.4 Comparison of the fKdV solutions to solutions of the full Euler equa-

tions

Figure 6 shows numerical simulations of the full Euler equations for the same positive step
forcing as before. In these simulations, there seems to be good qualitative agreement with
the behavior of the solutions of the fKdV equation. Table 1 shows the quantitative differ-
ences between the simulations. The amplitudes of the leading upstream and downstream
waves are consistently larger in the fKdV simulations likely due to nonlinearity. The varia-
tion of all the predicted amplitudes and elevations as ∆ is varied follows the same trend for
both the fKdV and Euler equations. Furthermore, in all of the Euler equation simulations,
there were no other wavetrains generated than those seen in the simulations of the fKdV
equation. Therefore, for small-amplitude steps, the fKdV equation likely provides a good
guide for transcritical flow over a step.

5.5 Solutions to a negative step forcing

Similar numerical simulations can be carried out for an obstacle where the step forcing in
(36) is negative, FM < 0. The flow first encounters a negative step, followed by a constant
depression section, and is terminated by a positive step. The asymptotic analyses from
Sections 5.1 and 5.2 suggest that the resulting undular bore propagates downstream of the
negative step and another undular bore similarly propagates upstream of the positive step.
These undular bores interact with each other over the step itself.

In the depression region, the interactions between the two undular bores can be quite
complex as seen in Figures 7-8. In Figure 7, the undular bores pass through each other
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Figure 6: Numerical simulations of the full Euler equations for the forcing (36), where
FM = 0.1, γ = 0.25, L = 50 ≫ 1 and (a)∆ = 0., (b)∆ = 0.2, (c)∆ = −0.2.

120



∆
fKdV Euler

AW− A− AW+ A+ AW− A− AW+ A+

0.2 0.83 0.44 0.31 -0.16 0.75 0.40 0.28 -0.18

0.1 0.66 0.38 0.39 -0.20 0.57 0.36 0.32 -0.21

0.0 0.50 0.30 0.51 -0.26 0.44 0.33 0.37 -0.25

-0.1 0.39 0.22 0.64 -0.33 0.32 0.20 0.43 -0.30

-0.2 0.30 0.16 0.84 -0.40 0.23 0.13 0.53 -0.36

-0.3 0.24 0.13 0.64 -0.38 0.16 0.08 0.57 -0.38

-0.4 0.19 0.10 0.00 0.00 0.10 0.01 0.00 0.00

Table 1: Quantitative comparison of the results from the fKdV equation (5) and the Euler
equations. A−(A+) is the elevation just upstream (downstream) of the positive (negative)
step at x = 0(50) respectively, and AW−(AW+) is the amplitude of the leading wave in the
corresponding undular bore.

Figure 7: Numerical simulation of the fKdV equation (6) for the step forcing (36) where
FM = −0.1, γ = 0.25, L = 50 ≫ 1 and ∆ = 0.0.
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Figure 8: Numerical simulation of the full Euler equations for the step forcing (36) where
FM = −0.1, γ = 0.25, L = 50 ≫ 1 and ∆ = −0.2.

with interference in the depression region. For moderate time, both the upstream and
downstream solutions are fairly unperturbed by each other.

Figure 7 shows a solution of the fKdV equation to a negative step forcing, while Figure
8 shows a solution to the full Euler equations for the same forcing. For the positive step,
it seemed that there were no qualitative differences between the fKdV solutions and the
solutions to the full Euler equations. However, the differences in Figures 7 and 8 are
significant. In Figure 8 the wave propagation is largely restricted to the depression region.
The waves in the full Euler solutions are likely confined to the step region due to the
interaction of two effects not accounted for in the fKdV equation. First, the steps have a
finite amplitude that the wave must pass over in order to propagate. Small amplitude waves
may reflect at the steps, instead of propagating forward. In addition, the depression also
causes a depression in the local wave speed in the step region, and waves may have lower
amplitude due to this effect.
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Lecture 13: Triad (or 3-wave) resonances.

Lecturer: Harvey Segur. Write-up: Nicolas Grisouard

June 22, 2009

1 Introduction

The previous lectures have been dedicated to the study of specific nonlinear problems, most
of them involving solitons. It is now time to discuss the problem of triad resonances, as
they are actually the most basic nonlinear phenomenon that can occur between two waves.
As their name indicates, triad resonances involve the weak interaction between two waves
combining to form a third wave.

We construct a set of equations describing single-triad interactions in Section 2, and
study their mathematical structure in Section 3. Insights into the behavior of a real system,
subject to multiple triad resonances, are presented in Sections 4 and 5.

2 Derivation of the 3-wave equations

2.1 Weakly nonlinear interactions

For dispersive waves of small amplitude, resonant triad interactions are the first nonlinear
interactions to appear (if they are possible). Let’s start with a physical system of evolu-
tionary partial differential equations with no dissipation, described by a set of equations

N(u) = 0

with u = 0 being the state of rest.
To study the nonlinear interaction of three waves of weak amplitude, the procedure is,

as usual, to linearize around u = 0. From previous lectures, we expect the linear solution
to take the form:

u(x, t, ε) = ε

[

∑

k

A(k)ei(k·x−ω(k)t) + c.c.

]

+ O(ε2)

This linear problem is associated with a dispersion relation:

ω = ω(k).

Once this dispersion relation is found, the next step is to build a weakly nonlinear model.
In order to do so, one has to see if the linear problem admits three pairs {ki, ω(ki)}, with
ki 6= 0 for i = 1, 2, 3, satisfying a triad relationship:
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k1 ± k2 ± k3 = 0, (1)

ω(k1) ± ω(k2) ± ω(k3) = 0. (2)

A graphical procedure to investigate this possibility has been discovered several times
(e.g. Ziman (1960) [18], Ball (1964) [1]) and is illustrated in Figure 1. In Figure 1(a), the
solid line represents the linearized dispersion relation of pure gravity waves in deep water:

ω = ±
√

g|k|,

while Figure 1(b) shows the linearized dispersion relation of capillary-gravity waves in deep
water:

ω = ±

√

g|k| +
σ

ρ
|k|3.

The graphical procedure to detect resonant triads is the following. First, pick any point
(k1, ω1) on one of the branches (solid lines) of the dispersion curve. Then reproduce all
branches of the dispersion relation with the origin translated to (k1, ω1), here drawn as
the dashed lines. Let P be a point where the two curves intersect. Its coordinates in
the original coordinate system are identified as (k3, ω3), and as (k2, ω2) in the translated
coordinate system. Then by construction,

k1 + k2 = k3,

ω1 + ω2 = ω3.

In Figure 1(a), the only point of intersection is at the origin on the solid curve (k3 = 0)
contrary to our requirements. Hence, there is no possibility of forming any resonant triad
with pure gravity waves. In Figure 1(b) on the other hand one can notice that there are at
least two possibilities of forming a resonant triad in top right and in the bottom left hand
corner of the figure. In fact, for most choices of k1 there will be at least two intersection
points, leading to another two new triads. Hence, for capillary-gravity waves in 1D, there
are infinitely many possible triads.

We have just described the 1-D case in which k1, k2 and k3 are collinear, so they are
effectively scalars. In 2D, k1, k2 and k3 are two-component vectors. A similar procedure
can be applied, except that both solid and dashed curves now become 2-D surfaces. The
two surfaces typically intersect on 1-D curves (or not at all), showing that in 2D there are
an infinite number of possible triads associated with a given pair (k1, ω(k1)).

To conclude, there are two simple alternatives: if triplets of waves satisfying equa-
tions (1) and (2) exist, then triad resonances are expected. If there are no such triplets, one
has to look for resonant quartets (4-waves interactions). The latter alternative is discussed
in Lectures 14, 15 and 20.

2.2 Single triad

Suppose that equations (1) and (2) are satisfied for exactly one triad. Let us write u as a
superposition of the three interacting waves plus weak interaction terms:
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(a) Gravity waves, deep water
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(b) Capillary-gravity waves, deep water

Figure 1: Linearized dispersion relations of: – (a) pure gravity waves in deep water, – (b)
capillary-gravity waves in deep water. In (a), no resonant triad can be formed and in (b),
(k1, ω1), (k2, ω2) and (k3, ω3) form a resonant triad.

u(x, t; ε) = ε

[

3
∑

m=1

Amei(km ·x−ωmt) + c.c.

]

+ ε2

[

3
∑

m=1

m
∑

n=−m

Bmn(t)ei((km +kn)·x−(ωn+ωm)t) + c.c.

]

+ O(ε3)

If we substitute this ansatz in the original set of equations N(u) = 0, we expect to recover
the linearized equations to O(ε). At O(ε2), we obtain a set of equations for the coefficients
Bnm(t), which, in a manner similar to the cases described in Lectures 5 and 6, have a LHS
equal to the LHS of the homogeneous linearized equations, and a RHS which depends on
the first order amplitudes Am times a phase function ei(km ·x−ωmt). By construction of the
resonant triad, some of these phases are in resonance with the LHS, leading to solutions
Bmn(t) which grow linearly with time. If that is the case, after a duration t ∼ 1/ε, the
O(ε2) terms are as important as the O(ε) terms and the asymptotic expansion is no longer
valid.

To solve the problem, we introduce as in Lectures 5 and 6 a slower timescale1 in the
wave amplitudes, perform a multiple-scale analysis, and find a compatibility condition to
prevent the amplitudes from blowing up. Hence, let u now be:

u(x, t; ε) = ε

[

3
∑

m=1

Am(εx, εt)ei(km ·x−ωmt) + c.c.

]

+ O(ε2).

In the general case, as found by Benney & Newell (1967) ([2]) among others, the amplitudes
have to satisfy this set of compatibility conditions in order to prevent any unphysical growth
in the equations:

1and/or a longer lengthscale. . .
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∂τA1 + c1 · ∇A1 = iδ1A
∗
2A

∗
3,

∂τA2 + c2 · ∇A2 = iδ2A
∗
1A

∗
3,

∂τA3 + c3 · ∇A3 = iδ3A
∗
1A

∗
2,

(3)

where τ = εt is the slow timescale, cn = dω/dk|k=kn
is the group velocity of the nth mode,

and δn is a real-valued constant which depends on the nonlinear terms of the original set
of equations N(u) = 0 and can be deduced from an analysis of the original Hamiltonian.
These equations can be applied in various contexts, e.g. capillary-gravity waves ([13]) or
χ2 materials in optics ([3]). Equations (3) are the so-called PDE version of the equations
of triad resonances.

3 Mathematical structure of a single triad of ODEs

A special case occurs when the complex wave amplitude depends on only one independent
variable. This can happen for example for systems in which the spatial planform is fixed
but its amplitude varies with time. In this case, equations (3) reduce to:

A′
1 = iδ1A

∗
2A

∗
3,

A′
2 = iδ2A

∗
1A

∗
3,

A′
3 = iδ3A

∗
1A

∗
2,

(4)

where A′
n is either ∂τAn or cn∂xAn. These equations are the so-called ODE version of the

equations of triad resonances.

3.1 Hamiltonian structure and integrability

If the original system is hamiltonian, so is this reduced system. The conjugate variables for
the single-triad ODEs are

qn(τ) = sign(δn)
An(τ)
√

|δn|
,

pn(τ) =
A∗

n(τ)
√

|δn|
for n = 1, 2, 3

and the Hamiltonian of the system is

H = i(A1A2A3 + A∗
1A

∗
2A

∗
3)

= i
√

|δ1δ2δ3|(sign(δ1δ2δ3)q1q2q3 + p1p2p3).

It is easy to verify that H and all the {pn, qn} verify

q′n =
∂H

∂pn
and p′n = −

∂H

∂qn
for n = 1, 2, 3.
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The following quantities are constants of the motion:

−iH = A1A2A3 + A∗
1A

∗
2A

∗
3, (5)

J1 =
A1A

∗
1

δ1

−
A3A

∗
3

δ3

, (6)

J2 =
A2A

∗
2

δ2

−
A3A

∗
3

δ3

. (7)

(and so is the equivalently defined J3, although J3 is not independent of J1 and J2). Equa-
tions (6) and (7) are known as the Manley-Rowe equations.

We can now use some of the properties of Hamiltonian systems discussed in Lecture 4 to
study the integrability of the problem. Recall that the notion of integrability first requires
the definition of the Poisson bracket {F,G} for any two real-valued functions F (pn, qn, t)
and G(pn, qn, t):

{F,G} =

3
∑

m=1

(

∂F

∂pm

∂G

∂qm
−

∂F

∂qm

∂G

∂pm

)

=

3
∑

m=1

δm

(

∂F

∂A∗
m

∂G

∂Am
−

∂F

∂Am

∂G

∂A∗
m

)

.

We have already identified 3 constants of motion for our 6-dimensional phase space. We
next have to verify that these constants of motion are in involution, i.e. that any two pairs
have a null Poisson Bracket. This can indeed be verified, as for example:

{−iH, J1} =

3
∑

m=1

δm

(

∂(−iH)

∂A∗
m

∂J1

∂Am
−

∂(−iH)

∂Am

∂J1

∂A∗
m

)

= (A∗
1A

∗
2A

∗
3 − A1A2A3) + 0 + (−A∗

1A
∗
2A

∗
3 + A1A2A3)

= 0.

It can be easily shown in a similar way that {−iH, J2} = {J1, J2} = 0. Moreover, any 3
independent linear combination of these constants of motion will then also be in involution.
All that remains to be done is to construct the 3 action variables Pn (n = 1, 2, 3) as linear
combinations of −iH, J1 and J2, together with the 3 conjugate angle variables, such that
the {Pn, Qn} pairs satisfy

∂H

∂Qn
= −

dPn

dt
= 0

∂H

∂Pn
=

dQn

dt

The resultant system is completely integrable. As we saw in Lecture 4, the 3 action variables
define a 3-D surface in the 6-D phase space. Every solution of the ODEs consists of straight-
line motion on this surface.

The topology of the 3-D surface depends uniquely on the signs of δ1, δ2 and δ3. For the
Hamiltonian system defined above, it can be shown that the general solution can be written
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in terms of elliptic functions. In this case, the surface defined by {−iH, J1, J2} is compact
if and only if {δ1, δ2, δ3} do not all have the same sign. To see this, first note that if the
signs of δ1 and δ3 are different for example, then J1 = constant is the equation for an ellipse
in the (|A1|, |A3|) plane. It follows that provided at least one of the δn has a different sign,
it is always possible to select a pair among the three possible Jn for which the 2 equations
Ji=const and Jj=const combined describe a torus.

In the unusual situation however where δ1, δ2 and δ3 all have the same sign, Coppi,
Rosenbluth & Sudan (1969) [7] showed that A1, A2 and A3 can all blow up together, in
finite time: indeed, as J1 is a constant of the motion, if |A1| increases, |A3| has to increase
also according to equation (6) and as J2 is also a constant of the motion, |A2| has to
increase as well. . . This is the explosive instability, which is discussed in Lecture 21. It has
applications in plasma physics ([9]), density-stratified shear flows ([6, 8]) and for vorticity
waves ([14]).

3.2 Properties of single-triad systems

Consider a single triad of ODEs, without dissipation. In this example we consider a system
which has coefficients such that δ1 > 0, δ2 > 0 and δ3 < 0.

One property of such a configuration is that only A3 can share energy with the other
modes. This can be readily seen from the definition of J1 and J2 in equations (6) and (7),
which can be rewritten here as:

J1 =
|A1|

2

|δ1|
+

|A3|
2

|δ3|
and J2 =

|A2|
2

|δ2|
+

|A3|
2

|δ3|
.

Therefore, if |A1| (respectively |A2|) initially has almost all the energy, then J2 (respectively
J1) is initially small. Since J2 (J1) is a constant of motion, it necessarily remains small
thereby limiting the amplitude of the other modes. By contrast, if |A3| starts with almost
all the energy, it can distribute it to the whole system.

Moreover, Hasselmann (1967) [10] proved that in a single triad of ODEs in which
{δ1, δ2, δ3} do not all have the same sign, the interaction coefficient δn with the oppo-
site sign from the other two (in our example, that would be |A3|) is always the wave mode
with the highest frequency in the triad.

This section has shown that the case of a single triad of ODEs is well understood. If
the complex wave amplitude do not depend on only one independent variable, we have to
move on to the case of a single triad of PDEs.

4 Triads of PDEs

Zakharov & Manakov (1976) [17] showed that the system of equations (3) of PDEs is
completely integrable. Kaup (1978) [11] partly solved the initial-value problem in 1-D
on −∞ < x < ∞, with restrictions. Kaup, Reiman & Bers (1980) solved the initial-value
problem in 3-D in all space, under some restrictions. Besides that, few physical applications
of this theory have been developed so far.

Zakharov (1968) [16] went further than a single resonant triad interaction of PDEs
and considered all possible interactions, including the non-resonant ones. This led to the
Zakharov’s integral equation for the amplitudes:
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∂tA(k) + iω(k)A(k) = −i

∫∫

[V (k,k1,k2)δ(k + k1 + k2)A∗(k1)A∗(k2) + perm.] dk1dk2

−i

∫∫∫

[W (k,k1,k2,k3)δ(k + k1 + k2 + k3)A∗(k1)A∗(k2)A∗(k3) + perm.] dk1dk2dk3.

(8)

V and W are generalized interaction coefficients and perm. stands for the permutations in
the combinations of k’s, e.g. δ(k ± k1 ± k2). . . This equation acts on the fast timescale
whereas equations (3) acted on the slow timescale τ . As the slow timescales are still present
in equation (8), everything has to be resolved and a numerical integration is therefore slow
and expensive.

In general, single triads of ODEs are insufficient (i) when wave envelopes have spatial
variability, in which case PDEs are required, (ii) when there are multiple triad interactions,
in which case more ODEs (or PDEs) are required and (iii) when dissipation occurs, in
which case one needs to study non-Hamiltonian ODEs (the case of a single dissipative triad
is studied in Lecture 20). Having discussed a few properties of single triads of PDEs, let
us now discuss problems associated with multiple triad interactions under experimental
conditions.

5 Application to capillary-gravity waves

In Section 2.1, we saw that for capillary-gravity waves (and most realistic systems) there
exists a continuum of triads. So one can rightfully wonder whether any of the results
described in Section 3 for single-triad resonance remain applicable. If not, under what
conditions is it possible to model the problem with just a small number of triads? Under
what conditions are we instead forced to consider all possible triads, as in Zakharov’s
integral formulation seen in Section 4? This section discusses these questions in the light of
experimental results.

Simmons (1969) [15] conjectured that the magnitudes of the interaction coefficients δn

do not vary much across the continuum of possible capillary-gravity waves resonant triads.
Should this be correct, then any energy input into a single wave mode will eventually be
transferred to all the other modes, triad by triad, thus generating a broad-banded response
of the system to the applied forcing.

Perlin, Henderson and Hammack(1990) [12] attempted to test this conjecture experi-
mentally. In their work, a tank of typical size 10 cm× 1m filled with water is forced with a
paddle oscillating at a frequency f0 = 25Hz, therefore exciting capillary-gravity waves that
are subject to triad interactions. As we have seen in Section 2.1, in 2D and unbounded con-
figurations, the spectrum of possible interactions is a continuum. Although this geometry
is bounded, it is large enough to have a significant number of possible modes and one can
therefore expect to have a broad response in the frequency space.

A first series of experiments was performed and contrary to expectations did not display
the expected broad-band response, as can be seen in Figure 2. All figures show that, no
matter what the forcing amplitude is, the response of the fluid is localized in a few modes
with frequency mainly around f0. Figures 2(a) and 2(b) show results of the experiment
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with two different forcing amplitudes. The components that are to be seen in this picture
are:

• a strong signal at f0,

• a second harmonic at f0 + f0 = 50Hz,

• a third harmonic at 2f0 + f0 = 75Hz,

• a very weak component at fc = 60Hz that can only be seen in Figure 2(b). It is an
internal frequency of the computer that controls the forcing mechanism and that is
transmitted to the tank as mechanical vibration.

• a frequency fα = 35Hz = f0 − fc,

• two frequencies fβ = 10Hz and fγ = 15Hz, characterized by fβ + fγ = f0.

If we ignore the second and third harmonics of the forcing, the specific transmission chain
is then the following: fc and f0, the forcing frequencies, interact to form fα, then f0 and
fα interact to form fβ which then interacts with f0 to form fγ .

A second series of experiments was later performed with a newer computer which did not
perturb the system with the additional frequency at fc = 60Hz. In these new experiments,
a broad frequency spectrum was observed in response to the forcing. It is therefore quite
remarkable to note how the whole system dynamics change depending on the presence or
absence of the additional forcing at fc, even when the forcing is so weak as to be barely
detected in Figure 2. The difference between the two sets of experiments suggests the
presence of a selection mechanism for individual triads through the additional forcing.

Now let us focus on the experiment related to Figure 2. In the triad involving fα = fc−f0

and following the notations of Section 3.2, A1, A2 and A3 correspond to f0, fα and fc

respectively. A3 is the highest frequency but A1 has almost all the energy initially, so
A2 and A3 should remain small. Although they indeed remain small compared to A1, A2

gets significantly bigger than A3, in contradiction with Section 3.2. In the triad involving
fα − f0 = fβ, (with A1, A2 and A3 corresponding to f0, fβ and fα this time), again we
have A3 ≪ A1, but A2 gains some energy in the process. Only in the last triad involving
f0−fβ = fγ is the highest mode also the most energetic one. Hasselmann’s results presented
in Section 3.2, which were valid for a single triad, are clearly not relevant here.

These experiments have revealed two surprising features: the selection of a small number
of triads among the possible continuum by a weak periodic signal, and the invalidation of
single-triad theory (see Section 3.2) as soon as more than one triad is involved. In an actual
physical problem involving 3-wave interactions, these two conclusions show how difficult
it may be, in practice, to make even qualitative predictions about a system’s response to
forcing. In general, it is indeed very hard to predict whether a single, a few, or all triads
must be taken into account. Any process has to be investigated in detail before answering
this question, following Prof. Einstein2:

2
Albert Einstein (14 March 1879, Ulm, Germany – 18 April 1955, Princeton, USA) German-born

scientist who was somehow active as a theoretical physicist but who unfortunately died four years too soon
to benefit from any Geophysical Fluid Dynamics summer course. If it had been the case, which could have
been possible given the quality of his resume, there is no doubt that he could have achieved much more.
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(a) Lower amplitude (b) Higher amplitude

Figure 2: Periodograms resulting from the excitation of capillary-gravity waves. The forcing
frequency is f0 = 25Hz. The figures from top to bottom show the field at various locations,
further away from the forcing apparatus.
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A good mathematical model of a physical problem should be as simple as possible,

and no simpler.

6 Summary and conclusion

Among all the nonlinear phenomena studied in this summer course, triad interactions are,
at first glance, the simplest, most natural and most intuitive ones. This lecture introduced
the mathematical theory of triad interactions, beginning with the simplest possible example,
namely the single triad of ODEs. It is interesting to note that despite its “simplicity”, the
problem of single triads of ODEs was only solved approximately at the same time as the
first results on solitons were published. The cases of a single triad of PDEs, and/or multiple
triad interactions, were solved later and are very briefly described here.

In the last part of these notes, theoretical results are confronted to an experimental
situation which sheds light on the difficulty in isolating single-triad interactions in practice.
These results should cast some doubt on the belief that these problems are simple, if such
a belief ever existed.

Triad interactions have a lot in common with other topics discussed in this lecture
course: for example, the KdV model seen in Lecture 5 could be seen as a triad interaction
between spatial frequencies 0, 0 and 0: 0 + 0 = 0. Another more explicit example is the
NLS model (see Lectures 3 and 13), which can also be seen as the interaction between a
wave of spatial frequency k and a wave of spatial frequency k + δk close to k.

This problem, even in its most simple configurations such as single triads or simple
triad clusters, is still the center of active mathematical attention (see e.g. Bustamante &
Kartashova (2009) [4, 5]).
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Lecture 14: Waves on deep water, I

Lecturer: Harvey Segur. Write-up: Adrienne Traxler

June 23, 2009

1 Introduction

In this lecture we address the question of whether there are stable wave patterns that
propagate with permanent (or nearly permanent) form on deep water. The primary tool
for this investigation is the nonlinear Schrödinger equation (NLS). Below we sketch the
derivation of the NLS for deep water waves, and review earlier work on the existence and
stability of 1D surface patterns for these waves. The next lecture continues to more recent
work on 2D surface patterns and the effect of adding small damping.

2 Derivation of NLS for deep water waves

The nonlinear Schrödinger equation (NLS) describes the slow evolution of a train or packet
of waves with the following assumptions:

• the system is conservative (no dissipation)

• then the waves are dispersive (wave speed depends on wavenumber)

Now examine the subset of these waves with

• only small or moderate amplitudes

• traveling in nearly the same direction

• with nearly the same frequency

The derivation sketch follows the by now normal procedure of beginning with the water
wave equations, identifying the limit of interest, rescaling the equations to better show that
limit, then solving order-by-order.

We begin by considering the case of only gravity waves (neglecting surface tension), in
the deep water limit (kh → ∞). Here h is the distance between the equilibrium surface
height and the (flat) bottom; a is the wave amplitude; η is the displacement of the water
surface from the equilibrium level; and φ is the velocity potential, u = ∇φ. (See also
Lecture 4.) In terms of our small parameter ǫ (= ah), we will consider waves that are
nearly monochromatic:

~k = (k0, 0) + O(ǫ)

ω =
√

gk0 + O(ǫ)
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and small in amplitude:
k0‖η‖ = O(ǫ)

We use a coordinate θ = k0x − ω(k0)t and a solution form

η(x, y, t; ǫ) = ǫ[A(ǫx, ǫy, ǫt, ǫ2t)eiθ + A∗e−iθ] + ǫ2[stuff2] + ǫ3[stuff3] + O(ǫ4)

and then insert the formal expansions for η(x, y, t; ǫ) and φ(x, y, t; ǫ) into the full equations.
Solving order by order, the algebra is nasty, but mostly avoidable via one of the usual

suspects such as maple. What we find is the following:

• At O(ǫ), ω2 = gk, we recover the linearized dispersion relation for gravity-induced
waves on deep water.

• At O(ǫ2), the expansion blows up and becomes disordered unless

∂A

∂(ǫt)
+ cg

∂A

∂(ǫx)
= 0

where cg is the group velocity (the propagation speed of the wave envelope).

In η above, now define a coordinate moving with the wave ξ = (ǫx) − cg(ǫt), a slowly
varying transverse direction ζ = ǫy, and a slowly varying time τ = ǫ2t. Now examine O(ǫ3),
where the expansion again becomes disordered unless A(ξ, ζ, τ) satisfies

i∂τA + α∂2

ξ A + β∂2

ζ A + γ|A|2A = 0 (1)

which is the 2D nonlinear Schrödinger equation. Here α, β, and γ are real numbers de-
termined by the problem. For the case of deep water waves, the signs of the coefficients
(independent of scaling choice) are α < 0, β > 0, and γ < 0.

The NLS or some equivalent has been derived at many times and in many contexts,
including: Zahkarov in 1968 for water waves [14], Ostrovsky in 1967 for optics [8], Benjamin
and Feir in 1967 for water waves [3], a general formulation by Benney and Newell in 1967
[4], Whitham in 1965 [12], whose formulation was used by Lighthill in 1965 [6], and finally
by Stokes in 1847 for water waves with no spatial dependence. A historical overview is
provided by Zakharov and Ostrovsky [15].

3 Waves of permanent form on deep water

Now we come to the overarching question of interest in this and the next lecture: do stable
waves of permanent form in deep water exist? Starting back at the beginning, Stokes [9]
considered a spatially uniform train of plane waves,

η(x, y, t; ǫ) = ǫ[A(ǫ2t)eiθ + A∗e−iθ] + O(ǫ2)

which after removing the spatial derivatives from (1) must satisfy

i∂τA + γ|A|2A = 0 , γ = −4k2

0
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where the expression for γ depends on the choice of scalings (see [1]). If we take the complex
conjugate of this equation, multiply the original by A∗ and the conjugate by A, and subtract
them, we find:

iA∗∂τA + iA∂τA∗ = 0

In other words, ∂τ (A∗A) = 0, so the square of the amplitude is a constant. With that, the
equation is easy to solve, yielding

A(τ) = (A0e
iφ)eiγ|A0|

2τ

Putting this into the η expression above, and using θ from earlier, we have

η(x, t; ǫ) = 2ǫ|A0| cos [k0x − ω(k0)t − (2ǫk0|A0|)
2t] + O(ǫ2)

where the final term inside the cosine is Stokes’ nonlinear correction to the frequency.
Although Stokes found a nonlinear correction for water waves of permanent form with

finite amplitude, he did not prove that such waves existed. Nekrassov (available in [7]) and
Levi-Civita [5] accomplished this task in the 1920s, and Struik [10] extended their work
from deep water to water of any constant depth. Finally, Amick and Toland [2] obtained
optimal results about the existence of waves of permanent form in 2D. The solutions in
question, a periodic train of plane waves, are approximated by experimental data such as
in the top panel of Figure 1.

3.1 Why don’t we see them?

Despite the above work to prove the existence of such waves, they are not commonly ob-
served in nature, but perhaps they can be produced in more controlled conditions. Photos
from Benjamin in 1967, in Figure 1, show a wave train disintegrating in 60 meters, as
discussed in the stability analysis of [3].

Returning to the NLS in Zakharov 1968,

i∂τA + α∂2

ξ A + β∂2

ζ A + γ|A|2A = 0

for the case of gravity waves on deep water, we have α < 0, β > 0, and γ < 0. The “Stokes
wave” above is the solution for a spatially uniform, finite amplitude train of plane waves
to third order expansion in the water wave equations. We can now check its stability by
linearizing the NLS around a Stokes wave and looking for unstable modes.

A(ξ, ζ, τ) = |A0| e
iγ|A0|

2τ

Assume additional small perturbations:

A(ξ, ζ, τ) = eiγ|A0|
2τ [|A0| + µ · u(ξ, ζ, τ) + iµ · v(ξ, ζ, τ)] + O(µ2)

Putting this into (1), above, and keeping only terms up to O(µ), we have:

eiγ|A0|
2τ

[

−γ|A0|
2 (|A0| + µu + iµv) + iµ(∂τu + i∂τv)

+αµ(∂2

ξ u + i∂2

ξ v) + βµ(∂2

ζ u + i∂2

ζ v) + γ|A0|
2(|A0| + µu + iµv) + 2γ|A0|

2µu
]

= 0

136



Figure 1: Wavetrain in deep water (L = 2.3 m, h = 7.6 m), with 60 meters between photos.
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where the real and imaginary parts respectively break into a pair of linear PDEs with
constant coefficients,

∂τv = α∂2

ξ u + β∂2

ζ u + 2γ|A0|
2u (2)

−∂τu = α∂2

ξ v + β∂2

ζ v (3)

We seek a solution of the form

u = U · eimξ+ilζ+Ωτ + (c.c.)

v = V · eimξ+ilζ+Ωτ + (c.c.)

Putting these into (2) and (3), above, and eliminating U and V , we are left with an algebraic
equation for the linear stability:

Ω2 + (αm2 + βl2)(αm2 + βl2 − 2γ|A0|
2) = 0 (4)

where Re(Ω) > 0, positive real growth rate, indicates linear instability. Marginal stability
occurs at

Ω = ±
√

−(αm2 + βl2)(αm2 + βl2 − 2γ|A0|2) = 0

for which the first root (recalling that here α < 0, β > 0) is

αm2 = −βl2

l = ±

√

|α|

β
m

which defines a pair of lines with opposite slope that cross at the origin. The second root is

αm2 + βl2 − 2γ|A0|
2 = 0

which defines a hyperbola. See Figure 2 for the regions described by this expression; insta-
bility occurs for points along the m-axis between the two sets of curves. (This can be seen
by considering l2 = 0 and m2 small, for which αm2 < 0 and αm2 − 2γ|A0|

2 > 0; similarly,
a positive real root does not exist for m2 = 0 and l2 6= 0.)

The maximum value of the growth rate can be easily determined by noting that l and
m appear only in the combination αm2 + βl2, so we can call that something easy like s and
look for extrema of Ω2:

Ω2 = −s(s − 2γ|A0|
2)

∂Ω2

∂s
= −(s − 2γ|A0|

2) − s

0 = −2smax + 2γ|A0|
2

smax = γ|A0|
2

The growth rate evaluated at this point is

Ω2(smax) = −γ|A0|
2(γ|A0|

2 − 2γ|A0|
2)

Ωmax = |γ| |A0|
2
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Figure 2: The regions of stability described by equation 4. Shaded regions are unstable.

Collecting the above, we have the result that a uniform train of finite amplitude plane
waves is unstable in deep water, with the most unstable mode growing at Ωmax = |γ| |A0|

2.
The instability is nonlinear in the sense that its growth rate depends on the amplitude |A0|,
so as |A0| → 0 then Ωmax → 0.

For applications other than deep-water gravity waves, we can repeat the above procedure
for the stability diagram, where the respective signs of the coefficients will determine the
existence of unstable regions. In general we have:

• αβ < 0, αγ > 0 → unstable

• αβ < 0, αγ < 0 → unstable

• αβ > 0, αγ > 0 → unstable

• αβ > 0, αγ < 0 → stable

One example of the instability of a uniform wavetrain was shown in Figure 1. For a
second example in an electromagnetic context, see Figure 3 (which can be viewed as a cut
across the center of the stability diagram, with the most unstable modes growing at either
side).

3.2 A different wave pattern of permanent form

Having addressed the plane wave set of solutions above, and found them to be linearly
unstable, another class of solutions is now our only hope for finding permanent stable wave
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Figure 3: Experimental observation of modulational instability. The horizontal axis is in
nanometers, so the length scale is L = 1.3 · 10−6 m, with timescale T = 4 · 10−15 s. Input
power level low (a); 5.5 W (b); 6.1 W (c); 7.1 W (d). Figure adapted from [11].
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patterns on deep water. This section will take a slightly different tack, using the Inverse
Scattering Transform to solve the initial value problem (see Lecture 5) for the 1D NLS
equation. This method enables us to show the existence of soliton solutions (which are
by definition waves of permanent form) and deferring the question of their stability to
transverse perturbations until the next lecture.

Continuing the search for another stable wave form, Zakharov and Shabat in 1972 [16]
considered the NLS in 1D,

i∂τA = ∂2

ξA + 2σ|A|2A (5)

where σ = −1 is the “defocusing” case and σ = +1 is the “focusing” case appropriate for
deep water. Setting σ = 1 and looking for traveling waves of “permanent form,” there is a
special case:

A(ξ, τ) = 2a · e−i(2a)
2τ sech 2a(ξ + ξ0)

The corresponding shape of the free surface, as seen in Section 2, takes the form η(x, t; ǫ) =
ǫ(Aeiθ + A∗e−iθ) + O(ǫ2) where θ = kx − ω(k)t so that

η(x, t; ǫ) = (2ǫa) sech [(2ǫa)(x − cgt)] cos
{

kx − [ω(k) + (2ǫa)2]t
}

(6)

which is a wave packet with special shape (see Figure 4) discussed further below. This
solution is reminiscent of the sech2 soliton solutions of the KdV. This remark naturally
leads us to ask which other properties of the KdV, and associated solution techniques,
apply to the 1D NLS.

Zakharov and Shabat (1972) [16] demonstrated that the 1D NLS (5) is also completely
integrable for either sign of σ. As for the KdV, there are an infinite number of explicit,
local conservation laws, of which the first three are

i∂τ (|A|2) = ∂ξ(A
∗∂ξA − A∂ξA

∗)

i∂τ (A
∗∂ξA − A∂ξA

∗) = ∂ξ(. . .)

i∂τ (|∂ξA|2 + σ|A|4) = ∂ξ(. . .)

The other major consequence of complete integrability (see notes for Lecture 5) is that
we can treat the problem with the inverse scattering transform. However, this time the
scattering problem is no longer defined by the time-invariant Schrödinger equation, but is
found instead to be given by the set of equations

∂ξv1 = −iλv1 + Av2

∂ξv2 = −σA∗v1 + iλv2.

The requirement that the eigenvalues be independent of time, together with the compati-
bility condition

∂ξ∂τ

(

v1

v2

)

= ∂τ∂ξ

(

v1

v2

)

recover the 1D NLS provided

∂τv1 = (−2iλ2 + iσ|A|2)v1 + (2Aλ + i∂ξA)v2

∂τv2 = (−2σA∗λ + iσ∂ξA
∗)v1 − (−2iλ2 + iσ|A|2)v2
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Indeed,

∂ξ∂τv1 = (iσA∂ξA
∗ + iσA∗∂ξA)v1 + (−2iλ2 + iσ|A|2)(−iλv1 + Av2)

+(2λ∂ξA + i∂2

ξ A)v2 + (2Aλ + i∂xiA)(−σA∗v1 + iλv2)

= (iσA∂ξA
∗ − 2λ3 − σλ|A|2)v1 + (iσ|A|2A + λ∂ξA + i∂2

ξ A)v2

∂τ∂ξv1 = −iλ[(−2iλ2 + iσ|A|2)v1 + (2Aλ + i∂ξA)v2] + (∂τA)v2

+A[(−2σA∗λ + iσ∂ξA
∗)v1 + (2iλ2 − iσ|A|2)v2]

= (−2λ3 − σλ|A|2 + iσA∂ξA
∗)v1 + (λ∂ξA + ∂τA − iσ|A|2A)v2

Equating the two, all v1 terms cancel, but for the two v2 sides to balance, we must have

∂τA = i∂2

ξ A + 2iσ|A|2A

Repeating the process for the v2 equations produces the complex conjugate of the above.
From this we arrive back at the 1D NLS,

i∂τA = ∂2

ξA + 2σ|A|2A

as should be the case.
As a consequence of constructing this Inverse Scattering Transform method for the 1D

NLS, it can be shown that for σ = 1 (focusing NLS), any smooth initial data A(ξ, 0) with
∫

|A|dξ < ∞ evolves into N “envelope solitons” which persist forever, plus an oscillatory
wavetrain that decays in amplitude as τ → ∞. Envelope solitons are stable for the focusing
case in the 1D NLS.

Figure 4 (from unpublished work by Hammack) shows experimental evidence for the
existence of these envelope solitons, and reveal that they match the sech solution (6) very
well. Figure 5 shows data from three other experiments on envelope solitons: the first
shows the evolution of two solitons in isolation; the second has some additional noise that
eventually separates from the soliton; the third shows one of the wave pulses overtaking
and passing through another, emerging on the other side in (mostly) unchanged form. In
contrast to Figure 1, where the uniform train of plane waves disintegrates quickly, the
experiments in Figures 4 and 5 show the relative persistence of soliton solutions, providing
some confirmation of the stability predicted by this 1D theory.

4 Conclusions

Finally, we reach the point of drawing tentative conclusions. According to the 1D or 2D
NLS, a uniform train of plane waves is unstable in deep water. However, according to
focusing NLS in 1D with initial data in L1 (i.e., meeting the integrability condition above),
envelope solitons are stable in deep water. Experimental evidence seems to support both
of these conclusions, but we have not yet addressed the stability of the 1D soliton solutions
to transverse perturbations. For more on that topic, see the next lecture.
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Figure 4: Measured surface displacement, showing evolution of envelope soliton at two
downstream locations. Dimensions are h = 1 m, kh = 4.0, ω = 1 Hz. The solid line is the
measured history of surface displacement; the dashed line is the theoretical envelope shape.
Data was taken at 6 m (top) and 30 m (bottom) downstream of the wavemaker.
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Figure 5: Wave pulse interaction: one wave pulse overtaking and passing through another
wave pulse. Left-hand trace: first pulse alone, ω0 = 1.5 Hz, initial (ka)max ≃ 0.01, six-cycle
pulse. Center trace: second pulse alone, ω0 = 3 Hz, initial (ka)max ≃ 0.2, 12-cycle pulse
which disintegrates into two solitons. Right-hand traces: interaction of the two pulses.
Adapted from [13].
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Lecture 15: Waves on deep water, II

Lecturer: Harvey Segur. Write-up: Andong He

June 23, 2009

1 Introduction.

In the previous lecture (Lecture 14) we sketched the derivation of the nonlinear Schrödinger
equation (NLS)

i∂τA + α∂2

ξ A + β∂2

ζ A + γ|A|2A = 0, (1)

where {α, β, γ} are real constants related to the original physical system from which the NLS
was derived. Equation (1) is an important approximate model to describe deep water waves.
In probing into the existence of stable wave patterns that propagate with (nearly) permanent
form in deep water, we encountered the modulational (or Benjamin-Feir) instability. In most
cases, 1D plane wave solutions of the NLS were found to be unstable to 1D perturbations
(along the wave propagation axis) and 2D perturbations (transverse to the wave propagation
axis).

We continue studying the existence and stability of waves with either 1-D or 2-D surface
patterns in this lecture, focusing on more recent work. We discuss two topics: (1) what
happens after the initial development of the Benjamin-Feir instability for “high”-amplitude
nonlinear plane waves, namely Fermi-Pasta-Ulam (FPU) recurrence (with additional sub-
tleties), and (2) the possible stabilization of “low”-amplitude nonlinear plane waves against
the Benjamin-Feir instability by dissipation.

2 Near recurrence of initial states.

Benjamin & Feir [2] showed that a periodic wave train with initially uniform finite amplitude
is unstable to infinitesimal perturbations. The instability takes the form of a growing
“modulation” of the plane wave, or when viewed in terms of the Fourier spectrum, as
exponentially growing sidebands to the plane wave frequency. But this instability is only
the beginning of the story: the long-time behavior of such wave trains is arguably even
more remarkable.

Lake, Yuen, Rungaldier & Ferguson [10] proposed that with periodic boundary condi-
tions, the focusing 1-D NLS (σ = 1 in (3)) should exhibit near recurrence of initial states
just as the Korteweg-de Vries equation does (see Lecture 5).
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Figure 1: Example of the long-time evolution of an initially nonlinear wave train. Initial
wave frequency is 3.6 Hz; oscillograph records shown on expanded time scale to display indi-
vidual wave shapes; wave shapes are not exact repetitions each modulation period because
modulation period does not contain integral number of waves.

To illustrate very qualitatively what ”near recurrence of initial states” may mean, we
take the linearized equations on deep water with periodic boundary conditions as an exam-
ple, one solution of which will be

η(x, t) =

N
∑

m=1

am cos{mx − ωmt + φm}, where ω2

m = gm. (2)

Since frequencies are not rationally related (recall that ωm = ω1

√
m), η is not periodic in

time. But for functions η that can be written as a sum over a finite number N of such
terms, the solution returns close to its initial state.

The situation for solutions of the NLS is of course different, owing to the nonlinear
nature of the equation, but is not entirely unrelated. Just as for the KdV, we saw that
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the NLS can be solved using an inverse scattering transform. In the previous lecture, we
discussed the case of an infinite domain, which yields, just as for the KdV, a finite number
of soliton solutions, each related to a discrete eigenvalue and corresponding eigenmode of
the scattering problem. A related scattering problem can be constructed in the periodic
domain, and similarly yields a finite number of eigenvalues and eigenmodes. Hence, the
dynamics of the solutions of the NLS in the periodic domain are limited to understanding
the evolution of a finite number of periodic modes. By contrast to the linear case described
above, the solution of the NLS is not a linear superposition of these modes, but nevertheless
exhibits a similar recurrence phenomenon. This type of long-time behavior, generic to
many nonlinear systems (KdV, NLS, ...) was first discovered by Fermi, Pasta & Ulam [5]
in numerical experiments, and has become known as the of Fermi-Pasta-Ulam (or FPU)
recurrence phenomenon.

Lake et. al. [10] investigated experimentally the long-time behavior of nonlinear wave
trains generated by a wavemaker in a water tank. During the early stages of evolution,
an initially unmodulated wave train develops an amplitude modulation as predicted by the
analysis of Benjamin & Feir (see results for x = 5, 10 and 15 ft in Figure 1). As the wave train
evolves further, the modulation increases in amplitude and the results of their linearized
stability analysis no longer apply. However, as the system continues evolving, the wave
train is observed to “demodulate” and the wave form returns to a relatively uniform state
(x = 30 ft in Figure 1). Therefore the recurrence of wave patterns in deep water observed
by Lake et. at. might be the first physical evidence of the FPU recurrence phenomenon.

3 2-D free surface.

Let us first briefly summarize the results from the last lecture. We saw that the 1D nonlinear
Schrödinger equation,

i∂τA + α∂2

ξ A + γ|A|2A = 0 (3)

has one-soliton solution,s as for example

A = a

∣

∣

∣

∣

2α

γ

∣

∣

∣

∣

1/2

sech{a(ξ − 2bτ)} exp{ibξ + iα(a2 − b2)τ}, (4)

in the case of αγ > 0 (a and b are constants). These solutions are envelope solitons. There
are also “dark solitons” when αγ < 0. The dark solitons are a local reduction in the
amplitude of a wave train.

The 1D NLS is often rewritten as

i∂τA + ∂2

ξA + 2σ|A|2A = 0. (5)

by a change of variables, with no loss of generality. In that case, envelope solitons occur for
σ = 1 and dark solitons for σ = −1. The stability of solutions of the 1D NLS to transverse
perturbations is studied using the 2D NLS:

i∂τA + ∂2

ξ A + β∂2

ζ A + 2σ|A|2A = 0. (6)
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Figure 2: Evolution of water packet in a long tank, showing the transverse instability that
was absent in the shorter tank of Figure 2. (Courtesy of J. Hammack)

Zakharov & Rubenchik [12] showed that in the case of σ = 1, for either sign of β, envelope
solitons are unstable to 2-D perturbations; in the case of σ = −1, for either sign of β, dark
solitons are unstable to 2-D perturbations. They also found that the unstable perturbations
will have long transverse wavelengths.

As discussed in the previous lecture, Hammack had found “stable” 1D envelope solitons
(where the only evolution of the soliton was caused by a weak damping), in apparent contra-
diction to the aforementioned results. However he later performed additional experiments
using the same wavemaker and imposing nearly identical initial conditions, but in a longer
tank. It turns out that the longer tank admitted the destabilizing transverse modes that
were artificially excluded in the shorter tank, as seen in Figure 2.

Let us now discuss aspects of the 2D NLS which are specific to 2D solutions, first in
theory, then in experiments.

Zakharov & Synakh [13] considered the elliptic focusing NLS in 2-D case by choosing
β = σ = 1 in equation (6) to obtain

i∂τA + ∂2

ξ A + ∂2

ζ A + 2|A|2A = 0. (7)
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Figure 3: Evolution of a nonlinear finite amplitude wave train: wave forms and power
spectral densities vs. propagation distance. (a) Initial stage of side-band growth, z = 5 ft,
carrier wave with small amplitude modulation. ( b ) z = 10 ft, strong amplitude modu-
lation, energy spread over many frequency components. (c) z = 25 ft, reduced amplitude
modulation, return of energy to frequency components of original carrier wave, its side
bands and harmonics. f0 = 3.25Hz, (ka)0 = δ = 0.23, (ka)5ft = 0.29.

They were able to find the following four conservation laws:

I1 =
∫ ∫

(|A|2)dξdζ, (8)

I2 =
∫ ∫

(A∂ξA
∗ − A∗∂ξA)dξdζ, (9)

I3 =
∫ ∫

(A∂ζA
∗ − A∗∂ζA)dξdζ, (10)

H = I4 =
∫ ∫

(|∇A|2 − |A|4)dξdζ. (11)

If we consider the function J(τ) =
∫ ∫

((ξ2 + ζ2) |A|2)dξdζ, and interpret |A|2(ξ, ζ, τ) as the
”mass density”, then I1 is the ”total mass” and J(τ) ≥ 0 is the ”moment of inertia”. It
follows by direct calculations that

d2J

dτ2
= 8H, (12)

where H is defined in (11). If H < 0, J(τ) will become negative in finite time, and it may
happen while quantities I1, I2, I3 and H are kept conserved. This phenomenon, which is
so called ”wave collapse”, has been important in nonlinear optic; nevertheless, since the
governing equation (6) (when β = σ = 1) does not apply to the surface-wave case, it is not
our major concern in present discussion.

Experiments of 2D NLS wave patterns have revealed a variety of puzzling features. For
example, we discussed in Section 2 the notion of FPU recurrence, and its apparent obser-
vations in the experiments of Lake, Yuen, Rungaldier & Ferguson [10]. However, a closer
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Figure 4: Experimentally stable wave patterns in deep water. Frequency=3Hz, wave-
length=17.3cm.

inspection of the results presented in Figure 1 reveals that the period of the recurring pat-
tern increases with distance in the tank (compare the first and last panel), a phenomenon
called frequency downshifting. Downshifting has also been observed and studied in optics
(see Figure 3, and [6], [7]). Interestingly, however, downshifting does not occur in simula-
tions based on 1-D or 2-D NLS, neither in those based on Dysthe’s generalization of NLS
([4]). It remains poorly understood.

In 1990s, Hammack built a new tank to study 2-D wave patterns on deep water. He
found experimental evidence, in some situations, of apparently stable wave patterns in
deep water (see Figure 4), despite the theoretical results described above [13]. How do we
reconcile the experimental observations with Benjamin-Feir instability? There are a few
possible explanations.

The first is that the modulational instability only appears in 1-D plane waves, but not
in 2-D periodic patterns. Motivated by Hammack’s experiments, many researchers began
to investigate theoretically the existence of 2-D periodic surface patterns of permanent
form on deep water. Craig & Nicholls [3] proved that such solutions are admitted in the
full equations of inviscid water waves with gravity and surface tension. Recently, Iooss &
Plotnikov [9] proved the existence of such patterns for pure gravity waves on deep water.
But neither of these papers considers the stability of the solutions, and the question remains
open as to whether they are stable or not.

Another possibility, explored in the next Section, has recently been proposed based on
even more puzzling experimental results: Hammack found that conditions on the water
surface may be essential for the instability. Figure 5(a) shows a 2D NLS experiment in
a tank using recently poured water, which clearly exhibits strong instabilities. Meanwhile
using the same volume of water after leaving it sit in the tank for a few days, in exactly
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(a) (b)

Figure 5: Surface conditions may play an important role of determining the Benjamin-Feir
instability. (a) f = 2Hz, new water; (b) f = 3Hz, old water.

the same experiment otherwise, reveals the presence of much more stable wave patterns,
as shown in Figure 5(b). (For more pictures and movies, visit Pritchard Lab’s website
at www.math.psu.edu/dmh/FRG). Why should “old” water stabilize the wave pattern?
A possible explanation is that impurities accumulating on the water surface provide an
additional damping mechanism, to suppress the growth of the slowly-growing modulational
instability.

4 Stabilization by damping

To study the possibility of stabilization by damping, let us consider the 1-D NLS with an
added damping effect.

i(∂tA + cg∂xA) + ǫ(α∂2

xA + γ|A|2A + iδA) = 0, (13)

where cg is the group velocity, ǫ is a small parameter, and δA is the small damping term
with δ ≥ 0. By introducing variables ξ = t − x

cg
and X = ǫ x

cg
, we obtain

i∂xA + α∂2

ξ A + γ|A|2A + iδA = 0. (14)

Define A(ξ,X) = e−δXA(ξ,X), then (14) becomes

i∂XA + α∂2

ξA + γe−2δX |A|2A = 0. (15)

Equation (15) is in fact a Hamiltonian equation, with a Hamiltonian

Ĥ(X) = i

∫

(

α|∂ξA|2 −
γ

2
e−2δX |A|4

)

dξ. (16)

It follows immediately that dĤ
dX

6= 0.
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There is a solution to (15) corresponding to a wave train that is uniform in ξ

A1 = A0 exp

{

iγ|A0|
2

(

1 − e−2δX

2δ

)}

(17)

If we perturb A around A1 by setting

A(X, ξ) = exp

{

iγ|A0|
2

(

1 − e−2δX

2δ

)}

[|A0| + µ(u + iv)] + O(µ2), (18)

and insert (4) into (15), then equating O(µ) terms to zero yields

∂Xv = 2γe−2δX |A0|
2u + α∂2

ξ u, (19)

∂Xu = −α∂2

ξ v . (20)

Without loss of generality, we seek solutions in the form

u(X, ξ) = û(X)eimξ + û∗(X)e−imξ , and v(X, ξ) = v̂(X)eimξ + v̂∗(X)e−imξ , (21)

where ∗ stands for the complex conjugate. It follows from (19) and (20) that

d2û

dX2
+

[

αm2

(

αm2 − 2γe−2δX |A0|
2

)]

û = 0. (22)

By Lyapunov’s definition, a uniform wave train solution is said to be linearly stable if
for every ǫ > 0 there is a ∆(ǫ) > 0 such that if a perturbation (u, v) satisfies

∫

[u2(ξ, 0) + v2(ξ, 0)]dξ < ∆(ǫ) at X = 0, (23)

then necessarily
∫

[u2(ξ,X) + v2(ξ,X)]dξ < ǫ for all X > 0. (24)

It follows that there is a universal bound B which the total growth of any Fourier mode
can not exceed. To demonstrate the stability, one can choose ∆(ǫ) so that

∆(ǫ) <
ǫ

B2
. (25)

Using Lyapunov’s definition, we can see that there is a growing mode of equation (22) if

αm2

(

αm2 − 2γe−2δX |A0|
2

)

< 0. (26)

It is not difficult to see that the growth stops eventually for any δ > 0. Moreover, the total
growth is bounded (see Figure 6.).
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Figure 6: The shaded region shows the location of the growing modes in wavenumber space.
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∣

∣
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∣

β
γ

∣

∣

∣

1

2 l
|A|

. Note that the experimental results

presented are for the β = 0 case.

5 Experimental verification.

We compare the theory presented above with data from a series of experiments ([11]). Figure
7 shows measured water surface displacement in column 1 and modal amplitudes obtained
from the corresponding Fourier transforms in column 2, measured at different distance from
the wavemaker. At X1, the Fourier spectrum shows that most of the power is in the carrier
wave frequency (at 3.3Hz) and its first harmonic, as well as two small peaks very close to
3.3Hz. These provide a long-wave sinusoidal modulation of the carrier wave, as observed
in the left-hand column. As the modulated wavetrain propagates downstream, we observe
two changes: its overall amplitude decays, and the shape of the modulation changes. By
inspection of the Fourier spectrum, we see that additional sidebands with frequencies near
that of carrier wave 3.3Hz have grown between X1 and X8

Figure 8 compares the measured and predicted amplitudes of the set of initially seeded
sidebands. Since the original Benjamin-Feir analysis did not include dissipation, direct
comparison between their non-dissipative theory with the experiments shows very poor
agreement (and is not shown in the Figure). A somewhat better agreement, as proposed
by Benjamin (1968), can be obtained by calculating the growth rate of the side-bands and
subtracting from this estimate their theoretical dissipation rate (which can be deduced
from that of the carrier wave, since they nearly have the same frequency). As shown in the
Figure 8, the amplitude predictions using this method agree with the experiments for short
distances along the tank. However, for longer distances this simple estimate is no longer
valid.

A much better agreement is obtained by using the full dissipative theory described
above. This experiment thus clearly demonstrates that the stabilization of the side-bands
results from the gradual decay of the amplitude of the carrier wave by dissipation, which
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Figure 7: Experimental wave records. Column 1: water displacement (in cm) with time
abscissa; column 2: corresponding Fourier coefficients (in cm) with frequency abscissa.
Distance of the wave gauge from the wavemaker: 128 cm at X1, and 478 cm at X8. See
also [11].

in turn stronly reduces the growth rate of the modulational instability.

Figure 8: Prediction (solid curves) from the damped NLS theory (22) and measurements
(dots) of the amplitudes of the two seeded sidebands |a

−1| and |a1| as functions of distance
from the wavemaker. X = 0 corresponds to 128 cm from the wavemaker. The dashed line
corresponds to the Benjamin-Feir growth rate to which the side-band dissipation rate has
been substracted.

The growth of the next two unseeded sidebands are shown in Figure 9. Since none of
these were seeded, they started with smaller amplitudes than seeded the ones and remained
smaller. Again, the damped NLS theory adequately predicts their evolution.
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Figure 9: Prediction (solid curves) and measurements (dots) of the amplitudes of the two
unseeded sidebands, (a) |a

−2| and (b) |a2|, and the amplitudes of the third set of sidebands,
(c) |a

−3 and (d) |a3|, as functions of distance from the wavemaker. X = 0 corresponds to
128 cm from the wavemaker, and the starting values of the amplitude were taken from data
measured at the n = 1 location.

6 Summary.

The Benjamin-Feir instability implies that (1D) stable wave patterns propagating on deep
water with nearly permanent form do no exist without presence of damping effects. But any
amount of damping of the right kind can stabilize the instability. This dichotomy between
with and without damping applies to both 1-D plane waves and to 2-D periodic surface
patterns. However, this explanation is still somewhat controversial.
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Lecture 16: Solitary waves

Lecturer: Roger Grimshaw. Write-up: Daisuke Takagi, Yiping Ma and Andrew Stewart

June 24, 2009

1 Introduction

A solitary wave is a wave which propagates without any temporal evolution in shape or
size when viewed in the reference frame moving with the group velocity of the wave. The
envelope of the wave has one global peak and decays far away from the peak. Solitary waves
arise in many contexts, including the elevation of the surface of water and the intensity of
light in optical fibers. A soliton is a nonlinear solitary wave with the additional property
that the wave retains its permanent structure, even after interacting with another soliton.
For example, two solitons propagating in opposite directions effectively pass through each
other without breaking.

Solitons form a special class of solutions of model equations, including the Korteweg
de-Vries (KdV) and the Nonlinear Schrödinger (NLS) equations. These model equations
are approximations, which hold under a restrictive set of conditions. The soliton solutions
obtained from the model equations provide important insight into the dynamics of solitary
waves. However, they are limited by the conditions under which the model equations hold.
An alternative approach, which deals directly with the exact equations from which the
model equations are derived, provides insight into a larger class of solitary waves than those
obtained from the model equations.

In this lecture, we show that important properties of solitary waves can be determined
directly from the exact equations governing a physical system by an asymptotic perturbation
procedure. Information about the possible existence of certain types of solitary waves is
obtained using a phase-plane formalism, a common technique in dynamical systems. In this
framework, a solitary wave corresponds to a homoclinic orbit in a spatial dynamical system.
Solitary waves exist in a number of different cases to be determined, given that they must
decay far away from their global peak. A close examination of the tail regions, far away
from the global peak, indicates that there are four possible cases of solitary waves. Three of
the four possible cases are presented in detail. In the first case, the steady-state solution of
the KdV equation is obtained. In the second case, a generalized solitary wave is obtained,
which decays to non-zero oscillations of constant amplitude and wavenumber. In the third
case, an envelope solitary wave is obtained, which satisfies the NLS equation.

2 Formulation of solitary waves as a dynamical system

Consider a solitary wave propagating with speed c in the positive direction of the x axis.
The wave amplitude in the moving reference frame is the function A(ξ) where ξ ≡ x − ct.
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Figure 1: Plot of the dispersion relation for water waves given by (1) with Bond numbers B = 0
(violet), B = 0.2 (red) and B = 0.4 (blue).

Without loss of generality we can select ξ such that the peak of A is at ξ = 0, while A
decays in the tail regions, in the limits as ξ → ±∞. In the tail regions, where a linearized
analysis is assumed to hold, it is fruitful to seek solutions proportional to the real part of
exp(ikξ), where k is a complex-valued wavenumber to be determined. The wavenumber
must not be purely real, given that the wave amplitude must decay in the tail regions. This
leads to the notion that solitary waves with a real phase speed c only exist within a limited
range of wavenumbers in the spectrum, called gaps.

A relationship between the phase speed c and the wavenumber k is obtained by lin-
earizing the governing equations of a physical system of interest, which yields a linearized
dispersion relation. For example, the linearized dispersion relation of surface water waves
is given by

c2/gh = f(q) = [(1 + Bq2)/q] tanh q, (1)

where g is the acceleration due to gravity, h the constant depth of the water when it
is unperturbed and q = kh the dimensionless wavenumber. The dimensionless number
B = σ/ρgh2 is the Bond number, which measures the relative importance of surface tension
and gravity, where σ is the coefficient of surface tension and ρ is the density of water. A
plot of the function f(q) given by equation (1) for three representative values of the Bond
number B is shown in Figure 1.

Solitary waves can exist provided that no real value of k satisfies the dispersion relation,
meaning that k has a non-zero imaginary part. In the case of B = 0 (no surface tension),
solitary waves can exist only when c2 > gh. When effects due to surface tension are
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significant, such that B > 1/3, q is an increasing function of c with q ≥ 0 for c2/gh ≥ 1. An
example with B = 0.4 is shown in figure 1 (blue curve). Thus, solitary waves with B > 1/3
can only exist when c2/gh < 1. Finally, when 0 < B < 1/3, a real-valued q satisfies (1)
for any speed |c| > cm for some positive cm. Figure 1 shows a plot of (1) with B = 0.2,
which attains a local minimum c2

m/gh at some non-zero wavenumber km. This indicates
that solitary waves with 0 < B < 1/3 can exist only when c2 < c2

m.
Solitary waves are found by reformulating the problem in the framework of a dynamical

system. Let’s assume the system is conservative, which is the common and traditional
scenario for solitary waves. The underlying physical system is Hamiltonian and reversible,
meaning that the system conserves energy and is symmetric under the transformation ξ →
−ξ. This implies that if k is a solution then −k is also a solution due to reversibility. If
k has an imaginary part (as is required for a solitary wave), then k∗ is a solution because
the dispersion relation for real-valued phase speed c has real coefficients. The solutions
generically form a quartet (k, k∗,−k,−k∗) with an associated four-dimensional subspace
for the corresponding wave mode. In the general case when the imaginary part of k is non-
zero, there are typically two roots in the limit as ξ → ∞ and two other roots as ξ → −∞.
In the limit as ξ → ∞, the imaginary part of k must be positive provided that the solitary
wave decays in the tail regions. Likewise, the imaginary part of k must be negative as
ξ → −∞.

Let us now study the amplitude A(ξ) in the framework of a dynamical system. Con-
sider the phase plane where the ξ-derivative of the wave amplitude is plotted against the
amplitude. Trajectories in this phase planes are the curves (A(ξ), Aξ(ξ)). This can either
represent the whole system (for a 2D problem) or a projection of the whole system (for a
higher-dimensional problem). Given the form of A at infinity discussed above, we deduce
that the trajectory is a homoclinic orbit from the origin. Indeed, the origin corresponds to
the tail regions as ξ → ±∞, where both A and Aξ tend to 0. Meanwhile, the peak of the
wave (ξ = 0 point) lies somewhere on the Aξ = 0 axis. If k is pure imaginary then the
trajectories satisfy Aξ = −|k|A near the origin, and approach it directly. If k has a real
part, then the trajectories spiral into the origin instead.

Consider now how the trajectory in the phase plane may change as parameters governing
the original system are varied. Changes in the trajectory far from the origin of the phase
plane mean that the overall shape of the wave A(ξ) is qualitatively changed, but that its
asymptotic behavior at |ξ| → ∞ remains the same. However, much more dramatic changes
in A(ξ) occur if the behavior near the phase plane origin changes (for example when k goes
from being real to complex to pure imaginary, or vice-versa).

This leads us to consider how the quartet structure (k, k∗,−k,−k∗) evolves as some
global system parameter is varied. Clearly bifurcations arise when two solutions for k
coalesce, for which the necessary condition is that ∂c/∂k = 0. This condition is equivalent
to the condition that the phase speed c is equal to the group velocity cg (i.e. the weak
dispersion limit), when the bifurcation occurs at a real value of k. The equivalence follows
immediately from the equation cg = c + k∂c/∂k. For example, from Figure 1 we see that
bifurcations arise in water waves when (k, c2) takes the values (0, gh) or (km, c2

m).
Generically, there are two possible quartet structures at each of the bifurcation points:

• at (k = 0, c2 = gh): we either have the quartet (0, 0, iγ,−iγ) or (0, 0, β,−β), (two
roots have coalesced at the origin, the other two are either real or pure imaginary)
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• at (k = km, c2 = c2
m): we either have (β, β,−β,−β) (cc pairs coalesce on the real

axis) or (iγ, iγ,−iγ,−iγ) (pairs coalesce on the imaginary axis), where β and γ are
real-valued.

The first three of the four possible cases will be examined in detail later. The fourth case,
for the quartet (iγ, iγ,−iγ,−iγ), has only rarely been studied and will not be considered
here.

Consider a projection of the full system onto the appropriate four-dimensional subspace.
The resulting bifurcation is analyzed within the framework of this subspace. A 4-vector
W(ξ), representing the structure of the subspace, satisfies a first-order differential equation
of the form

dW/dξ = L(W; ǫ) + N(W), (2)

where L(W; ǫ) is a linear operator and N(W) contains all nonlinear terms. The parameter
ǫ represents the distance from the bifurcation point. Near the bifurcation (which takes
place at ǫ = 0) the linear operator L can be written as L(W; ǫ) = L0(W) + ǫL1(W) + ...,
where the eigenvalues λ = ik of the operator L0 reproduce one of the four possible quartet
structures described above. In each of the first three cases, the structural form of the small-
amplitude solutions W is examined to identify and describe the nature of corresponding
solitary waves.

3 The three cases

The three types of bifurcations may now be studied with the standard techniques of center
manifold reduction and normal form analysis in bifurcation theory. For more details about
these techniques, we refer the reader to the review article by Crawford [3].

3.1 Case (1)

Let us first consider case (1). At the bifurcation point (ǫ = 0) the linearized system
(2) has eigenvalues (0, 0,∓γ). Since the λ = 0 eigenvalue is degenerate, there will be a
corresponding single eigenvector V0, and a single generalized eigenvector V1 such that
L0V1 = λV1 + V0 = V0. Small-amplitude solutions are then sought in the form

W = A(ξ)V0 + B(ξ)V1 + W
(2) . (3)

Here A,B are real variables of O(α), α ≪ 1, where α measures the wave amplitude. The
leading terms form a two-dimensional subspace (A,B), while W

(2) is a small error term
of O(α2, αǫ), where ǫ, α ≪ 1 are both small parameters. Note that the two remaining
eigenvalues ∓γ play no role at the leading order here, since they correspond to strong
exponential decay at infinity, and their effects are included in the small error term W

(2).
Substituting (3) into (2) yields

AξV0 + BξV1 +
d

dξ
W

(2) = L0

(

A(ξ)V0 + B(ξ)V1 + W
(2)

)

+ǫL1

(

A(ξ)V0 + B(ξ)V1 + W
(2)

)

+N
(

A(ξ)V0 + B(ξ)V1 + W
(2)

)

(4)
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Projection onto the two-dimensional subspace (V0,V1) yields, to lowest order in ǫ and α,

Aξ = B + O(ǫ, α2, ...)

Bξ = V1 ·
[

ǫAL1(V0) + ǫBL1(V1) + L0(W
(2)) + N(AV0 + BV1)

]

+ O(αǫ2, ǫα2, ǫ2, α3, ..)

The first two terms in the B equation are linear terms of O(ǫα), and their projection onto
V1 yields ǫ(c1A+ c2B), where c1 and c2 are the projection coefficients. Similarly, the linear
and nonlinear terms of O(α2) yield contributions of the kind A2, AB or B2, so that

Aξ = B

Bξ = ǫ(c1A + c2B) + (d1A
2 + d2AB + d3B

2) + ...

where the omitted terms are O(αǫ2, α2ǫ, α3). Finally, a normal form analysis reveals the
normal form of the system near the bifurcation :

Aξ = B ,

Bξ = ǫA + µA2 + ... (5)

where µ is a real-valued coefficient, specific to the system being considered.
The eigenvalues λ = ik of this system are ±ǫ1/2 if ǫ > 0, and ±i|ǫ|1/2 if ǫ < 0. As

discussed earlier, only the former case, ǫ > 0, yields the solitary wave solution, with k =
±iǫ1/2. Finally, comparison with the dispersion relation expressed near k = 0

c(k) = c(0) +
k2

2

d2c

dk2

∣

∣

∣

∣

k=0

+ ... (6)

leads to the identification of ǫ as

ǫ = −
2(c − c(0))

ckk(0)
. (7)

Hence, for solitary waves to exist (ǫ > 0), we either need c > c(0) if ckk(0) < 0, or c < c(0)
if ckk(0) > 0. These inequalities recover the graphical argument discussed in the previous
section.

When the error terms in (5) are omitted, we can eliminate B, and the resulting ODE for
A can be recognized as the steady-state KdV equation, which has the well-known “sech2”
solution. It is then a delicate and intricate task to establish that this solitary wave solution
persists when the error terms are restored.

This dynamical systems approach to the problem has therefore established the steady-
state KdV equation as the normal form for weakly nonlinear, weakly dispersive solitary
waves (see also Lecture 6) whenever the dispersion relation satisfies dc/dk → 0 when k → 0,
and has provided mathematical conditions on their propagation speed. The KdV is thus
seen to be strictly correct for any solitary wave of the kind described above, far from the
wave peak (i.e. in the low-amplitude tails). Whether this statement still holds nearer the
peak ξ = 0 depends on the peak amplitude A(0).
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3.2 Case (2)

Next consider case (2), where the linearized system (2) at the bifurcation point (ǫ = 0)
has eigenvalues (0, 0,±iβ). Again, the degeneracy of λ = 0 implies that there is a single
eigenvector V0, and a single generalized eigenvector V1. However, account must now be
taken of the other two eigenvalues ±iβ, with their associated eigenvectors V2,V

∗

2
, since they

do not now lead to decaying solutions at infinity. Small-amplitude solutions are sought in
the form

W = A(ξ)V0 + B(ξ)V1 + C(ξ)V2 + C∗(ξ)V∗

2
+ W

(2) . (8)

Here C is a complex-valued variable, and hence the leading terms form a four-dimensional
subspace (A,B,C), while W

(2) is a small error term. Projection onto this four-dimensional
subspace, followed by normal form analysis now reveals that (A,B,C) satisfy the system

Aξ = B ,

Bξ = ǫA + µA2 + ν|C|2 + · · · ,

Cξ = iγ(1 + δA)C + · · · . (9)

Here µ, ν, δ are real-valued coefficients specific to the system being considered, and the
omitted terms are small error terms as above.

When the error terms are omitted the system is integrable. In that limit, it is easy
to verify that |C|2ξ = 0 by constructing the quantity C∗Cξ + C∗

ξ C. Hence, |C| = C0 is a

constant. By a change of origin from A → A + A0 with ǫA0 + µA2

0
+ νC2

0
= 0, the system

reduces to the same form as (5) in case (1). Thus, for the case ǫ > 0 (when case (1) is a
KdV-type solitary wave), the solution is a one-parameter family of homoclinic-to-periodic
solutions, with |C| = C0 constant and (A,B) → (A0, 0) as ξ → ±∞. The solution is a
generalized solitary wave which typically has a “sech2” core, and decays at infinity to non-
zero oscillations of constant amplitude C0 and wavenumber γ (Figure 2). A delicate analysis
of the full system (2) with the small error terms shows that at least two of these solutions
persist; the minimal amplitude C0 being exponentially small, that is O(exp (−K/|ǫ|1/2))
where K is a positive real constant. Although such waves are permissible as solutions of
the steady-state equations, they have infinite energy and their associated group velocity
is inevitably inward at one end and outward at the other end. Hence, they cannot be
realized in a physical system from any localized initial condition because energy is finite.
Instead localized initial conditions will typically generate a one-sided generalized solitary
wave, whose central core is accompanied by small-amplitude outgoing waves on one side
only. Such waves cannot be steady, and instead will slowly decay with time as energy is
radiated away by outgoing waves from the core.

3.3 Case (3)

Finally we consider case (3), when there is a double eigenvalue λ = iβ with generically
a corresponding single eigenvector V0, and a single generalized eigenvector V1, while the
complex conjugate double eigenvalue λ = −iβ has corresponding complex conjugate eigen-
vectors. Small-amplitude solutions are now sought in the form

W = A(ξ)V0 + B(ξ)V1 + A∗(ξ)V∗

0 + B∗(ξ)V∗

1 + W
(2) . (10)
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Figure 2: Generalized solitary wave.

Here A and B are complex-valued variables, forming a four-dimensional subspace while
W

(2) is again a small error term. Projection onto this subspace and a normal form analysis
reveal that

Aξ = iβA + B + iAP (ǫ, |A|2,K) + · · · ,

Bξ = iβB + iBP (ǫ, |A|2,K) + AQ(ǫ, |A|2,K) + · · · , (11)

where K = i(AB∗−A∗B) (note that K is real). Here P and Q are real-valued polynomials
of degree 1, which take the form

P (ǫ, |A|2,K) = ǫ + ν1|A|2 + ν2K ,

Q(ǫ, |A|2,K) = 2ǫβ + µ1|A|2 + µ2K , (12)

where all coefficients are real-valued. When the error terms in (11) are omitted, the resulting
system is integrable. There are two constants of motion. The first one is K, which is verified
by a direct construction of Kξ. The second one is H, where

H = |B|2 − (2ǫβ|A|2 +
µ1

2
|A|4 + µ2K|A|2) . (13)

To prove that H is constant, note that (|A|2)ξ = A∗B + B∗A and that (|B|2)ξ = Q(|A|2)ξ.
Hence, (|B|2)ξ −Q(|A|2)ξ = 0, so that the integral based on this quantity is constant. This
integral is H.
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For a solitary wave solution, conditions at infinity require K = H = 0. It then follows
that

|B|2 = 2ǫβ|A|2 +
µ1

2
|A|4

(|A|ξ)
2 =

(

(|A|2)ξ
2|A|

)2

=

(

A∗B

|A|

)

2

= |B|2 = 2ǫβ|A|2 +
µ1

2
|A|4 (14)

using the fact that (|A|2)ξ = A∗B + B∗A and that A∗B = B∗A is real. Thus solitary
wave solutions exist provided that ǫ > 0, and that the nonlinear coefficient µ1 < 01. The
condition ǫ > 0 implies that the perturbed eigenvalues, λ ≈ iβ ± (2ǫβ)1/2 have split off
the imaginary axis, and so provide the conditions needed for exponential decay at infinity.
The normal form coefficient µ1 must be computed from the physical parameters through a
reduction procedure [3], so the condition µ1 < 0 is problem-specific.

The solution of the truncated system governed by (14) is

A = a exp (i[β + ǫ]ξ)sech(γξ) , (15)

where γ = (2ǫβ)1/2 , |a|2 = −4ǫβ/µ1. This solution describes an envelope solitary wave,
with a carrier wavenumber β + ǫ and an envelope described by the “sech”-function. As we
saw in Lecture 14, these solitary waves can also be obtained from the soliton solutions of
the NLS equation, in the special case when the phase velocity equals the group velocity,
c = cg, or more precisely when c + Ω/K = cg + V , where V is the soliton speed, Ω the
frequency and K the wavenumber correction. Note that the solution (15) contains an
arbitrary phase in the complex amplitude a, meaning that the location of the crests of the
carrier wave vis-a-vis the maximum of the envelope (here located at ξ = 0) is arbitrary.
However, restoration of the error terms in (11) leads to the result that only two of these
solutions persist, namely, those for which a carrier wave crest or trough is placed exactly
at ξ = 0, so that the resulting solitary wave is either one of elevation or depression. This
result requires very delicate analysis, but could be anticipated by noting that these are the
only two solutions which persist under the symmetry transformation ξ → −ξ.

4 Applications to water waves

The linearized dispersion relation holds the key to finding solitary waves. For water waves,
for which the dispersion relation is (1), these two cases (1) and (2) imply that pure solitary
waves of elevation exist for B = 0, and of depression for B > 1/3, while generalized solitary
waves arise whenever 0 < B < 1/3. For the case of generalized solitary waves, there is
always the possibility that the amplitude of the oscillations is zero, and the solution then
reduces to a pure solitary wave, called an “embedded” solitary wave. There are now many
examples of such embedded solitary waves arising in various physical systems, notably for
internal waves. This “dynamical-systems” approach to finding solitary waves has also been
applied to interfacial waves, where again the linear dispersion relation holds the key to

1This may be understood by regarding |A| as space, ξ as time, and |A|ξ as velocity in (14). Then (14)
describes a velocity field on the positive real line. In order for an orbit starting from and returning to the
origin as ξ → ∓∞ to exist, the velocity field must have a stagnation point, which occurs only when µ1 < 0.
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determining where solitary waves can be found. However, various numerical and analytical
studies suggest that embedded solitary waves do not arise in the context of water waves.
Instead, case (3) implies that envelope solitary waves arise for capillary-gravity waves with
0 < B < 1/3, where it can be shown that the coefficient µ1 in (12) is negative as required.

Finally, we remark that the method of treating solitary waves as homoclinic orbits in
a spatial dynamical system has many applications (cf. [2]) in general evolution equations,
most of which are not integrable. This point of view, coupled with numerical continuation
techniques, turns out to be fruitful in studying spatially localized states in both one (cf. [1])
and two (cf. [7]) dimensional pattern forming systems.
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Lecture17: Generalized Solitary Waves

Lecturer: Roger Grimshaw. Write-up: Andrew Stewart and Yiping Ma

June 24, 2009

We have seen that solitary waves, either with a “pulse”-like profile or as the envelope
of a wave packet, play a key role in nonlinear wave dynamics. However, there are physical
situations when such KdV-type waves may not be genuinely localized. Instead they are
accompanied by co-propagating small oscillations which spread out to infinity without decay
(see Figure 1). These are generalized solitary waves. As we saw in Lecture 16, they may
occur for water waves with surface tension for Bond numbers less than 1/3. It can be shown
that they can also occur for interfacial waves when there is a free surface, and for all internal
waves with mode numbers n ≥ 2. The underlying reason for their existence is the presence
of a resonance between a long wave with wave number k ≈ 0 and a short wave with a finite
wave number. When the amplitude of the central core is small compared to its length,
O(ǫ2), the amplitude of the oscillations is exponentially small, typically O(exp (−C/ǫ))
where C is a positive constant. Hence generalized solitary waves cannot usually be found
by conventional asymptotic expansions, and need exponential asymptotics.

Consider the dispersion relation for internal waves, shown in Figure 2. Normally any
mode numbers higher than 1 will resonate with other modes, so typically these waves do
not persist, and we see only the mode 1 (soliton) waves. However, sometimes the first
mode resonates with the surface mode, in which case waves of mode 2 or higher become
generalized solitary waves, and only the mode 1 wave is a pure solitary wave.

Steady generalized solitary waves are necessarily symmetric. However, this means they
cannot be realized physically as then the group velocity of the small oscillations is the same
in both tails, which implies that energy sources and sinks are needed at infinity. In practice,
these waves are generated asymetrically, with a core and small oscillations only on one side,
determined by the group velocity (see Figure 3). Consequently, they are unsteady and
slowly decay due to this radiation. In Figure 4 we present an acoustic visualisation of the
streamlines generated by stratified flow past a sill, as reported in the experiments of Farmer
& Smith [3]. This phenomenon was subsequently explained in terms of generalized solitary
waves by Akylas & Grimshaw [1].

1 The Coupled KdV Equations

The technique we use to find the tail oscillations is based on extending the usual asymptotic
expansion into the complex plane, and using Borel summation. It is similar to the techniques
used by [6] and [7].

We begin by using a model system of two coupled KdV equations, which can be shown
to describe the interaction between two weakly nonlinear long internal waves whose linear
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Figure 1: Schematic plot of a generalized solitary wave profile.

long wave speeds are nearly equal. The two coupled equations are

ut + 6uux + uxxx +
(

pvxx + quv + 1

2
rv2

)

x
= 0 , (1a)

vt + ∆vx + 6vvx + vxxx + λ
(

puxx + ruv + 1

2
qu2

)

x
= 0 , (1b)

where λ is the coupling parameter and ∆ is the detuning parameter, proportional to the
difference between the two linear long wave speeds, and p, q and r are real-valued constants.
For stability we choose λ > 0, and we may also take ∆ > 0 without loss of generality. This
system is Hamiltonian, and possesses conservation laws for the “mass” variables u and v,
the “momentum” λu2 + v2, and the Hamiltonian.

Let us first examine the linear spectrum for waves of wave number k and phase speed
c for this system. Linearization of (1a) and (1b), followed by a search for solutions of the
kind eik(x−ct) yields

c = 1

2
∆ − k2 ±

√

λp2k4 + 1

4
∆2. (2)

If we let the coupling parameter λ → 0 these linear modes uncouple into a u-mode with
spectrum c = −k2 and a v-mode with spectrum c = ∆ − k2. This situation persists for
λ > 0, and there is a resonance between the long wave (u-mode) and a short wave (v-mode),
with a resonant wavenumber k0 =

√

∆/(1 − λp2) provided that λp2 < 1. A typical plot of
these modes is presented in Figure 5.
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Figure 2: Plot of a schematic set of dispersion curves for internal waves: mode 1 (blue),
mode 2 (red), mode 3 (green) and the surface mode (violet).
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Figure 3: Schematic plot of an asymmetric generalized solitary wave profile.

We now seek nonlinear travelling wave solutions of the form

u = u(x − ct) , v = v(x − ct) , (3)

so that the coupled KdV system (1a, 1b) can be integrated once to become

− cu + 3u2 + uxx + pvxx + quv + 1

2
rv2 = 0 , (4a)

− cv + ∆v + 3v2 + vxx + λ
(

puxx + ruv + 1

2
qu2

)

= 0 . (4b)

Here the two constants of integration have been set to zero, which is achieved either by
imposing solitary wave boundary conditions (u, v → 0 as |x| → ∞) or by translating u and
v by constants. Equations (4a, 4b) form a fourth order ODE system. We shall show that
they have symmetric generalized solitary wave solutions with co-propagating oscillatory tails
of small amplitude. This amplitude will be found using either exponential asymptotics, or
more directly by expanding in λ.

2 Exponential Asymptotics

A typical approach to these equations is to expand around k = 0 for the long (u-mode)
wave. We introduce a small parameter ǫ ≪ 1, and seek an asymptotic expansion of the
following form,

us(ǫx) =

∞
∑

n=1

ǫ2nun , vs(ǫx) =

∞
∑

n=1

ǫ2nvn , c =

∞
∑

n=1

ǫ2ncn . (5)
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Figure 4: An experimental observation from [1] of an asymmetric generalized solitary in-
ternal wave generated by stratified flow past a sill. The streamlines are visualised using
acoustic imaging, and appear to show a mode 2 solitary wave followed by a train of smaller-
amplitude mode-1 waves.
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Figure 5: Plot of the linear phase speed c as a function of wave number k in the coupled
KdV equations. Both the u-mode (red curve) and the v-mode (blue curve) are shown for
the case ∆ = 1, p = 0.5, λ = 0.2.
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Substituting this into (4a,4b) and solving order by order in ǫ yields

u1 = 2γ2sech2(ǫγx) , v1 = 0 , c1 = 4γ2 , (6a)

u2 =
λ

∆

{

(20p2 + q2 − 8pq)c1u1 − (q − 6p)(q − 10p)u2

1

}

, (6b)

v2 = −
λ

∆

{

pc1u1 + 1

2
(q − 6p)u2

1

}

, (6c)

c2 = −
λ

∆
p2c2

1 . (6d)

The expansion can be continued to all orders in ǫ2 without any oscillatory tail being detected.
This is because the size of the tail depends exponentially on ǫ, and so it decays faster as
ǫ → 0 than any power of ǫ.

To find the tail oscillations, we observe that un, vn are singular in the complex plane at
x = (2m+1)iπ/2ǫγ, m ∈ Z. This motivates a closer examination via the change of variable

x =
iπ

2ǫγ
+ z , (7)

which allows us to consider the region of the complex plane close to the first singularity.
Then as ǫz → 0, sech2(ǫγx) ∼ −1/ǫ2γ2z2, and so, substituting back into our asymptotic
expansion (6a)–(6d),

us ∼ −
2

z2
−

λ

2∆z4
(q − 6p)(q − 10p) + · · · + O(ǫ2) , (8a)

vs ∼ −
2λ

∆z4
(q − 6p) + · · · + O(ǫ2) . (8b)

Next we consider the inner problem, in which we seek solutions of (4a, 4b) in the form
u = u(z), v = v(z), and for which the expressions (8a, 8b) form an outer boundary condition.
The outcome is just the same system (4a, 4b) with x replaced by z,

− cu + 3u2 + uzz + pvzz + quv + 1

2
rv2 = 0 , (9a)

− cv + ∆v + 3v2 + vzz + λ
(

puzz + ruv + 1

2
qu2

)

= 0 . (9b)

Note that c = O(ǫ2) from (6a) and can be omitted at the leading order. We proceed by
applying a Laplace transform

[u, v] =

∫

Γ

e−zs[U(s), V (s)] ds , (10)

where the contour Γ runs from 0 to ∞ in the half-plane Re{sz} > 0. We then seek a power
series solution

[U(s), V (s)] =

∞
∑

n=1

[an, bn]s2n−1 , (11)

where a1 = −2, b1 = 0, a2 = −λ(q − 6p)(q − 10p)/12∆, b2 = −λ(q − 6p)/3∆ from (8a, 8b).
In general, substitution of (11) into the Laplace transform (10) generates the asymptotic
series

[u, v] ∼

∞
∑

n=1

[αn, βn]z−2n , [αn, βn] = (2n − 1)![an, bn] . (12)
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This agrees with the asymptotic series (8a, 8b), and in effect the Laplace transform is a
Borel summation of the asymptotic series.

Substitution of the Laplace transform (10) and the series (11) into the differential
equation system (9a, 9b) yields a recurrence relation for [an, bn]. Setting ∆[An, Bn] =
(−k2

0
)n[an, bn], we find that

(n + 1)(2n + 5)

(n − 1)(2n − 1)
An−1 +

(

p −
q

(n − 1)(2n − 1)

)

Bn−1 = Fn , (13)

(

1 − λp2
)

Bn − Bn−1 − λpAn−1 + λ
rBn−1 + qAn−1

(n − 1)(2n − 1)
= Gn , (14)

where Fn and Gn are quadratic convolution expressions in A2, . . . , An−2 and B2, . . . , Bn−2.
As n → ∞, these nonlinear terms can be neglected, and we find that

[An, Bn] → [−p, 1]K as n → ∞ , (15)

where K is a constant whose value depends on λ, p, q, r. It follows that the series (11)
converges for |s| < k0, k2

0
= ∆/(1 − λp2). The result (15) shows that as |s| → k0 there is a

pole singularity given by

[U(s), V (s)] ≈ ∆
[p,−1]K

2(s − ik0)
. (16)

We have now established that the solution in the z-variable is given by (10) where
[U(s), V (s)] has a pole singularity at s = ik0, at the complex conjugate point s = −ik0,
and at all of their harmonics s = ±imk0, m ∈ N. Hence the contour Γ should be chosen to
avoid the imaginary s-axis, and to be explicit we choose it to lie in Re{s} > 0. However,
we seek a symmetric solution, which in the z-variable requires that Im{u, v} = 0 when
Re{z} = 0. The presence of the pole prevents (10) from satisfying this condition, and so
we must correct it by adding a subdominant term

[u, v] =

∫

Γ

e−zs[U(s), V (s)] ds +
ib

2
[p,−1] exp(−ik0z + iδ). (17)

Here b, δ are real constants, and note that | exp (−ik0z)| is smaller than any power of |z|−1

as z → ∞ in Re{z} > 0 , Im{z} < 0, recalling that x = (iπ/2ǫγ) + z. The symmetry
condition is now applied by bringing the contour Γ onto Re{s} = 0 and deforming around
the pole at s = ik0. The outcome is

b cos δ = πK , (18)

which we substitute into (17). The final step is to bring this solution back to the real axis,
using x = (iπ/2ǫγ) + z. Taking account of the corresponding singularity at s = −ik0, we
finally arrive at

[u, v] ∼ [us, vs] + b∆[−p,−1] exp(−πk0/2ǫγ) sin(k0|x| − δ) . (19)

This is a two-parameter family in γ and δ, where 0 < δ < π/2. The minimum tail amplitude
occurs at δ = 0, whilst the amplitude tends to infinity as δ → π/2. Note that the constant
argument of the exponential is determined by the location of the singularity, but we require
the exponential asymptotics to find the amplitude.
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3 Embedded solitons

The constant K is determined by the recurrence relations (13, 14). It is a function of
the system parameters λ, p, q, r and in general is found numerically. However, from our
straightforward asymptotic solution (6a, 6b) we know that K = 0 for q = 6p, and in general
we may find many parameter combinations where K = 0. In particular,

K ∼
λ(6p − q)

3∆
as λ → 0 . (20)

These special values imply that the solitary wave decays to zero at infinity, even though
its speed lies inside the linear spectrum, at least in this asymptotic limit. These are called
embedded solitons. They are usually not stable, but are then metastable, or are said to
exhibit semi-stability, in that they are unstable to small, but not infinitesimal, perturbations.
Nevertheless, they are found to be useful in several applications, such as nonlinear optics
and solid state physics. For water waves with surface tension, generalized solitary waves
exist for Bond numbers 0 < B < 1/3, although numerical simulations suggest that there
are no embedded solitons.

4 One-sided generalized solitary waves

These symmetric solitary waves cannot be realized in practice, since they require an energy
source and sink at infinity. Instead, they are replaced by solitary waves with radiating tails
on one side only, determined by the group velocity. That is, in x > 0 for cg > c, or in x < 0
for cg < c, where cg is the group velocity at the resonant wavenumber. For the present case,
the linear dispersion relation is (2) and so for the relevant u-mode, cg = ∆−3k2 < c = ∆−k2.
Hence there are no oscillations in x > 0, but they will appear in x < 0.

Thus in x > 0, or more generally in Re{z} > 0, the solution is completely defined by the
Laplace transform integral (10), with the contour Γ lying in Re{s} > 0. Then for x < 0, or
Re{z} < 0, the contour Γ must be moved to Re{z} < 0 across the axis Re{s} = 0. In this
process the solution collects a contribution from the pole at s = ik0, which generates the
tail oscillation. The final outcome is that (19) is replaced by

[u, v] ∼ [us, vs] − H(−x)2πK∆[−p,−1] exp(−πk0/2ǫγ) sin(k0x) (21)

where H(·) is the Heaviside function. In effect the phase shift δ = 0, there are no oscillations
in x > 0, and the amplitude in x < 0 is exactly twice the amplitude of the symmetric
solution.

5 Weak Coupling

Let us now return to the coupled travelling wave equations (4a, 4b). Supposing that the
coupling parameter is very small, 0 < λ ≪ 1, we may expand asymptotically in λ as follows,

[u, v] ∼

∞
∑

n=0

λn[un, vn] , c ∼

∞
∑

n=0

λncn . (22)
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Substituting this expansion into (4a 4b), we find that the leading order solution is

u0 = 2β2sech2(βx) , v0 = 0 , c0 = 4β2 . (23)

This leading term is a u-mode solitary wave. A comparison with the previous expansion
(5) suggests that β = ǫγ, but now the amplitude can be order unity. At the next order

−c0u1 + 6u0u1 + u1xx + pv1xx + qu0v1 − c1u0 = 0 , (24a)

(∆ − c0)v1 + v1xx + pu0xx + 1

2
qu2

0
= 0 , (24b)

We use the leading order solution for u (23) to rewrite (24b) as

(∆ − c0)v1 + v1xx = f(x) = −pc0u0 + 1

2
(6p − q)u2

0 . (25)

Note that in the limit λ → 0, the resonant wavenumber is k0 ≈ (∆ − c0)
1/2, which takes

account of the finite speed of the wave. We must now take c0 < ∆ to get tail oscillations,
whilst for c0 > ∆ the expansion yields a genuine solitary wave. The general solution of (25)
is

v1 = A sin k0x + B cos k0x +
1

2k0

∫ ∞

−∞
f(x′) sin (k0|x − x′|)dx′ . (26)

To determine the constants A,B we impose a symmetry condition on v1, so that A = 0,
and then

v1 ∼ b1 sin (k0|x| − δ) as |x| → ∞ , (27)

b1 cos δ = L =
1

2k0

∫ ∞

−∞
f(x) cos (k0x)dx . (28)

With v1 known, we take the limit |x| → ∞ in (24a) to find

u1 ∼ −p
(∆ − c0)

∆
b1 sin (k0|x| − δ) , as |x| → ∞ , (29)

Substituting (25) into (28), we find that

L = −
β2

6k0

{

k2

0(q − 6p) + 4β2q
}

∫ ∞

−∞
sech2(βx) cos (k0x)dx . (30)

Then, as β = ǫγ → 0, this reduces to

L ∼
πk2

0

3
(6p − q) exp (−πk0/2ǫγ) , (31)

which agrees with the previous result (20) from the exponential asymptotics, since L = πK.
The one-sided solutions are obtained by setting δ = 0, and replacing b1 in (27, 29) by either
0 for x > 0 or 2b1 for x < 0.
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Lecture 18: Wave-Mean Flow Interaction, Part I

Lecturer: Roger Grimshaw. Write-up: Hiroki Yamamoto

June 25, 2009

1 Introduction

Nonlinearity in water waves can lead to wave breaking. We can observe easily that waves
break as they come to a beach. The waves on a current also may break. In this lecture we
derive modulation equations of water waves using Whitham’s averaged Lagrangian method.
Then we consider the interaction of nonlinear water waves with currents and slopping bot-
tom topography (e.g. waves on a beach).

2 Water waves in the linear approximation

In the linear approximation, the surface elevation ζ for sinusoidal unidirectional waves is

ζ(x, t) = a cos θ, θ = kx− ωt+ α, (1)

for waves of amplitude a, wavenumber k (> 0), and frequency ω. Here α is an arbitrary
constant ensemble parameter. When there is no mean current the dispersion relation is

ω2 = gk tanh(kH), (2)

where g is the acceleration due to gravity and H is the mean water depth.
If there is a constant horizontal mean current U , in the frame moving with the current

(x′ = x−Ut), the dispersion relation remains similar to (2). Then, θ can also be written as

θ = kx− ωt+ α = k(x′ + Ut) − ωt+ α = kx′ − (ω − kU)t+ α, (3)

so that the dispersion relation of water waves on a horizontal mean current, in the rest

frame is
ω = Uk + ω∗. (4)

where ω∗ is the intrinsic frequency (i.e. ω∗ = ±[gk tanh(kH)]1/2), which has two branches.
The total frequency ω is thus decomposed into the Doppler shift Uk and the intrinsic
frequency ω∗.
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3 Modulation equations of water waves

Now suppose that the amplitude, wave number, frequency, mean current and mean depth
vary slowly relative to the wave field. Then (1) is replaced by the Fourier series expansions
as

ζ(x, t) ∼ a(x, t) cos θ + a2 cos 2θ +O(a3), (5)

θ = φ(x, t) + α, k =
∂φ

∂x
, ω = −

∂φ

∂t
. (6)

Here φ is the phase, and the ensemble parameter α is constant, and the coefficient a2 ∼
O(a2) depends on ω∗, k, U,H. It is convenient to introduce a velocity potential Ψ defined
as

Ψ = Ux−Bt+ Φ(θ, z), (7)

where Φ is the wave component of Ψ, and B is related to the mean height of the waves.
Now, Φ is expanded as Fourier series in the form

Φ(θ, z) = A1 cosh(kz) sin θ +A2 cosh(2kz) sin 2θ +O(a3), (8)

where A1 ∼ O(a) and A2 ∼ O(a2). This is because of the kinematic boundary condition at
free surface ∂Ψ

∂z
= ∂ζ

∂t
+ ∂Ψ

∂x
∂ζ
∂x

. From (6), the equation for conservation of waves is,

∂k

∂t
+
∂ω

∂x
= 0. (9)

The issue is to determine how the amplitude, wavenumber, frequency, mean current and
mean depth vary (slowly) in space and time. The mean current U(x, t) and depth H(x, t)
can be decomposed into background components u(x, t), h(x) and a wave-induced O(a2)
component.

The modulation equations for the wave amplitude, wavenumber, frequency, mean cur-
rent and mean depth are found using Whitham’s averaged Lagrangian method. The La-
grangian of the water wave system is (Whitham, 1974, chapter 13.2)

L = −

∫ ζ

−h

{

∂Ψ

∂t
+

1

2

(

∂Ψ

∂x

)2

+
1

2

(

∂Ψ

∂z

)2

+ gz

}

dz. (10)

Substituting (7) into (10), we obtain

L =

∫ ζ

−h

[

B + ω
∂Φ

∂θ
−

1

2

(

U + k
∂Φ

∂θ

)2

−
1

2

(

∂Φ

∂z

)2

− gz

]

dz,

=

(

B −
1

2
U2

)

H −
1

2
gH2 + gHh

+(ω − Uk)

∫ ζ

−h

∂Φ

∂θ
dz −

∫ ζ

−h

1

2

[

k2

(

∂Φ

∂θ

)2

+

(

∂Φ

∂z

)2
]

dz. (11)

Note that ζ + h = H and ζ2 − h2 = (ζ + h)2 − 2(ζ + h)h.
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Averaging the Lagrangian (11) in α, we obtain

L =
1

2π

∫

2π

0

Ldα = L
(m)

(U,B,H, h) + L
(w)

(E∗, ω∗, k,H), (12)

E∗ =
ga2

2
, k =

∂φ

∂x
, ω = −

∂φ

∂t
, U =

∂Ψ

∂x
, B = −

∂Ψ

∂t
. (13)

The functions L
(m)

(U,B,H, h) and L
(w)

(E∗, ω∗, k,H) are mean and wave components of
averaged Lagrangian respectively.

Mean : L
(m)

=

(

B −
U2

2

)

H −
gH2

2
+ gHh, (14)

Wave : L
(w)

=
DE∗

2
+
D2k

2E∗2

2g
+O(E∗3), (15)

where

D =
ω∗2

gkT
− 1, D2 = −

9T 4 − 10T 2 + 9

8T 4
, T = tanh(kH), ω∗ = ω − Uk. (16)

These expressions are derived first by finding Ψ and thus L to get L̄. The coefficients
A1, A2, a2 in (7) are obtained by solving the variational equations

∂L

∂A1

= 0,
∂L

∂A2

= 0,
∂L

∂a2

= 0, (17)

for A1, A2, a2. The resulting Φ is then used to find Ψ (8), which is then re-substituted into
L (11) and then L. See Whitham (1974, chapter 16.6) and Whitham (1967) for details.

To obtain the modulation equations, the averaged variational principle

δ

∫ ∫

Ldxdt = 0, (18)

is used for variations in δE∗, δφ, δψ, δH, and we have

δE∗ :
∂L

∂E∗ = 0, (19)

δφ :
∂

∂t

(

∂L

∂ω

)

−
∂

∂x

(

∂L

∂k

)

= 0,
∂k

∂t
+
∂ω

∂x
= 0, (20)

δΨ :
∂

∂t

(

∂L

∂B

)

−
∂

∂x

(

∂L

∂U

)

= 0,
∂U

∂t
+
∂B

∂x
= 0, (21)

δH :
∂L

∂H
= 0. (22)

From (19), the dispersion relation is obtained as

D

2
+
k2D2E

∗

g
+O(E∗2) = 0. (23)

180



From (21) we obtain

∂H

∂t
+

∂

∂x

[

UH + k

(

E
(ω − Uk)

gkT

)]

=
∂H

∂t
+

∂

∂x
(HV ) = 0, (24)

where

V = U +
kA

H
, A =

∂L

∂ω
= E

(ω − Uk)

gkT
. (25)

From (22) we obtain

B =
1

2
U2 + gH − gh+

1

2

(

1 − T 2

T

)

kE∗ +O(E∗2). (26)

Using (25) and (26), we obtain

∂

∂t
(HV ) +

∂

∂x
(HV 2) +

∂

∂x

(

gH2

2

)

+
∂S

∂x
= gH

∂h

∂x
, (27)

where

S = k(F − V A) + L
(w)

−H
∂L

(w)

∂H
, F = −

∂L
(w)

∂k
. (28)

Equation (20) can be written as
∂A

∂t
+
∂F

∂x
= 0. (29)

Now, (19), (29), (24), and (27) are the dispersion relation, the wave action equation, the
mean flow and mean momentum equations of the modulation equations respectively. To
these we add equation (9) for conservation of waves.

∂k

∂t
+
∂ω

∂x
= 0. (30)

These equations are fully nonlinear. A is the wave action density and F is the wave
action flux. In the linearized approximation (H ≈ h, U ≈ u) the dispersion relation (23)
becomes

D(ω∗, k, h) = 0, ω = ω∗ + ku, ω∗2 = gk tanh(kh) (31)

A =
∂D

∂ω∗
E∗

2
=
E∗

ω∗ , F = cgA = (c∗g + u)A, (32)

where c∗g = ∂ω∗

∂k
is the intrinsic group velocity. S is the radiation stress, which in the

linearized approximation reduces to

S =

(

kc∗g + h
∂ω∗

∂h

)

A =

(

2kc∗g −
ω∗

2

)

A, (33)

since for water waves,

h
∂ω∗

∂h
= kc∗g −

ω∗

2
. (34)

The equation for conservation of waves (30) becomes

∂k

∂t
+ u

∂k

∂x
= −k

∂u

∂x
−
∂ω∗

∂h

∂h

∂x
,

∂ω

∂t
+ u

∂ω

∂x
= k

∂u

∂t
. (35)

Note that for steady backgrounds the frequency is conserved.
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4 Waves on a current

Now we consider a unidirectional steady current u = u(x), with constant depth h.

4.1 Linear approximation

In the linearized approximation (H ≈ h, U ≈ u), equation (30) becomes

∂k

∂t
+
∂ω

∂x
= 0, ω = uk + ω∗, ω∗2 = gk tanh(kh). (36)

The steady solution is ω = ω0 (constant), with k = k(x). The wave amplitude is obtained
from the wave action equation (29), which reduces to

∂A

∂t
+

∂

∂x
(cgA) = 0, cg = u+ c∗g, A =

E∗

ω∗ . (37)

The steady solution has constant wave action flux F0,

2cgA =
cgc

∗a2

tanh(kh)
= 2F0, c∗ =

ω∗

k
. (38)

For simplicity, we now make the deep-water approximation kh→ ∞, so that ω∗2 = gk,
c∗g = c∗/2. Suppose that u(x = 0) = 0 and the intrinsic phase speed is c∗ = c0 > 0 at x = 0.
Then the steady solution of (36) is obtained as follows. Since ω = ω0,

u(x)k(x) +
√

gk(x) −
√

gk(0) = 0. (39)

Dividing (39) by k(x), we obtain

u(x) + c∗(x) −
c∗2(x)

c0
= 0. (40)

Here we used c∗(x) =
√

g/k(x), c0 = c∗(0) =
√

g/k(0). Then the solution of (40) is

c∗(x) =
c0

2
±

{

c0u(x) +
c2
0

4

}1/2

. (41)

The condition at x = 0 means we choose the plus sign. Note that the group velocity is

cg(x) = u(x) +
c∗

2
= u(x) +

c0

4
±

1

2

{

c0u(x) +
c2
0

4

}1/2

. (42)

Thus, for an advancing current u(x) > 0, x > 0, we must choose only the plus sign, and
so c∗(x), cg(x) both increase as u(x) increases, while then k(x) = g/c∗2 decreases. Since
cgc

∗a2 = 2F0, the wave amplitude decreases.
For an opposing current u(x) < 0, x > 0, there is a stopping velocity at x = xc ,

u(xc) = −c0/4, and the waves cannot penetrate past this point, since cg(xc) = 0. Instead
the waves reflect, with the minus sign in (41, 42). Both c∗(x), cg(x) decrease as |u(x)|
increases, while k(x) increases. Since cgc

∗a2 = 2F0 = c2
0
a2

0
, the wave amplitude increases
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from the initial value a0, and a2 → ∞ as x → xc. Of course, this result is outside the
linear approximation, and in practice the waves will break at xb < x = xc. Here we use an
experimental breaking criterion, ak(xb) = 0.44 (Miche, 1944); note that xb depends on a0

and c0. Using (41, 42) and cgc
∗a2 = 2F0 = c2

0
a2

0
, the wave steepness ak can be calculated

as follows,
ak = a0k0(G1G2)

−1/2G−2

1
, (43)

where

G1 =
1

2
+

(

u

c0
+

1

4

)1/2

, (44)

G2 =
u

c0
+

1

2
G1. (45)

The relation between u/c0 and ak (i.e. equation (43)) is shown as Figure 1.
This rather simple theory has applications to the formation of giant (rogue, freak)

waves in the ocean, for example on the Agulhas current. There are also applications to the
modulation of water waves by an underlying internal solitary wave, whose surface current is
u(x) = u0sech

2(Kx) say (Fig. 2). To explore these further, we take a wave packet solution
of the wave action equation (37)

cgA = cgc
∗a2 = c20a

2

0b
2(t− τ), τ =

∫ x

0

dx

cg
. (46)

Here a0b(t) is the wave amplitude at x = 0, and we assume that the shape function b(t)
is localized (e.g. Gaussian), varying from 0 to a maximum of 1 at t = 0. Then the waves
break throughout the zone, xb < x < xc, over a time interval determined by the width of
the packet.

4.2 Nonlinear effects

In deep water, the wave-induced components of U,H are negligible and so the Lagrangian
(12) becomes just (15) given now by

L
(w)

=

(

ω∗

gk
− 1

)

E∗

2
−
k2E∗2

2g
+O(E∗3), (47)

where now ω∗ = ω − ku(x). The nonlinear dispersion relation (23) becomes

ω∗2 = gk + 2k3E∗ +O(E∗2). (48)

Conservation of wave action (29) and conservation of waves (30) again yield for a steady
solution ( ∂

∂t
= 0)

F = −
∂L

(w)

∂k
= F0, ω0 = ω∗ + u(x)k, (49)

where F0, ω0 are constants. When combined with (48) these yield two coupled equations
for k, E∗ in terms of u(x). Now the dispersion relation (48) depends on the amplitude,
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Figure 1: Wave steepness ak versus u/c0; a0k0 = 0.1, 0.2 (black, blue), where a0k0 are
wave steepness at x = 0. Wave breaking criterion ak = 0.44 (red dash), yields breaking for
|u|/c0 > 0.18, 0.092.

Figure 2: Breaking waves on the internal wave current u = u0sech
2(Kx), for u0/c0 =

−0.2,−0.1 (black, blue), where the red lines give the breaking zones for a0k0 = 0.1, 0.2
(upper, lower). This shows that the waves of a0k0 = 0.1 (0.2) will break when they are on
|Kx| < 0.33 (0.94) if the waves are on internal wave current indicated by black line.
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ω∗ = ω∗(k,E∗) as well as the wavenumber. Conservation of wave action flux becomes

WA = F0, W = −
∂L

(w)

∂k

/

∂L
(w)

∂ω
= u(x) +

ω∗

2k
+ k2A, (50)

A =
∂L

(w)

∂ω
=
E∗

ω∗

(

1 +
2k2E∗

g

)

. (51)

These are combined with (48) and (49),

ω∗2 = gk + 2k3ω∗A, ω0 = ω∗ + u(x)k, (52)

to yield two equations for k, A in terms of u(x). Note that for an opposing current u(x) < 0
(x > 0) there is now no stopping velocity, as W → 0, A→ ∞ is not allowed.

The equation of wave steepness ak in terms of u(x)/c0 is obtained by the same method
used to derive (43), but is more complicated. For convenience, we define

s(ak) = ω∗k2A, s0 = s(a0k0), (53)

and

ŝ =
g + 2s0
g + 2s

. (54)

Then the first equation of (52) is written as

ω∗ = k(g + 2s), (55)

so A and W can be written as follows,

A =
E∗

ω∗

(

1 +
2k2E∗

g

)

,

=
c∗a2g

2(g + 2s)
(1 + a2k2), (56)

W = u+
ω∗

2k
+ k2A,

= u+
c∗

2
+

c∗a2k2g

2(g + 2s)
(1 + a2k2),

= u+ c∗
[

1

2
+

a2k2g

2(g + 2s)
(1 + a2k2)

]

, (57)

where c∗ = ω∗/k =
√
g + 2s/k. Because u(x = 0) = 0, A0 and W0 are written as

A0 = c0a
2

0

g

2(g + 2s0)
(1 + a2

0k
2

0), (58)

W0 = c0

[

1

2
+

a2
0
k2
0
g

2(g + 2s0)
(1 + a2

0k
2

0)

]

. (59)

From the second equation of (52), we obtain

k0

k
=
c∗

c0
+
u

c0
. (60)
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Using (54), k0/k can be written as

k0

k
= ŝ

(

c∗

c0

)2

. (61)

From (60) and (61), we obtain the quadratic equation for c∗/c0 as

ŝ

(

c∗

c0

)2

−

(

c∗

c0

)

−
u

c0
= 0, (62)

and its solutions are
c∗

c0
=

−1 ±
√

1 + 4ŝ(u0/c0)

2ŝ
. (63)

Conservation of wave action flux can be written as

WA = W0A0. (64)

Multiplying (64) by (60)2, we obtain

WA

(

c∗

c0
+
u

c0

)2

= W0A0

(

k0

k

)2

. (65)

Substituting (56)-(59) to (65), we obtain

{

u

c0
+
c∗

c0

[

1

2
+

a2k2g

2(g + 2s)
(1 + a2k2)

]}{

c∗

c0
a2k2

g

2(g + 2s)
(1 + a2k2)

}(

c∗

c0
+
u

c0

)2

=

[

1

2
+

a2

0
k2

0
g

2(g + 2s0)
(1 + a2

0k
2

0)

]

a2

0k
2

0

g

2(g + 2s0)
(1 + a2

0k
2

0), (66)

where c∗/c0 can be calculated by (63). Because s and ŝ are functions of ak, equation (66)
describes the relation between ak and u/c0, and it is shown as Figure 3.

5 Waves on a beach

In this section, we consider the waves on a beach. We recall that the full modulation
equations are

∂A

∂t
+
∂F

∂x
= 0, A =

∂L
(w)

∂ω
, F = −

∂L
(w)

∂k
, (67)

∂H

∂t
+

∂

∂x
(HV ) = 0, V = U +

kA

H
, (68)

∂V

∂t
+ V

∂V

∂x
+ g

∂ζ

∂x
+

1

H

∂S

∂x
= 0, (69)

S = k(F − V A) + L
(w)

−H
∂L

(w)

∂H
, (70)

∂k

∂t
+
∂ω

∂x
= 0, (71)
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Figure 3: Wave steepness ak versus u/c0; a0k0 = 0.1, 0.2, 0.3 (black, blue,red); wave break-
ing criterion ak = 0.44 (red dash) yields breaking for |u|/c0 > 0.27, 0.21, 0.13. The dash
line is the linear solution for a0k0 = 0.1.

where

L
(w)

=
DE∗

2
+
D2k

2E∗2

2g
+O(E∗3), (72)

and

D =
ω∗2

gk tanh(kH)
− 1, ω∗ = ω − Uk. (73)

The mean momentum equation (69) has been rewritten.
Suppose that h = h(x) → 0 as x→ 0, and that there is no background current. Then the

steady solution ( ∂
∂t

= 0) of these modulation equations yields the dispersion relation (71,
73), constant frequency ω = ω0 , and constant wave action flux and zero mass transport,

−
∂L

(w)

∂k
= F0, V = U +

kA

H
= 0, ω∗ = ω0 − Uk. (74)

Thus there is a mean Eulerian flow U = −kA/H, opposing the Stokes drift due to the
waves. The mean momentum equation (69) then yields the wave set-up ζ,

g
∂ζ

∂x
+

1

H

∂S

∂x
= 0, S = kF0 + L

(w)
−H

∂L
(w)

∂H
. (75)

From (74), S as known in terms of H, and so

gζ = −

∫ x 1

H

∂S

∂x
dx = −

∫ H 1

H

∂S

∂H
dH. (76)
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To illustrate, first make the small amplitude approximation. Then ω∗ ≈ ω0, H ≈ h, so
that the dispersion relation becomes ω2

0
= gk tanh(kh) and yields k = k(h), D = 0. The

constant wave action flux condition reduces to

cga
2 = cg0a

2

0, (77)

where subscript “0” indicates the values at the depth h = h0 offshore. The expression (76)
can be written as follows. At first, we consider the total derivative of D. Now D can be
considered as D = D(k(h), h), so

dD

dh
=
∂D

∂k

∂k

∂h
+
∂D

∂h
= 0. (78)

Because
∂L

(w)

∂h
=
E∗

2

∂D

∂h
,

∂L
(w)

∂k
=
E∗

2

∂D

∂k
= −F0, (79)

using (78) we obtain

∂L
(w)

∂h
= F0

∂k

∂h
. (80)

Using (80), 1

h
∂S
∂h

becomes

1

h

∂S

∂h
=

1

h

{

kF0 −
∂

∂h

(

h
∂L

(w)

∂h

)}

,

=
1

h

{

F0

∂k

∂h
−
∂L

(w)

∂h
− h

∂2L
(w)

∂h2

}

,

= −
∂2L

(w)

∂h2
.

Then, (76) becomes

gζ = −

∫ h 1

h

∂S

∂h
dh,

=

∫ h ∂2L
(w)

∂h2
dh,

=
∂L

(w)

∂h
,

= −
1

2

(

1 − tanh2(kh)

tanh(kh)

)

kE∗,

= −
1

2

(

− sinh2(kh) + cosh2(kh)

sinh(kh) cosh(kh)

)

kE∗,

= −
kE∗

sinh(2kh)
, (81)

188



so that,

ζ = −
ka2

2 sinh(2kh)
, (82)

where ζ0 = 0. This is always negative, and so is a set-down. In shallow water kh → 0,
cg ≈ (gh)1/2, and

k

k0

≈

(

h0

h

)1/2

,
a

a0

≈

(

h0

h

)1/4

, (83)

so that, (82) can be approximated by

ζ ≈ −
a2

4h
=
a2

0
h

1/2

0

4h3/2
. (84)

Since this small-amplitude theory predicts infinite amplitudes as h → 0, we must con-
sider nonlinear effects. One option is to impose an empirical wave-breaking condition
a/h = 0.44 (Thornton and Guza, 1982, 1983), which defines the depth h = hb, beyond
which there is a surf zone. Here, we shall examine nonlinear effects in h > hb in the shallow
water approximation kH → 0. Then the Lagrangian (72) becomes

L
(w)

≈
DE∗

2
−

9E∗2

16gk2H4
, D ≈

ω∗2

gHk2

(

1 +
k2H2

3

)

− 1. (85)

This Lagrangian is only valid when ak ≪ k3H3, that is, for a very small Stokes num-
ber (Stokes, 1847). Using the linear shallow water expressions (83) we require that S0 =
a0/k

2
0
h3

0
≪ (h/h0)

9/4, which must fail as h → 0. Hence, we infer that in shallow water
we need to use a new theory, valid for Stokes number of order unity, so we consider the
Korteweg-de Vries model next.

The Korteweg-de Vries (KdV) equation for weakly nonlinear long water waves, propa-
gating on a constant undisturbed mean depth H, is given by (Mei, 1983, chapter 11.5.3)

∂ζ

∂t
+ c0

∂ζ

∂x
+

3c0
2H

ζ
∂ζ

∂x
+
c0H

2

6

∂3ζ

∂x3
= 0, c0 = (gH)1/2. (86)

The KdV balance has linear dispersion, represented by H3 ∂3ζ
∂x3 , balanced by nonlinearity,

represented by ζ ∂ζ
∂x

. To leading order, the waves propagate unchanged in form with the

linear long wave speed c0 = (gH)1/2 . Nonlinearity leads to wave steepening, opposed by
wave dispersion, resulting in the KdV balance and the well-known solitary wave

ζ = assech
2[κ(x− ct)],

c

c0
− 1 =

as

2H
=

2κ2H2

3
. (87)

The periodic wave solution of KdV equation (86) is

ζ = 2a
[

b(m) + cn2(γθ;m)
]

, ω = −
∂θ

∂t
, k = −

∂θ

∂x
, (88)

b =
1 −m

m

E(m)

mK(m)
,

a

H
=

2

3
mγ2(kH)2, γ =

K(m)

π
, (89)
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c =
ω

k
= c0

{

1 +
a

H

[

2 −m

m
−

3E(m)

mK(m)

]}

, (90)

Here cn(x;m) is the elliptic function of modulus m where 0 < m < 1, and K(m), E(m) are
elliptic integrals of the first and second kind. The amplitude is a and the mean value is 0.
As m→ 1, this solution becomes a solitary wave, since then b→ 0 and cn2(x) → sech2(x).
As m → 0, γ → 1/2, and it reduces to sinusoidal waves of small amplitude a ∼ m. This
cnoidal wave (88) contains two free parameters; we take these to be the amplitude a and
the wavenumber k.

We now use the cnoidal wave expression (88) to evaluate the averaged Lagrangian (12),
incorporating a mean current U ,

L
(w)

=

(

c∗2

gH
− 1

)

G(m)
E∗

2
+O(E∗2), E∗ =

ga2

2
(91)

where
G(m) = 8(< cn4(γθ;m) > −b2), (92)

or

G(m) =
8[EK(4 − 2m) − 3E2 −K2(1 −m)]

3K2m2
. (93)

To leading order the phase speed c∗ = W = (gH)1/2, while the wave action density, wave
action flux and radiation stress now become, to leading order

A =
∂L

(w)

∂ω
=
G(m)E∗

ω∗ , F = −
∂ω(w)

∂k
= (U + c∗)A, (94)

S =
3ω∗A

2
=

3G(m)E∗

2
. (95)

As before, we now seek the steady solutions ( ∂
∂t

= 0), so again ω = ω0 is the constant

wave frequency, and to leading order kh1/2 = k0h
1/2

0
is constant. Next F = F0 is the

constant wave action flux, implying that, to leading order in wave amplitude,

h1/2G(m)a2 = constant. (96)

Then using the expression (89) we find that a ∝ mK2k2h3 and so finally we get that

G̃(m) = K4m2G(m) = constant · h−9/2. (97)

The wave amplitude determined from (96, 97) is shown in Figure 4. As m → 0, G ∝ 1,
G̃ ∝ m2, and so m ∝ h−9/4, a ∝ h−1/4 which is the linear Green’s law (Green, 1837) result.
But, as m→ 1, G ∝ K−1, G̃ ∝ K3, a ∝ h−1.

Wave set-up is found from (69, 95) and is given by

gζ = −
1

h

∂S

∂x
, S =

3ωA

2
=

3G(m)E∗

2
. (98)
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Figure 4: The wave amplitude is determined from (96, 97). The plots are for an initial
modulus m0 = 0.1, 0.5 (black, blue), while the linear solution ζ ∝ h−1/4 is the red curve.

But since the wave frequency ω = kc0, c0 = (gh)1/2 and the wave action flux c0A are
conserved (see (96)), we readily find that

ζ = −
a2G(m)

4h
= −

a02h
1/2

0
G(m0)

4h3/2
, (99)

This is just the linear law again, and is independent of how the wave amplitude varies. Note
that for a0/h0 ≪ 1, m0 ≈ 0, G(m0) ≈ 1.
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form limte de la houle lors ds son déferlement. application aux digues marities, Annales
des Ponts et Chaussées, 114 (1944), pp. 25–78, 131–164, 270–292, 369–406.

191



[6] G. G. Stokes, On the theory of oscillatory waves, Trans. Cambridge Philos. Soc., 8
(1847), pp. 441–455.

[7] E. B. Thornton and R. T. Guza, Energy saturation and phase speeds measured on

a natural beach, Journal of Geophysical Research, 84 (1982), pp. 9499–9508.

[8] , Transformation of wave height distribution, Journal of Geophysical Research, 88
(1983), pp. 5295–5938.

[9] G. B. Whitham, Non-linear dispersion of water waves, J. Fluid Mech., 27 (1967),
pp. 399–412.

[10] , Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.

192



Lecture 19: Wave-Mean Flow Interaction, Part II: General

Theory

Lecturer: Roger Grimshaw. Write-up: Michael Bates

25 June, 2009

1 Introduction

Suppose that we have a non-dissipative system that obeys a variational principle with
a Lagrangian density, L(φ, φt, φxi

; t, x), where the field values are elements of the vector
valued field φ(t, xi), t is time and the spatial variables are xi with i = 1, 2, . . .. The
governing equation of such a system is the Euler-Lagrange equation,

∂

∂t

(

∂L

∂φt

)

+
∂

∂xi

(

∂L

∂φxi

)

−
∂L

∂φ
= 0 , (1)

where we have implied summation over the index, i. Using the calculus of variations,
we can recover conservation laws which correspond to the symmetries of the Lagrangian.
Energy conservation corresponds to a time symmetry, ∂tL = 0, and momentum conservation
corresponds to space symmetry, ∂xi

L = 0. Wave action conservation corresponds to a phase
symmetry.

If we seek a solution to describe waves superimposed on a mean flow, we introduce a
phase parameter, θ, such that,

φ(t, xi, θ + 2π) = φ(t, xi, θ) . (2)

As an example, small amplitude waves might have,

φ(t, xi) ≈ a sin(kixi − ωt+ θ) , (3)

where ki is the wavenumber vector, ω is the wave frequency and a is the wave amplitude.
Finally, we define a phase average by using the angle bracket notation,

〈·〉 =
1

2π

∫

2π

0

(·)dθ . (4)

Another common notation for denoting averages is the bar notation, ·̄, which we will use
interchangeably with the angle bracket notation, 〈·〉. Note that all averaged quantities are
independent of θ. Thus, we may write the entire function as a linear combination of the
mean flow, 〈φ〉, and a wave field, φ̂,

φ = 〈φ〉 + φ̂ , (5)

where by definition, 〈φ̂〉 ≡ 0.
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2 Wave action

A useful consequence of the Euler-Lagrange equation (1) is that if we take any field with
the same dimensions as φ, then we get the equation [4],

∂

∂t

(

ψ
∂L

∂φt

)

+
∂

∂xi

(

ψ
∂L

∂φxi

)

= ψt
∂L

∂ψt
+ ψxi

∂L

∂φxi

+ ψ
∂L

∂φ
. (6)

If we put ψ = φθ and phase average we get,

∂

∂t

〈

φ̂θ
∂L

∂φt

〉

+
∂

∂xi

〈

φ̂θ
∂L

∂φxi

〉

= 0 , (7)

noting that the Lagrangian has no intrinsic dependence on the parameter θ. If we define
the following quantities,

A = 〈φ̂θ
∂L

∂φt
〉, Bi = 〈φ̂θ

∂L

∂φxi

〉 , (8)

we can see that the corresponding phase symmetry is,

∂A

∂t
+
∂Bi

∂xi
= 0 . (9)

A is the wave action density and Bi is the wave action flux. Physically, the wave action
is the wave energy divided by the intrinsic wave frequency (which we shall define later).
So, when a wave’s frequency decreases (increases), the wave gains (loses) energy from (to)
the mean flow in order to conserve wave action. Being wave quantities, if A and B are
zero, then there are no waves. As such, wave action is a good measure of wave activity.
Equation (9) is a conservation law in all unforced, non-dissipative systems (as is the case
with the system we are considering). Formally, the wave action conservation law is valid
without restriction on amplitude or on the relative time and space scales of the waves (with
respect to the mean flow).

If we now suppose that the mean flow, background medium and wave parameters are
slowly varying, we may write the wave field as,

φ̂ ∼ φ̂(S(t, xi) + θ; t, xi) . (10)

As we are assuming that S varies much more rapidly than the wave field’s explicit depen-
dence on t or xi, the explicit derivatives ∂φ̂/∂xi and ∂φ̂/∂t are small terms. Therefore, we
can write

φ̂t ∼ φ̂θ
∂S

∂t
φ̂xi

∼ φ̂θ
∂S

∂xi
, (11)

noting that,
∂S

∂t
= −ω

∂S

∂xi
= κi , (12)

where ω is the local frequency and κi is the local wavenumber. Substituting equations (12)
into equations (11), we get

φ̂t ∼ −ωφ̂θ φ̂xi
∼ κxi

φ̂θ . (13)

194



Substitution into equations (8) yields

A =

〈

φ̂θ
∂L

∂(−ωφ̂θ)

〉

B =

〈

φ̂θ
∂L

∂(κiφ̂θ)

〉

. (14)

Both A and B are O(a2), where a is the wave amplitude in the small amplitude limit,
although, these equations are formally valid without any restriction on amplitude. It can
be shown that

〈

φ̂θ
∂L

∂(−ωφ̂θ)

〉

= φ̂θφ̂
−1

θ

∂〈L〉

∂(−ω)

⇒ A = −
∂L̄

∂ω
, (15)

where we note that ω is already an averaged quantity. Similarly for Bi, we get,

Bi =
∂L̄

∂κi
. (16)

where again we note that κi is an averaged quantity. Here L̄ ≡ 〈L〉, is the averaged
Lagrangian and, similarly to ω and κi, is a slowly varying function of t and xi.

Finally for slowly varying waves, we also require the equation for conservation of wave
action,

∂κi

∂t
+
∂ω

∂xi
= 0 (17)

3 Linearised waves

We are now in a position where we can decompose the Lagrangian as follows,

L = L0(φ̄t, φ̄xi
, φ̄; t, xi) + L1(φ̂t, φ̂xi

, φ̂; t, xi) , (18)

where φ̄ ≡ 〈φ〉. Here L0 = L(φ̄, φ̄t, φ̄xi
; t, xi) is the Lagrangian for the mean flow and

L1 = L(φ̂, φ̂t, φ̂xi
; txi) is the Lagrangian for the wave field. While the Lagrangian for the

wave field depends on the Lagrangian for the mean flow, the dependence is not explicit but
instead is present implicitly via the explicit dependence on t and xi.

We may further simplify equation (10) by assuming a small amplitude,

φ̂(t, xi) ≈ a(t, xi) sin(S(t, xi) + θ) . (19)

If we substitute into equation (18) and then average, we find that the average of the La-
grangian wave field is, to leading order, given by

L̄1 ≈ D(ω∗, κi; t, xi)a
2 . (20)

We note that there are no linear terms in a, as these terms average to zero, furthermore,
the error is O(a4). In equation (20), we have extracted the dependence of the wave field on
the mean field, where Ui is the mean velocity field and ω∗ is the intrinsic frequency
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given by ω∗ = ω−Uiκi, while the rest of the fields remain suppressed in the explicit xi and
t dependencies. In the linearised approximation, the mean fields are known, with the result
that L̄1 depends only on the mean velocity Ui through the intrinsic frequency, ω∗, which
follows from Galilean invariance.

If we substitute equation (20) into our expressions for A and B, equations (15) and (16),
we obtain,

A = −
∂D

∂ω∗a
2 (21)

B =
∂D

∂κi
a2 , (22)

where we note that (∂D/∂ω∗)(∂ω∗/∂ω) = ∂D/∂ω∗ as Ui is slowly varying. Furthermore,
we note that the variation of L̄ is independent of a, ∂L̄1/∂a = 0. As a result of this latter
relation, we find that the dispersion relation is,

D(ω∗, κi; t, xi)2a = 0

∴ D(ω∗, κi; t, xi) = 0 . (23)

It follows, upon differentiation with respect to κi (remembering the definition of the intrinsic
frequency) that,

∂D

∂ω∗ cgi
+
∂D

∂κi
= 0 , (24)

where cgi
= ∂ω/∂κi = Ui + cg

∗
i

is the group velocity and cg
∗
i

= ∂ω∗/∂κi is the intrinsic
group velocity. Use of equations (21) and (22) gives us the relation Bi = cgi

A, which, upon
substitution into the wave action equation (9), yields the result,

∂A

∂t
+
∂(cgi

A)

∂xi
= 0 . (25)

4 Energy and momentum

In order to provide a more physical interpretation of wave action, we consider the conser-
vation laws for energy and momentum. Supposing that we have a full Lagrangian system
governed by equation (1), L(φ, φxs

;xs) where s = 0, 1, 2, 3 and we note that x0 = t is a
time-like variable. Recalling equation (6), we write,

∂

∂xs

(

ψ
∂L

∂φxs

)

= ψxs

∂L

∂φxr

+ ψ
∂L

∂φ
.

If we now put ψ = φxr
, we find a conservation law,

∂

∂xs

(

φxr

∂L

∂φxs

)

=
∂φxr

∂xs

∂L

∂φxr

+
∂φ

∂xr

∂L

∂φ

∂

∂xs

(

φxr

∂L

∂φxs

)

=
dL

dxr
−

(

∂L

∂xr

)

e

, (26)
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where (·)e indicates that the derivative is taken keeping φ and φxr
fixed while,

dL

dxr
≡

∂L

∂xr
+ φxr

∂L

∂φ
+

∂L

∂φxs

∂φxs

∂φxr

(27)

may be recognised as the total derivative. Furthermore, we note that dL
dxr

= δrs
dL
dxr

=
∂

∂xr
δrsL in which δrs is the Kronecker delta symbol. This gives us the result

∂

∂xs

(

φxr

∂L

∂φxs

− Lδrs

)

=
∂L

∂xr

∂Trs

∂xs
= −

∂L

∂xr
, (28)

where Trs = φxr

∂L
∂φxs

−Lδrs can be identified as the energy-momentum tensor from classical
physics.

While the exact components of the tensor depend on the problem being studied, we
can identify T00 as the energy density, T0j as the energy flux and Ti0 as the momentum
density and Tij as the corresponding fluxes. We may apply the averaging operator to the
conservation law, equation (28), which gives us the averaged total energy 〈T00〉 and averaged
total momentum, 〈Ti0〉. These are not, on their own, particularly useful, as they contain
both the mean and wave fields. Typically, the wave field is O(a2), and as such, is small
relative to the mean field contribution.

We follow the averaging procedure of [2], by putting ψ = φ̂xs
, recalling that φ = φ̄+ φ̂,

and essentially follow the same procedure as for the full wave field to yield,

∂Trs

∂xs
= −

∂L̄1

∂xr
(29)

where now

Trs =

〈

φ̂xr

∂L1

∂φ̂xs

− δrsL1

〉

. (30)

We may now identify T00 as the pseudoenergy density, T0j as the pseudoenergy flux and
Ti0 as the pseudomomentum density and Tij is the pseudomomentum flux. Recalling that

φ = φ̄+ φ̂, we can see that we are able to replace φ with φ̂ throughout as there is a linear
relation between the two, with the value for φ̄ and its derivatives being slowly varying.
We also recall that the total Lagrangian is a linear combination of the average and wave
Lagrangians, L = L0 + L1. However, we note that L0 is not a function of φ̂, and as such
terms like ∂L0/∂φ̂ = 0. These approximations make Trs an O(a2) wave property (where we
recall that a is the wave amplitude). Note, however, that equation (30) is not a conservation
law unless L1 is independent of xs. As a consequence, the mean flow, φ̄ is also required to
be independent of xs.

If we put ψ = φ̂θ, we regain equation (8). If a suitable ergodic principle exists, we may
identify the phase with a particular coordinate, θ = xs. This allows us to identify Ts0 = A

and Tsi = Bi. We note that the diagonal term Tss is thus absent from the conservation
law, equation (30). As such, we can now say that wave action is pseudoenergy for time
averaging and is pseudomomentum for space averaging.
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Generally speaking, wave energy is not as useful a quantity as wave action, since wave
energy is not generally conserved. If we suppose that the mean flow consists of a mean
velocity Ui, and a vector valued mean field, λ, that we require to satisfy the equation,

dλ

dt
+ Λijλ

∂Ui

∂xj
= 0 , (31)

where d

dt
≡ ∂

∂t
+Ui

∂
∂xi

is the material derivative and Λ is a dyadic of basis vectors. Physically,
λ incorporates quantities such as mean depth, mean density or even mean magnetic field.
We can now follow [3] and define the wave energy E as the pseudoenergy in a reference
frame moving with the mean flow,

E = T00 + UiTi0 (32)

E =

〈

dφ̂

dt

∂L1

∂φ̂t

− L1

〉

, (33)

where we note that T00 = 〈∂φ̂
∂t

∂L1

∂φ̂t

− L1〉 and UiTi0 = 〈Uiφ̂xi

∂L1

∂φ̂t

〉 from equation (30).

Similarly, the wave energy flux is given by,

Fi =

〈

dφ̂

dt

∂L1

∂φ̂xi

− UiL1

〉

. (34)

Here, we note that L1 = L1(φ̂, φ̂t, φ̂xi
;Ui, λ;xi, t). If we suppose that the dependence of E

and F is solely through the material derivative, then it can be shown that

∂E

∂t
+
∂Fi

∂xi
= −Rij

∂Ui

∂xj
−

(

dL̄1

dt

)

e

(35)

where (. . .)e indicates the explicit derivative with respect to t and xi while the wave field,
φ̂ and the mean fields, Ui, λ are held constant and R is the radiation stress tensor,

Rij = −Tij + UjTi0 − Λijλ
∂L̄1

∂λ
. (36)

The final piece of the puzzle is an equation for the mean flow, which is gained by variation
of the mean field. In order to achieve this, we apply the averaging operator, equation (4),
to the Lagrangian, equation (1), subject to the constraint described by equation (31),

∂

∂t

(

∂L0

∂Ui

)

+
∂

∂xj

(

Ui
∂L0

∂Ui
− Λijλ

∂L0

∂λ
+ L0δij

)

−

(

∂L0

∂xi

)

e

= −
∂Rij

∂xj
+

(

∂L̄1

∂xi

)

e

. (37)

This equation may also be derived using Whitham’s variational principle. When Λ is
isotropic, Λij = Mδij , then there is a mean pressure Q, such that equation (37) becomes,

−
∂Rij

∂xj
= −

∂Ti0

∂t
−
∂(UjTi0)

∂xj
+
∂Q

∂xi
. (38)
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5 Slowly varying waves

In the circumstances where we have a slowly varying, almost-plane wave field (where the
dependence on phase S(xi) is rapidly varying compared to the explicit dependence of the
field on xi), which can be reasonably approximated by equation (10). Recall that under
such circumstances the frequency is given by ω = −∂S/∂t and wavenumber is given by
κi = ∂S/∂xi. We also get useful reductions for pseudoenergy,

T00 ≈ωA− L̄1 (39)

T0i ≈ωBi , (40)

for pseudomomentum,

Ti0 ≈− κiA (41)

Tij ≈− κiBj − L̄1δij , (42)

for wave energy,

E ≈ω∗A− L̄1 (43)

F ≈ω∗(Bi − UiA) , (44)

and the radiation stress tensor reduces to

Rij ≈ κi(Bj − UjA) + L̄1δij − Λijλ
∂L̄1

∂λ
. (45)

For linearised waves, we can achieve further results by recalling the dispersion relation,
equation (23), which implies that the intrinsic frequency is ω∗ = Ω(κi;λ;xi, t), and ω =
κiUi + ω∗. We also recall the wave action equation, equation (25) with the group velocity
given by cgi

= Ui + ∂Ω/∂κi. Noting, that for linearised waves L̄1 = 0, which implies that
the wave energy is given by E = ω∗A and the pseudoenergy is give by T00 = ωA, giving
new expressions for the wave energy equation (35) and the radiation stress equation (36),

∂E

∂t
+

∂

∂xi
([Ui + cg

∗
i
]E) = −Rij

∂Ui

∂xj
+
E

ω∗

(

dΩ

dt

)

e

(46)

Rij = A

(

κicgj
+ Λijλ

∂Ω

∂λ

)

. (47)

It is worth noting that there are some linear, almost plane waves for which this approxima-
tion does not hold, with one of the more notable exceptions being Rossby Waves.

6 Extensions

The theory outlined above can be extended to modal waves. That is, waves that are
confined to a wave guide, such that the direction of propagation is in a reduced set of
spatial dimensions and a modal structure in the remaining set of dimensions. Examples of
such waves are water waves and internal waves.
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The general theory outlined above can still be used, although we need to combine the
Lagrangian averaging with integration across the waveguide.

In order to apply the theory outlined in the previous sections to fluid flows, we need
to identify a suitable Lagrangian. Sometimes it is possible to find it directly from the
Eulerian formulation, however, it is usually most convenient to find the Lagrangian using a
Lagrangian formulation of the equations of motion.

In order to consider finite amplitude waves, it is best to use generalised Lagrangian

mean theory (GLM) developed by [1, 2]. In GLM theory, we define the particle dis-
placements from a mean position that moves with the mean velocity Ui. As such, xi are
Lagrangian variables moving with the Lagrangian mean velocity Ui, relative to which the
particle displacements are defined as ξi. The Eulerian variables thus become x′i = xi + ξi
and the Eulerian velocity becomes

u′i = Ui +
dξi
dt

, (48)

where we note that the material derivative is d

dt
≡ ∂

∂t
+ Ui

∂
∂xi

, and we note that 〈ξi〉 = 0.

References

[1] D. G. Andrews and M. E. McIntyre, An exact theory of nonlinear waves on a

lagrangian mean flow, Journal of Fluid Mechanics, 89 (1978), pp. 609–646.

[2] , On wave action and its relatives, Journal of Fluid Mechanics, 89 (1978), pp. 647–
664.

[3] F. P. Bretherton and C. J. R. Garett, Wavetrains in inhomogeneous moving

media, Proceedings of the Royal Society of London. Series A, Mathematical and Physical
Sciences., 302 (1968), pp. 529–554.

[4] W. D. Hayes, Conservation of action and modal wave action, Proceedings of the Royal
Society of London. Series A, Mathematical and Physical Sciences., 320 (1970), pp. 187–
208.

200



Lecture 20: The explosive instability due to 3-wave or 4-wave

mixing.

Lecturer: Harvey Segur. Write-up: Hélène Scolan and Alireza Mashayekhi

June 26, 2009

1 Introduction

This lecture builds on the foundations of Lecture 13 where we introduced the triad interac-
tion process. We first recall the main properties of triad interactions, before discussing one
of the important cases alluded to in Lecture 13, namely that of the explosive instability.

The dispersion relation ω(k) for linear waves propagating in any physical system can be
obtained by linearization of the governing equations (we consider a non-dissipative system
here). A resonant triad exists if ω(k) admits 3 pairs {k, ω(k)} verifying :

k1 ± k2 ± k3 = 0 and ω(k1) ± ω(k2) ± ω(k3) = 0 . (1)

If this is not the case, the system follows the 4-wave equations describing a resonant quartet.

1.1 3-wave equations

In the case of a triad interaction, the 3-wave amplitude equations are obtained by using the
method of multiple scales. For a single triad {k1,k2,k3}, the solution is written as:

u(x, t; ǫ) = ǫ

[

3
∑

m=1

Am(ǫx, ǫt) exp{ikm · x − iωmt} + cc

]

+ O(ǫ2) , (2)

where the amplitude depends on the slow spatial and time variables. When (2) is substituted
back into the governing nonlinear equations, a compatibility condition yields the amplitude
evolution equations (see Lecture 13):

∂Am

∂τ
+ cm · ∇Am = iδmA∗

nA∗
l , (3)

with m,n, l = {1, 2, 3} and by assumption m, n and l are all different. These three coupled
equations have been studied for capillary-gravity waves or in nonlinear optics using χ2

material. But as seen in Lecture 13, the 3-wave resonance is impossible for pure gravity
waves.

201



1.2 4-wave equations

When 3-resonance is impossible, we are forced to consider resonant quartets with k1 ±k2±
k3 ± k4 = 0 and ω(k1) ± ω(k2) ± ω(k3) ± ω(k4) = 0.

A special case always exists where :

{k + δk} + {k − δk} − k = k , (4)

{ω(k) + δω} + {ω(k) − δω} − ω(k) = ω(k), (5)

i.e. the resonant quartet describes the interaction between waves with very close wave
numbers and frequencies. In this case, as shown in Lecture 14, the equation for the slowly
varying complex amplitude naturally recovers the nonlinear Schrödinger equation (‘NLS’)
for the one wave-field (in 1-D):

i

(

∂A

∂τ
+ c

∂A

∂X

)

+ ǫ

[

α
∂2A

∂X2
+ γ|A|2A

]

= 0, (6)

where α is a real-valued constant obtained from ω(k), and γ is the interaction coefficient
and is real (for a non-dissipative problem).

For more complex interactions, with waves modes interacting with themselves and with
other modes, the evolution of the amplitudes are described by coupled NLS equations. In
the case of 4-wave mixing in 1-D, we have [2] :

i

(

∂Am

∂τ
+ cm

∂Am

∂X

)

+ ǫ

[

αm
∂2A

∂X2
+ Am

4
∑

n=1

γmn|An|
2 + δmA∗

pA
∗
qA

∗
r

]

= 0, (7)

with {m,p, q, r} ∈ {1, 2, 3, 4} and p, q, r 6= m, cm is the group velocity, {γmn} are interaction
coefficients and {δm} are real-valued coefficients of the 4-wave mixing terms.

These NLS equations are obtained for example in the case of gravity-driven surface
waves and in nonlinear optics using χ3 material.

1.3 Explosive instability

As discussed in Lecture 13 in the case of the 3-wave equations, Coppi, Rosenbluth & Sudan
in 1969 [3] showed that if {δ1, δ2, δ3} in equation (3) all have the same sign, then A1, A2, A3

can all blow up at the same time, everywhere in space. This is called the explosive instability,
appropriately describing the waves blowing up everywhere to infinity in finite time (as
(τ − τo)

−1). This blow-up occurs even with no spatial structure (ie Am = Am(τ)) so there
is no wave collapse or self-focussing.

B. Safdi and H.Segur [7] found in 2007 the same possibility of explosive instability even
in the case of the 4-wave equations where the 3-wave resonance is impossible. Both cases
are now studied in more detail.

2 Explosive instability in ODEs

2.1 3-wave mixing

As seen in Lecture 13, the simplest model of 3-wave mixing ignores the spatial dependence
of the interacting modes and the set of equations described in (3) reduces to three coupled
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ordinary differential equations, with {δ1, δ2, δ3} known and real-valued:

A′
1(τ) = iδ1A

∗
2A

∗
3 A′

2(τ) = iδ2A
∗
1A

∗
3 A′

3(τ) = iδ3A
∗
1A

∗
2. (8)

It can be shown (see below) that if the δi have different sign, the solutions are bounded for
all time.

Conditions for explosive instability. The following are necessary and sufficient con-
ditions for blow-up in finite time:

• At least two of {A1(0), A2(0), A3(0)} are non-zero. Indeed, when at least two of them
are zero at time τ = 0 then the right-hand-sides are zero and nothing changes.

• {δ1, δ2, δ3} all have the same sign and are non-zero [3].

These necessary condition are related to the existence of the constants of motion J1, J2

associated with the problem written in its Hamiltonian form (see Lecture 13):

J1 =
|A1|

2

δ1

−
|A3|

2

δ3

J2 =
|A2|

2

δ2

−
|A3|

2

δ3

. (9)

We see that if sign(δm) 6= sign(δn) for any m 6= n, there is no blow-up. For instance, if
δ1 < 0 and δ3 > 0, then J1 < 0 and is constant, so both |A1|

2 and |A3|
2 are bounded and

neither can blow up. But since J2 is also constant then |A2|
2 is bounded as well, so none

of the wave fields can blow up. Thus it is necessary that {δ1, δ2, δ3} all have the same sign
and are non-zero for the amplitudes to blow-up.

Let us now suppose that {δ1, δ2, δ3} all have the same sign and are non-zero. One shows
by direct substitution into (8) that a special 3-parameter family of singular solutions to the
governing ODEs is:

Am(τ) =

√

δm

δ1δ2δ3

eiθm

τo − τ
, θ1 + θ2 + θ3 =

π

2
+ 2πN , for m = 1, 2, 3, (10)

where {τo, θ1, θ2} are 3 free real-valued parameters. This expression readily exhibits blow-
up in the finite time τo. To find a general solution of the ODEs, we can assume that this
special solution is the first term in a Laurent series in the neighbourhood of the pole τo and
write:

Am(τ) =

√

δm

δ1δ2δ3

eiθm

τo − τ

[

1 + αm(τo − τ) + βm(τo − τ)2 + γm(τo − τ)3 + O((τo − τ)4
]

.

(11)
By substituting this ansatz into the original ODEs, the complex coefficients can be deter-
mined order by order to yield:

αm = 0, ℑ(βm) = 0, ℜ(β1 + β2 + β3) = 0, ℜ(γm) = 0

ℑ(γ1) = ℑ(γ2) = ℑ(γ3) = γ.
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Thus, the general solution of the equation can be written:

Am(τ) =

√

δm

δ1δ2δ3

eiθm

τo − τ

[

1 + βm(τo − τ)2 + iγ(τo − τ)3 + O((τo − τ)4
]

, (12)

where {τo, θ1, θ2, β1, β2, γ} are 6 free real-valued constants, and β1 + β2 + β3 = 0. Note how
every nontrivial solution of the ODEs near τ = τo blows up at τ = τo.

Mathematically, the series converges absolutely if:

1. β1 = β2 = 0, |γ(τo−τ)3

3
| < 1 or

2. |βn| ≤ B, |γ| ≤ B3/2, |τo − τ |2B < 1.

Physical interpretation of blow-up. Recall that the theory of non-linear resonant
interactions is a weakly nonlinear theory and assumes that the 3-wave equations evolve on
the long time-scale (t = O(ǫ−1)). In finite-time blow-up, both of these model assumptions
break down as τ → τ0, and strongly nonlinear interactions must be taken into account.
For instance in the case of vorticity waves, the outcome of the explosive instability can be
wave breaking or intense vortex formation [8]. Note that additional information can be
obtained from the model before it breaks down completely. For example, it can reveal that
significant energy is transferred into the wave modes from a background source (pump wave
in nonlinear optics, shear flows in fluid dynamics, etc..). Indication to the presence of such
a background source is that all four δ coefficients should have the same sign.

2.2 4-wave mixing

The equivalent 4-wave mixing equations without spatial dependence can be written:

iA′
m + Am

4
∑

n=1

γmn|An|
2 + δmA∗

pA
∗
qA

∗
r = 0. (13)

These are four coupled complex ODEs with known real-valued coefficients.
The necessary and sufficient conditions for blow-up in finite time in this case are the

following:

• At least three of {A1(0), A2(0), A3(0), A4(0)} are non-zero.

• {δ1, δ2, δ3, δ4} all have the same sign and non-zero.

•

∣

∣

∣

∣

∣

4
∑

m,n=1

γmn|δn|

∣

∣

∣

∣

∣

< 4
√

δ1δ2δ3δ4.

In the same way as in the 3-wave mixing case, it can be found [7] that the general solution
of (13) is an 8-parameter family of solutions that all blow up.

Open problem. So far there is no known physical example of an explosive instability
caused by 4-wave mixing. As with 3-wave mixing, an explosive instability in a 4-wave
system requires a background source of energy, from which the waves modes extract energy
to grow in intensity together.
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2.3 Effect of damping on the blow-up

It is interesting to introduce a damping component in the governing amplitude equations
to see if the blow-up can be stopped by the damping. If we add damping in (8) for example
we have:

A′
m(τ) = iδmA∗

pA
∗
q−νmAm with νm ≥ 0. (14)

Different situations occur depending on whether the νm coefficients are all the same (uniform
damping) or differ (non-uniform damping).

2.3.1 Uniform damping

In the simple case of uniform damping ν1 = ν2 = ν3 = ν, it can be shown [6] that the

change of variables T = 1−e−ντ

ν
, Am(τ) = e−νταm(τ) (with m = 1, 2, 3) transforms the

equation (14) into the non-damping equation (16). This shows that uniform damping does
not always stop the blow-up but instead introduces a threshold for the initial amplitudes
below which blow-up is suppressed. However, if {δ1, δ2, δ3} all have the same sign and

|Am(0)| ≥
√

δm

δ1δ2δ3
ν

1−e−ντ0
, then the solutions still blow-up in finite time. A similar result

can be found for the 4-wave equations.

2.3.2 Non-uniform damping

In this case, the general Laurent series for the solution is too restrictive since the singularity
is not a pole, so one seeks instead a solution with:

Am(τ) =

√

δm

δ1δ2δ3

eiθm

τo − τ

[

1 + αm(τo − τ) + bm(τo − τ)2 ln(τo − τ) + βm(τo − τ)2 + ...
]

,

(15)
where the coefficients {αm} and {bm} are real and depend on {νn}, while the coefficients
{βm} are real with {β1, β2} free.

These ODEs are no longer completely integrable and the singularity is no longer a pole
but blow-up persists for a 6-parameter family of solutions. The damping does not prevent
blow-up, but as in the uniform case, introduces a threshold for blow-up.

3 Blow-ups in PDEs

The general set of amplitude equations for triad interactions are the following partial dif-
ferential equations:

∂Am

∂τ
+ cm · ∇Am = iδmA∗

nA∗
l , (16)

(for m = 1, 2, 3). Zakharov and Manakov [9] found that the 3-wave PDEs are completely
integrable. Kaup [4] solved these equations in 1-D on whole line through numerical and
analytical work to learn about blow-up. But what happens in the case of periodic boundary
conditions or in more than one spatial dimension remains unknown.

Here, we use an alternative approach based on the general ODE solutions derived above:

Am(τ) =

√

δm

δ1δ2δ3

eiθm

τo − τ

[

1 + βm(τo − τ)2 + iγ(τo − τ)3 + O((τo − τ)4
]

, (17)
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where {τo, θ1, θ2, β1, β2, γ} are real-valued (and β1 + β2 + β3 = 0). To take into account
the spatial dependency, we consider a variation of the parameters, looking for β1 = β1(x),
β2 = β2(x) and γ = γ(x):

Am(x, τ) =

√

δm

δ1δ2δ3

eiθm

τo − τ

[

1 + βm(x)(τo − τ)2 + {gm(x) + iγ(x)}(τo − τ)3 + O((τo − τ)4
]

,

(18)
with {β1(x), β2(x), γ(x)} real-valued and arbitrary while the {gm(x)} are real-valued and
known (in terms of first derivatives of the βm(x) functions). Note that again we must also
have β1 + β2 + β3 = 0.

If we allow an additional spatial dependency for θ1 and θ2, then one finds that the
solutions of the PDEs can be written:

Am(x, τ) =

√

δm

δ1δ2δ3

eiθm(x)

τo − τ

[

1 + iam(x)(τo − τ)

+ {βm(x) + ibm(x)}(τo − τ)2

+ {gm(x) + iγ(x)}(τo − τ)3 + ...
]

, (19)

where the functions am(x) involve first derivatives of {θ1(x), θ2(x), θ3(x)}, the functions
bm(x) involve first and second derivatives of the same functions, and finally the functions
gm(x) also involve first and second derivatives of the {θm(x)} as well as first derivatives of
β1(x) and β2(x). Thus this family of formal solutions of the PDEs admits five free functions
of x. These functions must be infinitely differentiable, but are otherwise arbitrary, and can
be members of any desired function space.

A (formal) general solution of (16), with six functions that must be real-valued and
smooth, but are otherwise arbitrary, is:

Am(x, τ) =

√

δm

δ1δ2δ3

ρm(x)eiθm(x)

τo(x) − τ

[

1 + iam(x)(τo − τ)

+ {βm(x) + ibm(x)}(τo − τ)2

+ {gm(x) + iγ(x)}(τo − τ)3 + ...
]

, (20)

with the ρm functions verifiying:

ρ2

1(x) = (1 − c2 · ∇τ0(x)) · (1 − c3 · ∇τ0(x)), (21)

ρ2

2(x) = (1 − c3 · ∇τ0(x)) · (1 − c1 · ∇τ0(x)), (22)

ρ2

3(x) = (1 − c1 · ∇τ0(x)) · (1 − c2 · ∇τ0(x)). (23)

There are still open questions regarding the convergence of the series in this case, and the
constraints on the free functions for blow-up.
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Lecture 21: Potpourri

Lecturer: H. Segur. Write-up: Ali Mashayek and Hélène Scolan

June 26, 2009

1 Introduction

In this last lecture of the 2009 GFD series, a collection of topics is presented including:
A. Near-Shore processes such as “Wave Shoaling” and“Rip Currents”.
B. Rogue waves.
C. Wave breaking in shallow water.

2 Wave shoaling

Figure 1: Wave shoaling

Wave shoaling refers to the change in the amplitude of surface waves as they travel in
a water layer of decreasing depth (e.g. as they approach the coast). According to the 2-D
shallow-water wave equation with x-dependent depth, we have (see Lecture 8)

∂2

t η = ∇ · {g h(x)∇η}, (1)

c(x) =
√

g h(x), (2)

where η is the displacement of the free surface, c(x) is the local phase speed and h(x) is the
local depth of the water layer. As a long wave in shallow water travels into even shallower
water (as shown in Figure 1), the front of the wave feels the decrease in the depth sooner
than the back of the wave. Correspondingly, the phase speed of the wave front decreases
while the back is still traveling at a faster speed. This phenomenon compresses the wave as
it moves to the shallower region, as shown in the Figure. This compression also naturally
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Figure 2: Wave crests turning towards the beach as they approach it.

leads to an increase in the wave amplitude, the combination of these two effects being
referred to as wave shoaling.

The dependence of phase speed on the water depth also explains why wave crests line
up parallel to the coast as they approach a beach. Consider a sloping beach, such as the
one shown in Figure 2, and incoming waves with crests making an arbitrary angle with
the coast. As they move into the shallow water region, waves begin to feel the effect of the
bottom boundary and react by adjusting their phase speed: the part of the wave which is
closer to the coast (the right sides of the waves shown in the Figure) slows down sooner
than the other end of the wave crest (left side). Consequently, the left side of the wave
catches up with the right side and the wave crest progressively turns towards the coast.
This phenomenon owes its existence to the inhomogeneity of the medium (due to change in
depth) and is similar to wave refraction in optics (i.e. the bending of light due to density
change along a ray-path). Figure 3 illustrates this process near the coast of Duck, NC.

Figure 3: Waves near the coast at Duck, NC (1991). Photo by C. Miller. The photo was
taken at a time when Hurricane Grace was passing 100 miles off-shore.

3 Rip currents

A rip current is a narrow jet which carries water away from shore. They typically form in
the region of breaking waves, and extend somewhat beyond the breaking region. They are
observed on ocean and sea beaches, and even on beaches of large lakes. Figure 4 shows rip
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currents formed in Rosarita beach, Baja California. These currents can be very dangerous,
dragging swimmers (and non-swimmers who are standing in water) away from the beach
and drowning them as they attempt to fight the current. In this scenario, the best action
is to try getting out of the current by swimming in the cross-current direction.

Figure 4: Rip currents along the coast of Rosarita beach, Baja California.

Various theories have been proposed to explain the mechanisms responsible for the
formation and evolution of rip currents. The standard explanation is that the backwash
water associated with wave breaking needs to find its way back into the sea. Although a
part of it returns through undercurrents, water is also pushed sideways along the shoreline
looking for an exit into the sea. Thus, a rip current can form in a trench between sandbars
as shown schematically in Figure 5. Several issues have been raised regarding this sandbar

Figure 5: A rip current formed between two sandbars. Figure from
http://www.ripcurrents.noaa.gov/science.html

theory. Observations have shown that these currents can appear in a spatially periodic
fashion along a coastline. Figure 6 shows one such example in Sand City, California. As
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there is no a priori reason for the existence of a periodic array of sandbars in the shallow
depth along the shoreline, the sandbar theory alone cannot explain the pattern seen in
the Figure. Another problem with the sandbar theory is the temporal evolution of the rip
currents. Some shorelines are characterized by permanent rip currents which form at a
fixed location such as a break in a reef or other hard structures. Meanwhile, some currents
are also observed to migrate along a stretch of coastline. Some rip currents are persistent,
lasting for many days or months in one location and some are ephemeral, forming quickly
and lingering for a few hours or days before dissipating. All these facts are somehow in
contradiction with the sandbar theory.

Figure 6: Rip currents along the coast of Sand City, California.

An alternative explanation for the rip currents might be the following. Recall our
description of KP solutions of genus 2 in water of uniform depth (see Lecture 7) and the
associated experimental results of Hammack et al.(1995) [4] (shown in Figure 7). In these
solutions (and experimental results) some areas have smaller velocities (see for example the
regions marked by arrows in Figure 7). If such a pattern reaches the shore and breaks, the
circled regions would be good candidates for the backwash water to return to the ocean
and form rip currents. Some experiments by Hammack, Scheffner & Segur (1991) [5] have
shown the formation of rip currents in these regions, visualising them using dye injection.

The KP solutions (of genus 2) used in the rip current experiment of Hammack et al.(1995)
[4] were symmetric, and propagated normal to the sloping beach. More general KP solutions
(of genus 2) are not symmetric and would therefore not propagate normal to the beach (as
shown in lower panel of Figure 7). This raises the interesting question of whether such
waves could generate slowly migrating rip currents. One can also ask the question of “How
far can the incoming waves deviate from symmetry before the rip currents disappear?”

To answer these questions and explain rip currents in a more systematic manner one
has to create a suitable mathematical model to describe them. Such model should allow
for variable depth (uniform slope will do), wave breaking and return flows, and finally 3-D
motion in order to describe the currents properly. Once a good mathematical model exists,
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Figure 7: Two 2-dimensional surface patterns of nearly permanent form, propagating in
shallow water.(Hammack et al., 1995), [4]

Harry Yeh’s tank (at Oregon State University) would be a suitable place to test the theory.

4 Rogue waves

Rogue waves are large ocean surface waves which appear spontaneously and are usually
unexpectedly large compared with the typical wave amplitude in their environment. Figure
8 shows an example of a rogue wave breaking over a supertanker in a storm off Durban,
S.A. in 1980. These waves are also referred to as freak waves, monster waves, killer waves,
or extreme waves. They are extremely dangerous due to their size, and are thought to be
responsible for many ship accidents and disappearances in the oceans. Figure 9 shows a map
of ship accidents for the period between 1995 and 1999; from Lloyd’s Marine Information
Service (LMIS) database, two ships per week are lost at sea due to heavy weather. This
highlights the importance of understanding the physics behind the formation of rogue waves,
with the hope of predicting their occurrence (e.g. location and time).

Because of their rarity, rogue waves are almost impossible to measure in a systematic
manner. Their existence was originally inferred from the damages inflicted to ships. Today,
one of the only solid scientific measurement of a rogue wave is the sea-surface height data
from the Draupner oil platform, in the North Sea on January 1, 1995, showing the passage
of an 18.5m wave (see Figure 10). The damages inflicted on the platform during this event
confirmed the validity of the measurement.

There seems to be no obvious reason behind the much larger amplitude of the rogue wave
compared with the nearby waves, thus raising the conceptual question “ Is a rogue wave a
rare event from a known population or is it an element of an entirely different population?”
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Figure 8: Rogue wave breaking over a supertanker in a storm off Durban, S.A. in 1980.
The mast seen starboard stands 25 m above the mean sea level. The mean wave height at
the time was 5-10 m. Photo: Phillipe Lijour, first mate.

Figure 9: World-wide ship accidents.

Several possible mechanisms have been proposed to explain the occurrence of these
waves. One possibility, brought up by Smith (1976) [7] and supported by White & Fornberg
(1998) [8] and Baschek (2005) [2], is that rogue waves occur as a result of the interaction
between internal or surface waves and underlying currents. A second possibility could be
wave breaking: satellite radar measurements have shown that extreme waves events can
result from wave breaking. Two other candidates are the geometric focusing and frequency
focusing of wave energies at a single point, leading to enhanced wave amplitudes and the
formation of a rogue wave. A more general candidate is that the rogue waves are formed
due to strongly nonlinear wave dynamics. Studies such as Bateman, Swan & Taylor (2003)
[3] try to show that rare extreme events such as rogue waves can occur, and may in fact not
be that rare.
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Figure 10: Waves measured at the Draupner oil platform in the North Sea, Jan. 1, 1995.
Peak wave height: 18.5 m. Standard deviation of wave record: about 3 m.

In short, very little is known about the rogue waves. From an observational point of
view, what information needs to be gathered to learn more about these waves and how that
information can be sought, both remain to be determined. From a theoretical point of view,
the general and fundamental question is whether one should try to learn more about the
tail of our known distribution of ocean waves or whether one should instead look for a new
kind of mechanism.

5 Waves breaking in shallow water

In general, a wave usually breaks once its amplitude grows to a critical level beyond which
some process causes a large fraction of the wave energy to be dissipated. The physical models
discussed thus far generally become invalid (the underlying assumptions break down) in this
limit, particularly those which assume linear or weakly nonlinear behavior.

The shallow-water equations, for example, are hyperbolic, implying that waves may
break in shallow water, and they do. In this case, the question is how should these equa-
tions be modified to describe more realistically wave breaking in shallow waters. Perhaps a
dissipative term might help modeling “shock waves” or a dispersive term might help mod-
eling “collisionless shocks” etc,. Both internal and surface waves can break, close or far
from the coastlines. The water surface waves breaking at the coastline is perhaps the most
familiar scenario. As the waves approach the shore, they refract and adjust themselves
parallel to the shoreline, and their amplitude grows due to the shoaling effect explained
earlier. Once their amplitude is sufficiently large, the waves overturn and break. However,
note that waves can also break in the mid-ocean where refraction and shoaling effects are
not present.

There are some basic types of breaking water waves like spilling, collapsing, surging and
plunging [1]. As an example, Figure 11 shows a “plunging breaking” which occurs as the
crest of the wave curls over and crashes down into the base of the wave. Plunging breaking
is a dramatic form of break, usually associated with a sudden depth change (in the mid- or
coastal ocean) or a steep sea floor near the shore.

Dramatic wave breaking events can have catastrophic consequences in the coastal areas.
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Figure 11: A “plunging breaker”. Photo from Clark Little/SWNS.

Figure 12: Hammacks experiments in shallow water, from Hammack et al.(1978) [6]

Recall Hammack’s experiments in shallow water which led to formation of an “Undular
bore” (shown in Figure 12, see also Lecture 5). As the bore travels from right to left (in
the Figure), the coast would experience a huge suction of the water into the ocean (which
can attract curious people into the ocean following the lost water) followed by a train of
large waves which break down at the shore and lead to tragedies such as the 2004 tsunami
in Thailand, as discussed in Lecture 7. In summary, although the shallow-water equations
are similar to the equations of gas dynamics in 2-D, breaking water waves seem to be more
complicated than ordinary shock waves in gas dynamics and how to model wave breaking
properly remains an open question.
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1 Introduction and Motivation

Due to the low value of the vertical component of the Earth’s rotation the tropics possess
dynamical properties that are quite different in nature to other regions of higher latitude.
One property is that the equator acts as a wave guide due to the changing in sign of the
Coriolis parameter.

Linear equatorial wave theory (Matsuno, 1966) has shown that equatorially trapped
waves (particularly Rossby and Kelvin waves) are important waves in determining large
scale climatic processes such as the El Niño-Southern Oscillation (ENSO; e.g. Philander,
1990; Clarke, 2008). Other factors that determine properties like ENSO periodicity and
strength are stochastic processes (Kleeman, 2008). There are, however, nonlinear equa-
torial processes that are well observed and are thought to impact on phenomena such as
ENSO, but many of these processes remain relatively poorly understood from a theoretical
point of view.

In the rest of this section, we shall examine previous studies on nonlinear equatorial
waves. We shall also review a class of waves that are highly nonlinear in nature and have
been observed for several decades now, however, recent insights by linear resonance theory
have shown to give insights into their dynamics. The end of this section briefly reviews the
properties of the equatorial β-plane, and the consequences for theoretical models of using
such an approximation.

Section 2 examines the hydrostatic, inviscid, Boussinesq and rigid-lid momentum and
continuity equations on a sphere and then transforms them to the Mercator projection. In
section 3 we examine the linear shallow water equations in geopotential coordinates, but, we
use some inspiration from the Mercator projection by using a tanh profile for the coriolis pa-
rameter (the “extended β-plane”), rather than the traditional linear β-plane approximation.

The modal equations and dispersion relations for the extended β-plane are then derived
and investigated in section 4. Finally, section 5 examines the effects of weak nonlinear
resonance using a multiscale expansion to derive the coupling coefficints for a system of
three baroclinic Rossby waves interacting. Finally, a summary and a discussion of potential
future works is presented in section 6.
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1.1 Previous Studies of Equatorial Nonlinear Wave Dynamics

There is a large literature on linear equatorial wave dynamics. The nonlinear literature, on
the other hand, is somewhat smaller. Furthermore, most of the studies have used either a
single layer, or reduced gravity model with only a handfull of studies including baroclinic
waves. Herewith, we shall give a brief overview of the classes of nonlinearities and waves
that have been studies.

Boyd (1980b) studied the nonlinear Kelvin wave. The linear Kelvin wave is a disper-
sionless wave, and as such, nonlinear effects are very small. Using the method of strained
coordinates, he showed how nonlinearity can cause frontogenesis, an alteration in the phase
speed and breaking. Boyd (1980a) examined how long equatorial Rossby waves can be
described by the Korteweg-de Vries equation (Korteweg and de Vries, 1895) or the modi-
fied Korteweg-de Vries equation. Boyd (1983) examines how highly dispersive waves (short
Rossby waves, the Yanai wave and inertia-gravity waves) can be described by the nonlinear
Schrödinger equation and propagate as a solitary wave packets of permanent form.

More recently Le Sommer et al. (2004) have shown that there is a dynamical split be-
tween fast nonlinear waves (fast Yanai and inertia-gravity waves) and slow nonlinear waves
(slow Rossby and Kelvin waves).

Ripa (1983a,b) examines nonlinear resonance in a one layer reduced gravity model in
the equatorial β-plane using the method of Ripa (1981). In those studies, the various types
of interactions are classified into 19 categories and the properties of waves in the various
categories are investigated.

Recently, it has been shown in that nonlinear resonance between two equatorially
trapped baroclinic Rossby waves and one free barotropic Rossby wave are possible (Reznik
and Zeitlin, 2006, 2007a,b).

1.2 An example of observed Nonlinear Equatorial Waves

Tropical Instability Waves (TIWs; Düing et al., 1975; Legeckis, 1977) are an equatorial wave
in which the dynamics are still relatively poorly understood, despite the fact that they are a
dominant feature of the monthly variability of the equatorial Pacific and Atlantic. In addi-
tion, TIWs are climatologically important, as it is thought that TIWs are closely associated
with dynamics of the El Niño-Southern Oscillation (Yu and Liu, 2003)

TIWs are seen as cusps on the front north equatorial front (the front that delineates the
equatorial cold tongue; see figure 1). TIWs are seen on the southern front as well, but the
amplitudes are typically much smaller than on the northern side. It has been shown in the
Pacific that there are two distinct periods of 17 and 33 days (Lyman et al., 2007), although
the shorter period wave does not appear to exist in the Atlantic (von Schuckmann et al.,
2008).

218



Figure 1: Sea Surface temperature signature of tropical instability waves,seen in imagery
from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager, from Willett
et al. (2006)
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Various process studies have indicated that the waves are caused by instability in the
intense zonal mean flow (for instance Philander, 1976, 1978; Proehl, 1996). Lawrence and
Angell (2000) suggested that modification of the phase of TIWs by Rossby waves helps
to explain some of the meridional asymmetry displayed by TIWs. More recently, it has
been suggested that TIWs could be described as a linear unstable resonance between two
baroclinic equatorial Rossby waves (Lyman et al., 2005). While linear analysis has offered
some insights into the dynamics of TIWs, it is thought that these waves are nonlinear in
nature (Philander, 1978; Kennan and Flament, 2000).

1.3 The Equatorial β-plane

The equatorial β-plane has been used extensively in the study of equatorial wave dynamics.
The equatorial β-plane is not universally valid, particularly for barotropic waves (Boyd,
1985).

While the validity of using linear equations for the barotropic waves is somewhat lim-
ited, previous studies examining nonlinear resonance at the equator have avoided purely
baroclinic systems. The reason stated by Reznik and Zeitlin (2007a) is that because of the
rapid decay of the parabolic cylinder function (the function that describes the meridional
structure of many equatorially trapped waves) for baroclinic waves, the nonlinear interac-
tion of baroclinic waves is also small. On the other hand, the large meridional extent of
barotropic waves allows for greater interaction.

2 Equations on a Sphere and the Mercator Projection

2.1 Equations on a Sphere

We begin by noting that in spherical coordinates, where θ is latitude, φ is longitude and
r is the radial distance from the centre of the Earth, the divergence operator and gradient
operators are (see chapter 4.12 of Gill, 1982),

∇ · F ≡ 1
cos θ

{
∂

∂φ

(
Fφ
r

)
+

∂

∂θ

(
Fθ cos θ

r

)
+

1
r2

∂

∂r

(
r2Fr cos θ

)}
(1)

∇% ≡
(

∂φ%

r cos θ
,
∂θ%

r
, ∂r%

)
, (2)

where F is some arbitrary vector and % is an arbitrary scalar. As the radial length scales
are much smaller than the lateral length scales, we may treat r as a constant, ar, unless we
are taking a derivative with respect to r. The divergence and gradient operators become
(to a good approximation for the oceans),

∇ · F ≈
∂φFφ
ar cos θ

+
∂θ(Fθ cos θ)
ar cos θ

+ ∂rFr (3)

∇% ≈
(

∂φ%

ar cos θ
,
∂θ%

ar
, ∂r%

)
. (4)
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We can thus say that the inviscid, Boussinesq, hydrostatic lateral momentum equation in
spherical coordinates is,

u,t + u · ∇u +
[
f0 +

u

ar cos θ

]
er ∧ u sin θ = −∇p

ρ
, (5a)

where we have ignored the horizontal component of the Earth’s rotation and the radial
metric terms, both of which follow naturally from assuming that the radial length scale is
much smaller than the lateral. Here, u = (u, v) is the zonal and meridional velocity and
the gradient operator only operates in two dimensions in the momentum equation and e
indicates a unit vector. Furthermore, we note that f0 is the value of the radial component
of the Earth’s rotation vector (the Coriolis parameter) at the North Pole. We also note that
∇u ≡ (∇u,∇v), where ∇ is that defined in equation (2). The terms are, from left to right,
the rate of change of velocity, the advective term, the Coriolis term, a metric term and
the pressure gradient term. As we are considering an incompressible fluid, the continuity
equation becomes,

∇ · (u, w) = 0 , (5b)

where w is the radial velocity and the gradient operator is acting in all three directions.
Written in their full form, the lateral momentum equations and the continuity equation is,

u,t +
uu,φ
ar cos θ

+
vu,θ
ar

− vf0 sin θ − uv tan θ
ar

= −
p,φ

ρar cos θ
(6a)

v,t +
uv,φ

ar cos θ
+
vv,θ
ar

+ uf0 sin θ − u2 tan θ
ar

= −
p,θ
ρar

(6b)

uφ
ar cos θ

+
(v cos θ),θ
ar cos θ

+ w,r = 0 , (6c)

where we have used the comma notation to denote partial derivatives (see Aris, 1962).

2.2 The Mercator Projection

We now set about transforming the equations from spherical coordinates to Mercator coor-
dinates. Firstly, we note that the unit vectors for each coordinate system are equivalent,

ex =eφ (7a)
ey =eθ (7b)
ez =er , (7c)

Here, x is the zonal distance from a reference x = 0 and y is the meridional distance from
y = 0 (the equator), such that −∞ < y < ∞ while, −π/2 < θ < π/2. In addition, z is
the radial distance from the bottom of the ocean, ar. Spherical coordinates and Mercator
coordinates are thus related by,

x = arφ (8a)

y = ar tanh-1(sin θ) (8b)
z = r − ar , (8c)
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z = H1D2

z = H1 + η1(x, y, t)

ez

z = 0 η2 ≡ 0

z = H0 η0 ≈ 0

D1 z = H0ρ1

ρ2

Figure 2: The shaded region is the (constant depth) ocean floor, the dashed line indicates
mean sea level and the solid line represents the free surface. H is distance from mean sea
level to the ocean floor, and η(x, y, t) is the deviation of the free surface from mean sea
level.

which essentially projects the sphere onto a cylinder of height 2ar. Applying this transform
to the spherical equations (6) yields,

u,t +
uu,x

sech(y/ar)
+

vu,y
sech(y/ar)

− vf0 tanh(y/ar)−
uv tanh(y/ar)
ar sech(y/ar)

= − p,x
ρ sech(y/ar)

(9a)

v,t +
uv,x

sech(y/ar)
+

vv,y
sech(y/ar)

+ uf0 tanh(y/ar)−
u2 tanh(y/ar)
ar sech(y/ar)

= − p,y
ρ sech(y/ar)

(9b)

[u sech(y/ar)],x + [v sech(y/ar)],y + w,z sech2(y/ar) = 0 (9c)

where we note from equations (8) that x,φ = ar, y,θ = ar
cos θ , z,r = 1 sin θ = tanh(y/ar) and

cos θ = sech(y/ar). If we now make the substitution U = u sech(y/ar) and V = v sech(y/ar)
(which is equivalent to the cos θ substitution made by Longuet-Higgins, 1965),

sech2(y/ar)U,t + UU,x + VU,y − sech2(y/ar)Vf0 tanh(y/ar) = −p,x
ρ

sech2(y/ar) (10a)

sech2(y/ar)V,t + UV,x + VV,y +
(U2 + V2) tanh(y/ar)

ar
+ sech2(y/ar)Uf0 tanh(y/ar) = −p,y

ρ
sech2(y/ar)

(10b)

U,x + V,y + sech2(y/ar)w,z = 0 (10c)

If we now examine these equations for a two layer fluid (which is illustrated in figure 2),
where we label each layer with i = 1, 2, 1 being the top layer and 2 being the lower layer
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and η0 being the free surface. In both layers we use the hydrostatic approximation,

p,z = −ρg , (11)

If we also employ the rigid lid approximation, we write the pressure for the top layer as
P = rho1gη0 and we ignore the deviations of the surface elsewhere in the equations, η0 = 0.
Furthermore, linearising gives a more simple expression for the momentum equation of the
top layer,

U1,t − V1f0 tanh(y/ar) = −P,x (12a)
V1,t + U1f0 tanh(y/ar) = −P,y . (12b)

In the bottom layer we make the Boussinesq approximation in addition to the same approx-
imations to the top layer,

U2,t − V2f0 tanh(y/ar) = −(P,x + g′η1,x) (12c)
V2,t + U2f0 tanh(y/ar) = −(P,y + g′η1,y) . (12d)

Here, the Boussinesq approximation means that we have assumed that ρ1/ρ2 ≈ 1. Note
that we have written g′ = g(ρ2 − ρ1)/ρ2 to represent the “reduced gravity”. Integration
of the continuity equation across each layer, assuming that the layers are immiscible, the
bottom is impermeable, η2 = 0 and that deviations of the interface between the fluids from
its resting state are small w(ηi) ≈ ∂tηi, we obtain the conservation equation for each layer,

− sech2(y/ar)η1,t + (D1U1),x + (D1V1),y = 0 (13a)

sech2(y/ar)η1,t + (D2U2),x + (D2V2),y = 0 . (13b)

To arrive at these expressions, we note that the rigid lid approximation implies that,
η0,t � η1,t and η0 � D1; and the small amplitude assumption implies that η1 � D1

and η1 � D2.

It is important to note that one of the important factors in the validity of the lineariza-
tion, is that the equatorial Rossby radius of deformation (Gill and Clarke, 1974) must be
small when compared to the radius of the Earth, Ro � ar. We note that this is true for
baroclinic modes, whose wave speed is 0.5–3.0ms−1, however, it is only marginally true for
the barotropic modes, whose wave speed is ∼ 200ms−1 (chapter 11.5 of Gill, 1982), and as
such, the barotropic results must be interpreted very carefully.

If we now define a mean velocity U and a shear velocity R = (R,S),

H0U = D1(U1,V1) +D2(U2,V2) (14a)
R = (U2 − U1,V2 − V1) . (14b)

We may combine equations (12) and (13),

U,t + f0 tanh(y/ar)ez ∧U +
∇(P + g′η1)

H0
= 0 (15a)

R,t + f0 tanh(y/ar)ez ∧R + c2∇h = 0 (15b)
∇ ·U = 0 (15c)

sech2(y/ar)h,t +∇ ·R = 0 (15d)
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where c2 = g′D1D2/H0, h = H0η1/(D1D2). We note that c is the baroclinic phase speed.
Employment of the rigid lid approximation implies that the mean velocity field is non-
divergent, and as such, we may define a stream function, ψ,

U =
(
−∂ψ
∂y

,
∂ψ

∂x

)
. (16)

We now assume that the solutions to equations (15) are separable, having the form

ψ(x, y, t) = Ψ(y)
[
Aeiϕ +A∗e−iϕ

]
(17a)

R(x, y, t) = Ξ(y)
[
iAeiϕ − iA∗e−iϕ

]
(17b)

S(x, y, t) = Φ(y)
[
Aeiϕ +A∗e−iϕ

]
(17c)

h(x, y, t) = G(y)
[
iAeiϕ − iA∗e−iϕ

]
, (17d)

where ϕ = kx− ωt, noting that k is the wavenumber and ω is the frequency. Here A is the
amplitude of the wave and A∗ is the complex conjugate of the amplitude.

Using the definition of the streamfunction, equation (16), and taking a combination of
equations (15a) and (15c), we obtain an equation for the evolution of the streamfunction,

∇2ψ,t + f ′(y)ψ,x = 0 , (18)

where f(y) = f0 tanh(y/ar). We note that the barotropic equation is uncoupled from the
baroclinic equations.

To find the baroclinic modal equation we may take various combinations of equa-
tions (15b) and (15d) to eliminate R, and then applying the solutions in equation (17),
we find two modal equations,

−ω2 sech2(y/ar)G+ kf(y)Φ + c2k2G− ωΦ,y = 0 (19a)

−kωΦ + f(y)ω sech2(y/ar)G− f(y)Φ,y − kc2G,y = 0 (19b)

Rearranging equation (19a) in terms of G(y), we get,

G =
ωΦ,y − kfΦ

c2k2 − ω2 sech2(y/ar)
. (20)

Differentiating with respect to y, we find

G,y =
k(f ′Φ + fΦ,y)− ωΦ,yy

ω2 sech2(y/ar)− c2k2
+

1
ar

(kf(y)Φ− ωΦ,y)
2ω2 tanh(y/ar) sech2(y/ar)
(ω2 sech2(y/ar)− c2k2)2

. (21)

We note that under the assumption that the wave length must be much smaller than the
radius of the Earth, the second term in equation (21) will be small relative to other terms,
and as such, we shall ignore it. Substitution of equations (20) and (21) into equation (19b)
yields a modal equation in Φ,

Φ,yy +
{

sech2(y/ar)
[
ω2

c2
− f2(y)

c2

]
− k2 − kf ′(y)

ω

}
Φ = 0 . (22)

224



We wish to nondimensionalize the barotropic and baroclinic modal equations by introducing
the length and time scales,

L∗ =
(
c

β

) 1
2

(23a)

T∗ =
1
βL∗

. (23b)

where we have noted that the equatorial Rossby radius of deformation is an appropriate
length scale. Associated with these length scales are the dimensionless variables,

ω =
ω̃

T∗
(24a)

k =
k̃

L∗
(24b)

f0 = βL∗f̃0 (24c)

We also note that as we are considering the case close to the equator (see chapter 3.17 of
Pedlosky, 1987),

ar ≈
f0

β
. (25)

Substitution into equation (18) for the barotropic case and equation (22) for the baroclinic
case yield, respectively,

Ψ,ỹỹ −

{
k̃2 +

k̃f̃ ′(ỹ)
ω̃

}
Ψ = 0 (26a)

Φ,ỹỹ +

{
sech2(ỹ/f̃0)

[
ω̃2 − f̃(ỹ)

]
− k̃2 − k̃f̃ ′(ỹ)

ω̃

}
Φ = 0 . (26b)

Using the Mercator projection as a motivation for a tanh profile for the Coriolis parameter,
we examine the more familiar two layer shallow water equations in geopotential coordinates.

3 The β-Plane and “Extended” β-Plane

We begin by stating the inviscid, linear shallow water equations for a two layer fluid in
geopotential coordinates,

ui,t + f(y)ez ∧ ui +
∇pi
ρi

= 0 (27)

ηi−1,t − ηi,t +∇ · ([Di + ηi−1 − ηi]ui) = 0 , , (28)

for i = 1, 2. Here, the pressure, pi, is given by,

p1 = P (29a)
p2 = P + g′η1 . (29b)
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Similarly with section 2.2 we employ the rigid lid approximation, which implies that P =
gρ1η0 but that η0 = 0 anywhere else it appears in an equation. We also utilise the Boussi-
nesq approximation, assuming that ρ1/ρ2 ≈ 1.

Again, as in section 2.2, we define a mean velocity, U = (U, V ) and a shear velocity,
R = (R,S),

H0U = D1u1 +D2u2 (30a)
R = u2 − u1 . (30b)

Applying these definitions to the momentum equation (27), and continuity equation (28) in
conjunction with the rigid lid approximation and small amplitude assumption gives,

U,t + f(y)ez ∧U +∇Q = 0 (31a)

R,t + f(y)ez ∧R + c2∇h = 0 (31b)
∇ ·U = 0 (31c)

h,t +∇ ·R = 0 , (31d)

where, Q = P + g′η1, h = H0η1/(D1D2) and c2 = g′D1D2/H0. We may take various
combinations of equations (31) and assume solutions of the same form as in equations (17)
to get a barotropic equation for Ψ,

Ψ,yy −
{
k2 +

kf ′(y)
ω

}
Ψ = 0 (32)

and a baroclinic equation for Φ

Φ,yy +
{
ω2

c2
− f2(y)

c2
− k2 − kf ′(y)

ω

}
Φ = 0 . (33)

Through the use of equations (31), we can find expressions for the modal functions for Ξ
and G,

G(y) =
ωΦ,y − kf(y)Φ
c2k2 − ω2

(34a)

Ξ(y) =
c2kΦ,y − ωf(y)Φ

c2k2 − ω2
. (34b)

We may non-dimensionalize the modal equations (32) and (33) using the definitions in
equations (23),

Ψ,ỹỹ −

{
k̃2 +

f̃ ′(ỹ)k̃
ω̃

}
Ψ = 0 (35)

Φ,ỹỹ +

{
ω̃2 − f̃(ỹ)2 − k̃2 − k̃f̃ ′(ỹ)

ω̃

}
Φ = 0 . (36)

226



Furthermore, using the scaling

G =
G̃

c
, (37)

we may non-dimensionalize the modal expressions for h and R,

G̃(ỹ) =
ω̃Φ,ỹ − k̃f̃(ỹ)Φ

k̃2 − ω̃2
(38a)

Ξ(y) =
k̃Φ,ỹ − ω̃f̃(ỹ)Φ

k̃2 − ω̃2
. (38b)

The traditional β-plane approximation locally approximates the effects of the curvature
of the Earth by assuming a plane surface (thus ignoring the geometric effects), but allows
the coriolis parameter to vary linearly with latitude. The traditional equatorial β-plane is
generally written as f(y) = βy. In dimensionless form the coriolis parameter is f̃(ỹ) =
ỹ, f̃ ′(ỹ) = 1. We can see that in this case, we may assume a solution of the form ψ̃ =
ei(k̃x̃+l̃ỹ−ω̃t̃), which gives a modal equation,

ω̃ =
−k̃

k̃2 + l̃2
. (39)

Importantly, the modal equation for the β-plane has no trapped wave solutions, unlike the
modal equation (26a) for the Mercator projetion. We note also that with the β-plane ap-
proximation, the solution for the meridional modal function is a parabolic cylinder function
(see Miller, 1965), yielding a dispersion relation of the form,

ω̃3
m − (k̃2 + 2m+ 1)ω̃m − k̃ = 0 m = 0, 1, 2, . . . . (40)

Both equations are common in the literature and specifically, are in agreement with Reznik
and Zeitlin (2006, 2007a,b), as is equations (38) when the β-plane approximation is sub-
stituted. We further note that there is an additional solution for the trapped waves, cor-
responding to Φ ≡ 0, which yields a dispersion relation of ω̃ = k̃. This solution is the
equatorial Kelvin wave (Matsuno, 1966).

Another special case of equation (40) is that when m = 0. In this instance, there are
three branches. One is spurious, yielding the unphysical relation ω̃ = −k̃, which is un-
bounded. The other two branches are described by ω̃(ω̃ − k) = 1. This dispersion relation
corresponds to the Yanai wave (Matsuno, 1966).

In addition to the traditional β-plane approximation, there is also the δ-plane approx-
imation (Yang, 1987) which is a second order Taylor expansion of the Coriolis parameter.
Our aim in the present study is to use the full expression for the coriolis parameter, but, to
ignore the metric terms (and thus, ignore geometric effects).

4 Meridional Structure and Dispersion Relations

We begin by deriving the properties of the system discussed in section 3.
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4.1 Solving for the Meridional structure

Taking the barotropic modal equation (35), and using our chosen coriolis profile, f̃(ỹ) =
tanh(Ỹ ), where Ỹ = ỹ/f̃0, we find that the modal equation becomes,

Ψ
,eY eY +

{
αT + γT(1− λ2)

}
Ψ = 0 (41)

where, λ = tanh(Ỹ ) and

αT = −k̃2f̃2
0 (42a)

γT = −f̃2
0 k̃/̃ω . (42b)

If we use the chain rule, Ψ
,eY = Ψ,λλ,eY , noting that λ

,eY = 1−λ2, we transform equation (41)
to, {

(1− λ2)Ψ,λ

}
,λ

+
(
γT +

αT

1− λ2

)
Ψ = 0 . (43)

Using the same procedure, the baroclinic modal equation (36) becomes,

{
(1− λ2)Φ,λ

}
,λ

+
(
γC +

αC

1− λ2

)
Φ = 0 , (44)

where,

αC = f̃2
0 (−f̃2

0 − k̃2 + ω̃2) (45a)

γC = −f̃2
0 (f̃2

0 + k̃/̃ω) , (45b)

noting that the subscript T indicates barotropic and subscript C indicates baroclinic. Note
that subsequent statements regarding α and γ that do not explicitly indicate whether it is
discussing the barotropic or baroclinic case are equally valid for the barotropic and baro-
clinic variables.

With the chosen form of the coriolis parameter, f̃(ỹ), we now have the same differential
equation for the barotropic and baroclinic equations, which are second order ordinary dif-
ferential equations, namely the associated Legendre equation.

In the case where α < 0 we have discrete eigenvalues given by (Drazin and Johnson,
1989)

αm = −
{

(γ + 1/4)
1
2 − (m+ 1/2)

}2
m = 0, 1, 2, . . . , N . (46)

We note that from its definition, equation (42a), that αT is always less than zero, and as
such the barotropic modes are always trapped. On the other hand, αC is not necessarily
zero, and it has trapped modes only when ω̃2 < f̃2

0 + k̃2 (see section 4.3).

The solutions for the batotropic case are proportional to associated Legendre functions
(see, for example Stegun, 1965),

Ψ(λ) = CΨP
µ
ν (λ) +DΨQ

µ
ν (λ) , (47)
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where Pµν (λ) and Qµν (λ) are the associated Legendre functions of the first and second kinds
respectively. CΨ and DΨ are constants of integration. Noting that the associated Legendre
function of the second kind, Qµν (λ), goes unbounded as λ → 1, we thus say DΨ = 0, thus
leaving,

Ψ(λ) = CΨP
µ
ν (λ) . (48)

Analogously for Φ(Ỹ ),
Φ(λ) = CΦP

µ
ν (λ) . (49)

The integer N is determined by the criterion in the bracket {·}, on the right hand side of
equation (46), that is, N = [(γ + 1/4)

1
2 − 1/2] + 1. In this instance the square brackets [·]

denote the integral part, which take a real number greater than zero as an argument and
rounds it down to the nearest integer. If the integral part is already an integer, then the +1
is omitted from the expression. The eigenfunctions for the associated Legendre functions,
equations (48) and (49), are given by µ = (γ+ 1/4)

1
2 − (m+ 1/2) and exist if there is a root,

ν(ν + 1) = γ.

We note from equation (42b) that for m > 0, γT > 0∀ k̃. On the other hand, we
note from equation (45b) that γC is not necessarily greater than zero. This point shall be
elaborated upon in section 4.3.

4.2 Barotropic dispersion relations

Substitution of αT and γT into the eigenvalue relation, equation (46), gives the barotropic
dispersion relation,

ω̃ = − k̃f̃2
0

k̃2f̃2
0 + |k̃|f̃0(m+ 1

2) +m(m+ 1)
. (50)

The first four modes for the barotropic waves are plotted in figure 3. We can see that they
attain a maximum value in frequency-wavenumber space. For reasons that will become
clear later, we wish to find the maximum frequency and its relative size compared to f̃0.

We note that the maximum occurs at a turning point in wavenumber-frequency space.
As such, in order to find the maximum frequency, we need to find where the gradient of the
dispersion relation, equation (50), is zero (which, incidentally, corresponds to a zero group
velocity). Thus, the maximum value of ω̃ occurs when,

k̃f̃0 = −
√
m(m+ 1) , (51)

where we have chosen the negative root for k̃ based on the anti-symmetric nature of ω̃.

Substitution of equation (51) into the dispersion relation gives the maximum frequency,
ω̃max, as a function of f̃0. A more useful measure, however, is the ratio of the maximum
frequency to f̃0,

ω̃max

f̃0

=
1

2
√
m(m+ 1) + (m+ 1

2)
(52)
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Figure 3: The first four meridional modes for the barotropic dispersion relation, equa-
tion (50). Note, that f̃0 has been scaled out of the plot by making ω̃/f̃0 the dependent
variable and k̃f̃0 the independent variable.

We can thus see that ratio of the maximum frequency for barotropic modes to f̃0 remains
constant and that the ratio ω̃max/f̃0 decreases with increasing mode number.

Interestingly, we note through the use of the symmetry condition, k̃(ω) = −k̃(−ω̃), that
the phase speed for the modes considered must be negative (i.e. westward).

4.3 Baroclinic dispersion relation

For the baroclinic case, we firstly consider the case for αC < 0, necessitating that −k/ω > f2
0 ,

which, similarly to the barotropic case, indicates that the phase speed is negative and is
also bounded in absolute value. Furthermore, by the definition of αC, we also require that,

ω2 − f2
0 < k2 , (53)

The discrete dispersion relation – from equation (46) – is therefore given by,

k̃2 + f̃2
0 − ω̃2 =


(
f̃2
0 −

k̃

ω̃
+

1
4f̃2

0

) 1
2

− m+ 1/2
f̃0


2

. (54)

As f̃0 → ∞, we see that equation (54) reduces to the dispersion relation of Reznik and
Zeitlin (2006, 2007a,b), equation (40) when we expand for large f̃0. When equation (53)
is not satisfied, this implies that there is a continuous spectrum in wavenumber-frequency
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Figure 4: The blue line is ω̃/f̃0 =
√
k̃2/f̃2

0 + 1, which deliniates the continuous spectrum of

frequency-wavenumber solutions from the discrete spectrum and the red line is ω̃ = k̃ which
is the dispersion relation for equatorial Kelvin waves.

space.

Solutions for the discrete eigenvalues of the barotropic and baroclinic modes may all
be found using associated Legendre functions. More general solutions to the associated
Legendre equation can be found with the use of hypergeometric functions (see, for instance
Oberhettinger, 1965). Again, following Drazin and Johnson (1989), we find that the solution
for equation (43) is given by,

Φ(Ỹ ) = a2ip[sech(Ỹ )]−ipF (ǎ, b̌; č; [tanh(Ỹ )]/2) , (55)

where a = a(αC) is a constant of integration, p2 = αC, ǎ = 1
2 − ip + (γC + 1

4)
1
2 , b̌ =

1
2 − ik − (γc + 1

4)
1
2 , č = 1− ip and F is the hypergeometric function. Specifically, we note

that for this type of function, the solutions for αC > 0 yields a continuous spectrum for the
baroclinic modes.

Similarly to the equatorial β-plane, we get a solution for Φ ≡ 0, which again corre-
sponds to an equatorial Kelvin wave, of the form G(y) = sechf

2
0 (Y ). Again similarly to the

β-plane, m = 0 has a spurious branch for ω̃ = −k̃ and the remaining solution is the Yanai
wave. Finally, the modes that correspond to m = 1, 2, . . . are the trapped low-frequency
Rossby waves. We can see that the high frequency branch of the dispersion relation for
m = 1, 2, . . . actually lie within the continuous spectrum. Figure 4 shows the regions in
frequency-wavenumber space where discrete and continuous solutions exist.
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4.4 Resonance Conditions

We wish to investigate two different classes of interaction. The first is where we have three
waves that lie within the discrete spectrum, and the second is where we have two waves in
the discrete spectrum interacting with a third wave that lies in the continuous spectrum (re-
call, baroclinic waves that lie in the continuous spectrum satisfy the relation ω̃2 > k̃2 + f̃2

0 ).
Most of the discussion in the remainder of this section pertains to the latter scenario, as
there are some additional constraints that the waves from the discrete spectrum must sat-
isfy in order to form part of a resonant triad.

Resonant triads (that is, the non-linear interaction between three waves) have resonance
conditions of the form,

k1 + k2 + k3 = 0 (56a)
ω1 + ω2 + ω3 = 0 . (56b)

If we consider the case where one of the waves in the triad lies in the continuous spectrum,
we note that the frequency of the continuous spectrum has a minimum value of f̃0, we need
to investigate the circumstances under which the resonance conditions will be satisfied with
two waves from the discrete spectrum (which we label waves 1 and 2), and one from the
continuous spectrum (which we label wave 3). A necessary (but not sufficient), condition
for resonance to occur is for ω̃1max + ω̃2max > f̃0, where ω̃max is the maximum frequency of
a particular mode. As can be seen from equation (52), a combination of any two barotropic
Rossby waves (m ≥ 1) will not be able to satisfy this condition. However, if a Rossby wave
is interacting with a Yanai wave (m = 0) or Kelvin wave (m = −1), then there may be
circumstances where this condition may be satisfied.

The operations required to obtain an equivalent expression relating the maximum fre-
quency to f̃0 for the baroclinic dispersion relation, equation (54) requires more subtle anal-
ysis. We begin by taking the long wave limit, k̃ → 0. We define the dimensionless phase
speed as c̃ = ω̃/̃k. We will examine two different limits,

• ω̃ → 0 as c̃→ c̃(0) (the long Rossby limit), and

• c̃→ 0 as ω̃ → ω̃(0) (the long inertia-gravity limit);

The long Rossby limiting case yields

f̃0 =

(
f̃2
0 −

1
c̃(0)

+
1

4f̃2
0

) 1
2

−
m+ 1

2

f̃0

(57a)

⇒ lim
ω̃→0

c̃(0) =
−f̃2

0

f̃2
0 (2m+ 1) +m(m+ 1)

. (57b)

The equation for c̃(0) tells us that the long wave speed is negative for all modes m ≥ 0
and positive for m = −1. Furthermore, the phase speed decreases in absolute value with
increasing mode number, m.
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The second case to consider yields the equation,

√
f̃2
0 − (ω̃(0))2 =

(
f̃2
0 +

1
4f̃2

0

) 1
2

−
m+ 1

2

f̃0

(58a)

⇒ lim
c̃→0

(ω̃(0))
2 = (2m+ 1)

(
1 +

1
4f̃4

0

) 1
2

− (2m+ 1)2 + 1
4f̃2

0

. (58b)

The left hand side of equation (58a) tells us that the frequency must always be such that
0 < ω̃(0) < f̃0. To satisfy this requirement, the right hand side of equation (58a) must be

(m+
1
2
)f̃−2

0 <

√
f̃2
0 + (4f̃2

0 )−1

⇒ m(m+ 1) < f̃4
0 , (59)

in the long wave limit. We can see from equation (59) that the Yanai wave has a solution
for all f̃0 > 0. On the other hand, the inertia-gravity waves (with m > 0 and ω̃(0) > 0) are
only trapped for k̃ = 0 if f̃4

0 is large enough. A corollary of this is that for some finite f̃0

only low mode waves are trapped.

We also wish to examine whether any trapped modes can intercept the continuous
spectrum. We determine this by recognising that the left hand side of the dispersion relation,
equation (54), is also the boundary between the continuous and discrete spectra (the blue
curve in figure 4). Equating each side to zero yields intersection conditions,

ω̃2 = k̃2 + f̃2
0 (60)

k̃

ω̃
= −m(m+ 1)

f̃2
0

+ f̃2
0 . (61)

If we set m = 0 to search for a Yanai wave, we note that the two curves intercept at
k̃2

0 = f̃6
0 (1− f̃4

0 )−1, where k̃0 is the wavenumber of intersection for the m = 0 wave. Thus,
the dispersion relation for a Yanai wave intercepts the boundary between the continuous
and discrete spectra at k̃0 when 0 < f̃0 < 1, having a discrete dispersion relation for
−∞ < k̃ < k̃0 and a continuous spectrum for k̃ > k̃0. Conversely for f̃0 > 1 they do not
intercept the Yanai wave has a discrete dispersion relation for −∞ < k̃ <∞.

Using similar reasoning, we find that inertia-gravity waves cross from discrete relations to
continuous if {m(m+1)}

1
2 < f̃2

0 < m+1, there is a solution k̃ = k̃m > 0 so that the trapped
(discrete) baroclinic modes exist only for −∞ < k̃ < k̃m and that k̃0 > k̃1 > k̃2 > . . .. Oth-
erwise, if f̃2

0 > m+1, the trapped waves exist for all k̃. If, however, m < f̃2
0 < {m(m+1)}

1
2 ,

there is a solution such that k = k̃m < 0 where the inertia gravity wave crosses from the
discrete spectrum to the continuous spectrum. Otherwise if f̃2

0 < m, there are no trapped
inertia-gravity modes.
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Figure 5: The red line is a plot of the full baroclinic dispersion relation, equation (54)
and the blue line is the low frequency approximate dispersion relation, equation (62). The
values used were m = 1 and f̃0 = 1, and was made using the implicit plotting capabilities
of Maple.

On the other hand, baroclinic Rossby waves remain trapped for all k̃, and as such,
we may justifiably use a low frequency approximation, i.e. that the ω̃2 terms are small
compared with the other terms in equation (54). This yields a dispersion relation,

ω̃ ≈ −k̃f̃2
0

k̃2f̃2
0 + f̃0(2m+ 1)

√
k̃2 + f̃2

0 +m(m+ 1)
. (62)

Figure 5 shows a plot of the full discrete dispersion relation, equation (54), and the approx-
imate low frequency dispersion relation for m = 1 and f0 = 1. The difference between the
two curves is quite small, and is of similar magnitude for higher modes. This confirms that
the low frequency relation is an appropriate approximation to use for this study. A similarly
small error is present for the first five trapped Rossby modes are plotted in figure 6 using
the low frequency approximation.

As in section 4.2 we wish to ascertain under what circumstances we may obtain triad
interactions between the discrete and continuous spectra. As we have a good approximate
dispersion relation for Rossby waves that is explicit in ω̃, we again begin by trying to find
the maximum frequency as a function of f̃0, we differentiate equation (62),

dω
dk̃

= − f̃0

k̃2f̃2
0 + f̃0(2m+ 1)

√
k̃2 + f̃2

0 +m(m+ 1)
+k̃f̃0

2k̃f̃2
0 + (f̃0k̃(2m+ 1))(k̃2 + f̃2

0 )−1

[k̃2f̃2
0 + f̃0(2m+ 1)

√
k̃2 + f̃2

0 +m(m+ 1)]2
.

(63)
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Figure 6: A dispersion relation for the first five low baroclinic frequency, trapped modes
with f̃0 = 1.

Setting the equation to zero and isolating k̃ = k̃max, and substituting back into the disper-
sion relation allows us to plot the ratio of the maximum frequency, ω̃max, to f̃0 as well as
the value of k̃ where this occurs, k̃max, as a function of f̃0. Such a plot is shown in figure 7
for m = 1.

We note that for both the barotropic case (see section 4.2) and the baroclinic case, we are
unable to find resonant triads consisting of two discrete Rossby waves and one wave from the
continuous spectrum. Again, it is necessary to use at least one Yanai or Kelvin wave in order
to satisfy the resonance conditions, equations (56). The remainder of this report shall focus
on weakly nonlinear resonant interactions between three discrete baroclinic Rossby waves.
The properties of interactions involving Yanai or Kelvin waves, as well as the continuous
spectrum are potential avenues of further research.

5 Resonant Triads

We now wish to examine “near-linear theory,” for waves of moderately small amplitude.
Small amplitude expansions to linear wave theory allow us to examine the interactions, and
energy sharing between different Fourier components (see chapter 14 of Whitham, 1974).

235



Figure 7: The ratio of the value of k̃ where the maximum frequency occurs (blue line and
right axis) and the value of the ratio of the maximum value of ω̃ to f̃0 (red line and left
axis), as a function of f̃0, using the low frequency approximation for the dispersion relation,
equation (62).

5.1 Nonlinear Equations

We need to examine a non-linear model to identify the important terms for the wave inter-
actions. We use the baroclinic momentum and continuity equations (3.6a-d) of Benilov and
Reznik (1996), which are modified here for an extended f(y) profile,

∇2ψ,t+J(ψ,∇2ψ) +
D1D2

H2
0

(∂xx − ∂yy)
[(

1 +
D1 −D2

H0
h− D1D2

H2
0

h2

)
RS

]
− D1D2

H2
0

∂xy

[(
1 +

D1 −D2

H0
h− D1 −D2

H2
0

h2

)(
R2 − S2

)]
+ f ′(y)ψ,x = 0 (64a)

R,t+J(ψ,R)−R · ∇(ez ∧∇ψ)

− 2D1D2

H2
0

hR · ∇R− D1D2

H2
0

RR · ∇h+ c2∇h = −f(y)ez ∧R (64b)

h,t+J(ψ, h) +∇ ·R + ((D1 −D2)H−1
0 −D1D2H

−2
0 )∇ · (hR)−∇ ·

(
h2R

)
= 0 (64c)

where J(A,B) = A,xB,y−A,yB,x is the Jacobi operator. We also recall that h = H0η1/D1D2

and c2 = g′D1D2H
−1
0 . From these equations, we obtain the non-dimensional equations using
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the length and time scales defined in equations (23),

∇̃2ψ̃,t̃ + f̃ ′(ỹ)ψ̃,x̃ = −J(ψ̃, ∇̃2ψ̃)−$(∂x̃x̃ − ∂ỹỹ)[(1 + qh̃−$h̃2)R̃S̃]

−∂x̃ỹ[(1 + qh−$h̃2)(R̃2 − S̃2)] (65a)

R̃,t̃ + ∇̃h̃+ f̃(ỹ)ez ∧ R̃ = −J(ψ̃, R̃)+R̃ · ∇̃(ez ∧∇ψ̃)−$qR̃ · ∇̃R̃

+$
[
2h̃R̃ · ∇̃R̃ + R̃R̃ · ∇̃h̃

]
(65b)

h̃,t̃ +∇ · R̃ = −J(ψ̃, h̃)−∇̃ · (h̃R̃) +$∇̃ · (h̃2R̃) , (65c)

where, $ = D̃1D̃2/H̃
2
0 and q = (D̃1 − D̃2)/H̃0.

5.2 Solutions

Let us now consider an asymptotic, multitimescale solution (Bretherton, 1964) to the above
equations , such that,

ψ̃ = ε1ψ̃(1)(x̃, ỹ, t̃, τ̃) + ε2ψ̃(2)(x̃, ỹ, t̃, τ̃) + . . . (66a)

R̃ = ε1R̃(1)(x̃, ỹ, t̃, τ̃) + ε2R̃(2)(x̃, ỹ, t̃, τ̃) + . . . (66b)

S̃ = ε1S̃(1)(x̃, ỹ, t̃, τ̃) + ε2S̃(2)(x̃, ỹ, t̃, τ̃) + . . . (66c)

h̃ = ε1h̃(1)(x̃, ỹ, t̃, τ̃) + ε2h̃(2)(x̃, ỹ, t̃, τ̃) + . . . , (66d)

where, ε is a small parameter and τ̃ = εt̃ is a slow time variable. Recalling equations (17),
we assume that the solutions take the form,

ψ̃(1)(x̃, ỹ, t̃, τ̃) =
3∑
j=1

Ψ(1)
j (ỹ)

[
Aj(τ̃)eiϕ̃j +A∗j (τ̃)e

−iϕ̃j
]

(67a)

R̃(1)(x̃, ỹ, τ̃) =
3∑
j=1

Ξ(1)
j (ỹ)

[
iAj(τ̃)eiϕ̃j − iA∗j (τ̃)e

−iϕ̃j
]

(67b)

S̃(1)(x̃, ỹ, τ̃) =
3∑
j=1

Φ(1)
j (ỹ)

[
Aj(τ̃)eiϕ̃j +A∗j (τ̃)e

−iϕ̃j
]

(67c)

h̃(1)(x̃, ỹ, τ̃) =
3∑
j=1

G̃
(1)
j (ỹ)

[
iAj(τ̃)eiϕ̃j − iA∗j (τ̃)e

−iϕ̃j
]
, (67d)

where a superscripted asterisk, ∗ , indicates a complex conjugate, ϕ̃ ≡ k̃x̃−ω̃t̃ and j = 1, 2, 3
identifies the wave in the triad. Here, we have assumed that the amplitude of the waves is
slowly varying. We substitute the first two orders of our expansion into equations (65a) to
(65c) and equate powers of ε (Luke, 1966). For the barotrpic equations, we equate terms
that are multiplied by ε,

ε∇̃2ψ̃
(1)

,t̃
+ εf̃ ′(ỹ)ψ̃(1)

,x̃ =0

∇̃2ψ̃
(1)

,t̃
+ f̃ ′(ỹ)ψ̃(1)

,x̃ =0 , (68)

237



which may be recognised as the linear equation (18). Doing the same for h̃ and R̃ yields,

h̃
(1)

,t̃
+∇ · R̃(1) =0 (69a)

R̃
(1)

,t̃
+ ∇̃h̃(1) + f̃(ỹ)ez ∧ R̃(1) =0 (69b)

which can be recognised as the linear equations (31b) and (31d) respectively.

Similarly, we may equate terms that are multiplied by ε2,

∇̃2ψ̃
(2)

,t̃
+ f̃ ′(ỹ)ψ̃(2)

,x̃ = −∇̃2ψ̃(1)
,τ +Nψ (70a)

R̃
(2)

,t̃
+ h̃

(2)
,x̃ − f̃(ỹ)S̃(2) = −R̃(1)

,τ +NR (70b)

S̃
(2)

,t̃
+ h̃

(2)
,ỹ + f̃(ỹ)R̃(2) = −S̃(1)

,τ +NS (70c)

h̃
(2)

,t̃
+∇ · R̃(2) = −h̃(1)

,τ +Nh (70d)

where we note that via use of the chain rule ∇̃2ψ̃
(1)
,τ τ,t = ∇̃2ψ̃

(1)
,τ ε, and similarly for R̃(1)

,τ ,
S̃

(1)
,τ and h̃(1)

,τ . Here, the nonlinear terms Nψ, NR and Nh are given by,

Nψ = −J(ψ̃(1), ∇̃2ψ̃(1))−$(∂x̃x̃ − ∂ỹỹ)R̃(1)S̃(1) − ∂x̃ỹ(R̃(1) 2 − S̃(1) 2) (71a)

NR = −J(ψ̃(1), R̃(1)) + R̃(1) · ∇̃ψ̃(1)
,x̃ −$qR̃(1) · ∇̃R̃(1) (71b)

NS = −J(ψ̃(1), S̃(1)) + R̃(1) · ∇̃ψ̃(1)
,ỹ −$qR̃(1) · ∇̃S̃(1) (71c)

Nh = −J(ψ̃(1), h̃(1))− ∇̃ · (h̃(1)R̃(1)) . (71d)

If we apply the resonance conditions, equations (56), to these nonlinear equations, we
note that both the left hand side and the right hand sides have terms that are proportional
exp(iϕ̃j). For example, if we apply the resonance condition for the j = 1 wave, then terms
that are not discarded are those that are proportional to exp(iϕ̃1) and exp(−i[ϕ̃2 + ϕ̃3]). In
order to find a compatibility condition we substitute our assumed barotropic streamfunction
solution, equation (67a) into equation (70a) to yield,

iω̃jΨ
(2)
j,ỹỹ + (k̃j f̃ ′ − ω̃j k̃

2
j )iΨ

(2)
j = FΨ

j , (72)

where FΨ
j may thought of as a forcing function arising from the nonlinear wave interactions

and is given by,
FΨ
j = (k̃2

jΨ
(1)
j −Ψ(1)

j,ỹỹ)Aj,τ̃ +Nψ
j , (73)

in which Nψ
j are the non-linear terms from equation (71a) that are proportional to exp(iϕ̃j).

Similarly, combining equations (70b) to (70d), we find a forced modal equation for the
second order effects,

iω̃jΦ
(2)
j,ỹỹ +

{
−ω̃j f̃2 − ω̃j k̃

2
j + ω̃3

j − k̃j f̃
′
}
iΦ(2)

j = FΦ
j , (74)
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where FΦ
j is the baroclinic forcing term due to interaction with other waves and is given by,

FΦ
j =Φ(1)

j (ω̃2
j − k̃2

j )Aj,τ̃ + (∂t̃t̃ − ∂x̃x̃)N S
j A

∗
2A

∗
3

+ (k̃jΞ
(1)
j,ỹ + f̃ ω̃jΞ

(1)
j )Aj,τ̃ + (∂x̃ỹ − f̃∂t̃)N

R
j A

∗
2A

∗
3

+ (f̃ k̃jG̃
(1)
j + ω̃jG̃

(1)
j,ỹ )Aj,τ̃ + (f̃∂x̃ − ∂t̃ỹ)N

h
j A

∗
2A

∗
3 , (75)

where NR, N S and N h are the nonlinear terms that are proportional to exp(iϕ̃j).

Equations (72) and (74) have compatibility conditions,∫ ∞

−∞
FΨ
j Ψjdỹ = 0 (76a)∫ ∞

−∞
FΦ
j Φjdỹ = 0 , (76b)

where Ψj and Φj are functions that satisfy the modal equations (43) and (44), respectively.
Although there appear to be two compatibility conditions, there is indeed only one case
required, as for a barotropic mode Φj(ỹ) ≡ 0 and for the baroclinic case, Ψj(ỹ) ≡ 0.

In the next section, we examine form of N for three trapped Rossby waves, which will
eventually allow us to find the equations for the evolution of the wave amplitude.

5.3 Triad Interactions of Three Baroclinic Rossby Waves

We wish to examine the interaction of three baroclinic waves. Firstly, we use the graphical
technique (for example, Simmons, 1969) to illustrate the possibility of resonant interactions.
The approximate baroclinic Rossby wave dispersion relation, equation (62), is plotted in
figure 8. The origin of the m = 1, 2, 4, 5 waves (blue curves) is translated to an arbitrary
point along the m = 3 baroclinic wave (the red line) while m = 1, 2, 4, 5 are also plotted in
black. As can be seen, there are many possible intersections for just the first five modes,
and indeed further possibilities may be found by translating the origin of the blue lines
to a different place on the red line, or, considering a different mode to m = 3, or indeed,
considering more modes than just the first five.

We note that in the purely baroclinic case, there will be no barotropic terms, as ψ̃(1) ≡
0. This allows us to expand the nonlinear terms in the forcing function, equation (75).
To illustrate, we begin by considering the wave labelled 1. We examine the non-linear
terms, equation (71), paying particular attention to those terms that are proportional to
exp(−i[ϕ̃2 + ϕ̃3]),

NR
1 = i$q

(
k̃1Ξ

(1)
2 Ξ(1)

3 + Φ(1)
2 Ξ(1)

3,ỹ + Ξ(1)
2,ỹΦ

(1)
)
e−i(ϕ̃2+ϕ̃3) + . . . (77a)

NS
1 = $q

(
k̃2Φ

(1)
2 Ξ(1)

3 + k̃3Ξ
(1)
2 Φ(1)

3 − ∂ỹ[Φ
(1)
2 Φ(1)

3 ]
)
e−i(ϕ̃2+ϕ̃3) + . . . (77b)

Nh
1 = i

(
∂ỹ[Φ2G̃3 − G̃2Φ3] + k̃1[Ξ2G̃3 − G̃2Ξ3]

)
e−i(ϕ̃2+ϕ̃3) + . . . , (77c)
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Figure 8: A rich array of three wave resonant interactions can be found in the system under
consideration. The approximate low frequency dispersion relation for baroclinic Rossby
waves with f̃0 = 1 is plotted for m = 1, 2, 4, 5 (black lines) and m = 3 (red line). The origin
for the m = 1, 2, 4, 5 waves is translated along the m = 3 relation to an arbitrary point.
Intersection of the blue lines with black lines indicate resonant triads.

where . . . represents terms that are not proportional to e−iϕ̃1 , and are thus ignored. The
terms shown are NR

1 , N S
1 and N h

1 in equation (75) for the forcing term. In order to find
the forcing term, we need to operate on the nonlinear terms,

N R
1 =$q(k1∂ỹ + f̃ ω̃1)

(
k̃1Ξ

(1)
2 Ξ(1)

3 + Φ(1)
2 Ξ(1)

3,ỹ + Ξ(1)
2,ỹΦ

(1)
)

(78a)

N S
1 =$q(ω̃2

1 − k̃2
1)
(
k̃2Φ

(1)
2 Ξ(1)

3 + k̃3Ξ
(1)
2 Φ(1)

3 − ∂ỹ[Φ
(1)
2 Φ(1)

3 ]
)

(78b)

N h
1 =(ω̃1∂ỹ + f̃ k̃1)

(
∂ỹ[Φ2G̃3 − G̃2Φ3] + k̃1[Ξ2G̃3 − G̃2Ξ3]

)
(78c)

where

N R
1 = −(∂x̃ỹ − f̃∂t̃)N

R
1 , N S

1 = −(∂t̃t̃ − ∂x̃x̃)N S
1 , N h

1 = −(f̃∂x̃ − ∂t̃ỹ)N
h
1 .

We can see that the equivalent expressions for N2 and N3 can be found by swapping indicies.

As the governing equation for the nonlinear interactions, equation (74), is a forced
modal equation, we use the compatibility condition – noting that Φ(1)

1 satisfies the modal
equation (44) – to yield an equation for the time evolution of the amplitude,

A1,τ̃

∫ ∞

−∞
(ω̃2

1 − k̃2
1)
(
Φ(1)

1

)2
+Φ(1)

1 (f̃ ω̃1 + k̃1∂ỹ)Ξ
(1)
1 + Φ(1)

1 (f̃ k̃1 + ω̃1∂ỹ)G̃
(1)
1 dỹ

= A∗2A
∗
3

∫ ∞

−∞
Φ(1)

1 N R
1 + Φ(1)

1 N S
1 + Φ(1)

1 N h
1 dỹ . (79)
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Before being able to solve such an equation, we use the relations G̃ and Ξ in terms of
Φ, equations (38). It is known that Φ is an associated Legendre function, equation (49).
Substituting, we find that,

(ω̃2
1 − k̃2

1) (Φ1)
2 + Φ1(f̃ ω̃1 + k̃1∂ỹ)Ξ1 + Φ1(f̃ k̃1 + ω̃1∂ỹ)G̃1

= Φ1Φ1,ỹỹ
k̃2

1 + ω̃2
1

k̃2
1 − ω̃2

1

− Φ1(Φ1f̃),ỹ
2k̃1ω̃1

k̃2
1 − ω̃2

1

− Φ2
1f̃

2 k̃
2
1 + ω̃2

1

k̃2
1 − ω̃2

1

+ f̃Φ2
1,ỹ

k̃1ω̃1

k̃2
1 − ω̃2

1

− Φ2
1(k̃

2
1 − ω̃2

1) ,

(80)

where we have dropped the superscript, (1), for brevity, as all modal functions are first
order. In order to garner information about the time evolution of the amplitude of the
waves, we need to find out information about the integrals in equation (79). We begin
with the left hand side. Firstly we note that from the approximate baroclinic dispersion
relation, equation (62), |k̃| > |ω̃| for |k̃| > 0 and as such, k̃2 − ω̃2 > 0. We also note from
the dispersion relation that ω̃k̃ < 0 for |k̃| > 0.

We use integration by parts and the property that Φ(ỹ) → 0 as ỹ → ±∞, to note the
following, ∫ ∞

−∞
ΦΦ,ỹỹdỹ = ΦΦ,ỹ

∣∣∣∣∞
−∞

−
∫ ∞

−∞
Φ2
,ỹdỹ

= −
∫ ∞

−∞
Φ2
,ỹdỹ (81a)

1
2

∫ ∞

−∞
f̃Φ2

,ỹ =
1
2

(
f̃Φ2

∣∣∣∣∞
−∞

−
∫ ∞

−∞
Φ2f̃ ′dỹ

)
= −1

2

∫ ∞

−∞
Φ2f̃ ′dỹ (81b)∫ ∞

−∞
Φ(Φf̃),ỹdỹ = Φ2f̃

∣∣∣∣∞
−∞

− 1
2

∫ ∞

−∞
f̃Φ2

,ỹdỹ

=
1
2

∫ ∞

−∞
Φ2f̃ ′dỹ , (81c)

We say that Υ1 is equivalent to equation (80) and use the results of equations (81) to obtain,∫ ∞

−∞
Υ1dỹ = − 1

k̃2
1 − ω̃2

1

∫ ∞

−∞
(k̃2

1 + ω̃2
1)Φ

2
,ỹ +

3k̃1ω̃1

2
f̃ ′Φ2

1 + Φ2
1f̃

2(k̃2
1 + ω̃2

1) + Φ2
1(k̃

2
1 − ω̃2

1)
2dỹ .

(82)
We furthermore note that one property of the associated Legendre function is that it is either
symmetric or anti-symmetric. In the present case it is the meridional mode number, m, that
determines whether the modal function is symmetric or anti-symmetric – see equation (46).
We also note that f̃(ỹ) is an anti-symmetric function and that f̃ ′(ỹ) > 0 is a positive,
symmetric function. Using these properties we find the following for the various terms in
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equations (80) and (81), ∫ ∞

−∞
Φ2
,ỹdỹ > 0 (83a)∫ ∞

−∞
Φ2f̃ ′dỹ > 0 (83b)∫ ∞

−∞
f̃2Φ2dỹ > 0 (83c)∫ ∞

−∞
Φ2dỹ > 0 , (83d)

Use of these results tells us that the integral of Υ1, equation (82) is negative.

With respect to the right hand side of equation (79) we find, after much algebra, that,

Φ1N
R

1 = −$q

 k̃1Φ1(ω̃1f̃ + k̃1∂ỹ)
[
k̃2k̃3Φ2,ỹΦ3,ỹ − k̃2ω̃3f̃Φ2,ỹΦ3 − ω̃2k̃3f̃Φ2Φ3,ỹ + ω̃2ω̃3f̃

2Φ2Φ3

]
(k̃2

2 − ω̃2
2)(k̃

2
3 − ω̃2

3)

+Φ1
k̃1k̃2(Φ2,ỹỹΦ3),ỹ − k̃1ω̃2[(Φ2f̃

′Φ3),ỹ + (f̃Φ2,ỹΦ3),ỹ] + ω̃1f̃ [k̃2Φ2,ỹỹΦ3 − ω̃2Φ3(f̃Φ2),ỹ]
k̃2

2 − ω̃2
2

+ Φ1
k̃1k̃3(Φ2Φ3,ỹỹ),ỹ − k̃1ω̃3[(Φ2f̃

′Φ3),ỹ + (f̃Φ2Φ3,ỹ),ỹ] + ω̃1f̃ [k̃3Φ2Φ3,ỹỹ − ω̃3Φ2(f̃Φ3),ỹ]
k̃2

3 − ω̃2
3

}
(84a)

Φ1N
S

1 = $q(k̃2
1 − ω̃2)

{
Φ1(Φ2Φ3),ỹ − k̃2k̃3

(
Φ1Φ2,ỹΦ3

k̃2
2 − ω̃2

2

+
Φ1Φ2Φ3,ỹ

k̃2
3 − ω̃2

3

)

+f̃Φ1Φ2Φ3

(
k̃3ω̃2

k̃2
2 − ω̃2

2

+
k̃2ω̃3

k̃2
3 − ω̃2

3

)}
(84b)

Φ1N
h

1 =
Φ1(f̃ k̃1 + ω̃1∂ỹ)[k̃3(f̃Φ2Φ3),ỹ − ω̃3(Φ2Φ3,ỹ),ỹ]

k̃2
3 − ω̃2

3

−Φ1(f̃ k̃1 + ω̃1∂ỹ)[k̃2(f̃Φ2Φ3),ỹ − ω̃2(Φ2,ỹΦ3),ỹ]
k̃2

2 − ω̃2
2

+
Φ1k̃1(f̃ k̃1 + ω̃1∂ỹ)[(k̃2k̃3 − ω̃2ω̃3)(f̃Φ2,ỹΦ− f̃Φ2Φ3,ỹ) + (k̃2ω̃3 − k̃3ω̃3)(f̃2Φ2Φ3 − Φ2,ỹΦ3,ỹ)]

(k̃2
2 − ω̃2

2)(k̃
2
3 − ω̃2

3)
.

(84c)

The sign of the integrals of equation (84) are not as easy to determine as that for equa-
tion (82). We can simplify these equations, again through the use of integration by parts
and the property of the modal functions that Φ → 0 as ỹ → ±∞,∫ ∞

−∞
Φ1∂ỹFdỹ = −

∫ ∞

−∞
Φ1,ỹFdỹ , (85)
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where F = F (ỹ). When integrating equations (84), we can thus replace all terms of the
form Φ1∂ỹF with −Φ1,ỹF , making the equations somewhat more transparent. Unfortu-
nately, there was insufficient time to fully examine what conditions determine the sign of
the integrals of equations (84).

We can thus write down the coupling coefficient for time evolution equation (79) of the
amplitude of wave 1,

δ1 =

∫∞
−∞Φ1N R

1 + Φ1N S
1 + Φ1N h

1 dỹ∫∞
−∞Υ1dỹ

. (86)

The coupling coefficients δ2 and δ3 can now be trivially gained by changing the labels appro-
priately in equation (86), which gives the standard, ordinary coupled differential equations
for the time evolution of amplitude of a weakly non-linear triad interaction,

A1,τ̃ = δ1A
∗
2A

∗
3 (87a)

A2,τ̃ = δ2A
∗
1A

∗
3 (87b)

A3,τ̃ = δ3A
∗
1A

∗
2 . (87c)

The sign of the coupling coefficients is important, as, if they are single signed, then we shall
encounter explosive instability (Coppi et al., 1969), which is an unphysical circumstance in
the situation we are considering. We have already seen that the sign the integral of Υ1,
equation (82), is fixed. Thus, the sign of the coupling coefficients is determined by the sign
of the sum of the integrals of equations (84), which is the numerator in equation (86).

In practise, it is not particularly practical to attempt to evaluate the coupling coefficient,
equation (86), analytically and a future possibility would be to numerically integrate these
equations.

6 Conclusion and Discussion

The governing equations for the equations on a Mercator projection centred about the
equator were derived. We took inspiration from these equations to examine an “extended
β-plane” in which we use the standard Cartesian, geopotential coordinates except employ-
ing the use of a tanh profile for the coriolis parameter, rather than the usual linear profile
of the standard equatorial β-plane.

The properties of the solutions of such a system were investigated, with the finding that
both a discrete and continuous spectrum exist for baroclinic waves, while only the discrete
spectrum exists for barotropic waves. There exist many avenues for potential future study
of these systems, a few of which shall now be discussed.

6.1 Potential Future Work

As with any interesting line of enquiry, we are left with more questions than answers. A
brief list of potential future works, based upon this project is presented.
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• Examine the properties of the Mercator projection including the metric terms, and
compare with the solutions on a sphere, as described by Longuet-Higgins (1964, 1965).

• Examine the properties of interactions between a Rossby wave and a Yanai or Kelvin
and the continuous spectrum.

• The derivation and numerical evaluation of the Manly-Rowe relations for the system
of 3 baroclinic Rossby waves considered in section 5.3. Such an evaluation would help
to ascertain whether any observed phenomena may be explained by such interactions
(viz-a-viz the motivation given in section 1).

• It may be beneficial, and easier to conduct manipulations and further studies into
these phenomena if the system were described using a Lagrangian or Hamiltonian
method (for example, Ripa, 1981).

• The re-derivation of the system with a background shear (which is a more realistic
set up for near equatorial oceanic dynamics).
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Degradation of the internal tide over long bumpy topography

Erinna Chen

1 Introduction

Internal waves in the ocean carry a significant amount of energy and are the main cause of
diapycnal mixing in the ocean. Barotropic tidal currents flowing over topography generate a
large number of these internal waves, also known as internal tides. From TOPEX/Poseidon
altimetry data, it is estimated that up to 1 TW of power is transferred away from the
barotropic tides in the deep ocean, primarily by internal tides [7].

The generation of the internal tides over topography has been extensively studied (e.g.
[5], [2], [9], [3]) and it is suggested that in an ocean of finite-depth, the primary waves
generated are those of low baroclinic modes [17]. However, mechanisms for internal-tide-
driven mixing and energy dissipation such as shear instability, wave-wave interactions and
parametric subharmonic instability are most effective at high (i.e. greater than wavenumber
10) modes. The transition from the low-mode internal tides to higher mode waves where
mixing can occur is poorly understood. It is important to understand where these processes
occur in that different parameterizations of internal wave dissipation may significantly alter
the behavior of ocean circulation in models [8].

Low-mode internal tides have been observed to propagate over O(1000 km) distances
from their generation site [6], [15]. It is likely that over this distance, the internal tides
should encounter varying bottom topography that would scatter the low mode waves into
higher modenumbers. Topographic scattering in the deep ocean has been studied extensively
in two main contexts: generation of the internal tide and scattering of internal waves over
finite-length topography (e.g. [1], [12], [13], [16]). However, little work has looked at internal
wave propagation over topography with multiple bumps, random topography, or topography
with long extent.

In this work, we study the degradation of the internal tide first by extending methods
previously utilized to understand the conversion of the barotropic tide and also by using
a ray tracing method. We primarily studied the behavior of the internal tide propagating
over well-behaved “model” topographies; however, there are ways to extend this work to
include more random topography.
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2 Governing equations

We begin by considering the dynamics of an incompressible, hydrostatic, stratified fluid
governed by the linear Boussinesq equations in two-dimensions (x and z):

ut + Px = 0, (1)

wt + Pz = b, (2)

bt +N2w = 0, (3)

ux + wz = 0, (4)

where N is the buoyancy frequency defined as

N2 = −g
d ln ρ̄0

dz
.

We will only consider constant bouyancy frequency. We employ subscript notation through-
out to represent partial differentiation.

The momentum equations can be combined by differentiating (1) with respect to z, (2)
with respect to x, and then adding, resulting in a vorticity equation:

(uz − wx)t + bx = 0. (5)

By expressing the velocities u and w in terms of a streamfunction ψ where

u = ψz, w = −ψx, (6)

the vorticity and buoyancy equations ((5), (3), respectively) can be combined into a single
wave equation:

(

∇2ψ
)

tt
+N2ψxx = 0 (7)

2.1 Stable solutions to the wave equation

We now seek stable solutions to equation (7) of the form

ψ = ψ̂(x, z)e−iωt. (8)

By substituting (8) into the wave equation (7), the streamfunction now satisfies

ψ̂zz =

(

N2

ω2
− 1

)

ψ̂xx. (9)

This equation can be scaled and non-dimensionalized via the transform

x→
H

π

√

N2 − ω2

ω2
x′, z →

H

π
z′,

resulting in a scaled, non-dimensional form for the wave equation

ˆψx′x′ = ˆψz′z′ . (10)

From this point forth, we will only be considering waves in their scaled, non-dimensional
form and therefore, we drop the “prime” and “hat” notation.

While we have neglected to include the effects of rotation in deriving (10), rotation can
easily be included and only appears in the scaling. The scaling is such that the wave crests
propagate at 45◦.
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Figure 1: Schematic of problem setup. The ocean has finite depth, and in scaled coordinates
z extends from 0 to π. The radiation conditions require that the scattered wave component
ϕ propagate outwards. The internal tide Ψ is a mode-1 wave that enters from the left of
the topography and propagates rightward over the topography. The topography is given as
z = h(x) where h(x) = 0 in the left and right far-fields.

3 Scattering of the internal tide over weak topography

The scattering of internal waves over topography has been studied extensively in the con-
text of barotropic tidal conversion (e.g. [5], [9], [3], [10]). While some of these previous
calculations can account for topography that is steep (i.e. slopes greater than 1) or has fi-
nite to large-amplitude, the most analytically tractable problem involves topography in the
so-called “weak topography” limit. For the weak topography limit to be appropriate, the
amplitude of the topography must be much small than the vertical scales of the waves and
the topographic slopes are much less than the slope of a tidal beam (s = 1 in our reference
frame). If this is the case, the boundary condition can be applied at the flat surface, instead
of on the topography. We adopt a method of analysis similar to [5], but extend this for
the internal tide propagating over weak topography. One notable difference in our setup is
that while typically the barotropic tide is assumed to be an infinite source of energy, the
internal tide has finite energy and will degrade as it propagates.

We begin by approximating the internal tide as a single, mode-1 wave given by

Ψ = eix sin z. (11)

The internal tide has finite amplitude (and energy), and our goal is to understand how this
amplitude decays as a function of the bottom topography. Figure 1 is a schematic of the
problem. The internal tide is assumed to propagate from left to right in the domain. The
topography is given by h(x), where h(x) = 0 in the far-fields (both right and left).

Throughout the domain, the streamfunction ψ can be expressed as

ψ = Ψ + ϕ, (12)

where Ψ represents the internal tide and ϕ represents the scattered waves due to interaction
with the topography. The scattered waves are subject to radiation conditions in the far-field,
that is, on the left and right boundaries of the domain, the scattered waves must propagate
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outwards. In addition, the streamfunction ψ is subject to the boundary conditions

ψ = 0 at z = h(x), (13)

ψ = 0 at z = π. (14)

Thus, this requires that along the bottom boundary

ϕ = −Ψ = −eix sin(h(x)) at z = h(x). (15)

For weak topography, we can expand this boundary condition around z = 0, resulting in
the O(1) boundary condition

ϕ = −eixh(x) at z = 0. (16)

In order to understand how the mode-1 internal tide is scattered to higher modenumbers,
we express the scattered wave component of the streamfunction as a Fourier series,

ϕ =
∞
∑

n=1

ϕn sinnz. (17)

The scattering coefficients ϕn can be obtained first by carrying out a Galerkin projection
of ϕzz onto sinnz.

∫ π

0

ϕzz sinnz dz = −nheix −
n2π

2
ϕn. (18)

By integrating the left hand side of equation (18) and substituting for ϕzz using the wave
equation (10), we obtain

d2ϕn

dx2
+ n2ϕn =

−2

π
nheix. (19)

This differential equation can be solved using a Green’s function

d2gn

dx2
+ n2gn = δ(x). (20)

subject to the radiation conditions. Thus, gn is given by

gn =
1

2in

in|x|
(21)

and the scattering coefficients ϕn are

ϕn(x) =
−2n

π

∫ ∞

−∞
gn(x− x′)h(x′)eix

′

dx′ =
i

π

∫ ∞

−∞
ein|x−x′|+ix′

h(x′)dx′. (22)

While equation (22) gives us information about the scattered wavefield over the entire
domain, we are particularly interested in the scattered waves that propagate away from the
topography. In the far fields, the scattered waves must satisfy the radiation conditions

(left) x→ −∞ : ϕ→
∞
∑

n=1

ane
−inx sinnz, (23)

(right) x→ +∞ : ϕ→

∞
∑

n=1

bne
inx sinnz. (24)
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Figure 2: Energy flux is constant through the domain indicated by the dashed region.
A finite amount of energy enters the domain via the internal tide on the left side of the
topography and leaves the domain via waves in both directions.

By combining (22)-(24), we obtain the scattering coefficients in the far-fields

(left) x→ −∞ : ϕLn =
i

π

∫ ∞

−∞
ei(n+1)x′

h(x′)dx′, (25)

(right) x→ +∞ : ϕRn =
i

π

∫ ∞

−∞
e−i(n−1)x′

h(x′)dx′. (26)

This solution is known in other contexts as Bragg scattering. Knowing the scattering
coefficients now allows us to calculate the amount of energy converted from the internal
tide to higher mode numbers.

3.1 Scattered wave energy flux

The full streamfunction ψ satisfies
−→
∇ ·

−→
J = 0, (27)

where J represents the flux and is defined as

−→
J = i [(ψψ∗

x − ψ∗ψx),−(ψψ∗
z − ψ∗ψz)] . (28)

Integrating over the domain x = [L,R] and z = [0, π] as illustrated in figure 2, we find that

∫ π

0

(ψψ∗
x − ψ∗ψx) dz

∣

∣

∣

∣

x=R

−

∫ π

0

(ψψ∗
x − ψ∗ψx) dz

∣

∣

∣

∣

x=L

= 0, (29)

that is the horizontal energy flux through the domain is zero.
If we now substitute ψ = Ψ + ϕL at x = L and ψ = Ψ + ϕR at x = R into equation

(29), we find that the energy loss from the internal tide is a function of the scattered wave
coefficients,

∆EIT = −
1

2

∞
∑

n=1

n
(

|ϕRn|
2 + |ϕLn|

2
)

. (30)
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3.2 Scattered wave solutions for model topographies

For the topographies

h(x) =
1

2
ǫ cos kx

h(x) =
1

2
ǫ(cos kx+ 1),

the integrals for the scattering coefficients (25, 26) can be evaluated analytically. Assuming
the topography is located only on the interval [−bπ, bπ], vanishes at x = −bπ and x = bπ,
and is zero elsewhere, then the scattering coefficients are

ϕLn =
iǫ

4π

∫ bπ

−bπ

ei(n+1)x′

(

eikx′

+ e−ikx′

+ 2α
)

dx′ (31)

ϕRn =
iǫ

4π

∫ bπ

−bπ

e−i(n−1)x′

(

eikx′

+ e−ikx′

+ 2α
)

dx′ (32)

where α = 0 or 1.
For the model topographies, this solution suggests that there are a limited number of

scattered waves. To the right of the topography, the scattered waves occur as a n = 1 mode
and a n = k + 1 mode. To the left of the topography, there is a single scattered wave, the
n = k− 1 mode. The amplitudes of these waves depend on the length of the topography, b,
and the height of the topography, ǫ,

|ϕR1| = αǫb

|ϕR,k+1| =
1

2
ǫb (33)

|ϕL,k−1| =
1

2
ǫb.

From (30), the energy drained from the internal tide is the sum of the product of the
wavenumbers and their corresponding wave amplitude,

∆EIT = −
1

2

(

αǫb+
1

2
(k + 1)ǫb+

1

2
(k − 1)ǫb

)

. (34)

However, the amount of energy drained from the internal tide is not finite in this solution.
For fixed ǫ, the drained energy grows unbounded with the length of the topography, b.

4 Scattered wave solutions using a Green’s function approach

Equation (34) suggests that our solution for the scattered wave coefficients has a limited
range of validity. This may be due to an inconsistency in the boundary condition expansion.
To O(ǫ) the bottom boundary condition is

−ǫheix = ϕ(x, 0) + ǫhϕz(x, 0). (35)

Previously, the solution in §3 did not include the second term on the right hand side.
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To rectify this problem, we now incorporate the fully non-linear bottom boundary con-
dition (15) by utilizing a method previously used in calculations of wave scattering off finite
and supercritical topography (e.g. [3], [14]). We define a Green’s function as

G(x− x′, z, z′) =
1

π

∞
∑

n=1

1

n
ein|x−x′| sinnz sinnz′ (36)

The scattered component of the streamfunction is given by

ϕ =

∫ a

−a

γ(x′)G(x− x′, z, h(x′))dx′ (37)

where the topography lies between [−a,a] and γ(x) is the source density function represent-
ing the topography. γ(x) is found through the solution of a matrix problem incorporating
the bottom boundary condition

−eix sinh(x) =

∫ a

−a

γ(x′)G(x− x′, h(x), h(x′))dx′. (38)

Once we have the source density function, the full solution for the scattered wave field is
given by

ϕ(x, z) =

∫ a

−a

γ(x′)
∞
∑

n=1

1

πn
ein|x−x′| sinnz sinnh(x′)dx′ (39)

The scattered wave field to the left of the topography is

ϕL(x, z) =

∞
∑

n=1

e−inx sinnz
1

πn

∫ a

−a

γ(x′)einx′

sinnh(x′)dx′. (40)

The corresponding modal scattering coefficients are thus

ϕLn(x) = e−inx 1

πn

∫ a

−a

γ(x′)einx′

sinnh(x′)dx′. (41)

Similarly, to the right of the topography, the scattered wave field is

ϕR(x, z) =
∞
∑

n=1

einx sinnz
1

πn

∫ a

−a

γ(x′)e−inx′

sinnh(x′)dx′, (42)

and the corresponding scattering coefficients are

ϕRn(x) = einx 1

πn

∫ a

−a

γ(x′)e−inx′

sinnh(x′)dx′. (43)

For this formulation, the scattering coefficients must be solved for numerically. The
numerical code we employ takes an input for the topography h(x), solves for the source
function γ(x) and then solves for the scattering coefficients. The Green’s function defined
in (36) has the limitation that the topography must lie above the flat bottom (z = 0).
However, by using the Green’s function approach, the topography is not limited to the
weak topography regime and thus, may be used to model more “realistic” topography than
our model topography.
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Figure 3: Scattering coefficients solved for using the Green’s function method for the pre-
dicted modes from (33), ϕR1(green), ϕR,k+1(red), ϕL,k−1(blue), shown with k = 5. Solution
from (33) suggests that ϕn

ǫb
should remain constant, independent of topography length. (a)

Coefficients for ǫ = 0.01 (b) Coefficients for ǫ = 0.1

4.1 Numerical solutions for the wave equation

For the model topography h(x) = 1

2
(cos kx + 1), the scattered wave solution found in §3.2

says that there are only three scattered waves and that the parameter ϕn

ǫb
should remain

constant. As stated before, the range of validity for this solution must be limited because
the internal tide has finite energy. Figures 3 and 4 show results of solutions from the Green’s
function approach for variable length topography.

Figure 3 shows the scattering coefficients for the three predicted modes from (33), i.e. the
modes ϕR1, ϕR,k+1, and ϕL,k−1. For figure 3a, the topography is extremely weak, ǫ equals
0.01. In this case, the prediction that ϕn

ǫb
remains constant seems to hold even for fairly long

topography. However, for topography of higher amplitude (figure 3b), the Green’s function
solution diverges significantly from the prediction even for short topographic lengths (i.e.
2-3 wavelengths).

Figure 4 shows the full spectrum of the scattering coefficients for topography with ǫ =
0.1. The peaks of the spectrum are the three modes predicted from the linear solution
(shown in red); however, there is a significant amount of energy also contained in higher
harmonic modes. The harmonic modes are the nk− 1 modes on the left of the topography
and the nk + 1 modes on the right of the topography, where n = 2, 3, . . .. The divergence
of the actual solution and the predicted solution in figure 3b is likely due to the presence of
these higher-order harmonics. As the topography gets longer, more energy from the internal
tide is lost to these harmonics.
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Figure 4: Scattering coefficients solved for using the Green’s function method for
h(x) = 1

2
(0.1)(cos 5x + 1). Red dots indicate modes predicted from (33). (a) Scatter-

ing coefficients to the left of the topography (b) Scattering coefficients to the right of the
topography

5 Multiscale asymptotic analysis

While the Green’s function method may allow us to incorporate the fully nonlinear bottom
boundary condition, but solving for the source function is computationally expensive. The
scattered wave solution given in §3.2 suggests that the range of validity for our solution
may be extended if we introduce another length scale.

In the classic fashion, we introduce a long horizontal scale

X = ǫx (44)

such that
∂

∂x
→

∂

∂x
+ ǫ

∂

∂X
. (45)

The streamfunction can be written in expanded form as

ψ = ψ(0)(x, z,X) + ǫψ(1)(x, z,X) +O(ǫ2) (46)

where the superscripts represent the order of the expansion. Plugging (46) into the wave
equation, the O(1) equation on ψ is

ψ(0)

xx − ψ(0)

zz = 0. (47)

Thus to zeroth order, the streamfunction satisfies the wave equation. In order to solve for
ψ(0)(x, z,X), we must expand to next order in ǫ. To O(ǫ), ψ satisfies

ψ(1)

xx − ψ(1)

zz = −2ψ
(0)

xX . (48)
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We prescribe that the solvability condition on ψ is that the O(1) solution is periodic on the
fast length scale x. We then expand ψ(0) as a Fourier series of the form

ψ(0)(x, z,X) =

∞
∑

n=1

(

Tn(X)einx +Rn(X)e−inx
)

sinnz (49)

where Tn are the transmitted waves (equivalent to ϕRn on the far right) and Rn are the
reflected waves (equivalent to ϕLn on the far left). This expansion of ψ(0) satisfies the O(1)
boundary condition on the bottom

ψ(0)(x, 0,X) = 0. (50)

Substituting for ψ(0) in (48) gives

ψ(1)

xx − ψ(1)

zz = −2i
∞

∑

n=1

n
(

Tn(X)einx +Rn(X)e−inx
)

sinnz. (51)

The coefficients Tn and Rn are a function of the bottom topography and can be solved
for by manipulating equation (51) and applying the bottom boundary condition. To solve
for Tn, we multiply both sides of (51) by e−inx sinnz and integrate over the domain. Because
of orthogonality and periodicity, the right hand side of the equation reduces to

∫ π

−π

∫ π

0

−2i

∞
∑

m=1

m
(

Tm(X)eimx +Rn(X)e−imx
)

sinmz sinnz e−inxdz dx = −i2π2nTnX .

(52)
The left hand side simplifies to

∫ π

0

∫ π

−π

ψ(1)

xx − ψ(1)

zz dxdz = −

∫ π

−π

nψ(1)(x,X, 0)e−inxdx (53)

The O(ǫ) boundary condition that must be satisfied is

ψ(1)(x, 0,X) = −h(x)ψ(0)

z (x, 0,X). (54)

By combining (52)-(54), we obtain the equation for the evolution of the transmitted wave
coefficients,

TnX =
i

2π2

∫ π

−π

h(x)e−inx

∞
∑

m=1

(

Tme
imx +Rme

−imx
)

dx. (55)

Similarly, the reflected wave coefficients, Rn, can be obtained by multiplying (51) by
einx sinnz and integrating over the domain. The reflected wave coefficients satisfy

RnX =
i

2π2

∫ π

−π

h(x)einx

∞
∑

m=1

(

Tme
imx +Rme

−imx
)

dx. (56)

Equations (55) and (56) suggest that the long-length scale evolution of the transmit-
ted and reflected waves are coupled to each other by their short-scale behavior over the
topography.
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5.1 Solutions for model topographies

In the case of our model topographies, the evolution equations (55) and (56) take on a form
that is readily solvable.

5.1.1 General solutions for k > 0

Substituting our model topography,

h(x) =
1

2
(cos kx+ α) where α = 0 or 1,

into (55) and (56), the transmitted waves and reflected waves are given by

TnX =
i

4π
[2nαTn + (n− k)Tn−k + (n+ k)Tn+k + (k − n)Rk−n] , (57)

RnX =
i

4π
[2nαRn + (n− k)Rn−k + (n+ k)Rn+k + (k − n)Tk−n] . (58)

The evolution equations (57) and (58) predict the presence of the higher-order harmonics
seen in figure 4. Since the only incoming wave is n = 1 internal tide, for small X, the only
coupling occurs between the n = 1 and itself, the n = 1 wave and a transmitted n = k + 1
wave, and the n = 1 wave and a reflected n = k−1 wave, as predicted by the linear solution.
However, over long topographic length scales, these incited waves will couple to higher order
wave numbers and energy will be transferred from the internal tide to other mode numbers
by this coupling.

In general, the evolution equations (57) and (58) are a set of coupled linear ordinary
differential equations and can be solved by finding the eigenvalues of a system-defining
matrix. All the eigenvalues for this matrix are complex, thus the solution is stable. We do
not tackle this problem here, but instead focus on a single value for k, k = 1.

5.1.2 Analytical solutions for k = 1 using a generating function

In the k = 1 case, the transmitted and reflected waves are decoupled from each other.
Therefore, since there are no reflected waves to begin with, the long length scale evolution
of the system only consists of transmitted waves. Furthermore, the evolution equation for
the transmitted waves can be solved analytically using a generating function.

We define a generating function, E, as

E(X, s) =
∞
∑

n=1

Tn(X)sn. (59)

If E has an analytical solution, then the coefficients for the transmitted waves are simply

Tn(X) =
∂(n)E

∂s(n)

∣

∣

∣

∣

∣

s=0

. (60)

For k = 1, the long length scale evolution of the transmitted waves is given by

TnX =
i

4π
[2αnTn + (n− 1)Tn−1 + (n + 1)Tn+1] (61)
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By multiplying by sn and summing over n, equation (61) becomes

∞
∑

n=1

TnXs
n =

i

4π

∞
∑

n=1

sn [2nTn + (n− 1)Tn−1 + (n+ 1)Tn+1] , (62)

and the evolution of the transmitted waves can be expressed in terms of the generating
function,

EX =
i

4π

(

Es(1 + 2αs + s2) − T1

)

. (63)

Now to solve for E, we transform E into a function F (s,X),

E → F +
i

4π

∫ X

0

T1(X̃)dX̃ (64)

such that equation (63) can be written as

FX =
i

4π
(1 + 2αs + s2)Fs. (65)

Because
∂(n)E

∂s(n)
=
∂(n)F

∂s(n)
, (66)

we only need to solve for F to determine the behavior of the transmitted waves. By a
change of variables, the solution to equation (65) is given by

F (s,X) = F0(ζ −X) (67)

where
∂s

∂ζ
=

i

4π
(1 + 2αs + s2). (68)

The boundary condition at the far left of the domain (X = 0) is that the only transmitted
wave is the internal tide (i.e. Tn(0) = 0 for n 6= 1),

F (s, 0) =
∞
∑

n=1

snTn(0) = s. (69)

F can be obtained by solving for s in equation (68).

Solution for h(x) = 1

2
cos x

For the topography h(x) = 1

2
cos x, α = 0 and equation (68) becomes

∂s

∂ζ
=

i

4π
(1 + s2). (70)

The solution to equation (70) is

s = tan

(

iζ

4π

)

or ζ = −4πi tan−1 s. (71)

259



Substituting the above solution into the left boundary condition (69), we obtain

F (s, 0) = s = F0(ζ) = tan

(

iζ

4π

)

(72)

and thus,

F0(ζ −X) = tan

(

i(ζ −X)

4π

)

. (73)

We obtain F by substituting for ζ in equation (73),

F (s,X) =
s− i tanh X

4π

1 + is tanh X
4π

. (74)

By combining equations (60) and (66), we obtain the transmitted wave coefficients,

Tn(X) = (−i)(n−1)

(

1 − tanh2

(

X

4π

))

tanh(n−1)

(

X

4π

)

(75)

For increasing X, the transmitted wave coefficients decay exponentially.

Solution for h(x) = 1

2
(cos x+ 1)

For the topography h(x) = 1

2
(cos x+ 1), s is given by

∂s

∂ζ
=

i

4π
(1 + 2s + s2) =

i

4π
(1 + s)2, (76)

whose solution is

s =
4πi

ζ
− 1 or ζ =

4πi

1 + s
. (77)

Satisfying the boundary condition on F ,

F0(ζ) =
4πi

ζ
− 1. (78)

By substituting ζ −X for ζ in (78) and for ζ from (77), we obtain F

F (s,X) =

(

1

1 + s
+
iX

4π

)−1

− 1. (79)

The transmitted wave coefficients from equation (60) are

Tn(X) =
(−1)n−1

(

iX
4π

)n−1

(

1 + iX
4π

)n+1
. (80)

As X increases, the transmitted waves decay algebraically, not exponentially, as in the
case for the topography h(x) = 1

2
cos x. The choice of α was initially arbitrary, but the

behavior of the solutions seem to diverge significantly. However, in both cases, for large
values of X, the waves begin to focus in narrow bands, (see figure 5). The behavior of
these solutions for large X is better understood when we move from solutions derived from
the streamfunction construction to solutions of the wave equation using the method of
characteristics (otherwise known as ray tracing).
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Figure 5: Contours of the real part of the streamfunction ψ for h(x) = 1

2
cos x. (a) Stream-

function to the left of the topography. (b) Streamfunction to the right of the topography
after 25 topographic wavelengths.

6 Solutions using the method of characteristics

Because the wave equation (7) is hyperbolic, it can also be solved using the method of
characteristics. The general solution to the wave equation is

ψ = f(x− z) + g(x+ z). (81)

We define upward characteristics as lines of constant x − z and downward characteristics
as lines of constant x + z, i.e. characteristics occur along 45◦ angles (see figure 6). Along
these characteristics, we can define Riemann invariants

R+ = ψz − ψx = u+ w,

R− = ψz + ψx = u− w, (82)

where R+(R−) represents the Riemann invariant on an upward (downward) characteristic.
Characteristics carry a Riemann invariant until they encounter the top or bottom bound-

ary. Along flat boundaries, the boundary condition is such that there is no vertical velocity,
w = 0. From the definition of the Riemann invariants (82), at a flat boundary (grey region
in figure 6), an upward (or downward) characteristic will simply reflect from the boundary,
and carry the same Riemann invariant along with it,

R+(x0, z = π) = R−(x0, z = π). (83)

For subcritical topography, when downward characteristics encounter topography (blue re-
gion in figure 6) they reflect forwards, but the Riemann invariant is altered. The bottom
boundary condition is that there is no normal velocity to the topography,

w

u
= hx. (84)
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Figure 6: Schematic of tracing characteristics. There is a Riemann invariant R+(R−) on
upward(downward) characteristics. At a flat boundary, indicated by the grey region, the
value of the Riemann invariant is unaffected by reflection (R− = R+). When a charac-
teristic reflects off topography, e.g. the blue region, the Riemann invariant carried by the
characteristic is changed according to equation (85).

The Riemann invariant carried by the reflected upward-going characteristic is then

R+ = R− (1 + hx)

(1 − hx)
. (85)

In our scaled setup, characteristics that do not encounter topography are 2π-periodic.
A characteristic that originates at (x0, 0) will reflect at the top boundary at (x0 + π, π)
and return to the bottom boundary at (x0 + 2π, 0). A characteristic that does encounter
topography will have its wavelength changed as seen in figure 7. The wavelengths of char-
acteristics that hit the topography where h > 0 will shorten, while wavelenths of those
characteristics that hit the topography where h < 0 will lengthen.

6.1 Solutions for the wave field using Riemann invariants

Characteristics in our reference frame are 2π-periodic, and thus the field determined by
the Riemann invariants are also 2π-periodic. If we define a set of Riemann invariants on
an interval of length 2π, the wave field can be determined everywhere. The slopes of the
topography must remain subcritical for this to be the case; the mapping of characteristics
and the definition of the interval over which Riemann invariants must be defined becomes
more difficult for slopes that are supercritical (i.e. characteristics can reflect backwards)
[12],[13].

Before the topography, the wave field consists only of the internal tide. We define a web
of characteristics as a set of upward characteristics uniformly spaced along a flat bottom
boundary. The wave field consists of only the internal tide, so the Riemann invariants along
the bottom boundary are

R+(x0) = e−ix0 (86)

where x0 is the origin of the upward characteristic and x0 ∈ [0, 2π]. The value of the
Riemann invariants will be altered according to (85) where hx is evaluated at the point x

262



such that
h(x) = −x+ x0 + 2π. (87)

The Riemann invariants to the right of the topography are

R+(x0)R =

b
∏

i=1

(1 + hx(xi))

(1 − hx(xi))
R+(x0)L, (88)

where b is the number of reflections off the bottom (also the number of topographic wave-
lengths), xi is the location of the reflection and x0 ∈ [0, 2π]. In the weak topography limit,
we can expand equations (85) and (87). The Riemann invariants after the topography are
then given by

R+(x0)R = (1 + 2ǫbh(x0))e
−i(x0+2ǫh(x0)). (89)

Equation (89) recovers the weak topography solution from §3.2.

6.2 Fixed points for model topographies with k = 1

We can now determine the behavior of characterstics for our model topographies when
k = 1. Characteristics that hit the bottom boundary where h = 0 will be unchanged in
wavelength. Since cos x is 2π-periodic, these characteristics will reflect at the same relative
place on the topography. For those that do not reflect at z=0, the wavelength of the
characteristic will change.

Thus, we can characterize the zeros of the topography as either stable or unstable fixed
points. Figure 8 shows the behavior of the fixed points for the model topographies, where
green indicates a stable fixed point and red indicates and unstable fixed point. For the
topography h(x) = 1

2
cos x in figure 8a, characteristics move towards zeros on positive

slopes and move away from zeros on negative slopes. For a stable fixed point located at
(xs, 0), characteristics reflecting at x1 > xs will be shortened because h(x1) > 0 and the
subsequent bottom reflection will occur at x1 > x2 > xs. For multiple reflections, the
characteristics will be shortened until the characteristic arrives at x = xs. Characteristics
reflecting at x1 < xs will be lengthened such that a subsequent reflection will occur at
x1 < x2 < xs. For an unstable fixed point, xus, characteristics reflecting from x1 > xus will
be lengthened so that x1 < x2 since h(x1) < 0. Thus, characteristics will move away from
the unstable fixed point.

For the topography h(x) = 1

2
(cos x + 1) in figure 8b, the fixed points are degenerate

(two fixed points become a single fixed point). Because the topography is always greater
than zero, characteristics not reflecting from a fixed point always shorten. As a result,
characteristics will move towards the fixed point on positive slopes and away from the fixed
point on negative slopes.

We now interpret the results of §5.1.2 in the context of fixed points of the topography.
If we begin to the left of the topography with a web of characteristics that is uniformly
distributed along the flat bottom as shown in figure 9a, when these characteristics reflect
off topography, their lengths will be altered and the uniform web will become distorted.
Subsequent bounces will continue to warp the web such that characteristics will move away
from the unstable fixed points and move towards the stable fixed points. After a large
number of reflections (equivalent to large X in §5.1.2), the characteristics will be located
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Figure 7: Behavior of characteristics when reflecting off topography. For reflections off the
flat bottom (z = 0), the wavelength of the characteristics is 2π. When there is positive
topography (h(x) > 0), the characteristics will shorten by h(x) where x is the reflection
point (shown here as x1). For negative topography, the characteristics will lengthen by
|h(x)|, (shown as x2).

in a narrow band around the fixed point as in figure 9b, and the field carried by these
characteristics will focus into the narrow band seen in figure 5b.

Recall that the asymptotic solutions for large X differed between the two model to-
pographies; the solution for h(x) = 1

2
cos x decayed exponentially while the solution for

h(x) = 1

2
(cos x + 1) decayed algebraically. The decay behavior is dictated by how rapidly

characteristics converge on the fixed points. In the case of the topography h(x) = 1

2
cos x,

characteristics are never more than a distance of π away from a stable fixed point. However,
for the topography h(x) = 1

2
(cos x + 1), characteristics can be located a distance of up to

2π away from the nearest stable fixed point and as result, characteristics converge on the
stable fixed point more slowly.

6.3 Characteristic mapping and solutions for model topographies with

k 6= 1

Up to this point, we have looked primarily at solutions for the model topographies with
k = 1. With k 6= 1, as seen from the evolution equations, the wave field has reflected
waves that propagate leftwards. The Riemann invariants before the topography are not
given simply by (86); they also include a (unknown) reflected component that must be
solved for as well. Solving for the scattered wave components is not a trivial task. The
transmitted waves and reflected waves are coupled; however, for low values of k, the effect
of this coupling on the transmitted waves should be minimal. Therefore, the behavior of
the transmitted waves should behave similarly to the k = 1 case. The characteristics should
converge on stable fixed points.

To find the stable fixed points, we can use a 1-D map (figure 10a) to determine the
location of the next reflection point given a starting point of x0. In the map shown in
figure 10a, the blue curve plots x = h(x) and the green curve plots x = x. The procedure
to determine the fixed points are:
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(a) (b)

Figure 8: Behavior of fixed points for (a) h(x) = 1

2
cos x and (b) h(x) = 1

2
(cos x+ 1). The

blue dotted line indicates z = 0. For the topography in (a), on positive slopes, zeros are
stable fixed points (indicated in green). Characteristics will shorten when reflecting to the
right of the topography (h(x) > 0) and will lengthen when reflecting to the left (h(x) < 0).
The red points indicate unstable fixed points, and characteristics will move away from them.
For the topography in (b), the stable and unstable fixed points collapse onto each other
and form a degenerate fixed point (indicated in yellow). Characteristics will focus from the
right of the fixed point and diverge to the left.
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Figure 9: (a) Origination points for a uniform web of characteristics, defined on the interval
[0, 2π] to the left of the topography. (b) Web of characteristics after 25 reflections off the
topography h(x) = 1

2
cos x. Characteristics have focused around the stable fixed point.
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Figure 10: Behavior of transmitted waves for the topography h(x) = 1

2
(cos 2x+ 1). (a) 1-D

map used to determine fixed points of the topography. (b) Contours of the streamfunction
for the transmitted waves on the right side of the topography calculated by the Green’s
function approach. Waves in (b) are focused around two stable fixed points as predicted by
(a).

• A characteristic will begin on the topography on the blue curve at x0.

• The next reflection point, x1, can be found by moving along a horizontal line to the
green curve.

• The topographic height at x1 is found by moving along a vertical line to the blue
curve.

• A fixed point is a point that maps onto itself. Fixed points occur when the curves
x = h(x) and x = x intersect. Characteristics will move towards the stable fixed
points and away from the unstable fixed points.

The map for k = 2 is shown in figure 10a. The map predicts that the characteristics
will converge upon two stable fixed points. Figure 10b shows the numerical solution to
the transmitted wave field for k = 2 from the Green’s function approach. The solution
converges onto two stable fixed points.

7 Conclusions

Internal waves propagating in the ocean are likely to encounter long stretches of topography
where energy is drained from the low-mode internal tides to and transferred to higher mode
numbers. In this work, we primarily looked at model topographies that are unlikely to be
found in the ocean. We found that for these special topographies, energy can be transferred
rapidly to higher mode number waves. Additionally, characteristics for these topographies
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converged onto stable fixed points for topography with multiple reflections. This may be
seen as “periodic wave attractors” similar to wave attractors in basins (e.g. [11]).

In the ocean, the bottom topography is not regular and this wave-focusing mechanism
is unlikely to be seen. However, we have developed tools that may be utilized for realistic
ocean topography. Although computationally expensive, the Green’s function approach
can provide solutions to the scattering problem over more complex topography. Further
work utilizing the method of characteristics may also be valuable to understanding the
degradations of the internal tide over random topography.
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Quantum vortices in a glass of Bose-Einstein condensate

Nicolas Grisouard

1 Introduction

Bose-Einstein condensation occurs for bosons when, for a temperature low enough (typically
a few kelvins for a liquid condensate and a few nanokelvins for a gaseous condensate), a
macroscopic fraction1 of the bosons gathers in the quantum state of lowest energy, forming
a Bose-Einstein condensate (Bec). In this case, the behavior of the fluid can be described
in the case of a dilute gas by the nonlinear Schrödinger equation (Nls), also called the
Gross-Pitaevskii equation. It can be shown that the dynamics of the Nls is very close
to shallow water dynamics with surface tension. One of the striking features of Becs is
the possibility of point vortices to appear, which dynamics is explained in some the oldest
textbooks of fluid dynamics (see e.g. [5]). Surprinsingly, although vortices in Becs have
been extensively studied, some of the most simple Gendankenexperiments have yet to be
studied. In [6] for example, the (apparently) simple problem of the motion of a single vortex
along a plane boundary in a semi-infinite, uniform Bec is studied, eleven years after the
first experimental realisation of a Bec ([3]) and eighty-two years after Einstein’s translation
of the letter Bose wrote him about what would later be called Bose-Einstein statistics ([1]).
An opportunity is then to be seized by classical fluid dynamicists, who can make the study
of quantum fluid dynamics benefit from their experience. The idea of the present project,
unlike [6] who use an almost all-analytical approach, is to develop a numerical code to
integrate the Nls in polar coordinates and to perform a few numerical experiments about
vortices in a two-dimensional circular box (a “glass”). In this report, we will first present
some aspects of quantum fluid dynamics for geophysical fluid dynamicists to understand the
analogies between the two fields. The code written during the project will then be presented
in Section 3. In Section 4, a few numerical experiments will be presented to validate the
code, study various simple configurations and see what the code can do. In a last section,
conclusions will be drawn and possible extensions of this work will be proposed.

2 Two-dimensional Bose-Einstein condensates

2.1 The nonlinear Schrödinger equation

In a dilute gas of N particles, each particle barely interacts with the others and in first
approximation, its wave function does not feel the presence of the other particles. In this
case, it is possible to approximate the total wave function Ψ as the product of all the

1to be understood as a fraction not involving negative powers of ten
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individual wave functions ˜ψi:

Ψ(r1, r2, . . . , t) =

N
∏

i=1

˜ψi(ri, t).

As the particles are all identical and in the same fundamental state, all ˜ψi have the same
form which we can write as

˜ψi(ri, t) =
ψ(ri, t)√

N
.

The reason why we chose this particular scaling is that the normalization relation, which is
that the probability of finding the ith particle in the whole physical domain D is equal to
1, can be written as

∫

S

|ψ|2 dS = N. (1)

Therefore, |ψ|2 can be considered as the particle density.
We mentioned earlier that the particles barely interact with each other. In a dilute gas,

this approximation is accurate but let us refine this model by introducing the fact that these
particles indeed never interact except when their positions exactly coincide (collisions), in
which case they feel a repulsive interaction. The hamiltonian of the system is therefore

H =

N
∑

i=1

(

−
~

2

2m
∇

2

i + V (ri)

)

+
1

2

∑

i<j

U0δ(ri − rj),

where ~ is the reduced Planck constant2, m is the mass of a single particle, V (ri) is the
external energy potential and ∇i is the gradient operator relative to the set of coordinates
ri. Integration of ψ∗Hψ across the whole domain (where ∗ means complex conjugate) gives
the energy of the system:

E =

∫

S

(

~
2

2m
|∇ψ|2 + V (r)|ψ|2 +

1

2
U0|ψ|

4

)

dx dy, (2)

The wave function minimizes E under the constraint of Equation (1) and satisfies the Nls:

i~
∂ψ

∂t
=

[

−
~

2

2m
∇

2ψ + V (x, y)

]

ψ + U0|ψ|
2ψ, (3)

which entirely describes the dynamics of the Bec. The first term of the right member is
the usual Schrödinger equation and the last term is the one introduced by the interaction
terms, which is also the nonlinear term. In our case, we will consider a two-dimensional
circular glass of radius R associated with a set of polar coordinates (r, θ) which origin lies
in the center, in other words:

V (r ≥ R, θ) = +∞, V (r < R, θ) = V (constant).

In this case, the probability of finding a particle outside the glass is strictly equal to zero
and we will therefore only focus on the interior of it.

2
~ ≃ 1.054571628 × 10−34 J.s
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2.2 The Madelung transformation

Before looking at the behavior of the Nls solutions, it might be useful for the reader who
is more used to geophysical fluid dynamics to see how the dynamics of the Nls equation
can seem familiar. ψ written in its polar form is

ψ(r, t) =
√

n(r, t)eiα(r,t).

In this case, n and α are real, n is positive and can be easily interpreted as the particle
density, as implied by Equation (1):

n(r, t) = |ψ(r, t)|2.

Now multiplying Equation (3) by ψ∗ and adding the result to its complex conjugate, one
finds that n indeed satisfies a conservation law:

∂n

∂t
=

i~

2m
(ψ∗

∇
2ψ − ψ∇

2ψ∗) = −∇ · j,

with j = −(i~/2m)(ψ∗
∇ψ − ψ∇ψ) is the probability current also written as

j =
~

m
ℑ(ψ∗

∇ψ) =
~

m
n∇α.

A velocity vector can be defined such that j = nu, or

u =
~

m
∇α =

~

m

ℑ(ψ∗
∇ψ)

n
.

As u is a gradient, we have ∇ × u = 0, i.e. the flow is irrotationnal. Equation (4) is then

∂tn+ ∇ · (nu) = 0, (4)

which is formally identical to the continuity equation in fluid dynamics. It is also possible
to derive an equation similar to the Euler equations, although we will restrict ourselves to
just mentioning it in the general case ∇V 6= 0:

Du

Dt
= −

1

m
∇V − U0∇n+

~2

2m2
∇

{

∇
2(
√
n)

√
n

}

. (5)

The similarity to the Euler equations in classical fluid dynamics is made clearer when writing
it in the following form:

Du

Dt
= −∇Φ − g∇η +

σ

ρ
∇

{

∇
2η

(1 + |∇η|2)3/2

}

,

where Φ is the potential of the external conservative forces acting on the fluid other than
gravity, η the free-surface height, ρ the density and σ the surface tension. The term −∇Φ
is related to −∇V in Equation (5). The hydrostatic pressure gradient −g∇η is related
to −U0∇n which would be absent of Equation (5) if U0 would be zero: the action of the
nonlinear effects is then to avoid high concentrations of particles and “flatten” the particle
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distribution, like pressure does for the height of a fluid surface. One can also notice that
now, n is not related to ρ but to η. Finally, the last term of Equation (5), although not
formally identical, can be related to the surface tension term of the last equation. Effects
on the dynamics of the distribution of the particle density that are similar to those induced
by surface tension at the surface of a fluid will be involved throughout this report, the most
striking feature being the existence of density waves that behave like surface capillary-
gravity waves in a classical fluid. As a remark, the flow can be compressible.

2.3 Non-dimensional problem

Before writing the Nls in a non-dimensional form, we first have to define characteristic
quantities.

2.3.1 A characteristic length: the healing length

We have noticed in Section 2.2 that the nonlinear effects tend to homogenize the particle
distribution. But the external potential is such that the wave function vanishes at the
boundary of the domain. In the steady state, the particle density must therefore experience
an evolution between the boundary condition and the interior of the Bec, this evolution
being given by the steady Nls. For simplicity reasons, we consider here a plane, infinite
wall which boundary lies along the y axis. We then have ψ ≡ 0 for x ≤ 0 and the steady
Nls is now

−
~

2

2m

d2ψ

dx2
+ V ψ + U0ψ

3 = 0. (6)

This Ode is somehow similar to the following Ode:

1

2
f ′′ + f − f3 = 0,

which solution is the tanh function. In order to put Equation (6) in a similar form, we
write ψ =

√
n0ψ̂ where n0 is the background density away from the boundary and ψ̂ is the

dimensionless wave function. We also set V = −U0n0, the external potential being now a
direct result of all the individual interactions acting as a mean-field. Equation (6) becomes

−
~

2

2mU0n0

d2ψ̂

dx2
+ ψ̂ − ψ̂3 = 0.

The solution to this equation is then ψ̂ = tanh
(

x/(
√

2ξ)
)

where

ξ =
~

√
2mn0U0

. (7)

ξ is the healing length and will be our characteristic length. As shown in Figure 1, ξ
√

2 is the
typical distance on which the density relaxes from zero at the boundary to its background
value n0. We see again an action of the nonlinear term: without it, the Ode to solve
would simply be the equation of an harmonic oscillator and the solutions would be the
eigenmodes one finds for free particles trapped in a box, exhibiting oscillatory behaviors.
We see as in Section 2.2 that the particle density is flattened by the extra term brought by
the interactions between particles.
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Figure 1: Particle density at rest from the boundary in x = 0 to its background density n0.

2.3.2 Non-dimensional variables, non-dimensional NLS and invariants

We can now define a full set of non-dimensional variables by scaling length by ξ, time by
mξ2/~ and wave function by

√
n0. By doing so and keeping V = −n0U0 in the interior of

the box, we get the non-dimensional version of the Nls:

∂ψ

∂t
=
i

2
∇

2ψ +
i

2

(

1 − |ψ|2
)

ψ. (8)

We dropped the hat for the non-dimensional wave function. Scaling energy by n0~
2/m,

Equation (2) can be written in a non-dimensional form:

E =
1

2

∫

S

(

|∇ψ|2 − |ψ|2 +
1

2
|ψ|4

)

dS.

In our two-dimensional, polar symmetry, the energy can be written as

E =
1

2

∫

2π

0

∫ R

0

(

r

∣

∣

∣

∣

∂ψ

∂r

∣

∣

∣

∣

2

+
1

r

∣

∣

∣

∣

∂ψ

∂θ

∣

∣

∣

∣

2

− r|ψ|2 +
r

2
|ψ|4

)

dr dθ.

We have derived two invariants so far, the number of particles N and the total energy
E. A third invariant, the total angular momentum L, can be defined as

L =

∫

S

ψ∗(−i r × ∇)ψ dS

The only non-zero component of L being the one normal to the (r, θ) plane, we have

L = −i

∫

2π

0

∫ R

0

ψ∗ ∂ψ

∂θ
r dr dθ,

which is our third invariant.
Finally, the velocity can be made non-dimensional by scaling it by ~/(mξ). Its non-

dimensional definition then simply becomes

u = ∇α.
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2.4 Solutions of the nonlinear Schrödinger equation

2.4.1 Waves

Let us study the wave spectrum of the Nls for small perturbations relative to an uniform
basic state of density n0 = 1 with no mean velocity of the Bec:

ψ = 1 + φ with |φ| ≪ 1.

Equation (8) becomes

∂φ

∂t
=
i

2
∇

2φ−
i

2

(

φ+ φ∗ + |φ|2
)

(1 + φ)

=
i

2
∇

2φ− i
φ+ φ∗

2
+O(|φ|2).

Neglecting high-order terms and taking the complex conjugate of the previous expression
gives the following system











∂φ

∂t
=
i

2
∇

2φ− i
φ+ φ∗

2
,

∂φ∗

∂t
= −

i

2
∇

2φ∗ + i
φ∗ + φ

2
.

We can rewrite the previous system as a linear matrix equation

∂

∂t

[

φ

φ∗

]

= M

[

φ

φ∗

]

with M =
i

2

[

∇
2 − 1 −1
1 1 − ∇

2

]

. (9)

Let the solution be assumed to oscillate at frequency ω and let [u, v]e−iωt be the eigenvector
of M associated with the eigenvalue −iω. As we will see in Section 3, the normal modes
to use in polar coordinates are u, v ∼ einθJn(kr) and as3 ∇

2(einθJn(kr)) = −k2einθJn(kr),
Equation (9) is now

(M + iω)

[

u

v

]

=
i

2

[

−k2 − 1 + 2ω −1
1 1 + k2 + 2ω

] [

u

v

]

= 0. (10)

For this system to have a non-trivial solution, its determinant has to be zero, which yields
the dispersion relation

ω2 =
k2

2
+
k4

4
.

This dispersion relation is formally similar to the dispersion relation of gravity-capillary
waves in shallow water which reads (in dimensional units)

ω2 = gH|k|2 +
σH

ρ
|k|4,

with H the mean water height. The first term in Equation (2.4.1) is a non-dispersive term
due to the nonlinear term of the Nls. In the long-wave approximation (k → 0), it is
dominant and the dispersion relation is similar to the dispersion relation of long gravity
waves or of acoustic waves. The second term becomes significant for shorter waves and in
such a case, the waves disperse like gravity-capillary waves with short waves traveling faster
than long waves. A visual comparison can easily be made in Figure 2.

3in polar coordinates, this equation is in fact the Bessel equation of order n multiplied by einθ

274



(a) Waves in a Bec (b) Water waves

Figure 2: Density waves in a Bec (a) compared with gravity-capillary waves in (deep) water
(b). Due to the dispersion relation, short waves travel faster than long waves. The initial
condition for the wave function used in picture (a) is ψ = eiθ tanh((R− r)/

√
2) in the code

described in Section 3 and the waves are created by the transient.

2.4.2 Vortices

We noticed in Section 2.2 that the flow was intrinsically irrotational. Writing that, we
neglected possible singularities that could make the flow rotational on these points and we
will see on an example how and why it is the case. Let us suppose that locally, the wave
function can be written as

ψ = x+ iy = r exp(iθ). (11)

In this case, the wave function has a zero in r = 0 where the density vanishes. The velocity
is then

u = ∇θ =
1

r
θ̂.

In classical fluid dynamics, this velocity field would be the one induced by a point vortex
inducing a divergence of the azimuthal velocity when r → 0, which would be regularized
giving some spatial extent to the core of the vortex. Here, this singularity is a fundamental
feature of the field and it is required that these zeros are points and not lines or surfaces,
as a result of the cancellation of both real and imaginary parts. It is also required that
these two components cancel along lines and that these lines cross only on points. Take for
example ψ = x+ ix: this function admits a line of zeros defined by x = 0 where both real
and imaginary parts cancel but no velocity is induced by it. If we take the simple example
described by Equation (11), use Stoke’s theorem to rewrite the circulation and compute the
circulation of the velocity field around the origin, we get:

Γ =

∮

C
u · dr =

∫∫

S

(∇ × ∇θ) · dS = 2π.

Two things have to be noticed here. First, that the circulation is quantized. In general, for
any vortex, it can only be an element of {2πp, p ∈ Z} ({2πp~/m, p ∈ Z} in dimensional
units). Second, that although Equation (11) looks harmless, a singularity is hidden at the
origin as the phase is multivalued, which makes the quantity ∇ × ∇θ infinite in just one
point.
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One can wonder how far Equation (11) is a realistic expression for a vortex. A more
refined but still approximate expression for the density structure around a steady point
vortex is |ψ|2(r) = r2/(r2 + 1) (see e.g. [2]), so Equation (11) is a good approximation in
the center of this vortex. One might also want to push the robustness of this feature and see
what happens when the density around the vortex is perturbed. Let us consider a simple
perturbation for the wave function:

ψ(x, y) = x+ i(a1x+ a2y). (12)

The corresponding density is

n(x, y) = (1 + a2

1)x
2 + 2 a1a2 xy + b2 y

2

and the lines of constant density are now ellipses. In polar coordinates (x = r cos θ, y =
r sin θ), the wave function reads:

ψ(r, θ) = r(cos θ + i(a1 cos θ + a2 sin θ))

and its phase is
α = arctan(a1 + a2 tan θ),

which does not depend on r. This means that the radial velocity will be zero and the
velocity will then be purely azimuthal, just like for the undisturbed vortex. As far as we
know, this peculiar feature has surprisingly never been noticed. The azimuthal velocity is
then

uθ(r, θ) =
1

r

∂α

∂θ
=

1

r

a2
2

cos2 θ + (a1 cos θ + a2 cos θ)2

=
a2

2
r

n(r, θ)
.

For a given r, the azimuthal velocity is maximum where the density is minimum, which is
due to the conservation of the number of particles.

We have reviewed all the physical phenomena involved in this study. We will now
describe the code that has been developed in order to perform simple numerical experiments.

3 The code

3.1 Operator splitting method

Operator splitting methods 4 are commonly used to solve the Nls, mostly because they
are simple to implement in that case. The general idea is that the resolution of the Nls is
splitted in two steps, starting from a time t:

4see e.g. [7]
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Step 1: integration of ψ(r, θ, t) through equation

∂ψ

∂t
=
i
(

1 − |ψ|2
)

2
ψ

over a time step dt. As the variation of ψ is equal to iKψ where K is real, |ψ| remains
unchanged under this operation and the integration is then exact. After this step, we get
an intermediate ψint:

ψint(r, θ) = ψ(r, θ, t) exp

(

i(1 − |ψ(r, θ, t)|2)dt

2

)

.

Step 2: integration of ψint(r, θ) through equation

∂ψ

∂t
=
i

2
∇

2ψ (13)

over a time step dt. If the integration is performed in the spectral space, this step is also
exact and gives ψ(r, θ, t + dt). It will be explained in more detail in the next section.

As a remark, both steps are individually exact and energy preserving, although this will
be discussed for the second step, but the combination of the two is not, therefore we need to
choose dt small enough. A time step of dt = 5×10−3 ensures the stability of all simulations
presented here.

3.2 Integrating the Laplacian

We here solve Equation (13) with ψint as initial condition for the wave function. In polar
coordinates, this function can be decomposed as

ψint =

+∞
∑

q=−∞

+∞
∑

j=1

(aq,j)int e
iqθ Jq(kq,jr). (14)

Here, q is the index of the angular mode, j the index of the radial mode, Jq the qth-
order Bessel function of the first kind and kq,j a coefficient scaling Jq such that ∀(q, j),
Jq(kq,jR) = 0 (which ensures that ψint(r = R, θ) ≡ 0). The index j is therefore the
number of zeros in the interval [0, R] of the considered Bessel function (see Figure 3 for a
visualization of various Jq(kq,jr)’s). Finally, the set of aq,j is the set of weights that will
characterize ψint and therefore depend on time. It turns out that applying the Laplacian
to Equation (14) gives the Bessel equation and as in Section 2.4.1, we get:

∇
2ψint = −

+∞
∑

q=−∞

+∞
∑

j=1

k2

q,j(aq,j)int e
iqθJq(kq,jr).

Plugging this in Equation (13) and isolating every mode gives:

daq,j

dt
= −

ik2

q,j

2
aq,j ∀ (q, j)
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Figure 3: (a) First four orders of the Bessel functions of the first kind, each of them scaled
in order to have three zeros in [0, R]. (b) First four radial scalings of the Bessel function of
the first kind of order 1.

and therefore, the integration from (aq,j)int to aq,j(t+ dt) in a time step dt is exactly:

aq,j(t+ dt) = (aq,j)int exp

(

−
ik2

q,jdt

2

)

.

The recipe is then a classical one: go to the spectral space, integrate every coefficient
aq,j(t) and go back to the physical space. It turns out that going to the spectral space and
back is the most difficult part here. To isolate an azimuthal mode q, a Fourier transform of
ψint in the azimuthal direction is performed, thanks to the orthogonality relation

∫

2π

0

e−ilθ eiqθdθ = 2πδql,

δql being the Kronecker symbol. Numerically, a Fft in the azimuthal direction is performed
and no dealiaising is done. The output of the transform is then, for each q ∈ Z:

F [ψint]q(r) = 2π

∞
∑

j=1

aq,j(t)Jq(kq,jr).

The radial modes described by the index j must now be isolated: the Fourier transform
has isolated one order for the Bessel functions of the first kind, but not the different ways
of scaling these function such that they would be zero in r = R. In other words, one has
to isolate every function that is plotted in Figure 3(b), which is done using the following
orthogonality relation:

∫

1

0

xJq(ζq,jx)Jq(ζq,px)dx =
δjp

2
J2

q+1(ζq,j),
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where ζq,j is the jth zero of Jq(x). By definition, ζq,j = kq,jR and applying the variable
change r = Rx, one gets the relation that is actually used for each j:

∫ R

0

rJq(kq,jr)Jq(kq,pr)dr =
R2δjp

2
J2

q+1(kq,jR).

The corresponding operation performed on F [ψint]q is a Hankel transform of order q, which
is mathematically defined, for a function f(x), as:

Hq[f ](k) =

∫

+∞

0

xf(x)Jq(kx)dx.

In our case, we use a quasi-discrete Hankel transform (Qdht). The algorithm, exposed in
detail and with clarity in [4], needs the input function to be evaluated at values of the radius
rq,j = kq,jR/kq,Y +1, where Y is the number radial modes that will be computed. This grid
is specific to each q and we have to perform the Qdht for each one of them. It means that
starting from an arbitrary ψ evaluated on a given grid, once this function has experienced
a Fourier transform in the angular dimension, each projection on the azimuthal modes has
to be interpolated on the grid {rq,j} with 1 ≤ j ≤ Y used by the Qdht of order q, which is
a source of inaccuracy. The Matlab spline interpolation method has been chosen. Y has
been chosen to be equal to half the number of points in the radial direction in order for the
interpolation to be computed quite easily, the idea being that even for the highest radial
modes, the oscillations of the Bessel function can be described by a few points between
two zeros. This latter choice has not been the subject of any extensive study and shall be
handled with care and suspicion.

We have isolated every (q, j) couples and are now in the spectral space. Before going
back to the physical space, we just have to multiply every (aq,j)int by the propagator
exp(−ik2

q,jdt/2). The next step is then to perform inverse quasi-discrete Hankel transforms
(iQdht) for each q, then re-interpolate the results back on the initial regular grid and finally
perform an inverse Fft. We are now in the physical space with the function ψ evaluated
at time t+ dt.

3.3 Summary of the algorithm

Starting from ψ(t), the different steps to get ψ(t+ dt) are:

1. multiply ψ by exp(i(1 − |ψ|2)dt/2) ⇒ ψint

2. perform a Fft of ψint along the azimuthal direction ⇒ F [ψint]q,

3. for each q, interpolate F [ψint]q on the intermediate grid defined by rq,j = kq,jR/kq,Y +1

with 1 ≤ j ≤ Y ,

4. for each q, perform the Qdht of order m ⇒ Hq[F [ψint]q],

5. for each (q, j), multiply Hq[F [ψint]q] by exp(−ik2

q,jdt/2) ⇒ Hq[F [ψ(t+ dt)]q],

6. for each q, perform the iQdht of order q,

7. for each q, interpolate the previous results on the regular grid ⇒ F [ψ(t + dt)]q,

8. perform an iFft of F [ψ(t+ dt)]q along the azimuthal modes direction ⇒ ψ(t+ dt).
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4 Numerical experiments

4.1 General features of the settings

In all numerical experiments that are presented in this report, the radius of the glass is
R = 10, the number of points in the radial and azimuthal directions are nr = nθ = 256 and
the number of radial modes is Y = 128, according to the rule we mentioned in Section 3.2.
Initial conditions will all involve vortices put in a background particle density approximating
a steady density distribution, as described in Section 2.3.1 for a different geometry. The
function, approximating what the density distribution should be in the glass, is indeed
inspired by the latter distribution, namely:

ψbg(r) = tanh

(

R− r
√

2

)

.

The wave function of an isolated vortex of circulation Γ = 2pπ (p ∈ Z) located in (r0, θ0) is
approximated by:

ψv
{r0;θ0;p}(r, θ) =

reipθ − r0e
ipθ0

√

1 + |reipθ − r0eipθ0|2
.

It is now possible to generate various configurations involving vortices in a glass. For
example, if one wants to generate an initial condition with one vortex of circulation Γ = −2π
located in (R/2, 0) and one vortex of circulation Γ = +4π located in (R/8, π/2), the initial
condition to set is:

ψ0 = ψbg × ψv
{R/2;0;−1} × ψv

{R/8;π/2;2}.

Both definitions of ψbg and ψv are approximations of the background and vortices wave
functions. The definition of ψbg will be more realistic for large values of R for instance, as it
is inspired by a cartesian configuration with an infinitely long, plane wall. This will result
in the generation of transients in the first moments of the simulations that can pollute the
expected evolution of the system.

4.2 Conservation of the invariants

We will now check on a simple example if the three invariants N , E and L described in
Section 2.3.2 are indeed conserved by our code. A property of the Qdht is to preserve the
invariants but the use of the interpolations introduces errors, therefore the need to control
if these errors are noticeable or not. We will set up an initial condition with one vortex:

ψ0 = ψbg × ψv
{3R/4;0;1},

as can be shown in Figure 4(a). Figure 4 in general shows how conserved are these quantities
over a long period of time, a duration of more than 300 being three to four times longer
than the experiments that will be shown later. We can see that N is only very slightly
decreasing and that L and E both have a tendency to slightly decrease also, although they
are subjected to oscillations. A possible explanation for these oscillations are that both of
these quantities involve derivatives which are computed with the Matlab function gradient

based on a rustic 2nd-order finite difference scheme. E is especially oscillatory and is in the
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same time the function that includes the most derivatives, which is another hint that these
oscillations might indeed be due to a rustic post-processing rather than a problem in the
code.

(a) Initial condition
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Figure 4: Conservation of the three invariants N , E and L on an example with initial
condition shown in (a). Although all curves seem to decrease, their value don’t change
much, as shown by the values displayed on the vertical axes.

Computing the invariants is a way to validate the accuracy of the code as to our knowl-
edge, no analytical solution of simple problems exist in this geometry. We will now run
numerical experiments to study simple problems that could be found in textbooks of clas-
sical fluid dynamics but that are uncharted territory in quantum fluid dynamics.

4.3 Vortex generation

We will see on a simple experiment that pair of vortices can be generated. It is hard to define
an initial condition that would directly generate two vortices, so the following procedure
has been applied: when two counter-rotating vortices are close to each other, they get
closer and merge (see [2]). One can imagine then making two vortices merge, reversing the
velocity field and plugging the resulting wave function in the Nls will later produce two
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counter-rotating vortices. It is not that trivial as the Nls dynamics is not reversible (the
time average of the field produced by any initial condition will eventually be proportional
to ψbg). The procedure is then the following:

1. take an initial condition with two counter-rotating vortices:

ψ0 = ψbg × ψv
{R/8:0;1} × ψv

{R/8;π;−1},

and run the simulation for a duration of 10. As described in [2], the two vortices get
closer, merge and disappear,

2. take the complex conjugate of the resulting wave function. By doing so,
√

n(t)eiα(t) 7→
√

n(t)e−iα(t) and therefore u = ∇α 7→ u′ = −∇α = −u,

3. run again the simulation with the previous wave function as an initial condition for
a duration of 20. Two vortices, almost exactly identical to the ones defined at the
beginning of the first step of this procedure except with opposite circulation, appear
and disappear again (see Figure 5).

(a) (b)

Figure 5: Phase of the wave function for the generation of vortices. (a) Initial condition
of step 2 in Section 4.3. (b) Vortices having been generated. We recall that the velocity is
deduced from the phase by taking its gradient and that vortices are multi-valued points of
the phase.

The vortices disappear shortly after having been generated. Nonetheless, we will see
that the trajectory of a vortex can be modified, namely by a wave field in the numerical
experiments shown in the rest of the present document. Therefore, a strong wave field
could be able to separate two vortices and bring them far enough from each other such that
they could behave like independent vortices. In the following studies, we will then focus on
numerical experiments about one or two vortices of positive circulation5.

5although considering isolated vortices in such a small glass (R = 10) is still unrealistic!
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4.4 Initial vortex with double circulation

We design here an experiment with one vortex of double circulation at a distance r0 = 3R/4
from the center:

ψ0 = ψbg × ψv
{3R/4;π;2}

(cf. Figure 6(a)) and let it run for a duration of 15. We see in Figure 6(b) that this vortex
of double circulation has split into two vortices of simple circulation. Vortices of circulation
higher than 2π in absolute value are therefore very likely to be unstable and in the next
experiments, we will only consider vortices of simple circulation.

(a) Initial density (b) Density after a little while

Figure 6: Initial and final density fields for an initial vortex of double circulation (a) which
splits into two vortices of single circulation (b).

4.5 Motion of a single vortex

4.5.1 Method of images

In classical fluid dynamics, the motion of a point vortex near a wall is described by the
method of images. In the case of a plane wall, the velocity field is the same as if there
was no wall but instead a vortex of equal and opposite circulation and symmetrical position
with respect to the wall, as sketched in Figure 7(a). In this case, the velocity induced by the
virtual vortex and with which the vortex moves is parallel to the wall and equal to Γ/4πb, b
being the distance to the wall. In the case of a vortex in a circular glass, the virtual vortex
still has equal and opposite circulation but is now situated at a distance R2/r0 from the
center of the glass, r0 being the distance of the real vortex to the center (see Figure 7(b)).
The velocity induced by it is again parallel to the wall and equal to Γr0/2π(R2 − r2

0
). The

time for a vortex to loop around the entire box is then

τloop =
4π2(R2 − r2

0
)

Γ
.
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(a) Image vortices, plane wall ( c©2003
Mit, Dpt. of Ocean Engineering)

(b) Image vortices, circular glass

Figure 7: Sketch of the method of images for a vortex near a boundary in two different
cases. In Figure (b), the blue vortex is real, the white one is virtual.

As explained in [6] in the case of a plane wall, this model has to include the boundary
layer near the wall, which shifts the position of the wall. A way to understand it (rather
than to prove it) is to consider a volume sketched in Figure 8, of arbitrary length and
delimited by the wall and a line that is

√
2 away from the wall. The particle flux from

the two lateral boundaries cancel each other as the system is invariant by translation along
the wall and the particle flux through the wall is zero. The conservation of the number of
particles tells that the particle flux has to be zero through the boundary facing the interior
of the Bec. Within the healing length, the velocity is along the wall as the area is too
confined to exhibit too complex structures, which means that there is no particle crossing
this boundary either. The free-slip boundary condition that is necessary for the method of
image vortices to be applied is therefore active a healing length away (times

√
2) from the

wall. The correction in our case is then that the effective radius of the glass is R′ = R−
√

2
and that the time for a vortex to loop around the glass is

τ ′loop =
4π2((R −

√
2)2 − r2

0
)

Γ
.

4.5.2 Numerical experiments

A series of numerical experiments has been performed with the same type of initial condi-
tions as in Section 4.2, all starting from θ0 = π where the initial distance to the wall has
been varied. As displayed in Figure 9, the time for a vortex to make a loop is in general
agreement with τ ′loop, whereas there is a systematic discrepancy with τloop. The model with
correction is not valid in two cases. The first case is if the initial vortex position is too
close to the wall, more precisely between the wall and the circle that is

√
2 away from the
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Figure 8: Sketch describing the effect of the boundary layer within the volume materialized
by the dashed frame.
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Figure 9: Measure of the time for a vortex to loop around the glass compared with the
result provided by the image method with and without correction of the healing length for
the effective radius Reff . The vertical dashed line marks the virtual wall at

√
2.
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wall, where the model with correction obviously doesn’t apply. What happens, as shown
in Figure 10(a) is that the vortex can even get “swallowed” in the wall if it is closer to it
than

√
2. The second case is when the vortex is too close to the center. It then moves very

slowly and is easily pushed by the wave field that has been generated mostly during the
transient of the initial moments. As displayed in Figure 10(b), the course of the vortex is
then erratic and again can’t be described by the image vortex model.
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Figure 10: Trajectories of (a) a vortex, within the healing length, getting swallowed in the
wall and (b) a vortex, far from the wall, being pushed by impulses due to the waves.

All experiments have been run for a duration of 40 and the time for a vortex to make a
loop has been deduced from the angular velocity averaged over that period. An experiment
starting from r0 = 3π/4 has been run for a duration of 1570 (more than 12 loops), in order
to determine if the vortex would get closer to the wall as it would propagate. This would
mean that the vortex would lose energy, probably to the wave field. Even over such a long
period of time, no shift in the distance to the wall has been observed.

4.6 Motion of two co-rotating vortices

In the case of two co-rotating vortices separated by a distance l, the velocity induced by
one vortex at the location of the second one is Γ/(2πl) and it then takes τswap = π2l2/Γ
for the two vortices to swap positions. An experiment is set up with two vortices of single
circulation located symmetrically around the center of the box, as defined by

ψ0 = ψbg(r, θ) × ψv
{R/4;0;1} × ψv

{R/4;π;1},

as shown in Figure 11. In this case, the effect of the wall on each of these vortices has to be
taken into account. Including the velocity induced by the other real vortex and the velocity
induced by the virtual vortex of the corrected image method, the velocity of a vortex is

U =
r0

(R−
√

2)2 − r2
0

+
1

2r0

and the time for two vortices to swap positions is now

τ ′swap =
2π r2

0

(

(R−
√

2)2 − r2
0

)

(R−
√

2)2 + r2
0

≈ 33.
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(a) Initial density (b) Initial phase

Figure 11: Initial condition with two co-rotating vortices.

We run enough iterations for the two vortices to swap positions and just measure this
duration. The measured time is τ ′swap = 53±1, which is 1.6 times longer than the predicted
duration. This discrepancy has not been explained yet, but one can notice that the vortices
are quite close from each other and that the combined effects of what is going on in the
depleted areas surrounding them might have to be taken into account.

5 Conclusion

The Nls equation governing quantum fluid dynamics can be transformed via the Madelung
transformation in a set of equations resembling the set of shallow water, irrotational, com-
pressible equations with surface tension. Quantum fluids support density waves behaving
like capillary-gravity waves in shallow water and vortices are to be found where both real
and imaginary parts of the wave function vanish on isolated points, making the phase of the
wave function multi-valued and therefore singular. A novel method of integrating the Nls

in polar coordinates, based on an operator-splitting method and the combination of Ffts
in the azimuthal directions and quasi-discrete Hankel transforms in the radial direction, has
been developed and partially validated. This allowed to do some physics in a quantum glass:
we have seen that pair of vortices can be generated, justifying the existence of vortices in a
non-rotating Bec and that to limit our study to vortices of single circulation Γ = ±2π was
fully relevant as vortices of double (and more) circulation were unstable and would split
into vortices of simple circulation. We then saw that the motion of a single vortex has to
take into account the presence of the depleted surface between the wall and the interior of
the Bec which reduces the effective diameter of the glass. Finally, we saw that the motion
of two co-rotating vortices that are close to each other noticeably departs from the classical
case.

The possible extensions of this work are numerous and can be sorted into two categories.
The first category involves the dynamics of Becs and more especially the interaction with
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waves. We have seen here that it can modify the trajectory of a vortex and we infer that
it can spearate freshly created vortices. We also infer that vortices can be peeled off a
boundary by a wave field, as seen more of less convincingly in Figure 10(a) and that a
vortex can lose energy by creating waves, which would lead to its location getting closer to
the wall. To check the latter is especially challenging as it would require at least two things:
first, to generate cleaner initial conditions for the shape of the wave function in a steady
circular Bec and a cleaner profile for the shape of a vortex. Indeed, the approximateness
of our ψbg and ψv

{r0;θ0;p} is the source of transients and of generation of waves, making it
difficult to see if waves are generated when a vortex moves. Second, to see if the vortex
will get closer after a while requires to run simulations for a while and then to be confident
about the robustness of the code over long integrations, which brings us to the second
category of extensions of the work, the numerics developed here: with the chosen time step,
the code is stable but its duration can probably be optimized. The choice of nr, nθ and
Y has not been optimized also and the exact effects of the interpolations on the precision
and speed of the code remains unknown. De-aliaising has not been taken care of and in
general, the performances of the method compared with other methods in polar coordinates
are completely unknown.
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Ray Theory of Nonlinear Water Waves

Andong He

September 29, 2009

1 Introduction.

In past decades there has been growing interest in propagation of nonlinear waves over a
variable bottom and internal waves in a variable medium, which leads to a nonlinear partial
differential equation of KdV type with variable coefficients (vc-KdV). The study of vc-KdV
equation could enhance our understanding of many problems in oceanography and plasma,
such as tsunami([10]) and dust ion acoustic waves([7]). A methodology in linear theory,
the so-called ray method, was extended to nonlinear wave theory in Cartesian geometry by
Shen&Keller[8] and in cylindrical geometry by Shen&Shen[9]. The wave amplitude satisfies
the vc-KdV equation along each ray which is determined by the Eikonal equation. The
solution is valid when the wavelength is small compared to other horizontal scale lengths.
Since the canonical Korteweg-de Vries equation describes the propagation of long waves in
shallow water, in some sense this method combines features of both the short wave theory
and long wave theory.

In section 2 a vc-KdV equation is derived by applying the ray method in Cartesian
coordinate system. Section 3 is dedicated to seek solutions to Eikonal equation in the case
that the topography is independent of one spatial variable. Rays in plane waves and circular
waves propagating over different bottoms are calculated and plotted. A variable coefficient
KdV equation in cylindrical geometry (vc-cy-KdV) is given in section 4, which can be
transformed into a vc-KdV by a suitable change of variables. Exact solutions to the vc-cy-
KdV equation and conditions under which we are able to find them explicitly are discussed.
We also obtain approximate solutions using the method developed by Grimshaw[4], and
study the large-time behavior of the amplitude of both cnoidal waves and solitary waves.
These two types of waves share the same critical value of the bottom slope for the amplitude
to blow up or vanish far away from the source of waves. Finally in section 5 we discuss
some directions in which future work could advance.

2 Formulation of the problem.

Let us consider an inviscid, incompressible fluid over an uneven bottom z∗ = −h∗(x∗, y∗),
as sketched in figure 1. The free surface is denoted by z∗ = η∗(x∗, y∗, z∗, t∗) where η∗ is an
unknown function. Denote by ρ, P and ~u the fluid density, pressure and velocity respectively.
We can define dimensionless variables as follows:
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h =
h∗

H
, η =

η∗

H
, ε = (

H

L
)

2
3 , ρ =

ρ∗

D

(x, y, z) = (
ε

3
2

H
x∗,

ε
3
2

H
y∗,

z∗

H
), t = ε

3
2 (

g

H
)

1
2 t∗, (2.1)

P =
P ∗

gHD
, ~u = (u, v, w) = (gH)−

1
2 (u∗, v∗, ε−

1
2 w∗),

where H, L, D are scales for vertical length, horizontal length and density respectively.

x∗

y∗

z∗

z∗ = −h∗(x∗, y∗)

z∗ = η∗(x∗, y∗, z∗, t∗)

Figure 1: Flow region is between the rigid bottom z∗ = −h∗(x∗, y∗) and the free surface
z∗ = η∗(x∗, y∗, z∗, t∗).

Using these dimensionless variables, we can represent the equation of motion, equation
of continuity and boundary conditions on the rigid bottom and the free surface in the
following way:

• Equation of motion: ρ∗(∂~u∗
∂t∗ + ~u∗ · ∇∗~u∗) = −∇∗P ∗ becomes

ε[ρ(ut + uux + vuy) + Px] + ρwuz = 0, (2.2)
ε[ρ(vt + uvx + vvy) + Py] + ρwvz = 0, (2.3)

ε2ρ(wt + uwx + vwy) + ερwwz + Pz + ρ = 0. (2.4)

• Equation of continuity ∇∗ · ~u∗ = 0 becomes

ε(ux + vy) + wz = 0. (2.5)

• Two boundary conditions P ∗ = const, D∗
D∗t∗ (z

∗− η∗) = 0 at z∗ = η∗ and ~u∗ ·∇∗(z∗+
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h∗) = 0 at z∗ = −h∗ becomes

P = C, at z = η, (2.6a)
ε(ηt + uηx + vηy)− w = 0, at z = η, (2.6b)

ε(uhx + vhy) + w = 0, at z = −h. (2.6c)

Here∇∗ is the dimensional gradient operator and D∗
D∗t∗ is the dimensional material derivative

D
Dt .

2.1 Asymptotic expansion and Eikonal equation.

To find wave-like solutions to (2.2)-(2.6) we introduce a phase function S(x, y, t) and a
“fast-phase” variable ξ = ε−1S(x, y, t). Assume that u, v, w, P and η all have the form of
asymptotic expansion

G(t, x, y, z, ξ) = G0(t, x, y, z, ξ) + εG1(t, x, y, z, ξ) + O(ε2). (2.7)

By noting that operators ∂
∂t ,

∂
∂x and ∂

∂y become ∂
∂t +ε−1St

∂
∂ξ , ∂

∂x +ε−1Sx
∂
∂ξ and ∂

∂y +ε−1Sy
∂
∂ξ

respectively, we can expand equations (2.2)-(2.6). Equating O(1) terms to zero yields the
static-flow solution; and equating O(ε) terms to zero yields

ρu1ξSt + P1ξSx = 0, (2.8)
ρv1ξSt + P1ξSy = 0, (2.9)

P1z = 0, (2.10)
u1ξSx + v1ξSy + w1z = 0, (2.11)

P1 = ρη1, at z = 0, (2.12)
w1 = η1ξSt, at z = 0, (2.13)

w1 = 0, at z = −h(x, y). (2.14)

To solve equations (2.8)-(2.14) for unknowns u1, v1, w1, P1, η1 and S, we firstly solve (2.8)
and (2.9) for u1ξ and v1ξ to get

u1ξ = −P1ξSx

ρSt
, v1ξ = −P1ξSy

ρSt
. (2.15)

Substituting (2.15) into (2.11) yields

w1z =
P1ξ(S2

x + S2
y)

ρSt
. (2.16)

From (2.10) and (2.16) we know w1z is independent of z, so using boundary condition (2.14)
we have

w1 =
P1ξ(S2

x + S2
y)

ρSt
(z + h). (2.17)
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Equations (2.12) and (2.13) implies

w1 =
P1ξSt

ρ
, at z = 0. (2.18)

Now combining (2.17) and (2.18) and eliminating w1 we get the Eikonal equation

S2
t

S2
x + S2

y

= h(x, y). (2.19)

By solving the Eikonal equation with proper boundary conditions we can determine the
phase function S(x, y, t), which is postponed to section 3. Once the surface elevation η1 and
the phase function S are determined, P1 can be found by (2.12), and w1 by (2.17). From
(2.15) we can obtain special solutions u1, v1 as

u1 = −P1Sx

ρSt
, v1 = −P1Sy

ρSt
. (2.20)

Arbitrary functions independent of ξ can be added to the right-hand sides of (2.20). We
choose them to be zeros so that the fluid velocity has the same direction as rays.

2.2 Amplitude equation.

To determine η1, we need to proceed further by equating coefficients of O(ε2) terms in
equations (2.2)-(2.6):

SxP2ξ + ρStu2ξ = −(ρu1t + ρu1Sxu1ξ + ρv1Syu1ξ + P1x), (2.21)
SyP2ξ + ρStv2ξ = −(ρv1t + ρu1Sxv1ξ + ρv1Syv1ξ + P1y), (2.22)

P2z = −ρStw1ξ, (2.23)
w2z + Sxu2ξ + Syv2ξ = −u1x − v1y, (2.24)

P2 − ρη2 = 0, at z = 0, (2.25a)
w2 − Stη2ξ = η1t + u1Sxη1ξ + v1Syη1ξ − w1zη1, at z = 0, (2.25b)

w2 = −u1hx − v1hy, at z = −h(x, y). (2.25c)

Equations (2.21)-(2.24) are a system of equations of u2, v2, w2, η2 and P2 whose right-hand
sides are all known except for exactly one quantity (η1, w1, or P1). By straightforward but
a little tedious calculations we can eliminate u2, v2 and η2 to get a compatibility condition
under which a solution exists(see appendix in [8] for details). This compatibility condition
turns out to be in a following KdV-like form of a nonlinear partial differential equation

Ât +
Jt

2J
Â + (

ωh2

2
− ω

ρ2h
)ÂÂξ +

ω3h

6
Âξξξ = 0, (2.26)

where Â = ρη1, ω (angular frequency) will be defined in section 3, and J is the Jacobian
from the ray coordinates (τ, γ1, γ2) to the time-Cartesian coordinate system (t, x, y).
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Denote A = J1/2Â, then (2.26) becomes

At + f1(t)AAξ + f2(t)Aξξξ = 0, (2.27)

where f1(t) = J−1/2(ωh2

2 − ω
ρ2h

), and f2(t) = ω3h
6 .

Equation (2.27) is called the variable coefficient Korteweg-de Vries equation(vc-Kdv) and
was derived by Shen&Keller[8]. It was shown by Joshi [5] that it is completely integrable if
and only if coefficient functions f1 and f2 satisfy

f2(t) = f1(t)(c1

∫ t

f1(s)ds + c2), (2.28)

for arbitrary constants c1 and c2. Under this condition, Lax pair and infinitely many
conservation laws of (2.27) can be found(see e.g. Fan[2] and Zhang[12]).

3 Ray tracing.

Eikonal equation (2.19) can be solved by using the method of characteristics. By doing
so, we obtain the following system of ordinary differential equations

ẋ(τ) = − Sx√
S2

x + S2
y

θ, (3.1a)

ẏ(τ) = − Sy√
S2

x + S2
y

θ, (3.1b)

ṫ(τ) = 1, (3.1c)

and
Ṡx(τ) =

√
S2

x + S2
y θx, (3.2a)

Ṡy(τ) =
√

S2
x + S2

y θy, (3.2b)

Ṡt(τ) = 0, (3.2c)

and very importantly,
Ṡ(τ) = 0, (3.3)

where θ(x, y) = −h
1
2 (x, y), and dot is the total derivative with respect to τ .

System of equations (3.1) determines a two-parameter family of space-time curves, which
are called rays; (3.2) determine the change of gradient of S along a ray; and (3.3) indicates
that S remains constant along a ray. In following discussion we often do not distinguish ∂t
and ∂τ due to (3.1c) unless special attention is drawn. It follows from (3.2c) that on each
ray St(τ) is also a constant. We will only consider in this paper the case when St is the
same constant for all rays. We call ω = −St the angular frequency.
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We can parameterize rays by using parameters γ1 and γ2 which are constants along a
ray. They can be chosen to be, for instance,

γ1 = S(x, y, t),
γ2 = y − y(τ(x)),

(3.4)

then ∂γ1

∂x = Sx, ∂γ1

∂y = Sy, ∂γ2

∂x = − ẏ
ẋ , and ∂γ2

∂y = 1. The Jacobian J from the ray coordinates
(τ, γ1, γ2) to the time-Cartesian coordinate (t, x, y) can be calculated as

J =
∣∣∣∣
∂γ1

∂x

∂γ2

∂y
− ∂γ1

∂y

∂γ2

∂x

∣∣∣∣
−1

=
Sx

S2
x + S2

y

=
Sxh

S2
t

. (3.5)

In general the system of ordinary differential equations (3.1)-(3.3) is difficult to solve
since they are coupled with each other. But if the topography is only dependent on one
variable they can be solved analytically. Assume hy = 0, then it follows from (3.2b) that
Sy(τ) = Sy(0) = k2. We substitute θx = θ̇

ẋ into (3.2a) and use (3.1a) to get

SxṠx

S2
x + k2

2

= − θ̇

θ

Integrating it from 0 to τ gives us

Sx(τ) = [h0(k2
1 + k2

2)h
−1 − k2

2]
1
2 , (3.6)

where k1 = Sx(0) and h0 = h(0). The location of rays can be obtained by substituting
Sx(τ) into (3.1a) and (3.1b):

ẋ(τ) =

√
h(x(τ))− k2

2

h0(k2
1 + k2

2)
h2(x(τ)), (3.7a)

ẏ(τ) =
k2√

h0(k2
1 + k2

2)
h(x(τ)). (3.7b)

Equation (3.7a) is a first-order ordinary differential equation thus can be solved analyt-
ically for a large scope of bottom functions h(x); then (3.7b) is solved readily. The value
of S at any point P will be given by its value at a boundary point Q from which the ray
emits and passes through P .

Next we will consider several physical scenarios (various topography & various forms
of waves) when (3.7) is solved with suitable boundary conditions and rays are calculated
explicitly.

3.1 Plane waves.

Let us suppose that a sinusoidal plane wave is generated at x = −∞ and propagating
towards the shore at x = l. The angle between the wavefronts and positive y−axis is ϕ.
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The bottom function is selected in the following way so that (3.2a) and (3.2b) can be solved
easily,

h(x) =
{

α2l2, x ≤ 0;
α2(l − x)2, x ≥ 0.

with α > 0. (3.8)

A phase function representing sinusoidal plane waves is S(x, y, t) = k1x + k2y − ωt with
k2
k1

= arctan(ϕ). Parameters k1, k2 and ω are related by the dispersion relation ω2

k2
1+k2

2
= hloc,

where hloc is the local depth of water. The boundary conditions for the system are prescribed
on Γ1 = {(x, y, z)|x = 0, y ∈ R, t > 0} as

Sx(0) = k1, Sy(0) = k2, St(0) = −ω, S(0, y, t) = k2y − ωt. (3.9)

It immediately follows from (3.2) that Sy(τ) = k2, St(τ) = −ω, and

Sx(τ) =
1

2c1
(c2

1e
ατ − k2

2e
−ατ ), (3.10)

where the constant c1 is defined as c1 =
√

k2
1 + k2

2 + k2. The location of characteristics can
be readily calculated

ẋ = α(l − x)
c2
1e

ατ − k2
2e
−ατ

c2
1e

ατ + k2
2e
−ατ

ẏ =
αl(c2

1 + k2
2)

2c1k2
[sech(log

c1

k2
+ ατ)]2

ṫ = 1.

(3.11)

Using initial conditions x(0) = 0, y(0) = y0 and t(0) = t0 we can integrate (3.11) to obtain

x(τ) = l(1− c2
1 + k2

2

c2
1e

ατ + k2
2e
−ατ

)

y(τ) = y0 +
l(c2

1 + k2
2)

2c1k2
(
c2
1e

ατ − k2
2e
−ατ

c2
1e

ατ + k2
2e
−ατ

− c2
1 − k2

2

c2
1 + k2

2

),

t(τ) = t0 + τ,

(3.12)

which are plotted in figure 2(a).
To find the phase function S at any point (x∗, y∗, t∗), we need to find y0, t0 and τ such

that x(τ) = x∗, y(τ) = y∗, and t(τ) = t∗. Then the phase function is

S(x∗, y∗, t∗) = S(0, y0, t0) = k2y0 − ωt0.

One can easily see in (3.12) that

lim
τ→∞x(τ) = l, and lim

τ→∞ y(τ) = y0 + (
√

k2
1 + k2

2 + k1)−1k2l,

indicating that the rays will approach the shoreline asymptotically.
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3.2 Waves generated by a point oscillator.

Suppose that there is a point source oscillator at the origin, generating sinusoidal waves.
In this case all information on the phase function are only available on a straight line
Γ2 = {x = y = 0, t ≥ 0}, where all rays are emitted. Therefore in order to determine value
of the phase function it is necessary to find both the point on t−axis and the angle from
which a ray emits. Since in a small neighborhood of the origin the phase function can be
written in the form of S = kr − ωt + o(r), the boundary condition for phase function on
t−axis is S = −ωt. For a ray leaving the origin with an angle φ to the positive x−axis, its
initial condition is (Sx, Sy, St)|x=y=0 = (k cosφ, k sinφ,−w).

The analysis leading to the result in previous section can be applied here, with k1, k2

replaced by k cosφ, k sinφ respectively. A straightforward calculation shows that the rays
are given by

x(τ) = l − l(cos2(
φ

2
)eατ + sin2(

φ

2
)e−ατ )−1,

y(τ) =
l

sinφ
(
cos2(φ

2 )eατ − sin2(φ
2 )e−ατ

cos2(φ
2 )eατ + sin2(φ

2 )e−ατ
− cosφ),

t(τ) = t0 + τ,

(3.13)

for φ ∈ (−π
2 , π

2 )\{0}. Notice that lim
τ→∞x(τ) = l, showing that rays approach the shore

asymptotically which is similar to the plane-wave case. When φ ∈ (π
2 , 3π

2 ), waves are
traveling in a medium with constant water depth, thus all rays in this region are propagating
radially. Rays given by (3.13) are plotted in figure2(b).

To find the value of S at any point (x∗, y∗, t∗), we need to find φ, t0 and τ such that
x(τ) = x∗, y(τ) = y∗ and t(τ) = t∗. Then the phase function is

S(x∗, y∗, t∗) = S(0, 0, t0) = −ωt0.

3.3 Reflected rays in plane waves.

The fact that rays approach to shoreline asymptotically without being reflected is due
to the nature of varying topography. Indeed it can be easily shown that the rays will not
be reflected back for a bottom function h(x) ∼ (x− l)−β if and only if β ≥ 2.

In the case of a piecewise linear topography:

h(x) =
{

α2l, x ≤ 0;
α2(l − x), x ≥ 0.

with α > 0, (3.14)

we can solve equations (3.7a) and (3.7b) to get

x(τ) = l − h0(k2
1 + k2

2)
2k2

2

[1− sin(
k2α√

h0(k2
1 + k2

2)
τ + arcsin(

k2
1 − k2

2

k2
1 + k2

2

))],

y(τ) = y0− k1l

k2
+

(k2
1 + k2

2)l
2k2

2

[
k2α√

l(k2
1 + k2

2)
τ +cos(

k2α√
l(k2

1 + k2
2)

τ +arcsin(
k2

1 − k2
2

k2
1 + k2

2

))], (3.15)
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Figure 2: Rays of (a) plane waves propagating from x = −∞ and (b) circular waves
generated by a point source at the origin, moving toward a shoreline. The bottom function
is chosen to be that in (3.8) with α = 1 and l = 2. Other parameters are: (a) k1 = k2 =
1, y0 = −1, 0, 1, 2; (b) k = 1, φ = nπ

8 (n = 0, ..., 15).

for τ ≤ τM = arccos( 2k1k2

k2
1+k2

2
). Here τM is the time when rays hit the shoreline and bounce

back.
At the initial stage of traveling along the beach, rays propagate in an apparently anal-

ogous way as that in figure 2a, and tend to be perpendicular to the shore. At some finite
time they reach the beach where the water depth is zero. Therefore current theory breaks
down in the vicinity of the shore and a more careful examination is needed to correctly
describe the process taking place therein. Nevertheless, this difficulty does not hinder us
from obtaining a solution to the Eikonal equation if we assign to S on x = l the value
carried by incoming rays and use them as the boundary conditions for reflected rays. Both
incoming rays and reflected rays are plotted in figure 3.

4 Solutions to vc-cy-KdV equation.

The corresponding KdV-like equation in the cylindrical coordinate system can be ob-
tained by a similar approach (Shen&Shen[9]); namely,

η1t + (2ω−1rJ)−1 dω−1rJ

dt
+

3ωη1η1ξ

2h
+

1
6
ω3hη1ξξξ = 0, (4.1)

where r stands for the radial component; η1, ω, J and h are analogously defined in the
cylindrical coordinate system.
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Figure 3: Rays of plane waves (solid curves) traveling over a beach with constant slope
are reflected by the beach (dot-dashed curves), with α = 1, l = 1, k1 = 1, k2 = 8, and
y0 = −1, 0, 1.

Assume now that h is a function of r only and all other variables do not depend on the
azimuthal variable φ, then the phase function is

S(r, φ, t) = −t +
∫ r

r0

h−
1
2 dr, (4.2)

for some fixed radius r0. If we introduce a function A(t, r, ξ) such that η1 = Ah(r), then
(4.1) can be written as a vc-cl-KdV equation

Ar + (
3
2
h−

1
2 )AAξ + (

1
6
h

1
2 )Aξξξ + (

5
4
hrh

−1)A +
A

2r
= 0, (4.3)

Equation (4.3) is the counterpart of (2.27) in the cylindrical coordinate system under the
assumption of azimuthal independence.

By applying a change of variables

A(r, ξ) =
2
√

6
3

h−5/4r−1/2B(σ, ξ), and σ =
1
6

∫ r

h1/2dr, (4.4)

equation (4.3) becomes
Bσ + f(σ)BBξ + Bξξξ = 0, (4.5)

where
f(σ) = 6h−9/4(

∫ σ

h−1/2dσ)−1/2 = 6
√

6r−1/2h(r)−9/4. (4.6)

Equation (4.5) is in the form of (2.27), except that the ”time” variable σ now has a different
scale from the actual time variable t.
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4.1 Exact solutions

To look for exact solutions to (4.5), we apply the following change of variables suggested
by Grimshaw (appendix in [3])

B(σ, ξ) = f(σ)[Q(s, x)−m1ξ], x = f(σ)ξ, s = g(σ), (4.7)

where m1 is some constant, g(σ) is to be determined, and Q(s, x) satisfies the standard
KdV equation

Qs + QQx + Qxxx = 0. (4.8)

Substituting (4.7) into (4.5) yields

(f ′ −m1f
3)Q + (ξff ′ −m1ξf

4)Qx + (m2
1ξf

3 −m1ξf
′)

+ fg′Qs + f4QQx + f4Qxxx = 0. (4.9)

Therefore Q(s, x) will satisfy (4.8) if each bracketed term in (4.9) vanishes and fg′ = f4.
This means that when m1 6= 0, f and g have to satisfy

f(σ) = (−2m1σ + m2)−1/2, g(σ) =
1

m1
(−2m1σ + m2)−1/2. (4.10)

where m2 is an integrating constant. This is consistent with the integrability condition
(2.28) with c2 = 0. According to (4.6), (4.10) and definition of σ, the bottom function has
to satisfy

h(r) = (−72m1)1/4(m3r
−8/9 + 1)1/4. (4.11)

When h is chosen as in (4.11), we may combine (4.4), (4.7) and any exact solution to
the standard KdV to obtain a new solution to the vc-cy-KdV equation. Nevertheless, the
presence of the term ”m1ξ” in transformation (4.7) changes the condition of the solution
at infinity both in temporal and spacial variables. Consequently, solutions to the standard
KdV with physical meanings become unbounded solutions to vc-cy-KdV. As an illustration
to it, let us take a soliton solution to (4.8)

Q(s, x) = 3c sech2[
√

c

2
(x− cs− b)], (4.12)

where b is any constant and c encodes information of amplitude, wavenumber and frequency
of the soliton. Then

A(r, t) = κ1r
−1 sech2[κ2r

− 1
2 (r − κ3t) + κ4r

− 1
2 + κ5] + κ6r

− 1
2 (r − κ3t), (4.13)

for some constants κi, (i = 1, ..., 6). Solution (4.13) is plotted in figure 4.
We notice that when f(σ) is a constant (m1 = 0), there is no need of applying another

transformation to (4.5); thereupon any bounded solution to it remains bounded to vc-
cy-KdV. In particular, solitary waves will keep their soliton-like shape except that the
amplitude may vary due to combined effects of geometrical spreading and shoaling. Suppose
f = 6λ1 for some constant λ1, then one soliton solution to (4.5) is

B =
c

2λ1
sech2[

√
c

2
(ξ − cσ − b)], for a constant b. (4.14)
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Figure 4: An unbounded solution (4.13) at different times. The dotted curve is the envelope
of local solitons.

Now
σ = 2−

35
9 3

10
9 λ

− 2
9

1 r
8
9 − λ2, (4.15a)

h(σ) = [
8λ2

1

9
(σ + λ2)]−

1
4 = (

36
λ4

1

)1/9r−
2
9 . (4.15b)

where λ2 is an arbitrary constant. Combining (4.4),(4.14),(4.15) and definition of ξ we
obtain a bounded soliton solution to vc-cy-KdV (4.3):

A(r, ξ) = 2
2
9 3−

7
9 r−

2
9 λ−1

1 sech2[
√

c

2
(ε−1ξ − cσ − b)], (4.16)

which is plotted in figure 5 for r ≥ r0. An examination of solution (4.16) shows that for large
r the amplitude decays to 0 as r−2/9. Moreover, the dominant term inside the hyperbolic
secant function is C1r

10
9 − C2t for some constants C1 and C2, indicating that the traveling

speed of the soliton decays to 0 as r−
1
9 .

4.2 Approximate solutions – Cnoidal waves.

As we can see in previous section, the choice of the topography is fairly restrictive in order
for us to obtain explicit solutions. Even in the most special case when the bottom is flat, we
are not able to obtain a solution which is physically meaningful. Therefore developing an
approach to find approximate solutions is of necessity. We look for an approximate solution
to vc-KdV (4.5) which is periodic (cnoidal waves) in this section, and non-periodic (solitary
waves) in next section.
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Figure 5: An exact solution A(r, ξ) given by (4.16), plotted at time t = 0, 1, 2, 3 with
parameters c = 0.01, b = 1, λ1 = 1, λ2 = 0, r0 = 0.2 and ε = 0.01. The dotted curve is the
envelope of the moving soliton.

Assume that f(σ) slowly varies in σ, then we can introduce a slow-time variable T =
εσ (ε << 1) and write f(σ) as

f = f(T ). (4.17)

Denote

ζ = k(ξ − ε−1

∫ T

V (T )dT ), (4.18)

where k is some constant wavenumber. We seek for a periodic solution B which is periodic
in ζ with a period 2π and has the asymptotic expansion

B = B0(ζ, T ) + εB1(ζ, T ) + O(ε2). (4.19)

Plugging it into (4.5) we obtain the leading order term as

−V B0ζ + fB0B0ζ + k2B0ζζζ = 0. (4.20)

Equation (4.20) is an ordinary differential equation in ζ, with T as a parameter; furthermore,
it has a cnoidal wave solution

B0(ζ, T ) = a[b + cn2(γζ;m)] + d, (4.21)

where
b =

1−m

m
− E(m)

mK(m)
, (4.22a)

a =
12mK2(m)k2

π2f
, (4.22b)
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and V = [d + a(
2−m

3m
− E(m)

mK(m)
)]f. (4.22c)

Here notations are: cn(x;m) is the Jacobian elliptic function with parameter m ∈ (0, 1);
K(m) and E(m) (or K and E for necessary abbreviations) are complete elliptic integrals of
the first and second kind respectively. Since cn2(x; m) is known to have a period of 2K(m),
γ = K(m)

π . The constant b is so chosen that the integration of the sum in the bracket of
(4.21) over one period is zero.

There are three free parameters in the cnoidal wave solution, which are chosen by us
to be the amplitude a, mean level d and elliptic parameter m. They are functions of T
(or r) describing how waves are modulated. To determine a, d and m, we apply the so-
called Whitham averaging method ([11]), which considers the following two conservation
laws directly deduced from (4.5)

∂
∂t

∫ 2π
0 Bdζ = 0, (4.23)

∂
∂t

∫ 2π
0 B2dζ = 0. (4.24)

These conservation laws hold for each term in the expansion of B. It follows from (4.23)
that d = const. Plugging (4.21) into (4.24) and using (4.22b) we get

a2 =
m2K(m)4I0

F (m)
≡ G(m)I0, (4.25)

and F (m) =
π4I0

144k4
f2, (4.26)

where
F (m) ≡ K(m)2[(4− 2m)E(m)K(m)− 3E(m)2 − (1−m)K(m)2], (4.27)

and I0 is a sum of a constant depending only on d and another integrating constant. F (m)
and G(m) are plotted in figure 6. The wavenumber k and V can be determined from (4.22b)
and (4.22c), respectively.
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Figure 6: Plots of F (m) and G(m) versus m.
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To study the remote behavior of the amplitude of a cnoidal wave solution (4.21), us
choose a representative example of bottom function

h(r) = (r + r1)−β r1 ≥ 0, β > 0. (4.28)

Then it follows from (4.6) that

f(r) = 6
√

6r−1/2(r + r1)9β/4. (4.29)

We remark that in a more generalized case the bottom can be chosen to be h = a1(r +
r1)−β + a2 which takes into account the slope of the basin at origin and the place where
water depth vanishes.

At large r, from (4.29) we have f ∼ r
9β−2

4 . Thus when β < 2
9 , f(r) → 0 as r →∞. From

(4.26) and monotonicity of F (m)(figure 6a), we have lim
r→∞m(r) = 0. Since lim

m→0
G(m) =

8
3
(figure 6b), it follows from (4.25) that the amplitude a decreases to a finite value as r →∞.

Then the physical amplitude

â = h−5/4r−1/2a ∼ r(5β−2)/4 (4.30)

decreases to zero as well. When β > 2
9 , lim

r→∞ f(r) = ∞, and lim
r→∞m(r) = 1, so a → ∞.

However the physical amplitude

â = h−
5
4 r−

1
2 a ∼ F 4(β− 1

3
)/(9β−2), as r →∞. (4.31)

Therefore if 2
9 < β < 1

3 , the amplitude of cnoidal wave â still decreases to 0. But if β > 1
3 ,

(4.31) still holds by the same argument, and â →∞ as r →∞. At the critical slope β = 1
3 ,

the wave amplitude remains finite and converges to a non-zero constant. It has the physical
implication that the effects of geometrical spreading and shoaling are offset.

4.3 Approximate solutions – Solitary waves.

Heuristically, cnoidal waves will become solitary waves when the elliptic parameter
equals unity. However, techniques discussed in section 4.2 can not be directly applied
to find solitary wave solution by merely taking the limit m approaching 1, because the two
processes m → 1 and ε → 0 do not commute. A new concept of slowly-varying is required
and we adopt the one given by Grimshaw[4]. Equation (4.17) is to be used as before but
(4.18) is now replaced by

δ = ξ − ε−1

∫ T

V (T )dT, (4.32)

and (4.19) replaced by
B = B0(δ, T ) + εB1(δ, T ) + O(ε2). (4.33)

The solution B is no longer required to be periodic in δ. Substitution of (4.33) into (4.5)
gives the leading order term as

−V B0δ + fB0B0δ + B0δδδ = 0, (4.34)
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which has a soliton solution
B0 = a sech2(qδ), (4.35)

where V = af
3 = 4q2, for some constant q. Substituting (4.35) into the conservation law

∂

∂t

∫ ∞

−∞
B2

0 dδ = 0 (4.36)

leads to
a3 = const.f. (4.37)

Combining (4.29) and (4.37) we can see that for large r,

a ∼ r(9β−2)/4.

The physical amplitude is then

â ∼ h−5/4r−1/2a ∼ r2(β− 1
3
), as r →∞. (4.38)

Therefore β = 1
3 is again a critical value for the behavior of the amplitude.

Let us now examine when the approximate solutions of cnoidal waves and solitary waves
are valid. We treat f and a, m etc. as functions of r instead of T (or σ) since the variable
r represents the radial distance from the origin. Approximate solutions are only true for
a slowly varying function f , which is determined by the bottom function h(r) as in (4.6).
Moreover, generation of circular waves (such as dropping a stone into a pond) usually
involves very complicated mechanism near the origin where current theory fails. These
two difficulties can be circumvented by considering the flow domain to be the whole plane
excluding vicinity of the origin.

As a summary to this section, we characterize as follows the amplitude â to vc-cy-KdV
equation (4.3) in terms of β while the bottom function is in the form of h(r) = (r + r1)−β:

(i) when 0 < β < 1
3 , â →∞ as r →∞;

(ii) when β = 1
3 , â → const. as r →∞;

(iii) when 1
3 < β < 2, â → 0 as r →∞.

It is perhaps an interesting but not a surprising fact that both cnoidal waves and solitary
waves share the same critical value β = 1

3 , even though the analysis leading to the result
are not identical.

5 Discussion.

Equation (2.27) was originally derived by Shen&Keller[8] for a compressible fluid rotat-
ing at a constant angular velocity about the z−axis. In that case an adiabatic equation
must be added to the governing equations and the equation of motion must be modified to
include the effect of rotation. Therefore our equation is a special case of the KdV equation
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obtained by them. The features of nonlinearity and dispersion of waves traveling in shallow
water are captured in this variable coefficient KdV equation.

The critical value β = 1
3 for which wave amplitude approaches to zero/finity/infinity

may not be verified in practice, since the occurrence of reflected waves from the rising
topography is neglected. As remarked in section 3.3, waves are certainly reflected if β < 2.
This raises the possibility that returning waves interact with advancing waves and modify
the wave amplitude in a non-trivial way. Mathematically, a possible remedy is to allow the
sign in front of variable t in the phase function (eqn.(4.2)) to be reversed, giving rise to
another vc-cy-KdV equation. The new KdV equation needs to be solved together with the
existing one.
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The derivation and application of convective pattern equations

Yiping Ma

Advised by Edward A Spiegel

Abstract

In this report, we review an elegant technique, known as the Bogoliubov method,
for deriving amplitude equations in pattern forming systems, through detailed solution
to the classical problem of Rayleigh-Bénard convection, with both free and rigid upper
and lower boundaries. The computation is facilitated by the use of a newly proposed
diagrammatic technique. The resulting equation is a nonlocal pattern equation, which
reduces to the 1D Swift-Hohenberg equation for 2D convection. We show that the
nonlocal pattern equation is variational by finding a Lyapunov functional.

Subsequently, we formulate a few properties of steady state solutions of general
variational PDE, and test their utility in pattern prediction for models including the
Swift-Hohenberg equation.

Finally, we describe normal form theory for Hopf bifurcation in the context of pattern
equations, and point out possible extensions of the diagrammatic technique.

1 Introduction

In the principal lectures, we learned much about water waves, mostly described by the
Korteweg-de Vries (KdV) equation, the nonlinear Schrödinger (NLS) equation, and their
generalizations. Both the KdV equation and the NLS equation are Hamiltonian, and thus
admit travelling wave solutions with particle-like behavior (“solitons” in the usual sense).

However, if we need to take dissipation (e.g. viscosity, heat diffusivity) and/or forcing
(e.g. mechanical vibrations, heat flux) into account, the Hamiltonian structure will likely
be destroyed. In hydrodynamics, this happens in the subject of instability [4], within which
the Rayleigh-Bénard convection is a prototypical problem.

Near the onset of the Rayleigh-Bénard instability, one can derive an equation for the
amplitude of the nearly marginal modes [7]. A systematic procedure (referred to as the
Bogoliubov method) for deriving such amplitude equations for a class of instability problems
is formulated in [5]. We find that this procedure possesses a mode interaction structure that
makes it feasible for expression in terms of Feynman diagrams. Therefore, throughout the
derivation we draw these diagrams wherever applicable, and in the end we sketch how this
diagrammatic technique can be generalized to other situations, e.g. Hopf bifurcation.

Insofar as the Rayleigh-Bénard convection is concerned, we get a nonlocal equation for
the amplitude. We show that this equation possesses a Lyapunov functional F , and thus
exhibits features of a gradient dynamical system, namely that the system always evolves
towards a local minimum of F . We discover a set of conditions that any solution at a local
minimum must satisfy, as long as it is embedded in a zero free-energy background. We
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also review the implications of the variational principle for behavior of steady solution near
the boundary, as well as a conservation law that follows from Noether’s theorem (cf. [12]
§9.2.1). We point out that the latter has a natural interpretation in terms of the former.

2 Rayleigh-Bénard Convection

In this section, we formulate in detail the Rayleigh-Bénard convection problem with fixed
temperature boundaries.

2.1 Boussinesq Equations

The convection problem is described by the following standard set of non-dimensionalized
hydrodynamic equations (cf. [4] II.§7)

∂tv + (v · ∇)v + w∂zv = −∇Π + �(Δ + ∂2
z )v, (1)

∂tw + (v · ∇)w + w∂zw = −∂zΠ + �(Δ + ∂2
z )w + R�θ, (2)

∂tθ + (v · ∇)θ + w∂zθ = (Δ + ∂2
z )θ + w, (3)

∇ · v + ∂zw = 0, (4)

where ∇ = x̂∂x + ŷ∂y (x̂ and ŷ are the two horizontal unit vectors), Δ = ∇2, v is the
horizontal velocity, wẑ is the vertical velocity (ẑ is the vertical unit vector), and θ and Π
are the deviations of the temperature and pressure from their static values. The Prandtl
number � and the Rayleigh number R are defined as usual. Typically, we can impose either
free or rigid boundary conditions, defined as

w = 0, θ = 0; ∂2
zw = 0 (free) or ∂zw = 0 (rigid) on z = ±1

2
. (5)

Let us denote the full velocity as u = (v, w), and the full vorticity as ω = ∇×u, where
∇ = x̂∂x + ŷ∂y + ẑ∂z. The full vorticity equation is then (cf. [13] §5.5)

Dω

Dt
= (ω · ∇)u + �∇2ω + ∇ × (R�θẑ). (6)

From (5), we get the following boundary conditions on the vertical vorticity ζ ≡ (∇×v) · ẑ

∂zζ = 0 (free) or ζ = 0 (rigid) on z = ±1
2
. (7)

The significance of ζ is that, given w and ζ, we can uniquely determine v up to a gauge
using the relations ∇ · v = −∂zw, ∇ × v = ζẑ. Therefore, (ζ, w, θ) provides a complete
description of the state of the fluid. Now we formulate linear theory based on this set of
variables.

2.2 Linear Theory

Taking the ẑ-component of (6) and linearizing, we get an uncoupled equation for ζ

∂tζ = �∇2ζ.
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In view of (7), if we take the boundaries at z = ±1/2 both to be rigid surfaces, then all the
vertical vorticity modes are strongly damped. However, for two free boundaries, there is a
solution with ζ constant in space and time corresponding to a rigid, undamped rotation of
the whole fluid. In a finite system, such modes of motion play no role, and the only motions
consisting of purely vertical vorticity are viscously damped. These will be slave modes,
in the jargon of dynamical systems theory. Hence we shall not allow for their nonlinear
excitation here and so make the approximation

ζ = 0 for all t. (8)

The case of one rigid and one free boundary is mathematically similar to two rigid bound-
aries. The case of nonzero ζ is studied in [17] and [21].

Now the fields w and θ completely specify the state of the fluid. To write the Boussinesq
equations only in terms of w and θ, we shall keep (3) but for (1) and (2), we need to eliminate
Π by −∂z∇·(1)+Δ(2). The linear parts of these two equations are

∂t(∂2
z + Δ)w = �(∂2

z + Δ)2w + R�Δθ, ∂tθ = w + (∂2
z + Δ)θ. (9)

It is thus convenient to work in the Fourier space with

♦(x, z, t) =
∫

♦k(z, t)eik·xdk,

where ♦ = w, θ or v. We may define Uk ≡ (wk, θk)T and write (9) succinctly as

∂tMkUk = LkUk, (10)

where

Mk =
(

∂2
z − k2 0

0 1

)

, Lk =
(

�
(

∂2
z − k2

)

2 −k2R�
1 ∂2

z − k2

)

, (11)

and the boundary conditions follow from (5)

Uk = 0, (1, 0)∂2
zUk = 0 (free) or (1, 0)∂zUk = 0 (rigid) on z = ±1

2
. (12)

This linear problem is separable, and we may seek solutions of the form Φk(z)est. For
either free or rigid boundaries, there is a pair of Φk(z) with l nodes for each l = 0, 1, 2, · · · .
One lowest vertical mode, denoted by φk(z), can go unstable with growth rate denoted
by σk. The other lowest vertical mode, denoted by ϕk(z), and the higher vertical modes,
denoted by χ±

k,l(z) (l = 1, 2, · · · ), are always stable with growth rate denoted by τk and ω±
k,l.

The functions φk, ϕk and χ±
k,l form an orthogonal basis with the inner product

〈Uk, Ũk〉 ≡
∫ 1

2

− 1
2

(

w∗
k(k2 − ∂2

z )w̃k + R�θ∗kk
2θ̃k

)

dz,

where ∗ denotes complex conjugate.
It follows from (10) that the linear problems for φk, and its adjoint φ†

k, are

Lkφk = σkMkφk, L
†
kφ†

k = σkM
†
kφ†

k,
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where the adjoint operators are the transposes of the original ones, and the adjoint boundary
conditions coincide with the original ones (σk can be shown to be real for our range of R).

The critical point is (Rc, kc) = (27π4/4, π/
√

2) for free boundaries, and (Rc, kc) =
(1708, 3.116) for rigid boundaries (cf. [4] II.§15(b)). For (R, k) near (Rc, kc), we have the
expansion [7] for free boundaries

σk =
k2

c�

� + 1

(

3(
R

Rc
− 1) − (k2 − k2

c )
2

k4
c

)

, (13)

and for rigid boundaries

σk =
19.65�

� + 0.5117

(

(
R

Rc
− 1) − 0.3593

(k2 − k2
c )2

k4
c

)

. (14)

The solution at (Rc, kc) and its adjoint are, for free boundaries

φkc(z) = φ̂kc cos(πz), φ̂kc =
(

1
1
/(

3kc
2
)

)

;

φ†
kc

(z) = φ̂†
kc

cos(πz), φ̂†
kc

=
(

1
−9k4

c�

)

.

For rigid boundaries

φkc(z) =
(

Wkc(z)
(

k2
cR
)−1/3Θkc(z)

)

, φ†
kc

(z) =
(

Wkc(z)
−�

(

k2
cR
)

2/3Θkc(z)

)

,

where the functions Wkc and Θkc are defined by

Wkc(z) = cos q0z + (A1 + iA2) cos i(q1 + iq2)z + (A1 − iA2) cos i(q1 − iq2)z,

Θkc(z) = cos q0z + (B1 + iB2) cos i(q1 + iq2)z + (B1 − iB2) cos i(q1 − iq2)z,

with q0 = 3.974, q1 = 5.194, q2 = 2.126, A1 = −0.03076, A2 = −0.05196, B1 = 0.06038 and
B2 = −0.0006647.

2.3 Nonlinear Terms

In the Fourier space, vk can be expressed in terms of wk, by (4) and (8), as

vk =
ik
k2

∂zwk. (15)

With this, we can work out the nonlinear terms in (1-4). First, we transform (3) into the
form

∂tθk = wk + (∂2
z − k2)θk +

∫∫

Nθδ(k − p − q)dpdq. (16)

To determine the nonlinear part Nθ, we note that −w∂zθ yields −wq∂zθp, and −(v · ∇)θ
yields

−(v · ∇)θ = −
∫

(iv · p)θpeip·xdp,
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where, by (15)

−(iv · p) =
∫

p · q
q2

∂zwqeiq·xdq.

We then obtain
Nθ =

p · q
q2

θp∂zwq − wq∂zθp. (17)

As for (1) and (2), let us recall that we need to first eliminate Π by −∂z∇·(1)+Δ(2).
The resulting equation has four nonlinear terms on the right

(A)∂z∇ · ((v · ∇)v); (B)∂z∇ · (w∂zv); (C) − Δ((v · ∇)w); (D) − Δ(w∂zw). (18)

The incarnation of this equation in the Fourier space is

∂t(∂2
z − k2)wk = �(∂2

z − k2)2wk − k2R�θk +
∫∫

Nwδ(k − p − q)dpdq. (19)

The contributions of (18) to Nw can be worked out by switching to index notation, doing
the Fourier transform, and finally returning to vector notation. The results are

(A)(
(p · q)2

p2q2
+

p · q
p2

)∂z(∂zwp∂zwq); (B) − (
p · q
q2

+ 1)∂z(wp∂2
zwq);

(C) − (p · q + 2
(p · q)2

p2
+

q2

p2
p · q)wq∂zwp; (D)(p2 + 2p · q + q2)wp∂zwq.

To simplify the expression, we can exchange p and q in any term. The overall sum is

Nw = (2
(p · q)2

p2q2
+

p · q
p2

− 1)∂zwp∂2
zwq − (

p · q
q2

+ 1)wp∂3
zwq

−(2
(p · q)2

q2
+ (

p2

q2
− 1)p · q − p2 − q2)wp∂zwq. (20)

In terms of Uk ≡ (wk, θk)T , we may write (16) and (19) succinctly as

∂tMkUk = LkUk +
∫∫

N δ(k − p − q)dpdq, (21)

where N ≡ (Nw,Nθ)T , and the boundary conditions are given in (12).

3 The Expansion Procedure

In this section, we follow [5] §6 to employ the Bogoliubov approach to derive the pattern
equation for the convection problem. Note that the results differ from [5] in some details.
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3.1 The Diagrammatic Notation

We can express (21) diagrammatically, with the replacement U → ◦, as

∂t M = L + N .

This type of diagram, regarded for now simply as a device to keep track of terms in pertur-
bation series, bears some resemblance to Feynman diagrams in quantum field theory. The
lines carry momenta, or wave vectors, although these are typically not labelled. The vertices
conserve momenta, as reflected by the δ-function of wave vectors. Each diagram corresponds
to a unique term in the perturbation series. At any given order, one first draws all possible
(Feynman) diagrams consistent with certain physical laws, and then translates these dia-
grams back to algebraic expressions with a prescribed set of Feynman rules. As Feynman
diagrams are frequently used in particle physics [16], condensed matter physics [15] as well
as the theories of turbulence in fluids [25] and wave propagation in random media [10], we
hope that their use here will simplify the calculation of modal interactions in convection.

The diagrams are largely self-explanatory except for a few conventions. All the symbols
in the diagrams are vertices except for the special operator ∂t. For any vertex, the lines
immediately to its left (right) are called incoming (outgoing) lines, and the number of
incoming (outgoing) lines is called the indegree (outdegree) of that vertex. We observe that
all the vertices have outdegree one, but the indegree can be one (e.g. M, L) or more (e.g.
N ). If only such vertices are present, the diagram necessarily takes the form of a tree,
consisting of the root connected to the leaves via the stems. These diagrams differ from
those in quantum field theory, where particles can be either created or annihilated, thereby
making loops possible. Note that the leftmost incoming line(s) entering the leaves and the
rightmost outgoing line exiting the root are not shown explicitly. The total number of leaves
is the order of the diagram, consistent with perturbation theory practice.

How to translate a diagram back to an algebraic expression? The case of a first order
diagram is obvious. For an n-th order diagram (n ≥ 2), we first label the wave vectors
entering the leaves as, say, p1, · · · ,pn, and the wave vector exiting the root as, say, k.
Then we label the wave vectors on the stems in terms of p1, · · · ,pn, using conservation of
wave wave vectors at the vertices. Any vertex corresponds to a function the wave vectors on
its incoming lines and the sub-diagrams connected to it through these lines (N is a somehow
complicated example). With these guidelines, for any tree diagram, we can start from its
root, traverse its stems and finally reach its leaves. The expression that we get, multiplied
by δ(k− p1 − · · · − pn) and integrated over p1, · · · ,pn, is the final result. We remark that
the wave wave vectors carried by the intermediate stems are automatically integrated out,
so only the δ-function describing the overall wave vector conservation remains.

Now things are ready for deriving the amplitude equation. For this purpose, we need to
eliminate the fast modes and keep the slow modes, much like the process of center manifold
reduction in bifurcation theory for ODE. However, in generalizing the procedure to PDE,
we encounter an inherent difficulty. Before dealing with the convection problem, we explain
the reduction procedure with an illustrative example, where this difficulty clearly figures.
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3.2 Irremovable Resonances

To illustrate the procedure we consider the following equations [24] whose structures are
reminiscent of (21)

∂tfk = σkfk +
∫∫

fpgqδ(k − p − q)dpdq,

∂tgk = γkgk +
∫∫

fpfqδ(k − p − q)dpdq,

which, with the replacements f → ◦, g → ◦, can be represented diagrammatically as

∂t = σ + N , (22)

∂t = γ + N , (23)

where σk = σ − (k2 + k2
1)

2 and γk = γ − (k2 + k2
2)

2 with γ < 0 and |σ| 
 |γ|. The vertex
N here simply takes the product of the two sub-diagrams connected to it.

We seek a near-identity coordinate change (here Fk is the coordinate on the “center
manifold”)

fk = Fk +
∫∫

Ik(p,q)FpFqdpdq + · · · ,

gk = Gk +
∫∫

Jk(p,q)FpFqdpdq + · · · ,

represented diagrammatically, with F → •, G → •, as

= + I + · · · , (24)

= + J + · · · , (25)

which turns (22-23) into the standard form

∂tFk = σkFk +
∫∫

Φk(p,q)FpFqdpdq + · · · ,

∂tGk = (γk +
∫

Ψk(p)Fpdp + · · · )Gk + · · · ,

represented diagrammatically as

∂t = σ + Φ + · · · , (26)

∂t = (γ + Ψ + · · · ) + · · · . (27)

In order that (24-25) produce (27) from (23) (or equivalently, a functional analogue of
a center manifold exists in a loose sense), we must satisfy, at second order

2 Jσ
= γJ + N . (28)

Two points should be noted in the interpretation of the first diagram. First, the factor
of 2, known as the symmetry factor in quantum field theory, refers to the two distinct
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Figure 1: The curve of resonances. We plot σ + σk+k1x̂ in red and γk in blue, with their
intersection implying resonances. Parameters: k1 = 1, k2 = 2, σ = 0.1, γ = −5.

ways to permutate the incoming edges of J . Graphically these two permutations can be
combined, but algebraically they represent two different terms involving the two arguments
of J . Second, the vertex σ has indegree and outdegree both one, so it simply propagates the
wave vector through itself. At any such vertex, the line is deliberately bent to signify the
presence of the vertex. In contrast, for a vertex with indegree two (or more) and outdegree
one (e.g. J ), its presence is already apparent from the topology of the diagram.

It follows that (28) translates to the condition
∫∫

(Dk(p,q)Jk(p,q) − δ(p + q − k)) FpFqdpdq = 0, (29)

where Dk(p,q) = σp + σq − γk. There are resonances when

p + q − k = 0, Dk(p,q) = 0.

These resonances cannot occur if both |p| and |q| are near k1, but they do occur when we
take, say, only p = k1x̂. We can find the curve of resonances (Fig. 1) with the graphical
procedure (cf. [2], [27]) mentioned in Lecture 12 – Triad Resonances.

It is an open question whether these resonances are artifacts of the procedure, although
there is evidence that they indeed are [24].

To get the pattern equation, we introduce (25) into (22). On the center manifold, by
definition, • = 0. In addition, we have the freedom to identify ◦ with •. Therefore, the
pattern equation truncated to third order is

∂t = σ + NJ , (30)

which translates to

∂tFk = σkFk +
∫∫∫

J (q, r)δ(k − p − q − r)FpFqFrdpdqdr,
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where J is determined from (29) by the method of steepest descent [24].

3.3 Nonlinear Expansions

Now we attempt to apply center manifold reduction to the Boussinesq convection problem.
A crucial observation is that once we admit that an effective (or functional) center manifold
exists, all physical quantities depend only on the amplitudes of the slow modes. This is the
spirit of the Bogoliubov method that we use.

Since the growth rate σk depends continuously on k, one needs to introduce a cutoff in
k to define which modes are slow. We will choose the cutoff for computational convenience,
but point out that no choice is truly justified due to the lack of spectral gap.

3.3.1 Setup

The key idea is the expressibility of Uk as the functional power series

Uk = Akφk +
∫∫

dpdqApAqU (2)
k (p,q; z) + · · · , (31)

where Ak satisfies

∂tAk = σkAk +
∫∫

dpdqApAqΓ(2)
k (p,q) + · · · . (32)

We can express (31) and (32) diagrammatically with A → • as

= φ + U + U + · · · ,

∂t = σ + Γ + Γ + · · · .

We substitute into (21) and gather terms of the same order in Ak. The linear condition
M

σ φ = Lφ

is satisfied for a suitable choice of φk. At each higher order, the kernel must cancel out
because Ak is arbitrary. Let N (m) denote the coefficient of the δ-function in the kernel of
N at the m-th order. To approximate, we take Ak to have infinitesimal support around the
critical circle |k| = kc. Therefore, we can set the corresponding growth rate σk = 0.

3.3.2 Second order

M

Γ φ = L
U + N

φ

φ
.

Setting the kernel of the gathered second order terms to 0, we get

−LkU (2)
k = N (2)(p,q)δ(k − p − q) − Γ(2)

k (p,q)Mkφk.
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Figure 2: Plot of Û (2)
w,0, Û (2)

θ,0 , Û (2)
w,−1 and Û (2)

θ,−1 as functions of z and cp,q.

The solvability condition (N (2) being odd does not contain the lowest vertical mode)

0 = −Γ(2)
k (p,q)〈(φ†

k)T |Mkφk〉

determines that Γ(2)
k (p,q) = 0. Here 〈·|·〉 denotes the usual inner product. We are left with

an always solvable equation

−LkU (2)
k = N (2)(p,q)δ(k − p − q).

Here, p and q are constrained to lie on the critical circle but k is not. If we introduce the
shorthand cp,q ≡ p · q/

√

p2q2, then

Nθ = cp,qθp∂zwq − wq∂zθp,

Nw = (2c2
p,q + cp,q − 1)∂zwp∂2

zwq − (cp,q + 1)wp∂3
zwq − 2k2

c (c
2
p,q − 1)wp∂zwq.

The matrix Lk = Lp+q also depends on cp,q. These lead to

U (2)
k (p,q; z) = Û (2)(�, z, cp,q)δ(k − p − q).

For free boundaries, we have the relatively simple expression

Û (2)(�, z, cp,q) =
1 − cp,q

(5 + cp,q)3 − 27
4 (1 + cp,q)

(

3(1+cp,q)(3+2(5+cp,q)�−1)
4π

2(5+cp,q)2+9(1+cp,q)�−1

6π3

)

sin(2πz).

For rigid boundaries, it turns out easier to evaluate Û (2) numerically rather than analytically.
The result can be written as

Û (2)(�, z, cp,q) =

(

Û (2)
w,0(z, cp,q)

Û (2)
θ,0 (z, cp,q)

)

+

(

Û (2)
w,−1(z, cp,q)

Û (2)
θ,−1(z, cp,q)

)

�−1,

where the functions Û (2)
w,0, Û (2)

θ,0 , Û (2)
w,−1 and Û (2)

θ,−1 are plotted in Fig. 2.
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3.3.3 Third order

M

Γ φ + 2 M
Γ

U = L
U + 2 N

U
φ

.

Setting the kernel of the gathered third order terms to 0, we get

−LkU (3)
k = N (3)(p,q, r)δ(k − p − q − r) − Γ(3)

k (p,q, r)Mkφk.

Because k, p, q and r are all restricted to the critical circle, we have only three possibilities

(I)k = p, q = −r; (II)k = q, r = −p; (III)k = r, p = −q. (33)

Now we let p (resp. q and r) denote the wave vector(s) in the first (resp. second) order. If
we suitably permutate p, q and r, we can transform all three cases to the geometry of case
(II). Thus the contribution from case (III) is identical to case (II), but differs from case (I).
We find, with some algebra, that

N (3) = 2

⎛

⎜

⎜

⎝

Ûw

(

k2
c (2 + cq,r) φ′

w + cq,rφw
(3)
)

+ 1
2 ·

·
(

(

3k2
cφw + (−1 + 2cq,r) φ′′

w

) Ûw
(0,1,0) − 2φ′

wÛw
(0,2,0) − φwÛw

(0,3,0)
)

1
2

(

−2Ûθ (1 + cq,r) φ′
w − 2Ûwφ′

θ − φθÛw
(0,1,0) − 2φwÛθ

(0,1,0)
)

⎞

⎟

⎟

⎠

+ N (3)
(I) ,

where subscript (I) denotes case (I). The following solvability condition must be satisfied

〈(φ†
k)T |N (3)(p,q, r)δ(k − p − q − r) − Γ(3)

k (p,q, r)Mkφk〉 = 0.

For either free or rigid boundaries, we have the general expression

Γ(3)
k (p,q, r) = Γ̂(3)(�, cq,r)δ(k − p − q − r). (34)

In the free case, we have the relatively simple expression

Γ̂(3)(�, cq,r) = 2Γ̂(3)
(II) + Γ̂(3)

(I) (35)

where

Γ̂(3)
(II) = − �

4(1 + �)
(1 − cq,r)2((5 + cq,r)2 + 9(1 + cq,r)�−1 + 3(1 + cq,r)(5 + cq,r)�−2)

(5 + cq,r)3 − 27
4 (1 + cq,r)

and
Γ̂(3)

(I) = − �

4(1 + �)
. (36)

The expression for Γ̂(3)
(II) agrees with [7] (which is based on the calculations done in [20])

up to a constant factor due to normalization convention, and the expression for Γ̂(3)
(I) agrees

with Γ̂(3)
(II) when cq,r = −1. In the rigid case, these expressions are again found to agree

with [7] up to normalization, though they are not explicitly shown here.
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3.4 The Evolution Equation

The evolution equation truncated to leading order is therefore

∂tAk = (σ0 + σ2(k2 − k2
c )

2)Ak +
∫∫∫

(II)
Γ(3)

k (p,q, r)ApAqArdpdqdr,

where (13)-(14) have been used, the kernel is given in (34), and the integration is done in
case (II) of (33). If the deviation from the marginal Rayleigh number scales as σ0 ∼ ε2,
consistent scalings near marginality are ∂t ∼ ε2, k2 − k2

c ∼ ε, A ∼ ε. In the physical space,
with additional re-scaling of t and x, we finally have the nonlocal pattern equation

∂tu = ru − (Δ + k2
0)

2u +
∫∫∫

(II)
Γ̂(3)(�, cq,r)ei(p+q+r)·xupuqurdpdqdr, (37)

where all the coefficients are O(1).
For 2D convection, p, q and r are constrained to be collinear, so Γ̂(3) reduces to a

constant, and (37) reduces to the 1D Swift-Hohenberg equation [23]

∂tu = ru − (Δ + k2
0)

2u + f3u
3, (38)

where f3 is a constant depending on �. The usual Swift-Hohenberg model for the stan-
dard Rayleigh-Bénard convection problem has had a remarkable qualitative success in re-
producing the gamut of observed patterns in the Boussinesq context. However, to make
quantitative comparison between theory and experiment a nonlocal pattern equations such
as the one found here and in earlier discussions (e.g. [19]) may be called for. At any rate,
our analysis indicates that the constant part of the kernel Γ̂(3)

(I) does yield a local cubic term
in the evolution equation, but the nonconstant part leads to nonlocal interactions.

4 The Variational Structure and Its Applications

An evolution equation ∂tu = M [u] is called variational if it can be written

∂tu = −δF/δu,

where δF/δu is the functional (or Fréchet) derivative. It may then be shown that dF/dt ≤ 0.
If, in addition, F [u] is bounded from below, it is called a Lyapunov functional and functions
u that minimize it are stable. It is known that (38) has a Lyapunov functional (cf. §4.2.1)
and so does (37), under suitable restrictions, as we next see.

4.1 Variational Structure of the Nonlocal Pattern Equation

To find the Lyapunov functional for (37), we seek

G[u] =
∫∫∫∫

(II)
Λ(�, cq,r)δ(p + q + r + s)upuqurusdpdqdrds

such that
δG
δu

=
∫∫∫

(II)
Γ̂(3)(�, cq,r)ei(p+q+r)·xupuqurdpdqdr,
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where out of the three equivalent scenarios

(I) s = −p, q = −r; (II) s = −q, r = −p; (III) s = −r, p = −q,

we assume that the integration for G is done in case (II).
After some manipulations with functional derivatives and Fourier transforms, we get

δG
δu

=
∫∫∫

(II)

1
π2

Λ(�, cq,r)ei(p+q+r)·xupuqurdpdqdr,

in light of cq,r = cr,q = cp,s = cs,p. Therefore we should pick

Λ(�, cq,r) = π2Γ̂(3)(�, cq,r). (39)

The Lyapunov functional for (37) is

F [u] =
∫
(

−1
2
ru2 +

1
2
((∇2 + k2

0)u)2
)

dx − G[u]. (40)

To show that F [u] is bounded from below, note that u−k = u∗
k leads to

upuqurus = |up|2|uq|2 ≥ 0.

In addition, (35,36,39) imply that (note that Γ̂(3)
(II) is always non-positive)

−Λ(�, cq,r) ≥ π2 �

4(1 + �)
≡ π2M > 0.

Therefore, we can establish the estimate (now the integration is done over all three cases)

−G[u] ≥ π2M

3

∫∫∫∫

δ(p + q + r + s)upuqurusdpdqdrds =
M

12

∫

u4dx,

where the identity us = 1
(2π)2

∫

ue−is·xdx is used. It then follows from (40) that

F [u] ≥
∫
(

−1
2
ru2 +

1
2
((∇2 + k2

0)u)2 +
M

12
u4

)

dx ≡ F̃ [u],

where F̃ [u] is nothing but the Lyapunov functional for (38) with f3 = −M/3. It is known
(cf. [11] §7.3) that F̃ [u] is bounded from below for f3 < 0, so our claim is proved.

We expect the nonlocal pattern equation (37) to accurately capture the physics, but PDE
models like (38) enjoy much greater popularity because of their mathematical simplicity.
Hence in the following, we derive a few lesser known properties of steady states in dissipative
PDE with Lyapunov functionals, and provide a few examples. In terms of notation, repeated
Latin indices are summed over, but Greek indices are not.

In general, consider any system in d spatial dimensions with a Lyapunov functional

F [u] =
∫

L(u, ∂iu, Δu)dx ≡
∫

L(q,pi, r)dx, x ∈ R
d.

We will focus on u(x) that locally minimizes F [u], although the equalities that appear below
also apply to other stationary points of F [u] (i.e. saddles and maxima).
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4.2 Generalized Virial Theorem

We generalize upon [9] §4 to derive an analog of virial theorem. If we introduce a parameter
λ and define F(λ) ≡ F [u(x + λy(x))], then stationarity and minimality require

F ′(λ = 0) = 0, (41)

F ′′(λ = 0) ≥ 0. (42)

Consider a linear function y(x), for which the Jacobian matrix J (defined by Jij ≡ ∂yj/∂xi)
is a constant matrix independent of x. For any λ, we can transform the coordinate by
x + λy(x) → x to obtain the exact expression

F(λ) =
∫ L(u, ∂iu + λJij∂ju, Δu + λ(Jjk + Jkj)∂jku + λ2JijJik∂jku)

det(I + λJ)
dx, (43)

where I is the identity matrix. Here the integration domain is left unspecified, but certain
conditions near the boundary must be satisfied. As a simple example from calculus, for an
arbitrary function ϕ(x)

∫ L

0
ϕ(λx)d(λx) =

∫ L/λ

0
ϕ(x)dx �=

∫ L

0
ϕ(x)dx

unless ϕ(x) → 0 at x → L. Therefore, we may either take a finite domain and require L = 0
near the boundary, or take the domain to be R

d and require L ∈ L1(Rd). In other words,
what follows should be applied to steady localized states with bounded total free energy.

We see that in (43), λ and J always appear as the combination λJ, so F (n)(λ = 0) must
be n-linear in J. For |λ| 
 1, the denominator can be expanded as

det(I + λJ) = exp(tr(log(I + λJ))) =
∞
∑

k=0

1
k!

⎛

⎝−
∞
∑

j=1

(−λ)j

j
tr(Jj)

⎞

⎠

k

,

from which follows the useful expression

1
det(I + λJ)

= 1 − λtrJ +
λ2

2
(tr2J + trJ2) + O(λ3).

Since F ′(λ = 0) is linear in J, we only need to impose (41) on the following two classes
of transformations. The first is the class of scaling transforms Jij = δiμδjμ, which leads to

∫

(Lpμ∂μu + 2Lr∂μμu − L) dx = 0, (44)

Summation over μ yields the “global” virial theorem
∫

(Lp · p + 2Lrr − dL) dx = 0,

or equivalently (in fact, more generally)
∑

i

(i − d)
∫

Lidx = 0, (45)
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where Li is the term in L with i spatial derivatives in total. The second is the class of shear
transforms Jij = δiμδjν (μ �= ν), which leads to

∫

(Lpμ∂νu + 2Lr∂μνu
)

dx = 0, (46)

We may summarize (44) and (46) as an orthogonality condition (μ and ν are arbitrary)

∫

(Lpμ + 2Lr∂μ)∂νudx = δμν

∫ Ldx. (47)

Since F ′′(λ = 0) is a quadratic form in the matrix elements Jij , (42) is equivalent to
the requirement that the d2 × d2 matrix

Hκλμν =
∫

(L (δκλδμν + δκνδλμ) + 2Lr(δκμ∂λνu − 2δκλ∂μνu) − 2Lpμδκλ∂νu

+4Lrr∂κλu∂μνu + 4Lrpμ∂νu∂κλu + Lpμpκ∂νu∂λu)dx,

defined such that F ′′(λ = 0) = JklHklmnJmn, is nonnegative definite. However, we cannot
see any immediate application of this result, except in the special case Jij = δij . Then

F ′′(λ = 0) =
∫

(

d(d + 1)L + 2(1 − 2d)Lrr − 2dLp · p + 4Lrrr
2 + 4Lrp · pr + Lpipjpipj

)

dx ≥ 0,

or equivalently (in fact, more generally)

F ′′(λ = 0) =
∑

i

(i − d)(i − d − 1)
∫

Lidx ≥ 0. (48)

4.2.1 Applications

Let us introduce the shorthand Ii ≡
∫ Lidx. Sometimes, (45) and (48) together with the

positivity (or negativity) of Ii can be restated as a linear programming problem. The
nonexistence of solutions for Ii then implies the nonexistence of stable localized states.

To take an example, the generalized Swift-Hohenberg equation

∂u

∂t
= ru − (∇2 + k2

0)
2u + f(u), (49)

where the nonlinear function f may be either quadratic-cubic or cubic-quintic in u, has a
Lyapunov functional with free energy density

LSH = −1
2
ru2 +

1
2
((∇2 + k2

0)u)2 − F (u), F ′ = f.

For another example, the steady state Proctor equation [18]

0 = μ2∇2u + ∇4u −∇ · (|∇u|2∇u) + βu, β > 0 (50)

has a Lyapunov functional with free energy density

LP =
1
4
|∇u|4 +

1
2
|∇2u|2 − μ2

2
|∇u|2 +

β

2
u2.
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Figure 3: The R0(horizontal)-R2(vertical) plane. (45)/(48) defines the solid line/shaded
region. Their intersection forms the segment of possible stable localized states. From left
to right, d varies from 1 to 5, whereas d ≥ 6 is qualitatively the same as d = 5.

The free energies for both (49) and (50) consist of I0, I2 and I4 > 0. Hence we may introduce
Ri = Ii/I4 (i = 0, 2), and rewrite (45) and (48) as

(4−d)+ (2−d)R2 +(−d)R0 = 0, (4−d)(3−d)+ (2−d)(1−d)R2 +(−d)(−1−d)R0 ≥ 0.

The segment that they define on the R0-R2 plane depends on d (Fig. 3). In addition

ISH
2 = k2

0

∫

(

u∇2u
)

dx = −k2
0

∫

|∇u|2dx < 0, IP
2 = −μ2

2

∫

|∇u|2dx < 0.

As for I0, we have

ISH
0 ≥ C

∫

u2dx, IP
0 =

β

2

∫

u2dx > 0,

where C > 0 for some choices of parameters. These inequalities imply that both (49) and
(50) can possibly have stable localized solutions for any d. One can make a better estimate
for R0 from the Cauchy-Schwarz inequality

|
∫

(

u∇2u
)

dx| ≤
(
∫

u2dx
)1/2(∫

|∇2u|2dx
)1/2

.

This further shortens the segment on the R0-R2 plane, but does not change the conclusion.
It is necessary that the PDE takes the precise form ut = −δF/δu. As an example to

the contrary, the Cahn-Hilliard equation [3]

∂tu = Δ(u3 − u − γΔu), γ > 0 (51)

has a Lyapunov functional with free energy density

LCH =
1
4
(u2 − 1)2 +

γ

2
|∇u|2,

such that ut = Δ(δF/δu) where F =
∫ LCHdx. Stable localized solutions to (51) must

satisfy δF/δu = 0, but are not necessarily local minima of F [u]. For example, a spherical
bubble of u = −1 with any finite radius, embedded in a u = 1 background, is stable. We
could decrease F by shrinking the bubble radially, but this is forbidden since it violates

d

dt

∫

udx = 0,
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a conservation law that follows from (51) rewritten as

∂tu = ∇ · j with j = ∇(u3 − u − γΔu).

We refer the reader to [8] for such reasoning applied to nonlinear wave equations.

4.3 Least Action Principle

Consider a finite spatial domain D. The change in free energy under perturbation δu is

δF = F [u + δu] −F [u] =
∫

∂D
(Lr∇δu + δu(Lp −∇Lr)) · n̂dA −

∫

D
Hδudx, (52)

where H = −Lq + ∂iLpi −ΔLr, ∂D is the boundary of D, n̂ is the unit outward normal to
∂D and dA is the surface element on ∂D. If (52) is to vanish for arbitrary δu, H = 0 must
be satisfied on D, and in addition the following boundary conditions must be fulfilled

Lr = 0, (Lp −∇Lr) · n̂ = 0 on ∂D.

4.3.1 Applications

For the Swift-Hohenberg equation, the boundary conditions are (here Lr = (∇2 + k2
0)u)

Lr = 0, ∇Lr · n̂ = 0 on ∂D.

These conditions require that at the boundary, both u and ∇u · n̂ must have planform
wavelengths k0. However, if the convection rolls merge perpendicularly with the boundary,
then ∇u · n̂ = 0 and only the constraint on u remains. This is a plausible reason why such
behavior is most often observed in convection experiments near the onset of instability.

For a more quantitative approach to the roll merging problem, we refer the reader to [26].

4.4 A Conservation Law

According to [14], for any L not explicitly dependent on x, we have the conservation law

∂x1L −∇ · (ux1Lp + Lr∇ux1 − ux1∇Lr) = 0 for all x ∈ R
d, (53)

where ∂x1 can be replaced by any other directional derivative. To interpret (53) physically,
we make a perturbation δu proportional to ux1 . In view of (52), the second term of (53) is
the local contribution to the bilinear concomitant, or equivalently the free energy flux. On
the other hand, the perturbation essentially translates u in the −x1 direction, so the free
energy flux can also be expressed as the first term of (53). Thus, (53) is a consequence of
the special choice of perturbation by a translational mode.

4.4.1 Applications

For d = 2 in the Swift-Hohenberg equation, (53) is directly responsible for selecting the
wavelength of hexagonal pattern that connects through a front to the trivial state [14]. For
the PDE studied in [9], however, (53) simply reduces to the original PDE.
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5 Normal Forms of Pattern Equations

In bifurcation theory for ODE, (24) and (25) in §3.2 represent two steps of reduction [22]. In
the first step (center manifold reduction), the power series corresponding to (25) is uniquely
determined but in terms of the original center manifold coordinate (denoted by α). This
results in an evolution equation for α

dα

dt
= Mα + Γ(α), (54)

where Γ(α) is purely nonlinear in α. The matrix M depends only on the control parameters,
with its eigenvalues having real parts all equal to 0 at criticality. In the second step (normal
form theory), we choose a near-identity coordinate change corresponding to (24)

α = A + Ψ(A),

where A is the new center manifold coordinate, and Ψ(A) is purely nonlinear in A. The
purpose is to simplify the nonlinear term Γ(α) in (54) as much as possible. In the end we
obtain an evolution equation for A

dA
dt

= MA + g(A), (55)

where g(A) represents the simplified nonlinear terms. It can be shown that (55), the (not
necessarily unique) normal form, depends only on M (cf. [6]), and is therefore universal for
all bifurcations with the same linear part.

In §3.2, the PDE model actually undergoes a pitchfork bifurcation at finite wavenumber.
It is known that normal form theory cannot simplify the nonlinear terms for steady state
bifurcations, which is why we can identify the new center manifold coordinate F with
the original coordinate f . In this section, however, we derive the normal form of pattern
equation for Hopf bifurcation, the simplest situation where normal form theory is necessary.

5.1 Hopf Bifurcation

Consider a physical system with an active control parameter λ, like the Rayleigh-Bénard
convection, but whose critical modes are a pair of complex conjugate normal modes (φk, φ∗

k)
with growth rates (μk + iωk, μk − iωk), where k is the horizontal wave vector. This pair of
critical modes loses stability, that is, μk crosses through 0, at a critical wavenumber |k| = kc

as λ crosses through a critical value λc. We assume that all the other normal modes remain
linearly stable when λ is near λc.

We expect that the dynamics is captured by the amplitudes of the pair of critical modes
(φk, φ∗

k), which are denoted by (αk, α∗
k). Hence we may utilize the Bogoliubov method to

derive the following amplitude equation for λ near λc and |k| near kc

∂tαk = (μk + iωk)αk + Γk[αp, α∗
q], (56)

where Γk is a purely nonlinear functional power series of αp and α∗
q, which possibly contains

nonlocal interactions. The amplitude α∗
k satisfies the complex conjugate of (56). In normal

form theory, we try to simplify (56) by the near-identity coordinate change

αk = Ak + Ψk[Ap, A∗
q],
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so that Ak satisfies
∂tAk = (μk + iωk)Ak + gk[Ap, A∗

q].

The equation for Ψk is found by substitution into (56) to be

LkΨk = Tk − gk (57)

where the linear operator is

LkΨk =
∫

δΨk

δAp
(μp + iωp)Apdp +

∫

δΨk

δA∗
q

(μq − iωq)A∗
qdq − (μk + iωk)Ψk

and the nonlinear term has been abbreviated by

Tk = Γk[Ap + Ψp, A∗
q + Ψ∗

q] −
∫

δΨk

δAp
gpdp −

∫

δΨk

δA∗
q

g∗qdq. (58)

The functional power series above are formed by monomials conveniently denoted as

|DK〉Q =

(

D−K
∏

i=1

∫

dpi

)

⎛

⎝

K
∏

j=1

∫

dqj

⎞

⎠QDK(p1, · · · ,pD−K ,q1, · · · ,qK)

× δ(
D−K
∑

i=1

pi +
K
∑

j=1

qj − k)
D−K
∏

i=1

Api

K
∏

j=1

A∗
qj

, (59)

where Q = Ψ, g or T . When the kernel QDK is constant (denoted by Q̄DK), the monomial
|DK〉Q reduces to the local expression Q̄DK(AD−K(A∗)K)k. It may seem that in (59) we
need to deal with two fields Ak and A∗

k, but the relation A∗
k = A−k suggests that A∗ can

be transformed to A by reversal of wave vector. Therefore, we may choose to represent
|DK〉Q by a diagram with D−K lines with right arrows and K lines with left arrows, both
connected to a vertex labelled Q. We can use these two notations interchangeably, e.g.

|31〉Γ ⇔ Γ .

Regardless of the kernel QDK , any monomial is an eigenvector of Lk

Lk|DK〉Q = ΛDK |DK〉Q
if we take Ak to have infinitesimal support around |k| = kc. The eigenvalue is

ΛDK = iωkc(D − 2K − 1) + μkc(D − 1). (60)

Then (57) becomes
ΛDK |DK〉Ψ = |DK〉T − |DK〉g (61)

for D ≥ 2. From (58) we know |2K〉T , so we can solve (61) when D = 2, once we choose
|2K〉g. Thereafter, at each new D, |DK〉T is known if we solve sequentially.

As long as ΛDK �= 0, we can always choose gDK = 0. However, (60) suggests that when
μkc = 0 (i.e. λ = λc), ΛDK vanishes when K = (D − 1)/2, or equivalently Λ2L+1,L = 0 for
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L = 1, 2, · · · . To avoid the small denominator Λ2L+1,L near λc, we require that g2L+1,L =
T2L+1,L. All the other gDK may be set equal to 0. Therefore the normal form is

∂tAk = (μk + iωk)Ak + |31〉T + |52〉T + · · · . (62)

The diagrammatic notation is not needed to get (62), but it can be useful for calculating
the normal form “coefficients” T31, T52, etc. As an example, to expand the convolution
∫

(δΨk/δAp)gpdp in (58), we first cross out any of the D − K instances of A that occur in
|DK〉Ψ, which results in D − K diagrams with an empty slot each. Then we fill each slot
with the functional power series gp, and sum up these D − K diagrams in the end.

Overall, the above normal form theory for Hopf bifurcation in nonlocal pattern equation
parallels the ODE case (cf. [22] §4). We will not study the properties of (62), but mention
that when T31 is constant and kc = 0, (62) truncated to third order is the complex Ginzburg-
Landau equation (CGLE), whose solutions have been extensively documented [1]. The
CGLE, or more generally (62), is invariant under the phase-shift A → Aeiφ where φ is a
constant. Interestingly, in terms of diagrams, we may assign A (A∗) spin 1/2 (−1/2), and
state this invariance as the conservation of total spin among all diagrams.

6 Conclusion

In this report, we derived a nonlocal pattern equation for Rayleigh-Bénard convection with
fixed temperature boundaries, found a Lyapunov functional for this equation, and then
formulated a few properties of steady state solutions of variational PDE. The diagrammatic
technique proved instrumental in the derivation of convective pattern equations.

There exist unresolved issues and open questions. First, for Rayleigh-Bénard convection,
it remains to find a suitable way of removing the singularities that come from resonances
among fast and slow modes (cf. §3.2). Second, we need to interpret the generalized virial
theorem physically, and work out more applications. It is also interesting to study how
these properties of variational PDE generalize to nonlocal pattern equations. Finally, we
plan to extend [22] §5 on multiple instabilities to nonlocal pattern equation. However, for
higher codimension bifurcations, even if center manifold reduction works as before, it is not
clear how normal form theory can be formulated. In this case, the linear term does not
uniquely determine the nonlinear terms that cannot be discarded in the normal form.
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1 Introduction

Large scale ocean circulation is one of the main components of the climate system. The
enormous heat capacity of the oceans makes general oceanic circulation a great means of
transport of considerable amount tracers such as heat across the globe. Thus, a growing
number of research activities have been focused on understanding the oceans as a part of the
climate system. The main goal is to develop tools that will enable scientists to understand
the past history of the climate system and more importantly, to make predictions about the
future. The complexities of the components of the climate system such as the oceans and
the atmosphere demand numerical models to simulate their behaviors in conditions close
to reality. In particular, ocean general circulation models (GCM) have been developed
with the aim of simulating the general circulation and more local characteristics of the
ocean. The current ocean models used for climate studies cannot resolve the fine scale
turbulence and eddy characteristics due to computational cost limitations. Thus, resorting
to parameterizations for fine scale behaviors is inevitable. One of the key parameters used
in the GCMs to capture the turbulent characteristics is the eddy diffusivity, K, which
relates the flux of tracers to their mean gradients. This parametrizaion however requires
proper knowledge of the magnitude and variations of K as a function of latitude-longitude
and depth as well as its temporal variations. Great effort has been devoted to enhancing
our knowledge of the diffusivity over the past years. As one particular case, estimating the
tracer transport across a permanent jet is of great importance. The transport of heat across
the Antarctic Circumpolar Current (ACC) for example is of great importance specially in
the context of global warming and melting of the land ice sheets located in the Antarctica.
Ferrari and Nikurashin (2009) [1] (hereafter referred to as FN09) studied the variations
in the eddy diffusivity across the jets in the southern ocean. They compared different
methods of measurement of the the diffusivity and investigated the effect of the eddy-mean
flow interaction on the diffusivity across the jet. Several studies (such as those listed in
FN09) have used the mixing length theory to relate the diffusivity to the r.m.s velocity
of the eddies and the mixing length l. The mixing length was often set proportional to
the observed eddy sizes. This method led to a peak in the values of K in the core of the
ACC due to larger eddy velocities. A different approach taken by Marshal et al.(2006) [3]
provided estimates of the diffusivity by feeding flow simulations by velocities obtained from
observation and studying the diffusion of an artificially (numerically) injected passive tracer
field into the domain. They suggested that the diffusivity is rather suppressed in the core of
the ACC and enhanced in its flanks as opposed to the first group of studies. FN09 explained
this discrepancy by pointing out that the mixing length used in the first class of studies is
not necessarily of the same order of the eddy sizes. Using a dynamic model, FN09 showed
that the mixing length is modulated by the mean flow and the relative velocity between
the main flow and the speed of travelling of the eddies reduces the diffusivity. Thus, the
large values of K found by the earlier studies was mainly due to not taking the reduction
of the mixing length into account. It should also be mentioned that Marshal et al.(2006)
speculated that the large values of K in the flank of the ACC can be due to the presence
of critical layers.

Since our motivation for the present work is based on the model proposed by FN09,
a brief introduction to their model is necessary before the motivation of our work can be
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explained. Starting from a uniform zonal flow of constant velocity U0, FN09 applied the
surface Quasi-Geostrophic (QG) formulation to describe the dynamics and used it to derive
an expression for the eddy diffusivity. The governing equations they started from are

bt + J(ψ − U0y, b− Γy) = 0, (1)

∂2
xψ + ∂2

yψ +
f2

N2
∂2

zψ = 0, (2)

where ψ is the perturbation (from the mean) geostrophic stream function, b is the per-
turbation surface buoyancy, J is the Jacobian operator, Γ is the constant lateral gradient
of the background buoyancy ∂yB = −Γ, and f and N are the inertial and stratification
frequencies respectively. They expanded (1) to get

∂tb+ U0∂xb− Γψx = fN
√
γr(t)ei(kx+ly) − γb, (3)

where the nonlinear term J(ψ, b) in (1) is expressed in the form of a fluctuation-dissipation
stochastic model which is a crude representation of excitation of waves by baroclinic in-
stability at the most unstable wave number (k, l). The model is in terms of a stochastic
variable r(t) and a linear damping rate γ. The variable r(t) is a white-noise function with
the property < r(t)r(t′)∗ >= δ(t − t′) where ‘< >’ denotes the “expected value”. The
stochastic forcing “mimics the nonlinear damping of each wave through interaction with
other waves”[1]. The constant f sets the forcing amplitude. The forcing is kept monochro-
matic to keep the problem linear. FN09 showed that this model generates a velocity field
with a correlation function decaying exponentially at the rate γ. The solution of the stream
function was obtained from (1,2) in the form of

ψ =
f

κ

√
γ

∫ ∞

0
r(t− τ)ei(kx+ly−kcwτ)−γτ+ Nκ

f
zdτ, (4)

where κ2 = k2 + l2, κ−1
d = NH

f
is the deformation radius, and cw = (1− κd

κ
)U0 is the phase

speed of the surface waves embedded in the current U . Next they considered a tracer S
with a constant gradient Γs = dS

dy
embedded in the eddy field (4) given by

St + J(ψ − U0y, S) = −Γs∂xψ. (5)

After solving for S from the above equation, and obtaining the jet cross-stream velocity v
from the stream function in (4), they calculated the tracer flux across the jet to be

< vS >= −[
1

2
f2 k

2

κ2

γ

γ2 + k2(cw − U0)2
e2

Nκ
f

z]Γs. (6)

The eddy diffusivity K⊥ can be obtained by dividing (6) by Γs. The simple expression (6)
has an important physical interpretation. It shows that for an eddy phase speed equal to
the jet mean velocity U0, the eddy diffusivity has a maximum value and indeed yields a
value similar to those obtained by the group of studies which used the mixing length to
relate the observations to the diffusivity. However, as the relative velocity of the eddies to
the main current increases, the denominator of (6) becomes larger leading to a suppression
in the diffusivity. In practice, this relative velocity is large (about 13 cm/s for the ACC)
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and comparable to the main jet speed U0 (which is about 15 cm/s in the core of the ACC).
Thus, the suppression effect is pronounced in the core of the ACC as shown by Marshal
et al.(2006) [3]. Neglecting the (cw −U)2 in the denominator of (6) leads to overestimation
of the mixing length and thus, over prediction of the diffusivity. It should also be noted that
the suppression is strong if the decorrelation timescale of the eddy is much slower than the
advection of the tracer out of the eddy due to the relative velocity (i.e. if k2(cw−U)2 ≫ γ2).

The FN09 expression for tracer flux mentioned above is for an ideal environment of
infinite extent and with a constant velocity and constant stochastic forcing over the whole
domain. Left panel of figure 1 shows the zonally averaged eddy kinetic energy and mean
jet velocity curves for a patch of the southern ocean between 125oW -150oW and 66oS-30oS.
The right panel of the figure shows a snapshot of the observed sea surface height anomalies
for the same patch. As the figures show, there is considerable variations in both the forcing
(eddy field) and the jet velocity from the main core of the ACC to its flanks. Thus, one
can curiously wonder what happens if continuous or piece-wise continuous variations in the
forcing and jet velocity are considered in the context of the model developed by FN09.
To be more clear, the question is whether (and how) the expression (6) would change if
for example we considered two semi-infinite velocity zones of adjacent flows with different
forcing or different velocities? The main motivation of this study is to take the model
explained above few steps further by allowing for these variations and investigating their
effects on the tracer fluxes. In what follows in the remainder of this article, we start from
a simple case of two semi-infinite adjacent zones and allow for variations in the forcing and
the velocities between the two zones. The approach is to start from the simplest case and
add complexity to the problem step by step to gain insight into the basic physics of the
problem.

2 Barotropic Quasi-Geostrophic Formulation

As mentioned by FN09, their final results on eddy mixing are independent of their partic-
ular choice of the surface Quasi Geostrophic (QG) model. We opt to use two-dimensional
barotropic QG formulations in this work and will recover the FN09 results for the surface
of the ocean (z = 0). Modifying the formulation and results of this work to the surface QG
formulation is an easy and straight forward task and only adds an exponential z-dependence
to the stream functions and the fluxes obtained. Starting from 2D barotropic QG equations
we have

qt + J(ψ, q) = 0, (7)

∇2ψ − κ2
Dψ = q − βy, (8)

where q is the potential vorticity, κ−1
D =

√
gH0/f0 is the deformation radius, and ψ is the

velocity stream function. In the QG formulation, ψ = gη
f0

where η is the surface elevation (or
depression) from the reference surface level (located at H0 above the flat bottom boundary).
Since η is easily related to the pressure, the stream function can be interpreted as the surface
pressure or the surface height and thus, can be estimated from altimetry data. In the two
above formulae and all that follows beyond this point, a subscript denotes a differentiation.
Next we make the assumption that the potential vorticity, q, is a function of the meridional
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(a) (b)

Figure 1: (a)Zonally averaged mean kinetic energy (black) and eddy kinetic energy (EKE)
(gray) at the surface for a patch in the Pacific sector of the Southern Ocean between 125W-
150W and 66S-30S; (b) Snapshot of sea surface height anomaly for the same patch: (black)
positive anomaly, (gray) negative anomaly. (Taken from Ferrari and Nikurashin 2009 by
permission).

coordinate y alone and so q = Q(y). This assumption along with (8) mean that ψ is also
only a function of y and so u = −ψy = U(y) and v = ψx = 0. The equation (8) takes the
simpler form

d2ψ

dy2
− κ2

Dψ = Q(y) − βy. (9)

Next we perturb equations (7,8) around a mean flow u = U(y) by introducing

q = Q+ ǫq′,

ψ = Ψ + ǫψ′,

u = U + ǫu′,

v = ǫv′. (10)

Substituting (10) into (7,8) we get

qt +
1

ǫ
Qt + J(Ψ, q′) + J(ψ′, Q) +

1

ǫ
J(Ψ, Q) + ǫJ(ψ′, q′) = 0, (11)

(∇2 − κ2
D)ψ′ = q′. (12)

The second and the fifth term in (11) form the background field and sum up to zero. The
J(Ψ, q′) term simplifies to U(y)a′x and the J(ψ′, Q) simplifies to Q(y)ψ′

x leading to

(∂t + U∂x)q′ +Qyψ
′
x = F (13)
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where F is the nonlinear term coming from J(ψ′, q′). Dropping the primes we reach the
linearized QG equations for the perturbation quantities q and ψ:

(∇2 − κ2
D)ψ = q, (14)

(∂t + U(y)∂x)q +Qyψx = F . (15)

The Qy term can be obtained by taking the y-derivative of (9)

Qy = β + κ2
DU(y) − U(y)yy. (16)

The set of equations (14,15) will be the starting point of our analysis in the consequent
sections. As we will see, the background velocity U(y) is considered to be constant (or
piecewise constant) throughout this article and thus the third term in (16) drops out and
the second term simplifies to a constant value.

3 Basic Case: Non-stochastic forcing

Figure 2: Schematic view of the basic case flow configuration.

As the first basic case, we consider two semi-infinite adjacent zones with velocities U1

and U2. Figure 2 shows the schematic of the problem. The top zone (zone 2) is an unforced
region while the bottom zone is forced with a monochromatic forcing in the form of:

F = feik(x−ct), (17)

where f is the forcing amplitude, k is its x-direction wavenumber and c is the correspond-
ing phase speed. The forcing is chosen to be monochromatic to keep the problem linear.
Although a y-dependence can also be included in the expression for forcing, it does not add
new physics into the problem and ( 17) can be used without loss of generality. The forcing
is demonstrated by the red vertical lines in the figure. The linearized form of the governing
equations in the top layer takes the form

(∇2 − κd)ψ = q2 (18)

(∂t + U∂x)q2 + βψ2,x + γq2 = 0, (19)
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and in the bottom layer we have

(∇2 − κd)ψ = q1 (20)

(∂t + U∂x)q1 + βψ1,x + γq1 = F . (21)

It is easy to see that the solution of ( 19) and the homogeneous solution of( 21) have the
general form:

ψ = aeily + be−ily, (22)

where a and b are constants and l is

l =

√

Γ

U − c
− (k2 + κ2

D), (23)

where κ−1
D =

√
gH0/f0 is the deformation radius for the barotropic case and Γ = β + κ2

DU
is a constant. We consider homogeneous solutions that radiate out from the interface and
pick the proper term of ( 22) for each zone. Next, we set to calculate the particular solution
of ( 21). To do that, we notice that the following expressions for ψ and q satisfy ( 21):

ψ = −A
f

k2 + κ2
D

eik(x−ct), (24)

q = Af eik(x−ct). (25)

Replacing these into ( 21), the coefficient A becomes

A =
1

γ + ik(U1 − c− Γ
k2+κ2

D

)
. (26)

It should be noted that A is an imaginary number and would be pure imaginary in the
absence of the damping coefficient, γ. So, the total solution in the two zones become

ψ1 = [a1e
−il1y −A

f

k2 + κ2
D

]eik(x−ct), (27)

ψ2 = a2e
il2yeik(x−ct). (28)

Coefficients a1 and a2 can be found by matching the interfaces using two jump conditions
which are originally due to Rayleigh (1880) [4]. The first jump condition ensure that the
stream function (which can be interpreted as surface height in the QG formulation) is
continuous across the interface. The second jump condition is that the displacement of the
interface between the two regions of the flow be the same on both sides of the interface to
ensure no cavitation occurs. A general derivation of these two conditions will be presented
in the next section. For this case however, these conditions simply take the form

∆(
ψ

U − c
) = 0, (29)

∆(ψy(U − c)) = 0, (30)
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were ∆ stands for jump across the interface and both conditions are enforced at y = 0.
Applying these conditions to the two stream functions we get

a1 =
ABl2

R2l1 + l2
, (31)

a2 = −
ABRl1
R2l1 + l2

, (32)

where R = U1−c
U2−c

and B = f
k2+κ2 . Next we set to calculate the cross-jets diffusivities in the

two zones. Following FN09, we introduce the equation for the transport of a passive scalar
in the fields described by stream functions ( 27, 28):

St = −J(ψi − Uiy, S − Γsy), (33)

where Γs is a constant background tracer gradient equal to dB

dy
and i = 1, 2 corresponds to

the two zones. Rearranging we get

St + J(ψ, S) + UiSx = −Γs(ψx)i = −Γsvi. (34)

We will shortly see that the second term in ( 34) is zero and the scalar equation reduces to

St + UiSx = −Γsvi. (35)

Solving (35) for the two zones using (27,28), the solutions of the scalar fields becomes:

S1 =
−Γs

U1 − c
(a1e

−il1y −AB)eik(x−ct), (36)

S2 =
−Γs

U2 − c
(a2e

−il2y −AB)eik(x−ct). (37)

One can substitute ( 36, 37) back into the J(ψ, S) in ( 34) to confirm that the Jacobian
vanishes. With the solutions of the scalar field obtained in both zones, we can calculate the
diffusivity

K⊥ =
1

Γs

ℜ< Sv >. (38)

According to ( 36) for the first zone we have

S1 =
Γs

ik(U1 − c)
, (39)

and thus the cross-jet flux becomes

ℜ< Sv > =
k(U1 − c)

Γs

ℜ< iS1S1 > = 0. (40)

This simply means that for a velocity field of the general form v = cos(α) + i sin(α), the
solution to the scalar equation takes the form S = c − sin(α) + i cos(α) and so the flux
ℜ< Sv > takes the form < sin(α) cos(α) > which is identically zero. Repeating the analysis
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for the second zone yields the same result. This outcome simply indicates that a linear
monochromatic forcing (which yields to north and south monochromatic radiations) cannot
mix the fluid. To introduce diffusion (i.e., a nonzero flux) one has to either take into
effect the nonlinear wave dynamics and wave interactions or introduce a forcing (and the
consequent radiations) that decorelate from itself in a finite time. The second approach was
that taken by FN09. In the next section we introduce a random forcing to investigate its
effects. But before that, an interesting point can be observed by a closer look at equations
( 36, 37, 40). If the velocity of the main flow in one of the zones (lets say U1) is equal
to the zonal phase speed of the wave propagation, then the conclusion obtained above is
not strictly valid. To better understand this fact, one can assume a single one-dimensional
wave propagating eastward in the absence of any mean flow. The streamlines of the flow
inside the fluid induced by the wave propagation form closed circulating regions and particle
paths form closed elliptic curves. So, a particle (or a tracer filament) departing from some
arbitrary initial location will return to its initial location due to the linear wave propagation.
An introduction of any nonlinear effect (such as the Stoke’s drift) will lead to the particle
not returning to its initial position and thus mixing. This is also true for the case were a
uniform background velocity U is superposed as one can go to the reference frame moving
with U and observe the wave with the relative phase speed U−c. However, if the wave phase
speed and the background flow velocities are the same (i.e., U − c = 0), then an observer
sitting on the reference frame which moves with U will observe a frozen wave pattern with
fixed recirculating regions (a critical layer). Particles or tracer filaments left in these regions
will mix with the ambient fluid at a high rate and considerable mixing will occur. That is
why the value of the flux in equation ( 40) can not be clearly estimated in this limit as the
denominator tends to zero. This behavior will be further examined in the next section.

4 Case I: Semi-infinite white-noise forcing

As the first case with random forcing, we consider two semi-infinite adjacent zones with
similar velocities U . Figure 3 shows the schematic of the problem. The top zone (zone 2)
is an unforced region while the bottom zone is forced similar to the previous section but
with a stochastic forcing in the form of:

F = fκ
√
γ r(t)eikx − γq, (41)

where f is the forcing amplitude, and r(t) is a stochastic stationary variable satisfying
< r(t)r∗(t′) >= δ(t − t′). The forcing is chosen to be monochromatic to keep the problem
linear and is a crude representation of the wave excitation by the baroclinic instability and
thus, k can be interpreted as the wave number of the most unstable mode of the instability.

The linearized form of the governing equations in the top layer takes the form

(∇2 − κd)ψ = q2 (42)

(∂t + U∂x)q2 + βψ2,x + γq2 = 0, (43)

and in the bottom layer we have

(∇2 − κd)ψ = q1 (44)

(∂t + U∂x)q1 + βψ1,x + γq1 = F . (45)
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Figure 3: Schematic view of the case I flow configuration.

From previous section we know that the homogeneous solutions of equations ( 43, 45) can
be written in the form of

ψh = eikx

∫

A(ω) eil(ω)y eiωtdω, (46)

Substitution of ( 46) in ( 43) and in the homogeneous part of ( 45) leads to the dispersion
relation

ω = Uk + iγ −
βk

l2 + k2 + κ2
d

. (47)

Using 47 one can calculate the vertical wavenumber l for any particular frequency ω.
However, the choice of l in zone 2 should be made in the way that all wave components
travel away from the interface (and thus ℜ(l2) > 0) and all components decay as y → ∞
(and thus ℑ(l2) > 0). A single component of such form is shown in zone 2 in figure 3
as the representative of the homogeneous solution in that zone. The components of the
homogeneous solution in zone 1 should also travel downward and decay as y → −∞. This
translates to l1(ω) = −l2(ω). A single component of such form is also shown in zone 1 in
the figure in black. We next set to derive the particular solution of the forced equation
( 45). To do that, we note that

qp1 = −a(t)κfeikx, ψp1 = a(t)
f

κ
eikx (48)

satisfy the equations ( 44, 45). Substitution of ( 48) into ( 45) gives

at + [γ + ik(U −
β

κ2
)]a =

√
γr(t), (49)

which can be solved to give

a(t) =
√
γ

∫ ∞

0
e−(γ+ikcw)τ r(t− τ)dτ , (50)
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where cw = U − β
κ2 is the phase speed of the eddies embedded in the current U . Thus the

particular solution in zone 1 takes the form

ψp1 =
f

κ

√
γ eikx

∫ ∞

0
e−(γ+ikcw)τ r(t− τ)dτ , (51)

and the total solutions in the two zones become

ψ2 = ψh2 = eikx

∫

A2(ω) eil(ω)y eiωtdω, (52)

ψ1 = ψh1 + ψp1 = eikx

∫

A1(ω) e−il(ω)y eiωtdω +
f

κ

√
γ eikx

∫ ∞

0
e−(γ+ikcw)τ r(t− τ)dτ . (53)

The stream functions ( 52 and 53) have to satisfy the jump conditions across the
interface. The fist jump condition can be obtained by integrating the stream functions
across the interface:

∫ 0

−ǫ

ψ1 dy =

∫ +ǫ

0
ψ2 dy. (54)

Calculating the limit of ( 54) as ǫ→ 0 gives the fist jump condition at the interface

A1(ω) = −A2(ω). (55)

The second jump condition can be obtained by requiring the solution for the interface
perturbation η (shown schematically in figure 11) obtained in the two zones to be equal to
each other. Using ( 101) from appendix A and evaluating the jump condition at y = 0 we
get

Â1 =
1

2
ψ̂p1, (56)

where ‘ˆ’ denotes the Fourier transform. Using ( 55, 56) and taking the Fourier transform
of ψp1 in ( 51) we get

Â1 =
f

2κ

√
γ eikx

γ + i(ω − kcw)
r̂(ω), (57)

Â2 = −
f

2κ

√
γ eikx

γ + i(ω − kcw)
r̂(ω). (58)

Next we set to calculate the < vS > flux for the unforced region (zone 2). As before, the
flux equation is

(∂t + ikU)S = −ikΓψ (59)

multiplying both sides by eikUt and rearranging we get

S̃t = −ikΓeikUtψ = H(t), (60)
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where S̃ = eiKUtS. As before, the flux can be written in the form

< Sv >=
1

2
< S∗v + Sv∗ > . (61)

We can write

< S∗v >=< S∗(−ikψ) >=< e−iUktS∗(−ikψ)eiUkt >=< S̃∗H(t)

Γ
> (62)

and according to (60) we get

< S∗v >=
< S̃∗H(t) >

Γ
=

1

2Γ

d

dt
< S̃∗

t > . (63)

It is shown in the appendix B that for any two functions V (t) and S(t) if we have
V (t) = bA(t) ∗ r(t) and St = V (t) (where b is a constant), then < SV >= 1

2
d
dt
< S2 >=

1
2 |bb

∗||Â(0)Â∗(0)|.
Thus if we can show that H(t) can be written in the form of H(t) = bA(t) ∗ r(t) then

from (63) and (60) we get

< S∗v >=
1

2Γ
|Ĥ(0)|2 =

1

2Γ
|Ĥ(0)||Ĥ∗(0)|. (64)

Its easy to show that < Sv∗ > has also the same value as < S∗v > and so < Sv >=< S∗v >
according to (61). In order to calculate the flux we have to calculate Ĥ(0) and also show
that H(t) has the bA(t) ∗ r(t) form. From (60) we have

Ĥ(ω) = −ikΓψ̂(ω − Uk). (65)

Taking the Fourier transform of (52,53) and using (56,57,58) we get

ψ̂1 = [Â1(e
−il(ω)y + 2)]eikx =

f

2κ

√
γ eikx

γ + i(ω − kcw)
r̂(ω)(e−il(ω)y + 2)eikx, (66)

ψ̂2 = Â2e
il(ω)yeikx =

f

2κ

√
γ eikx

γ + i(ω − kcw)
r̂(ω)eil(ω)yeikx, (67)

and so both ψ1 and ψ2 (and thus H) have the desired bA(t) ∗ r(t) (or bÂr̂) form. It should
be noted that in calculating the Fourier transform of ψp, we have assumed a non-zero value
for the damping rate γ. Thus, in interpreting the results that follow, γ = 0 is not permitted
event hough some equations might suggest it has a meaning. So, according to appendix B
and (64), the diffusivity in the forced zone becomes

K1 =
1

2
|Â1Â

∗
1||1 −

e−il(ω)y

2
|2 =

1

8

f2k2

κ2

γ

γ2 + k2(U − cw)2
(4 + e2ℑ(l)y − 4eℑ(l)y cos(ℑ(l)y)),(68)

and in the unforced zone we get

K2 =
1

8

f2k2

κ2

γ

γ2 + k2(U − cw)2
e−2ℑ(l)y (69)
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Two interesting points immediately emerge by looking at the expression for K2. First, the
magnitude of the diffusivity at the interface is a quarter of that of the diffusivity of the one
infinite zone problem studied by FN09. This could already be known by the second jump
condition ( 56) and noting that K ∝ | ˆA(0)|2. The second point is the y-dependence of the
result in ( 69). As we move away from the interface in the unforced region, the diffusivity
decays exponentially to zero. So the mere introduction of a jump in the forcing leads to
differences in magnitude and behavior of the diffusivity in the unforced region.

Expression ( 68) shows that similar to K2, K1 also takes the value of one quarter of that
of the infinite-domain case at the interface (y = 0) and so the solutions in the two zones
match at the interface as expected. However, as y → −∞, the diffusivity tends to the result
obtained in the infinite-domain case. So in the forced region, there is a transition from the
value of one quarter of the constant infinite-domain flux at the interface to the full value in
the far distances from the interface. This transition however, does not have an exponential
decay pattern such as zone 2 and shows oscillatory behavior as determined by the terms in
the parenthesis on the right hand side of ( 68). To demonstrate these behaviors better, figure
4 shows a series of plots of the wave patterns and diffusivity variations in the neighborhood
of the interface for a set of parameters. The left column shows the wave pattern for the
intrinsic (ω − Uk = 0) wave pattern in the two zones and the right column shows the
corresponding diffusivity curves. The relative magnitude of the ratio of the imaginary part
of the vertical wave number l (which determines the decay rate in both zones) to the real
part of l (which determines the oscillations in the forced zone) changes from 0 in case (a)
to 1 in case (e). The green lines in the right column represent the constant diffusivity
corresponding to the one-zone problem for the same parameters of each case. Starting from
panel (a) where ℑ(l) = 0, we can clearly see pure oscillatory behavior in both zones. The left
panel shows the north-east propagation of waves coming from the homogeneous solution
in the upper zone and superposition of a south-east propagation wave(coming from the
homogeneous solution in zone 1) and a east propagating wave (coming from the particular
solution in zone 1) in the lower zone. These results were expected from the ω−Uk = 0 mode
of the solutions ( 52, 53) in the Fourier space. The right panel shows the corresponding
effective diffusivity. Pure oscillatory motion due to the absence of an imaginary part to l
is clear as the diffusivity oscillates around the infinite-zone value (green line). It should be
noted that as mentioned earlier, the value of the diffusivity at the interface (the point of
meeting of the red and blue curves) is one fourth of that of the green line. This value retains
a constant value in the unforced zone indicating a constant diffusivity. It is important to
note that the ℑ(l) = 0 condition can be achieved only when γ = 0 which means in the
absence of any damping. Since the assumption of γ 6= 0 was used in the derivation of ( 69,
68), case (a) should be treated as a limiting case where γ → 0.

As ℑ(l) grows larger than zero, the decay in the vertical direction leads to exponential
decay of this one-fourth value to zero away from the interface in the upper zone and an
oscillatory decay to the green line value in the forced zone. This can be seen as ℑ(l) grows
to 0.1 in the case (b). The left panel in case (b) also show the decay of the waves to zero as
we move away from the interface in the north zone and the decay of the radiative waves in
the lower zone until only the forcing pattern remains. As the ℑ(l)/ℜ(l) ratio increases in
cases (c-e), the decaying layer in each zone becomes compressed about the interface. For
the final case with ℑ(l)/ℜ(l) = 1, we almost have two regions of constant diffusivity with
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a value of zero in the upper zone and that of the one-zone problem in the lower region.
Although K still has the one-fourth value (of the green line) at the interface, the transition
to the two limiting constant values in the two regions is very fast and limited to the close
vicinity of the interface.

It would now be interesting to see how the real physical case corresponding to the ACC
would compare to the cases of figure 4. To do that, we substitute for parameters in the
obtained expressions for the diffusivity in the two zones by typical values of the southern
ocean. The results for the diffusivity and the corresponding eddy kinetic energy are shown
in figure 5. As the figure shows, the decay rates of the information away from the interface
are very large meaning that ℑ(l)/ℜ(l) > 1 according to figure 4. In fact, ℑ(l)/ℜ(l) ∼ 40
for figure 5,.

To investigate if ℑ(l)/ℜ(l) can be smaller, we set to calculate real and imaginary parts
of l. From the dispersion relation we have:

l2 =
βk

(Uk − w) + iγ
− k2 − κ2

d (70)

for (Uk − w) and k ∼ κd we get

l2 = −
iβk

γ
− 2k2 (71)

it then can be shown that

ℜ(l) = k

√

√

√

√

√

(
β

2kγ
)2 + 1 − 1 (72)

ℑ(l) = k

√

√

√

√

√

(
β

2kγ
)2 + 1 + 1 (73)

and so

ℑ(l)

ℜ(l)
= (

√

( β
2kγ

)2 + 1 + 1
√

( β
2kγ

)2 + 1 − 1
)

1

2 . (74)

The fraction ℑ(l)
ℜ(l) tends to 1 for very large values of β

2kγ
and tends to ∞ for very small values

of β
2kγ

. So, even for the smallest value of this ratio the interface effects are very limited to
the interface neighborhood as shown in case (e) of figure 4. Substituting typical values of
the southern ocean in (74) gives a ratio of 40.
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Figure 4: (a) Wave patterns for the intrinsic zero wave velocity in the two zones (left
column) and the corresponding effective diffusivity (right column) for U = 1, cw = U/7,
k = 1 and ℜ(l) = 1. (a) ℑ(l)/ℜ(l) = 0; (b) ℑ(l)/ℜ(l) = 0.1; (c) ℑ(l)/ℜ(l) = 0.2; (d)
ℑ(l)/ℜ(l) = 0.5; (e) ℑ(l)/ℜ(l) = 1. Green lines in the right column represent the cons tan
diffusivity corresponding to the one-zone problem for the same parameters of each case.
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Figure 5: The diffusivity (left) and the corresponding eddy kinetic energy (right) for a case
with parameters chosen to be in the range of those of the ACC.

5 Case II: Confined white-noise forcing

Figure 6: Schematic view of the case II flow configuration.

For the second case with white-noise forcing, we extend the previous case by confining
the forcing region into a zone with width 2D. The flow configuration is shown in figure 6.
The velocities are uniform and equal in all three zones. The forcing is only applied to the
middle zone (zone 1) and has a form similar to the previous case. The y = 0 point is chosen
to be half way between the two interfaces in zone 1. As before, the stream functions take
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the form

ψ̂1 = (Â1,1e
ily + Â1,2e

−ily) + ψ̂p, (75)

ψ̂2 = Â2e
ily, (76)

ψ̂3 = Â3e
−ily, (77)

where ψp in zone 1 is similar to the previous case. It should be noted that due to symmetry,
both north propagating and south propagating waves are allowed to exist in the middle
zone. Applying the first of the jump conditions to the two interfaces gives

Â1,1e
ilD − Â1,2e

−ilD = Â2e
ilD,

Â1,1e
−ilD − Â1,2e

ilD = −Â3e
ilD. (78)

And applying the second jump condition at the two interfaces gives

Â1,1e
ilD + Â1,2e

−ilD + ψ̂p = Â2e
ilD,

Â1,1e
−ilD + Â1,2e

ilD + ψ̂p = Â3e
ilD. (79)

And so we get

Â2 = Â3 = −
1

2
ψ̂p(e

ilD − e−ilD) (80)

Considering a tracer equation like before and following the procedure explained in the
last case for calculating the flux < Sv > closely, the diffusivities in the three zones become

K1 =
1

8

f2k2

κ2

γ

γ2 + k2(U − cw)2
|2 − eilD(eily + e−ily)|2, (81)

K2 =
1

8

f2k2

κ2

γ

γ2 + k2(U − cw)2
|eily(eilD − e−ilD)|2, (82)

K3 =
1

8

f2k2

κ2

γ

γ2 + k2(U − cw)2
|e−ily(eilD − e−ilD)|2, (83)

To demonstrate the variations in the diffusivity expressions obtained for the three zones,
figure 7 shows a series of plots similar to those of figure 4. The third zone is not plotted in
the figure since it is similar to the second zone but just mirrored with respect to the y = 0
line. The green lines in the right column represent the constant diffusivity corresponding to
the one-zone problem for the same parameters of each panel. The right panel of the figure
shows pure oscillatory motion due to the absence of an imaginary part to l for panel (a).
Similar to the previous case, the values of the diffusivity at the interfaces are one fourth of
that of the green line. This value retains a constant value in the unforced zone indicating
a constant diffusivity. It is important to note that the ℑ(l) = 0 condition can be achieved
only when γ = 0 which is not permitted as explained before.

As ℑ(l) grows larger than zero, the decay in the vertical direction leads to exponential
decay of this one-fourth value to zero away from the interface in the upper zone and an
oscillatory symmetric pattern in the middle zone forced zone. This can be seen as ℑ(l) grows
to 0.1 in the case (b). With further increase in ℑ(l)/ℜl, the decaying layer in each zone
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Figure 7: (a) Wave patterns for the intrinsic zero wave velocity in the two zones (left
column) and the corresponding effective diffusivity (right column) for U = 1, cw = U/7,
k = 1 and ℜ(l) = 1. (a) ℑ(l)/ℜ(l) = 0; (b) ℑ(l)/ℜ(l) = 0.1; (c) ℑ(l)/ℜ(l) = 0.2; (d)
ℑ(l)/ℜ(l) = 0.5; (e) ℑ(l)/ℜ(l) = 1. Green lines in the right column represent the constant
diffusivity corresponding to the one-zone problem for the same parameters of each case.
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becomes more compressed about the interface. If we calculate the diffusivity curves for this
case using values typical to the southern ocean (similar to figure 5 for the previous case),
we find again that the variations in the diffusivities are limited to a very close proximity of
the interfaces. And so, The two interfaces will not even feel the effect of each other as if
they are each located between two semi-infinite zones.

Comparison of the right column of the figure for larger values of ℑ(l)/ℜl (panels (b, c, d))
with figure 7 of FN09 (reproduced in figure 8d in this article) poses some similarities. This
may suggest that confinement of the forcing to a zone of a a limited width (2D in our case)
can affect the general pattern of the diffusivity in the core of the ACC where the mean
velocity is larger than the flanks of the ACC. A close look at figure 2 of FN09 (reproduced
in figure 8c in this article) justifies the choice of a confined forcing for this particular patch
of the pacific in which we are making the comparisons. As the figure shows, the eddy kinetic
energy is dominant in the core of the ACC in the band between 50oS and 60oS.

As both figures 4 and 7 showed, the curve for the diffusivity in the unforced zone
decay to a small value with a rapid rate, whereas the diffusivity curve in the forced region
shows oscillatory behavior. This is mainly due to the absence of the forcing in the top zone.
The forcing in the governing equations gives rise to a particular solution from which the
oscillatory terms in the diffusivity expressions are originated. So a smoother transition in
forcing from the main current to its flanks (zone 1 to zone 2) is needed to capture more
variability in the second zone. Also, a change in the velocity from zone 1 to zone 2 might
have consequences which can imply more variations in the diffusivity in the unforced zone.
The effect of a piece-wise discontinuity in the velocities of the two zones will be briefly
visited in the next section.

Regardless of the above arguments however, we have already found out that within
the ranges of the parameters associated with the southern ocean all the variations in the
diffusivity are compressed to the interface neighborhood. This simply implies that one has
to consider smooth variations in the velocity and forcing fields rather than discontinuities
considered here. In short, all the interesting physics are compressed into the region of
discontinuity by the flow configurations used in our study. However, one can still use the
expressions obtained to obtain realistic estimates of the diffusivity from observational data.
FN09 described the procedure of translating the observational data into the parameters
needed by the expressions we have developed for the diffusivity. Partly (and relatively
crudely) following their steps, we can relate the damping rate γ to the eddy kinetic energy
through

γ = d−1
0

√
κ2EKE, (84)

were d0 is a constant defined in FN09. We also relate the amplitude of the forcing, f , to
the eddy kinetic energy by

EKE =
1

2
f2, (85)

which is not exact for our case but provides a good approximation. We apply these as-
sumptions to the same patch of the pacific ocean as discussed before. The observed EKE
for that patch is shown in figure 8(c). To facilitate the calculation, an analytical form if
(shown in panel a) is fitted to the EKE curve in panel c. There are few other parameters
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Figure 8: (a) An analytical fit to the observational EKE (shown in panel (c)) used in the
present model; (b) Calculated diffusivity corresponding to the EKE of panel (a); (c) Zonally
averaged eddy kinetic energy EKE in gray for a patch in the pacific sector of the Southern
Ocean; (d) Diffusivities calculated by using various methods. (c,d) are from Ferrari and
Nikurashin(2009)

.

needed to be determined for calculating the diffusivity from (81,82). The y-wavenumber,
l, can be obtained from the dispersion relation (47) by setting ω = Uik for each case. The
x-wavenumber k is set to be that of the most unstable mode of the baroclinic instability
and a typical value for the southern ocean is used for the deformation radius. Plugging
these information into (81,82) we obtain the curves for diffusivities in the two regions. The
curves are shown in the panel (b) of figure 8. The green line is defined similar to figures 4
and 7. Comparing the result with those predicted by FN09 (dashed lines in panel (d) of
our figure 8), it seems that our calculation captures the size and pattern reasonably well.
Indeed, all that we have achieved is to map the EKE map of panel (a) into the diffusivity
curve of panel (b) through the parameters γ and f . And hence, there is not much variation
in our diffusivity curve in the unforced zone because of the very small constant value of
EKE considered in that zone. One can wonder how come the EKE curve of panel (c)
leads to the diffusivity curves of panel (d) whereas that is not the case in our calculations
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from (a) to (b). Probably the answer is that some physical phenomena accruing in the
flanks are being missed out of our modeling due to our flow configurations. This will be
further discussed in the discussion section.

6 Case III: Semi-infinite forcing with discontinuous velocity

Figure 9: Schematic view of the case III flow configuration.

As the last case in this study, we also allow for a piecewise discontinuity in the velocity
field (unlike the previous two cases) with white-noise forcing. Although previous cases
have taught us that we should expect the consequences of the velocity discontinuity to be
confined to the close neighborhood of the interface, this case might give some insight into
possible outcomes of a change in the jet velocity. The flow configuration is schematically
shown in figure 9. As previous cases, we start by writing the general form of the stream
functions in the two regions

ψ̂1 = Â1e
il1y + ψ̂p, (86)

ψ̂2 = Â2e
il2y. (87)

It should be noted that the y-wavenumber components l1(ω), l2(ω) are not the same anymore
due to the velocity discontinuity. The jump conditions for this case become

l2(ω + U1k)(k
2 + l21)Â1 = l1(ω + U2k)(k

2 + l22)Â2, (88)

(ω + U2k)(Â1 + ψ̂) = (ω + U1k)Â2. (89)

Solving for Â1 and Â2 we get

Â1(ω) =
l1(ω + U2k)

2(k2 + l22)

l2(ω + U1k)2(k2 + l21) − l1(ω + U2k)2(k2 + l22)
ψ̂p (90)

Â2(ω) =
l2(ω + U1k)(ω + U2k)(k

2 + l21)

l2(ω + U1k)2(k2 + l21) − l1(ω + U2k)2(k2 + l22)
ψ̂p (91)
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In the case of U1 = U2, we have l1 = −l2 and these jump conditions reduce to ( 55, 56)
obtained for Case I. The stream functions become

ψ̂1 = (Ã1e
il1y + 1)ψ̂p, (92)

ψ̂2 = Ã2e
il2yψ̂p, (93)

where Ã1 and Ã2 are the fractions on the right hand sides of ( 90, 91) respectively. Finally,
the expressions for the diffusivity in the two regions take the form

K1 =
1

2

f2k2

κ2

γ

γ2 + k2(U1 − cw)2
|Ã1e

il1y + 1|2(at U1k), (94)

K2 =
1

2

f2k2

κ2

γ

γ2 + k2(U2 − cw)2
|Ã2ke

il2y|2(at U2k), (95)

where the subscripts (at Uik) imply that the expressions should be evaluated at ω = Uik for
each case. Two points can be pointed out by looking at (94,95). First, similar to previous
cases the expression for K2 decays exponentially in zone 2 while the |Ã1e

il1y + 1|2 term
in ( 94) allows for oscillatory behavior in the forced zone. Second point is that one might
argue that only the difference between the two velocities U1 and U2 matters as one can
move with the reference frame attached to one of the zones and hence set its velocity to
zero. However, that is not possible due to the dependence of the diffusivities in the two
zones on the (U1 − cw) and (U2 − cw) terms. So it is the difference of the velocity of the
main flow and the eddy propagation velocity that really matters for mixing in each zone.

Figure 10 shows the diffusivity curves in the two zones for different U2/U1 ratios. The
plots are made for typical values for the southern ocean similar to figure 5. It should be
noted that the figures ( 5, 10) differ from figure 8 in that fixed values for EKE (and
subsequently fixed values of γ and f) are used in obtaining them. The velocity of zone
1 is chosen to be 15 cm/s and cw is taken to be U1/7. The first panel simply recovers
the results of case I as the velocity ratio is unity. However, the value of the diffusivity at
the interface is changed as the velocity ratio is varied. This is shown by the overlapping
of the blue and red curves in panel (b) and the discontinuity between them in panel (c).
So, the unphysical sharp discontinuity in the velocity field leads to an expected unphysical
discontinuity in the diffusivity. It should also be noted that the value of the diffusivity
on each side of the interface does not show a monotonic behavior with the change in the
velocity ratio. This can be clearly seen by comparing the tips of the red and blue lines
at the interface and comparing them for the three cases in the figure. As before, the fast
decay of the information away from the interface emphasizes the necessity of considering
smoother changes in the velocity and forcing fields.

7 Conclusion

The aim of this project was to investigate the effects of variations in the forcing and the
velocity field employed in the FN09 model on the expression for the diffusivity. Several test
cases where considered with piecewise discontinuities in both the forcing and the velocity
fields. It was shown mathematically that among the numerous radiative waves produced
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Figure 10: The diffusivity for three cases with different velocity rations. (a) U2/U1 = 1; (b)
U2/U1 = 0.5; (c) U2/U1 = 0.1. The parameters are chosen in a similar way to figure 5.

through the discontinuity at the interface, only the one with a phase speed equal to the
ambient jet velocity is the one contributing to the mixing process. This finding is of a great
physical importance and also provides a very efficient tool for calculating the diffusivities.
The mathematical derivations would be more rigorous without this finding. The results
of this study suggest that one needs to consider a smoother variation in the velocity field
to obtain more information about the mixing in the flanks of the jet. An estimate for
the meridional variations in the velocity field can be obtained from the observational data
such as those presented in FN09 both for the pacific patch and for the zonally averaged
case. Considering a smoothly varying jet velocity enables investigating the presence of
the critical layers in the flanks of the ACC and their implications for the mixing. As an
instructional example, one can simply apply the expression derived for the eddy diffusivity
in FN09 (equation (6) in this article) to a jet with a zonal velocity which uniformly decreases
with y. By keeping the other parameters constant (for the sake of physical intuition), the
denominator of the expression for the flux becomes smaller as the jet velocity is reduced as
the (U − cw) becomes smaller. At a critical layer where the jet velocity reaches the speed of
propagation of the eddies, the diffusivity obtains a maximum value. Although this argument
is only true as long as the other parameters are kept constant, it shows that one can expect
a rise in the eddy diffusivity in the regions where the jet velocity has reduced to a value close
to cw. The enhancing effect of the critical layers was suggested by Marshal et al.(2006) [3]
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and seems to be in agreement with the results of FN09. The introduction of a continuously
varying jet velocity into the governing equations may pose analytical difficulties but one
might be able to choose a profile which makes the mathematical derivations easier (such as
the work of Talley (1983) [5]).

Another important feature of all the results of our study was the fast decay of the
effects of the interface away from it. By revisiting the procedure we followed in the stability
analysis, we note that the solutions were sought in the form of ei(kx−ct), where c was assumed
real. This assumption was made to exclude the temporally growing modes. However, the
final results indicated a fast spacial decay (and so “trapped” waves). One can wonder if
there might be modes that can grow in time but decay in space? Indeed stability analysis
done with allowance for a complex c (and thus the possibility of growing modes) shows that
those modes can exist. They might grow in time and decay in space (in the y direction) in
a way that they form a wave-packet travelling north (or south) with a group velocity. Or,
they might still be trapped but decay to zero much slower than our results (due to their
temporal growth). Either way, these waves can propagate information much further from
the interface compared to our results. A nice discussion on these groups of waves can be
found in Kamenkovich and Pedlosky (1995) [2].

So, it seems that the first step in extending this study is to revisit the cases considered
in this work by allowing for modes with temporal growth rates which were not included.
This can allow for the information to propagate further from the interface which can have
interesting implications for the mixing in the flanks of the jet. Allowing for continuous
variations in the velocity would also be a natural step towards building a more realistic
model.
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8 Appendix A

The second jump condition can be obtained by setting the solution for the interface pertur-
bation η obtained in the two zones to be equal to each other. The interface perturbation η
is shown schematically in figure 11. The equations for η in the two zones have the form

D η

D t
= ∂tη + U1∂xη = v1 = −∂xψ1 (96)

D η

D t
= ∂tη + U2∂xη = v2 = −∂xψ2 (97)

Taking the Fourier transform of the two equations and expecting η to have the same x-
dependence as the stream functions (i.e., eikx), we get

∂tη̂ + ikU1η̂ = ikψ̂1 (98)

∂tη̂ + ikU2η̂ = ikψ̂1 (99)

Subtracting ( 99) from ( 98) we get

η̂ =
ψ̂1 − ψ̂2

U1 − U2
. (100)

substituting ( 100) into ( 98) gives the jump condition

(∂t + ikU1)(ψ̂1 − ψ̂2) = ikψ̂1(U1 − U2). (101)

Figure 11: Schematic view of the perturbation of the interface between zones 1 and 2.
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9 Appendix B

The goal of this appendix is to to show that if two complex functions S(t) and V (t) satisfy
the relations

St = V (t), (102)

V (t) = A(t) ∗ r(t), (103)

where A(t) is a general function and r(t) satisfies

C(t− t′) =< r(t)r(t′)∗ >= a stationary function, (104)

then the following is true:

< Sv >=
1

2
|Â(0)|2C(0). (105)

C is the covariance function and ‘*’ denotes the convolution of the two functions. The fact
that C(t − t′) is stationary means that it only depends on ∆t = t − t′ and not on t or t′.
To start the proof we have

< Sv >=
1

2

d

dt
< S2 >=

1

2

∫ t

0
< V ∗(t)V (t′) > dt′ =

1

2

∫ ∞

−∞
< V ∗(t)V (t− t′) > dt′. (106)

Its easy to show that the second and term expressions are equal in the above equality. The
integrand in the last expression in (106) can be simplified to

< V ∗(t)V (t− t′) >=< (A ∗ r)∗|t(A ∗ r)|t−t′ >=

<

∫ ∞

−∞

∫ ∞

−∞
A∗(t− t1)r

∗(t1)A(t− t′ − t2)r(t2)dt1dt2 >=

∫ ∞

−∞

∫ ∞

−∞
A∗(t− t1)r

∗(t1)A(t− t′ − t2)C(t1 − t2)dt1dt2, (107)

where C is defined in (104). Replacing the last expression back into (106) and integrating
with respect to t′ we get

< Sv >=
1

2
Â(0)

∫ ∞

−∞

∫ ∞

−∞
A∗(t− t1)C(t1 − t2)dt1dt2.

Next integrating with respect to t2 we get

< Sv >=
1

2
Â(0)Ĉ(0)

∫ ∞

−∞
A∗(t− t1)dt1.

And finally integrating with respect to t1 we get

< Sv >=
1

2
Â(0)Â∗(0)Ĉ(0) =

1

2
|Â(0)|2Ĉ(0). (108)
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This completes the proof. Had we included a constant b in the definition of V (t) at the
beginning (i.e., V (t) = bA(t) ∗ r(t)), the final result (108) would become

< Sv >=
1

2
|bb∗||Â(0)|2Ĉ(0). (109)

For a white noise function r(t) (used throughout this article) we get

C(t− t′) =< r(t)r(t′)∗ >= δ(t− t′),

and so

Ĉ(0) = 1. (110)
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Flow-destabilized seiche modes with a movable dam

Hélène Scolan

August 2009

1 Introduction

Volcanic tremors are seismic signals emanating from fluid channels encased in rock. The
understanding of the mechanism of this phenomenon is of great importance to improve
evaluation of volcanic eruptions. Many possibilities have been advanced to understand the
mechanism responsible for these low-frequency signals.

It has been suggested recently [5] that the seismicity could be the result of flow-
destabilized oscillations whose frequency is set by an adjacent reservoir in the rock. Thus,
the channel in the rock would act like a clarinet reed exciting and interacting with standing
waves in an adjacent reservoir (Fig 1).

Figure 1: Oscillating reed in a clarinet (Backus 1963 [1]) or rock excitating and interacting with
standing waves in the adjacent reservoir [5].

In the musical instrument, the sound is produced thanks to an instability arising from
the coupling between the flow in the reed and the feedback from the resonating cavity. In
the same way, crack or ‘sloshing’ modes (instead of acoustic modes) in a reservoir adjacent
to a channel in the rock could be the relevant mechanism of generation of the low-frequency
seismicity in volcanic tremor.[5]

So far, the theory of destabilized sloshing modes has not been deeply studied. The
purpose of this project is to explore and illustrate the mechanism using a simple analogous
laboratory configuration involving water instead of magma and looking for flow-destabilized
seiche modes (Fig 2).
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Figure 2: Seiches modes in a box: standing waves with T = 2L
n
√
gh

2 Experiment in water : a reservoir and a movable dam

Figure 3 illustrates the experimental setup chosen to investigate the phenomenon. It looks
like a clarinet in that a movable plexiglas plate (the “paddle”) plays the role of the reed in
the instrument and there is an adjacent reservoir. Water flows at constant flow rate into
the reservoir. The plexiglas plate attached to a pivoted rod and masses are first added at
the other extremity in order to counterbalance the weight of the plate. A addtional mass
madded is then put at varying positions x on the rod to make the plate go down.













Figure 3: Experimental setup: the reservoir length is around 20 cm, d=50cm. madded varies from
3 to 100g and the height of water can vary from around 2 cm to 5 cm.

Blue dye is added in the water to enhance the contrast in the images taken at 15 fps
with a Pulnix camera. Turbulence near the inflow to the reservoir is prevented by inserting
a sponge or polystyrene foam. However, as that dampening structure also absorbs waves,
a plexiglas barrier is placed in front to promote wave reflections.

First, the goal will be to understand theoretically under what conditions the instability
appears and then to observe the phenomenon experimentally.
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3 A shallow water model

3.1 Governing equations

3.1.1 Equation for the paddle

  







Figure 4: Diagram of the system and notations.

The motion of the paddle is described by the conservation of angular momentum applied
on the pivot point (triangle in figure 3):

Jφ̈ = −mgd cos(φ) + F cos(φ) (1)

where J is the moment of inertia, that can be written as J = (M + m)d2, with a global
effective mass M and an additional equivalent mass m placed on the end on the paddle.
(i.e. m is linked to the excess mass added on the paddle by maddedx

2 = md2).
We consider here only the force due to the gravity and F , the vertical force of the water

on the paddle. Friction (for example in the hinge) is neglected. The force F is essentially
the vertical component of the normal pressure force (dominating drag force) exerted on
the paddle by the fluid. Introducing W , the transversal width of the reservoir, we have
therefore:

Jφ̈ = −mgd cos(φ) +Wd cos(φ) cos θ
∫ XN

L
pdx (2)

If φ is a small angle, cos(φ) ≈ 1 and the position Z(t) of the paddle satisfies: Ż(t) ≈ dφ̇(t)
then the governing equation of the paddle is finally:

(m+M)Z̈ = −mg +W cos θ
∫ XN

L
pdx (3)

3.1.2 Equations in the fluid

We will work here with an inviscid shallow water model (assuming the height remains
smaller than the horizontal scale). The problem can be divided up into two regions:
• For x > L, the water flows underneath the paddle, and the height and velocity satisfy

the following equations:

h = Z(t) + (X − x) tan θ (4)

ht = Ż = −(hu)x (5)

ut + uux = −px
ρ

(6)
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where ui is the derivative of u with respect to i. X is the position of the middle of the
paddle and Z(t) its vertical position. The boundary conditions specify the continuity of the
flow velocity and height at x = L:

u(x→ L−) = uL (7)
h(x→ L−) = hL = Z + (X − L) tan θ (8)

Equation (5) can be integrated between L and x to give an expression for the velocity:

u =
hLuL + (L− x)Ż
Z + (X − x) tan θ

• For 0 < x < L, the water surface is free, implying a hydrostatic pressure, and we have:

ht + (hu)x = 0 (9)
ut + uux = −ghx (10)

(11)

The imposition of a constant flow rate q at x = 0, and the continuity at the right are written
as:

[hu]x=0 = q (12)
h(x = L) = hL = Z + (X − L) tan θ (13)

The problem contains three unknowns, Z(t), L(t) and uL(t), that are determined using
the equation of motion of the paddle, the equations of the fluid for 0 < x < L, and equation
(6) integrated between x = L and the end of the paddle, x = XN , where we assume that
the pressure becomes hydrostatic again: −

∫ XN

L (ut + uux)dx = ρg(hN − hL).

3.2 Adimensionalisation

3.2.1 Scaling

In order to simplify the problem and uncover the important non-dimensional parameters,
we consider different scalings for x in the two regions:
• For the reservoir, the natural scale for distance is X, the position of the paddle. So

we use x̂ =
x

X
for 0 < x < L.

• Under the paddle, the relevant distance is XN −X, so we introduce another variable
ξ such that:

x = (XN −X)ξ +X (14)

with l < ξ < 1 where l = L−X
XN−X . i.e.

x̂ = Rξ + 1

with the ratio, R =
XN −X

X
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The vertical scale is set by (XN −X) tan θ so all the other non-dimensional quantities
are written:

ĥ =
h

(XN −X) tan θ

û =
u√

g(XN −X) tan θ

t̂ =
t
X√

g(XN−X) tan θ

p̂ =
p

ρg(XN −X) tan θ

3.2.2 Adimensionalised equations

We then derive the adimensionalised form of the equations of the fluid:
• For x > L :

ĥ = Ẑ − ξ (15)

ĥt = ˙̂
Z = −(ĥû)x̂ (16)

p̂ξ = −ûûξ −Rût̂ (17)

with the boundary conditions:

ûL̂ = u(x̂ = 1 +Rl) (18)

ĥL̂ = h(x̂ = 1 +Rl) (19)

û =
q̂L

Ẑ − ξ
−R ξ − l

Ẑ − ξ
(20)

• For 0 < x < L, it is convenient to write everything in terms of the flow rate q = uh
and the height h (instead of u and h):

ĥt̂ + q̂x̂ = 0 (21)

q̂t̂ + (
q̂2

ĥ
)x̂ = −ĥĥx̂ (22)

with the boundary conditions:

[ĥû]x̂=0 = q̂ (23)

ĥL̂ = h(x̂ = 1 +Rl) (24)

The equation 3 for the paddle becomes:

I
¨̂
Z = −1 + µ

∫ 1

l
pdξ (25)

where I and µ are two dimensionless parameters.
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3.2.3 Control parameters

We distinguish 5 parameters in the system:

• I =
m+M

m
R2 tan2 θ the inertia term,

• µ =
ρW (XN −X)2 sin θ

m
corresponding to the ratio

mass of water under the paddle
mass on the paddle

• R =
XN −X

X
= X̂N − 1 the aspect ratio horizontally between the distance under the

paddle and the length of the reservoir.

• Q̂ =
q

√
g((XN −X) tan θ)3/2

the dimensionless imposed flow rate.

3.3 Approximation for small R

To simplify the problem, we add the hypothesis that R is small, implying that the distance
under the paddle is small compared to the length of the reservoir. Then, if we recall the
equations for x > L:

û =
q̂L

Ẑ − ξ
−R ξ − l

Ẑ − ξ
p̂ξ = −ûûξ −Rût̂

I
¨̂
Z = −1 + µ

∫ 1

l
pdξ

We obtain u ≈ qL
Z − ξ

=
qL
h

and pξ ≈ −uuξ .

(Now we work with the non-dimensional variables and omit the hat in the formulas).
If we integrate the latter equation, we can see that this additional hypothesis means

that Bernoulli’s law holds underneath the paddle:

p+ 1/2u2 = B = constant = hN + 1/2u2
N = hL + 1/2u2

L (26)

because the pressure is hydrostatic at XN and L.

Physically, it also amounts to neglecting the temporal dependence of the fluid variables
under the paddle. i.e. the flow is in a quasi-steady state under the paddle. That is to say
that the time to pass under the paddle is smaller that the time of change of velocity.

Note that the equality (26) takes the compact form:

q2
L

2h3
N

=
Fr2

N

2
=

α2

α+ 1
> 1 (27)

where α =
hL
hN

is the ratio of depths at the two extremities of the paddle. FrN is the Froude

number at the end of the paddle and the flow is supercritical.
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From the Bernoulli equation (26), the pressure can be written:

p =
(
hN +

qL
2hN

2
)
− qL

2h
2

(28)

and by integrating to get the total pressure force on the paddle, the equation of motion (25)
becomes:

I
¨̂
Z = −1 +

q
4/3
L µ

22/3
F (α) (29)

where

F (α) =
(α− 1)(α2 + 1)
α4/3(α+ 1)1/3

(30)

3.4 Steady state

The steady state (QL, HL, HN ) is calculated easily:

F (α0) =
22/3

Q
4/3
L µ

(31)

3.5 Linear stability analysis

We now investigate the linear stability around the steady state. From the equations in the
reservoir (0 < x < L):

ht + qx = 0 (32)

qt + (
q2

h
)x = −hhx (33)

(34)

We introduce the perturbations about equilibrium:

h = H + h′ hL = HL + h′L and hN = HN + Z ′

q = Q+ q′

Z = Z0 + Z ′

where H(= HL) and Q(= QL) denote the stationary state.
The linearized equations are then:

h′t + q′x = 0 (35)

q′t +
2Q
H
q′x −

Q2

H
h′x = −Hh′x (36)

which can be combined to give: (
∂t +

Q

H
∂x

)2

h′ = Hh′xx (37)
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We look for normal modes with q′ = q̃e−iωt and h′ = h̃e−iωt, where ω is the dimensionless
frequency: (

−iω +
Q

H
∂x

)2

h̃ = Hh̃xx (38)

The solutions take the spatial form, eλx, where

(−iω +
Q

H
λ)2 −Hλ2 = 0 (39)

λ1 =
iω

Q
H −

√
H

and λ2 =
iω

Q
H +

√
H

(40)

Thus q̃ = A1e
λ1x + A2e

λ2x and h̃ = A3e
λ1x + A4e

λ2x. Because the linear problem can be
normalized arbitrarily, we set A1 = 1. The boundary conditions q’=0 at x=0 (no perturbed
flow rate) then demand A2 = −1. From the continuity equation (35), we have iωh̃ = q̃x,
which gives the coefficients,

A3 =
1

Q
H +

√
H

and A4 = − 1
Q
H −

√
H

(41)

By introducing β =
Q

H3/2
and Ω̃ =

Ω
(1− β2)

, where Ω =
ω√
H

, q′and h′ are finally

written:

q′ = e−iΩ̃βx2i sin(Ω̃x)e−iωt (42)

h′ = e−iΩ̃βx
2Ω̃
ω

[
cos(Ω̃x)− βi sin(Ω̃x)

]
e−iωt̂ (43)

In the same way, we can linearize the equation of the paddle and the Bernoulli equation.

Given hL = HL + h′L and hN = HN +Z ′, we have α = α0 +α′ with α′ =
h′L − α0Z

′

HN
. Then

the two linearized equations are:

−ω2IZ ′ =
4
3
µ

22/3
Q1/3q′LF (α0) +

µ

HN

F ′(α0)
F (α0)

(h′L − α0Z
′) (44)

Qq′L − h′LH2
N

α0(α0 + 2)
(α0 + 1)2

=
H2
Nα

2
0Z
′(2α0 + 1)

(α0 + 1)2
(45)

where F ′(α0) =
dF

dα
(α0).

At x = L (with ξ = l), the flow rate and the height in the reservoir must be continuous
to those in the paddle area (qL, hL), so the matching conditions are

qL = q(x = 1 +R l(t), t) (46)

Using the approximation that R is small, we find

qL ≈ q(x = 1, t) (47)
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In the same way, we have for the perturbed variables:

q′L = q′(x = 1 +R l(t), t) ≈ q′(x = 1, t) (48)

and also h′L ≈ h′(x = 1)
Finally, the Bernoulli equation in combination with the equation of the paddle, plus

the matching conditions, furnishes an equation of the form, D(ω;α0, I, µ,Q,H) = 0, which
allows us to determine ω, and where

D(ω) = cos
(

Ω
1− β2

)[
3(1 + α0)F ′(α0)− (2 + α0)

Ω2I

µ2

(
α0 + 1
α2

0

)2/3
]

− i sin
(

Ω
1− β2

)[√
2α0(1 + α0)3/2(1− β2)

(
F ′(α0)− 2

3
2α0 + 1
α0 + 1

F ′(α0)
α0µ

− Ω2I

µ2

(
α0 + 1
α2

0

)2/3
)

+ 3
(

2(1 + α0)
α0

)1/2

F ′(α0)− (α0 + 2)
Ω2I

µ2
21/2 (α0 + 1)1/6

α
11/6
0

]
(49)

The solutions ω = ωr + i ωi can be found numerically. In our convention, modes grow when
ωi > 0.

3.6 Approximation of small flow rate: Q� 1 or α0 � 1

If the flow rate is small, i.e. α0 � 1, then F (α0) ∼ α
4/3
0 and by keeping the leading order

in α0 in D(ω) = 0, we find Ω ≈ nπ. i.e. in dimensional variables:

ω = nπ

√
gHL

X
(50)

These are the frequencies of the seiche modes of the reservoir in the absence of the fluid
flow.

Proceeding further, and setting Ω = nπ + γ, we find

γ =
i(1− n2π2I

4α0µ
)

1
3α0

√
2(−1 + 1

µ + 3n2π2I
4µ2α0

)
(51)

Thus, since the right-hand side of this relation can become positive, the seiche modes can be
destablized by the flow. Figure 5 shows the numerical results calculated with experimental
parameters and highlights the growth of the instability for the mode n = 1.

Thus, the model predicts the existence of flow-destabilized seiches modes. We now follow
on and present experimental observations of this phenomenon.
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Figure 5: Numerical results: madded = 3.1 g, x = 5 cm, X = 18 cm, θ = 60◦, HL ≈ 2 cm.

4 Experimental results

4.1 Steady state

To begin, we explored steady flow states and made measurements of the water depth under
the paddle for different masses added on the paddle. These measurements could then be
compared with the theoretical ratio α0 given by the inversion of equation (31). The results,
shown in figure 6 (left), reveal agreement between experiment and theory for small masses,
but an increasing discrepancy for masses bigger than around 40 g.
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Figure 6: Left: Comparison between experimental points (dots) and numerical calculation using
the inversion of F (α0) = 22/3

Q
4/3
L µ

(squares). The angle was fixed at θ = 30◦ and q = 1.6× 10−4 m3/s.

Right: Flow around the paddle instead of underneath in cases of large mass added.

We explain this discrepancy with an observed change of structure in the flow depending
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on the value of the mass added on the paddle: for small mass, the fluid flows largely
underneath the paddle (as supposed in our model), whereas for large mass, much fluid is
also diverted around the sides of the paddle, as illustrated in figure 6 (right).

4.2 Experimental unstable modes

t = 0 s

t = 0.47 s

t = 0.25 s

t = 0.86 s

t = 0.34 s

t = 1.06 s

Figure 7: Series of images showing the presence of a flow-destabilized seiche mode n=1 during a
period. Experiment with madded = 3.1 g at 5 cm of the pivot.

Figure 7 shows images from an experiment in which a flow-destabilized sloshing mode
appeared. From such images, the water level could be extracted by applying a threshold
to the intensity of the picture. A time series of the water surface measured in this way is
shown in figure 8.
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Figure 8: Time series and spectrum for the same experiment as in figure 7.
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A comparison between the experiment and the linear theory was made by superimposing
the interface observed experimentally with theoretical results using (52):

h′(x, t) = e−i(ωt−Ω̃βx) 2Ω̃
ω
cos(Ω̃x) for n = 1 (52)

On figure 9, the red line corresponds to the theory, with the variables Ω, β and ω calculated
from the experimental parameters, except the amplitude and the phase, which were fit using
a least squares algorithm.

t = 1.2 s

t = 1.8 s

t = 1.4 s

t = 2 s

t = 1.6 s

t = 2.2 s

Figure 9: Comparison of the experiment and the linear theory.

Even though the theoretical predictions do not follow exactly the actual interface, es-
pecially near the paddle and the wall at the right (where some new elements of physics,
like surface tension, should probably be added for a complete description), there is a fair
agreement overall, since the main features of the sloshing mode n = 1 are well captured.

Higher-order modes with n = 2 and 3 were also observed in the experiments. However,
it appears that the n = 1 mode was usually dominant, probably because the other modes
are more strongly damped due to fluid viscosity and friction in the pivot.

4.3 Variations of parameters

After demonstrating the existence of unstable modes, we attempted to further investigate
the characteristics of the system by changing control parameters. Figure 10 presents the
frequency of the paddle oscillations for masses placed at different positions on the rod (left)
and varying flow rate (right).
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Figure 10:
Left: Variation of madded at q fixed. (q = 1.42 × 10−4 m3/s). Each colour represents one series of
experiments realized with one particular madded translated at different positions on the rod. The
frequency of the paddle motion has been measured with a stopwatch (looking at 50 oscillations).
For checking, the square points are the frequency of the paddle determined using the spectrum of
the time series of the water level (like in figure 8) for some experiments.
Right: Variation of q at madded fixed. (madded = 8.9 g and x = 25 cm). See also section 4.4.2.

4.4 Evidence of non-linearities

4.4.1 Beating

In certains experiments, the water level was characterized by a beating motion, as illustrated
in figure 11. Though beating is not itself a non-linear phenomenon, the spectrum reveals a
possible resonant triad with the superposition of two frequencies (the main frequency and
another one smaller) which creates the two additional peaks around the main peak and its
harmonics.
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Figure 11: Time series and spectrum for madded = 3.1 g at 30 cm of the pivot.
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4.4.2 Bistability

Another observed feature typical of a non-linear behaviour is bistability: in some experi-
ments, the unstable behaviour could be stopped by gently bringing the paddle to rest with
one’s hand; after being released the paddle remained stationary and no instability grew. At
the same time, by giving a little kick to the paddle, the flow-destabilized sloshing could be
resumed. Thus, for the same set of parameters, the system could be both in a steady or
sloshing regime. On the other hand for other ranges of parameters, the system was only
unstable (see figure 12).

The existence of bistability suggests that the system could follow a subcritical bifurca-
tion, as sketched in figure 12 (right). The limit between the bistable regime and unstable
regime can then be considered as the linear threshold of the instability.
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Figure 12: Presence of bistability: •: unstable points. •: bistable points. Right: Subcritical
bifurcation.

5 Conclusion

The phenomenon of flow-destabilized sloshing modes has been demonstrated experimentally
with a setup analogous to a water clarinet’. The linear theory shows some agreement with
the experimental unstable modes.

However, several limits of the model can be pointed out. It does not take into account
water flow around the sides of the paddle. Friction in the hinge has been neglected, together
with fluid viscosity and surface tension. The experiment also sometimes suggests a possible
collision of the paddle with the bottom, an interaction not included in the model. We can
also question the validity of the shallow water hypothesis and the Bernoulli approximation
under the paddle for the experimental conditions.

Finally, experiments reveal that work must be done to go beyond linear theory in order
to capture the observed non-linear dynamics like resonant triad and bistability.
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Nonlinear Shelf Waves in a Rotating Annulus

Andrew Stewart

October 13, 2009

1 Introduction

Shelf breaks are a ubiquitous and dynamically important feature in the topography of the
coastal oceans. A region of particular interest is the southeastern coast of Africa, where the
Agulhas current flows southwest at speeds of up to 1 ms−1 over a shelf break [2]. This has
motivated a series of dynamical investigations. Gill and Schumann [6] studied the influence
of topography on a coastal jet with specific application to the Agulhas current, whilst Mysak
and others have considered the phenomenon of coastally-trapped waves [19, 20, 21].

Where there is a very sharp drop from the coastal shelf to the ocean floor, the topography
may be approximated by a discontinuity in depth, an approach that is appealing due to
its analytical simplicity. This approach was first used to study coastally-trapped waves by
Longuet-Higgins [17], and was subsequently applied to coastal currents by Johnson [10, 13].

The present work concerns a model for nonlinear Rossby shelf waves propagating along
a discontinuity in depth that was first developed by Haynes et al [7], who derived a fully
nonlinear wave equation that is valid in the limit of infinitely long waves. This model, which
will be discussed further in Section 3, was subsequently extended to include higher-order
dispersive terms [3, 11]. In the weakly nonlinear limit, the model reduces to a Korteweg-de
Vries (KdV)-type equation [4], which will be discussed in Section 4. These models, and the
broader subject of Rossby wave hydraulics, were reviewed by Johnson & Clarke [12].

The theory of nonlinear Rossby shelf waves hinges upon the assumption of columnar
motion in the fluid, even when it crosses the step, which has motivated several studies
[9, 14, 15] of the interaction of vortices with step topography. In a recent experiment [8],
dipoles fired over a step were shown largely to maintain their columnar structure, albeit
with some additional diffusion of vorticity. This suggests that fluid columns in a shallow
rotating flow will be preserved across a discontinuity in depth.

The goal of this project is to generate nonlinear Rossby shelf waves experimentally and
compare their properties with theoretical predictions. Whilst the previous theory is based
on an infinitely long straight channel, we have constructed our experiment in an annulus,
and we will show that analogous theoretical results hold in this geometry. We will first
introduce the set-up of the laboratory experiment and reformulate the finite-amplitude and
weakly nonlinear wave equations for the annular domain. We will then discuss the inclusion
of bottom friction in the model and its effect on the waves, and analyse some instabilities
that were found to arise in the course of the experiment. Finally, we will present some
experimental results for breaking lee waves and compare them with numerical simulations
based on the finite-amplitude wave equation.
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2 Experimental Set-Up

The theoretical analysis presented in this report has been motivated by the laboratory
experiment that served as the focus of this project. In this section we will only provide an
overview of the experiment, postponing a discussion of the results to Sections 6 and 7.

The experiment was designed to replicate the theoretical investigations of [7], who stud-
ied the behaviour of waves propagating about a discontinuity in depth in a straight channel
with a rigid lid in a rotating frame. The most practical way to achieve this in the laboratory
was to create an annular channel in a cylindrical tank on a rotating table. A shelf of width
10.5 cm and height 5.0 cm was built around the outer edge of the tank, which measured
approximately 2.13 m in diameter, to create a discontinuity in depth, and a weighted sheet
of flexible plastic was used to create the inner wall of the annulus. A photograph of this
apparatus is shown in Figure 1.

Figure 1: A photograph of the experimental set-up.

To perform the experiments, we filled the tank with water to a prescribed depth, typically
10 – 25 cm above the base of the tank, and then accelerated it to a constant angular velocity.
We then left the tank to rotate until the fluid inside had reached a stationary state in the
rotating frame of reference. We perturbed the fluid from this state either by the moving a
deformable wall attached to the edge of the tank, or by creating a bump in the outer wall
and rapidly changing the rate of rotation of the tank. To visualise the flow, we dispensed a
line of dye into the fluid directly above the shelf line (along the potential vorticity interface)
and recorded the results with a digital camera that positioned directly above the centre of
the tank and made to rotate at the same speed as the tank.

374



This experiment does not perfectly replicate the theoretical conditions of [7], most ob-
viously because the channel is curved rather than straight. We have therefore modified
and extended the previous theory accordingly, and this will be covered in the following
sections. Note also that the inner wall is not sealed against the bottom of the tank, thereby
permitting a small flux of fluid between the outer annulus and the central part of the tank,
and that the fluid has a free surface that deforms under the influence of the centrifugal
force, rather than a rigid lid. However, both of these effects were found to make negligible
contributions to the behaviour of the fluid.

Another theoretical inconsistency arises from the fact that the ratio of the depth of the
fluid to the width of the channel is typically close to 1, casting doubt upon the validity of
the shallow water theory. In practice the rate of rotation of the tank was sufficiently high
as to ensure approximately columnar motion anyway, so the shallow water theory may be
expected to hold quite well. In fact, the most important deviation from the theory was the
absolute discontinuity in the depth at the shelf line, which in theory is an approximation
of a steep slope. In later experiments a slope of width 2.5 cm was added to the end of the
shelf, substantially altering the behaviour of the experiment.

3 Topographic Rossby Waves in a Rotating Annulus

We shall now reformulate the theory of [3] for application to the annular domain of the
laboratory experiment. The fluid lies in the region Rw(θ) ≤ r ≤ Rc(θ), 0 ≤ θ ≤ 2π,
h(r) ≤ z ≤ H, where h is the height of the bottom topography,

h =

{

0, Rw < r < Rh

Hs, Rh < r < Rc
, (1)

and r = Rh(θ) is the equation of the shelf line. Here we have applied the rigid lid approx-
imation, assuming that perturbations to the upper surface of the fluid are much smaller
than the average depth H. A diagram of this set-up is presented in Figure 2.

We assume that the flow is sufficiently shallow (H ≪ Rc − Rw), and has sufficiently
small topography (Hs ≪ H), that it is governed approximately by the shallow water quasi-
geostrophic equation for fluid under a rigid lid,

Dq

Dt
= 0, q = ∇2Ψ +

fh

H
, (2)

where f is the Coriolis parameter and q is the quasigeostrophic potential vorticity. Here
Ψ = ps/fρ is the quasigeostrophic streamfunction, where ps is the pressure at the rigid lid
and ρ is the density of the fluid. With this definition, Ψ satisfies

u = −
1

r

∂Ψ

∂θ
, v =

∂Ψ

∂r
, (3)

and the velocity field is u = uer + veθ, such that ω = (∇× u) · ẑ = ∇2Ψ.
We prescribe a mean flow um = −∇×ψm(r, θ)ẑ in the channel, modelling the presence of

an along-shore current in the real ocean. We require that the flow should be unidirectional,
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Figure 2: Top-down (left) and side-on (right) views of the physical set-up for the model.

that the walls r = Rw and r = Rc should be streamlines, and that the volume flux should
be constant around the annulus,

∂

∂θ

∫ Rc(θ)

Rw(θ)
vmdr = 0. (4)

Here we neglect the contribution to the volume from the variation of the bottom topography
in order to be consistent with the quasigeostrophic approximation. We also require that
the vorticity of the mean flow should be materially conserved. These requirements may
be met in a radially symmetric annulus, but when Rw and Rc vary with θ we must allow
for bidirectional flow to find a steady solution. We must therefore prescribe a mean flow
streamfunction that approximately satisfies these conditions,

ψm = 1
2Ωm

(

Rc
2
−Rw

2
)

(

r2 −R2
w

)

R2
c −R2

w

, (5)

where an overbar denotes the value of a function at some fixed θ = θm. This mean flow
satisfies all requirements except that its vorticity should be materially conserved, which is
only approximately satisfied under the assumption that the walls of the annulus vary very
slowly with θ,

∣

∣

∣

∣

∂Rw

∂θ

∣

∣

∣

∣

,

∣

∣

∣

∣

∂Rc

∂θ

∣

∣

∣

∣

≪ 1 =⇒
Dω

Dt
≈ 0. (6)

In the case that Rw and Rc do not vary with θ, (5) reduces to a flow of constant angular
velocity and exactly satisfies the above requirements.

It is now convenient to write the overall streamfunction as

Ψ = ψm + ψ(r, θ, t), (7)
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where the first term corresponds to the mean flow and the second to any deviation. On
applying (6), the potential vorticity equation (2) then becomes

Dq′

Dt
≈ 0, q′ = ∇2ψ +

fh

H
, (8)

Suppose that the fluid is perturbed from a basic state in which the only motion is that of
the mean flow, such that ∇2ψ = 0 and

q′ =

{

0, Rw < r < Rh

Q, Rh < r < Rc
. (9)

We denote the position of the interface between these regions of differing potential vorticity
as r = R(θ, t), assuming that this interface remains single-valued in θ. If in some region
R > Rh then, by conservation of potential vorticity, we have

q′ = ∇2ψ + 0 = 0 =⇒ ∇2ψ = 0 in Rw < r < Rh,

q′ = ∇2ψ +Q = 0 =⇒ ∇2ψ = −Q in Rh < r < R,

q′ = ∇2ψ +Q = Q =⇒ ∇2ψ = 0 in R < r < Rc,

and if R < Rh then

q′ = ∇2ψ + 0 = 0 =⇒ ∇2ψ = 0 in Rw < r < R,

q′ = ∇2ψ + 0 = Q =⇒ ∇2ψ = Q in R < r < Rh,

q′ = ∇2ψ +Q = Q =⇒ ∇2ψ = 0 in Rh < r < Rc,

which may be expressed succinctly as the following Poisson equation for the streamfunction,

∇2ψ = Q (H(r −R) −H(r −Rh)) , (10)

where H denotes the Heaviside step function. We also require that the streamfunction
vanishes on the boundaries of the annulus,

ψ = 0 on r = Rw and r = Rc. (11)

Finally, we require that particles on the interface r = R remain on the interface, i.e.
D/Dt(r −R) = 0, which leads to the following condition,

∂R

∂t
= −

1

R

∂

∂θ
Ψ(R(θ, t), θ, t). (12)

We now define a length scale L = Rc − Rw and nondimensionalise r = Lr̂, t = Q−1t̂
and ψ = QL2ψ̂, where a hat ˆ denotes a dimensionless variable. This yields the following
system of dimensionless equations,

∂2ψ̂

∂r̂2
+

1

r̂

∂ψ̂

∂r̂
+

1

r̂2
∂2ψ̂

∂θ2
= H

(

r̂ − R̂
)

−H
(

r̂ −RH

)

, (13a)

ψ̂ = 0 on r̂ = RI and r̂ = RO, (13b)

∂R̂

∂t̂
= −

1

R̂

∂

∂θ
Ψ̂

(

R̂
(

θ, t̂
)

, θ, t̂
)

, (13c)

377



where RH = Rh/L, RI = Rw/L and RO = Rc/L are the dimensionless radii of the annulus.
We will henceforth drop the hat notation for dimensionless variables. We seek long wave
solutions by prescribing that the width of the channel should be small compared to the
circumference of the shelf line and assuming that the solution varies slowly with θ and t,

θ = µ−1/2φ, t = µ−1/2τ , (14)

where µ = (L/2πRh)2 ≪ 1. Equations (13a)–(13c) then take the form,

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+
µ

r2
∂2ψ

∂φ2
= H(r −R) −H(r −RH), (15a)

ψ = 0 on r = RI and r = RO, (15b)

∂R

∂τ
= −

1

R

∂

∂φ
Ψ(R(φ, τ), φ, τ). (15c)

We now expand ψ asymptotically in the small parameter µ,

ψ = ψ(0) + µψ(1) + µ2ψ(2) + . . . . (16)

Substituting this in to (15a) we find that the leading order equation is

∂2ψ(0)

∂r2
+

1

r

∂ψ(0)

∂r
= H(r −R) −H(r −RH), (17)

which may be solved subject to the boundary conditions (15b) to give

ψ(0) = 1
4

(

r2 −R2
)

H(r −R) − 1
4

(

r2 −R2
H

)

H(r −RH)

+ 1
2R

2
HH(r −RH) ln(r/RH) − 1

2R
2H(r −R) ln(r/R)

+
ln(r/RI)

ln(RO/RI)

[

1
2R

2 ln(RO/R) − 1
2R

2
H ln(RO/RH) + 1

4

(

R2 −R2
H

)]

. (18)

We may substitute this leading-order streamfunction in to (15c), but we then obtain a non-
dispersive evolution equation for R. This may be remedied by continuing the expansion of
(15a) to O (µ),

∂2ψ(1)

∂r2
+

1

r

∂ψ(1)

∂r
+

1

r2
∂2ψ(0)

∂φ2
= 0, (19)

which we solve to find the following expression for ψ(1),

ψ(1) =1
6

∂

∂φ

{

RRφ ln3(r/R)H(r −R) −RHRHφ ln3(r/RH)H(r −RH)
}

+
ln(r/RI)

ln(RO/RI)

{

1
6 (RHRHφ)

φ
ln3(RO/RH) − 1

2R
2
Hφ ln2(RO/RH)

− 1
6 (RRφ)

φ
ln3(RO/R) + 1

2R
2
φ ln2(RO/R)

}

+ ln(RO/r) ln(r/RI)

{

1
6 ln(ROr/R

2
I)
∂2

∂φ2
−
RIφ

RI

∂

∂φ
+
R2

Iφ −RIRIφφ

2R2
I

}

G, (20)
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where

G(φ, τ) =
1
2R

2 ln(RO/R) − 1
2R

2
H ln(RO/RH) + 1

4(R2 −R2
H)

ln(RO/RI)
. (21)

Substituting (18) and (20) into (15c) yields the following evolution equation for finite-
amplitude waves on the interface,

∂R

∂τ
= −

1

R

∂

∂φ







1
2αm

(

RO
2
−RI

2
)

(

R2 −R2
I

)

R2
O −R2

I

+ H(R−RH)
[

1
2R

2
H ln(R/RH) + 1

4(R2
H −R2)

]

+ ln(R/RI)G

+ µ

{

H(R−RH)
[

1
2R

2
Hφ ln2(R/RH) − 1

6 (RHRHφ)
φ

ln3(R/RH)
]

+
ln(R/RI)

ln(RO/RI)

[

1
6 (RHRHφ)

φ
ln3(RO/RH) − 1

2R
2
Hφ ln2(RO/RH)

− 1
6 (RRφ)

φ
ln3(RO/R) + 1

2R
2
φ ln2(RO/R)

]

+ ln(RO/R) ln(R/RI)

[

1
6 ln(ROR/R

2
I)
∂2

∂φ2
−
RIφ

RI

∂

∂φ
+
R2

Iφ −RIRIφφ

2R2
I

]

G

}







,

(22)

where αm = Ωm/Q. We may obtain higher-order approximations to the streamfunction,
and thereby to the evolution equation (22), by solving further equations with the same form
as (19), but the expressions involved quickly become unmanagable.

It is important to note that whilst we can account for azimuthally varying Rw, Rh

and Rc, we are unable to apply this theory in the limits as (a) Rw → 0 or (b) Rc → ∞
uniformly. We can still apply a long-wave scaling in these cases by redefining L = Rc −Rh

or L = Rh − Rw respectively. In case (a) the asymptotic expansion breaks down when
r = O

(

µ1/2
)

because the derivative with respect to φ in (15a) is then O (1). In case (b) we
require that |u| → 0 as r → ∞ so that the total energy remains finite, but this condition
permits an infinite family of functions ψ(0) that satisfy the leading order Poisson equation
(17), and so we require a stronger condition on ψ as r → ∞ in order to determine ψ uniquely.
We are therefore restricted to cases where RI is O (1) and RO is finite.

4 Weakly Nonlinear Waves

The evolution equation (22) descibes the fully nonlinear behaviour of our system, but it
is somewhat too complicated to analyse directly. We therefore first examine the dynamics
of weakly nonlinear waves by assuming that the wave amplitude is O (µ) and that the
variations in RI , RH and RO are O

(

µ2
)

. These scalings are chosen such that nonlinear
and dispersive terms are of the same order, and such that only the leading-order effects of
a radially asymmetric annulus are included. We set R = RH + µÂ, RI = RI + µ2ŵ(φ),
RH = RH + µ2ĥ(φ) and RO = RO + µ2ĉ(φ) in (22), and retain terms up to O

(

µ2
)

. Note
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that the contributions from ψ(2) and higher-order terms will be at least O
(

µ3
)

due to the
φ derivative on the right hand side of (22). We obtain the following weakly nonlinear wave
equation,

Âτ + (α+ αm)Âφ + µβÂφφφ −
µ

2RH

(

sign
(

Â
)

+ γ
)

ÂÂφ = −µαĥφ + µαm (δcĉφ + δwŵφ) ,

(23)
where

α =
ln

(

RH/RI

)

ln
(

RO/RH

)

ln
(

RO/RI

) , β =
ln2

(

RH/RI

)

ln2
(

RO/RH

)

3 ln
(

RO/RI

) , γ = 3
ln

(

RH
2
/RORI

)

ln
(

RO/RI

) ,

δc =
RO

(

RH
2
−RI

2
)

RH

(

RO
2
−RI

2
) , δw =

RI

(

RO
2
−RH

2
)

RH

(

RO
2
−RI

2
) . (24)

The terms on the left hand side of (23) resemble those of the KdV equation, whilst those on
the right are all contributions from variations of the annulus’ walls and shelf line. The most
significant contribution comes from variations of the shelf line ĥφ, whilst variation of the
walls, ĉφ and ŵφ, only makes a contribution in the case that there is a mean flow (αm 6= 0).

For convenience, we rewrite (23) in terms of unscaled dimensionless variables by reversing
the transformation (14) and setting A = µÂ, h = µ2ĥ, c = µ2ĉ and w = µ2ŵ. This yields
the following alternative form of the weakly nonlinear wave equation,

At + (α+ αm)Aθ + βAθθθ −
1

2RH

(sign(A) + γ)AAθ = −αhθ + αm (δccθ + δwwθ) . (25)

The difference between (25) and KdV lies in the coefficient of the nonlinear term (AAφ),
which may be positive or negative depending on the sign of A and the positions of the
channel walls and shelf line. It is exactly zero if

A > 0 and RH =
(

RI
2
RO

)1/3
= RH1, or A < 0 and RH =

(

RIRO
2
)1/3

= RH2. (26)

If we let RI → ∞ then RH1 → (2RI +RO)/3 and RH2 → (RI + 2RO)/3, which are exactly
the conditions found for the analogous straight-channel case in [3]. These values ofRH define
different regimes for the coefficient of the nonlinear term, and therefore for the direction
in which nonlinear steepening occurs. Specifically, the direction of nonlinear steepening is
always opposite to the direction of propagation, except in the cases RH < RH1 and A > 0
or RH > RH2 and A < 0, when the waves steepen towards the direction of propagation.

4.1 Cnoidal Waves

When A is single-signed and the annulus is radially symmetric (RO ≡ RO, RH ≡ RH ,
RI ≡ RI), equation (25) reduces to the KdV equation, which is known [25] to possess cnoidal
wave solutions. We shall restrict our attention to the case A ≤ 0, with the understanding
that the A ≥ 0 case has analogous results. Equation (25) then becomes

At + αAθ + βAθθθ + γ1AAθ = 0, γ1 =
ln(R2

ORI/R
3
H)

RH ln(RO/RI)
. (27)
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We seek travelling wave solutions of the form A(θ, t) = F (ξ), where ξ = θ − (α+ ∆)t, and
then apply the transformation F (ξ) = 6B(ξ)/γ1, ξ =

√
βζ, to obtain the standard form of

the KdV equation
−∆Bζ + 6BBζ +Bζζζ = 0. (28)

This equation has well-documented [25] ‘cnoidal’ wave solutions of the form,

B = 2p2κ2cn2(p(ζ + ζ0);κ) +B0, ∆ = 8p2κ2 − 4p2 + γ1A0, (29)

where 0 ≤ κ ≤ 1 is the modulus of the Jacobi elliptic cn function [1] and ζ0, p and B0 are
constants. Thus, the cnoidal wave solutions to (27) are

A(θ, t) = Am cn2

{

1

2κ

√

Amγ1

3β
(θ − (α+ ∆)t+ θ0) ;κ

}

+A0, (30)

with

∆ = γ1

(

A0 +

(

2 −
1

κ2

)

Am

3

)

, (31)

where A0 is the reference amplitude and Am is the maximum displacement from A0. The
argument of the cn function must be real for A to be bounded, so we must have Amγ1 ≥ 0
because β > 0 always. The sign of Am is therefore determined by the position of the shelf
line relative to the inner and outer walls of the annulus. Specifically, if RH ≥ RH2 then
γ1 ≤ 0 and so Am ≤ 0. Thus A ≤ 0 as long as A0 ≤ 0. If RH ≤ RH2 then γ1 ≥ 0 and so
Am ≥ 0. Thus A ≤ 0 as long as A0 ≤ −Am.

A further restriction is imposed by the periodicity of the annular domain. The angular
wave length of the cnoidal waves is

λθ = 4κK(κ)

√

3β

Amγ1
, (32)

where K is the complete elliptic integral of the first kind [1]. We require that λθ = 2π/n
for any positive integer n, which yields the following expression for the wave amplitude,

Am =
12βn2κ2K2(κ)

π2γ1
. (33)

Thus, for a given mode n, the amplitude of the wave Am determines the modulus κ, and
thereby the shape of the wave. Note also that because the amplitude is limited by the width
of the channel, and because κK(κ) is a strictly increasing function of κ, higher-frequency
modes must have smaller moduli κ, and so will be more similar to cosine waves. Meanwhile
lower-frequency modes can have larger moduli and so are closer to the soliton solution
(κ = 1). The complete range of solutions may be written as

A(θ, t) =
12βn2κ2K2(κ)

π2γ1
cn2

{

nK(κ)

π
(θ − (α+ ∆)t+ θ0) ;κ

}

+A0. (34)

Whilst these solutions describe only a small subset of the possible travelling wave solutions
of (27), we may expect to see the same broad characteristics in all such solutions. That is,
that the longest waves should exhibit the most nonlinear behaviour, whilst shorter waves
should be well-approximated by linear theory.
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4.2 Phase Plane Analysis

We will now expand our analysis of the weakly nonlinear wave equation to include travelling
wave solutions that are not single-signed. Following the method used in Section 4.1, we seek
travelling wave solutions of the form A(θ, t) = F (ξ), ξ = θ − (α + ∆)t, which leads to the
following travelling wave equation,

−∆Aξ + βAξξξ −
1

2RH

(sign(A) + γ)AAξ = 0. (35)

Integrating with respect to ξ yields

−∆A+ βAξξ −
1

4RH

(sign(A) + γ)A2 = −∆A0 −
1

4RH

(sign(A0) + γ)A2
0, (36)

where A0 is a reference amplitude at which Aξξ = 0. Multiplying through by Aξ allows us
to integrate again to obtain

1
2βA

2
ξ + V (A) = E, (37)

where E is a constant and V is given by

V (A) = A

[

∆
(

A0 −
1
2A

)

+
γ

4RH

(

A2
0 −

1
3A

2
)

+
1

4RH

(

|A0|A0 −
1
3 |A|A

)

]

(38)

The critical points of (37) are defined as solutions of the equation V ′(Ac) = 0, and their
nature is determined by V ′′(Ac): if V ′′(Ac) > 0 then the critical point is a centre, and if
V ′′(Ac) < 0 then the critical point is a saddle.
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Figure 3: Phase plane for weakly nonlinear waves in the range RI ≤ A + RH ≤ RO

when Rc = 1.065 m, Rh = 0.960 m, and (a) Rw = 0.665 m, ∆ = −0.01, A0 = −0.35, (b)
Rw = 0.8654 m, ∆ = −0.02, A0 = 0. The thicker lines highlight the orbits of the critical
points.

We determine the forms of the solutions by analysing the phase plane in A and Aξ, where
each contour corresponds to a different travelling wave solution. We are restricted to those
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solutions whose amplitudes lie within the boundaries of the annulus, i.e. RI ≤ RH+A ≤ RO.
In order to fit in the annular domain, solutions must also be periodic with a period that
exactly divides 2π, so only closed orbits correspond to viable solutions. The reference
amplitude A = A0 is always a critical point, and is always a centre as long as

∆ +
1

2RH

(γ + sign(A0))A0 < 0. (39)

If this point is not a centre then the phase plane has no closed orbits, so this serves as a
sufficient condition for there to be physical solutions.

Additionally, because we assumed in our derivation that the solution has been perturbed
from a basic state in which R = RH , we must ensure that mass has been in conserved in
the transition to this steady solution,

∫ 2π

0

∫ R

RH

r drdθ = 0. (40)

Thus, only a small subset of the curves in the phase plane are permissible as travelling
wave solutions in the annulus. This excludes the possibility of the soliton solutions, which
correspond to the homoclinic orbit of the critical point in Figure 3(a). In Figure 3(b) we
present the case where Rh =

√
RcRw, such that γ = 0 and the nonlinear term in (35) is

symmetric about A = 0. In this case there is a heteroclinic orbit between the saddle critical
points that corresponds to the ‘kink’ solitons studied in [3], but again the periodicity of the
domain means that such solutions are not permissible.

5 Frictional Effects

The theory of Ekman layers [22, 23, 24] suggests that the fluid in the annulus will return
to solid-body rotation due to frictional effects at the base of the layer of fluid. It may
be shown [18] that the leading-order effects of bottom friction can be incorporated in the
rotating shallow water equations as follows,

∂u

∂t
+ (u · ∇)u + ∇π + f ẑ × u +

k̃

η
u = 0, (41a)

∇ · (ηu) = 0, (41b)

where u = (u, v) is the vertically-averaged horizontal fluid velocity, η = H − h is the
vertical thickness of the fluid layer and π is the fluid pressure at the rigid lid. The dis-
sipation constant k̃ is typically inversely proportional to the Ekman spin-down time [23],
k̃/H ∝ 1/τ

E
=

√

fν/H2 =⇒ k̃ ∝
√
fν, where τ

E
is the Ekman spin-down time. The

constant ν is the kinematic viscosity of the fluid in the experiment or the vertical eddy
viscosity in the ocean. We will now consider the influence of friction on the system studied
in Sections 3 and 4.

We first apply quasigeostrophic scaling [22, 23, 24] to (41a) and (41b). We assume that
the Rossby number is very small, Ro = U/fL ≪ 1, where U is a velocity scale for the
flow and L = Rc − Rw as before, and that h/H and k̃/Hf are O (Ro). Expanding u and

383



π asymptotically in Ro then yields geostrophic balance at leading order, with contribu-
tions from friction, bottom topography and advection included at first order in a modified
quasigeostrophic potential vorticity equation,

D

Dt

(

ω +Qĥ
)

= −kω, (42)

where k = k̃/H, and ĥ = h/Hs is the dimensionless height of the bottom topography.

5.1 Vorticity Evolution of Fluid Columns

As in Section 3, we seek to determine the vorticity distribution and thereby formulate a
nonlinear wave equation for the interface r = R(θ, t). Let us consider the vorticity ωp(t)
of an infinitesimal fluid column that lies in the region Rw < r < Rh at t = 0, such that
ωp(0) = qp(0) = 0. Equation (42) allows us to write down an evolution equation for ωp,

dωp

dt
+ kωp +Q

dĥp

dt
= 0, (43)

where Q = fHs/H as before and ĥp(t) is the dimensionless height of the topography
directly below the fluid column at time t. If the fluid column crosses the shelf line at times
t = t1, t2, . . . , tN , then we may write ĥp explicitly as

ĥp =

{

0, ti < t < ti+1 i = 0, 2, 4, . . . ,
1, ti < t < ti+1 i = 1, 3, 5, . . . ,

(44)

where we define t0 = 0. Thus in ti < t < ti+1 for all i, ∂ĥp/∂t = 0, and integrating equation
(43) yields

ωp = ωp|t=ti
e−k(t−ti), ti < t < ti+1. (45)

In order to determine the evolution of ωp at t = ti, i = 1, . . . , N , we integrate (43) over
[ti − δt, ti + δt] and take the limit δt→ 0,

lim
δt→0

∫ ti+δt

ti−δt

{

dωp

dt
+ kωp +Q

dĥp

dt

}

dt = lim
δt→0

[

ωp +Qĥp

]ti+δt

ti−δt
= 0, (46)

where the first equality follows from the requirement that ωp must remain finite. This
condition states that potential vorticity is exactly conserved following the fluid column at
the instant when it crosses the shelf line. Using (44) we may then write the jump condition
for the vorticity of the fluid column as

[ωp]t=ti
= (−1)iQ, (47)

where the square brackets [ ] denote the change of ωp over an infinitesimally short period
around t = ti. Combining (45) and (47) yields the complete time-evolution of ωp,

ωp =



































0, 0 ≤ t < t1,

Q

n
∑

i=1

(−1)ie−k(t−ti), tn < t < tn+1, n < N ,

Q
N

∑

i=1

(−1)ie−k(t−ti), tN < t.

(48)
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The vorticity of an infinitesimal fluid element that is initially on the shelf and that crosses
the discontinuity N times may be obtained by multiplying (48) by −1.

This analysis highlights an important difference between the frictionless and frictional
potential vorticity equations: in the frictionless case, fluid columns can only have non-zero
vorticity if they lie between the shelf line r = Rh and the interface r = R, whereas now
every fluid column that has at any point crossed the shelf line will have nonzero vorticity.
This complication means that it is no longer possible to perform a derivation similar to that
described in Section 3. However, the fact that the evolution of the vorticity of individual
fluid columns can be expressed in a simple form makes this system an appropriate candidate
for a vortex element method [16], a Lagrangian numerical method that advects individual
vortices to calculate the flow field.

5.2 Approximate Conservation Law Form

In order to include some dissipative effects in our nonlinear model, we require a conser-
vation law that approximates (42). It is not possible to rewrite this equation in an exact
conservation law form, so instead we use the following approximation,

D

Dt

(

ωekt +Qĥ
)

= 0. (49)

We shall now motivate this choice by considering the evolution of the total vorticity in the
annulus, rather than the local vorticity field.

We obtain an evolution equation for the total vorticity by integrating (42) over the
entire area of the annulus, which we denote by A,

∫∫

A

{

∂ω

∂t
+ kω + u · ∇

(

ω +Qĥ
)

}

dA = 0. (50)

In the quasigeostrophic limit ∇ · u = 0, so we may write the final term in the integrand as
∫∫

A

u · ∇
(

ω +Qĥ
)

dA =

∫∫

A

∇ ·
((

ω +Qĥ
)

u
)

dA =

∫

∂A

(

ω +Qĥ
)

u · n̂ds = 0, (51)

where ∂A denotes the horizontal boundaries of the domain, n̂ denotes a unit vector normal
to the boundary, and ds denotes an infinitesimal unit of distance along the boundary.
The second equality follows from an application of the divergence theorem, and the final
equality holds because u must be tangential to the boundaries. Applying (51) to (50) yields
the following evolution equation for the total vorticity,

∂

∂t

(

〈ω〉ekt
)

= 0, where 〈ω〉 =

∫∫

A

ω dA. (52)

Via a similar procedure, it may be shown that exactly the same evolution equation for 〈ω〉
holds in (49), which suggests that the global behaviours of (42) and (49) should be broadly
similar. However, if the interface line r = R(θ, t) has been perturbed from a state where
R = Rh and ω = 0 everywhere then this simply states that 〈ω〉 = 0 for all time, as in the
frictionless case. We can therefore make a stronger evaluation of our parametrisation by
considering the total absoulute vorticity in the annulus.
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Recall from (48) that when Q > 0, the vorticity is always positive in Rw < r < Rh

and always negative in Rh < r < Rc. We shall henceforth restrict our attention to this
case, with the understanding that analogous results hold when Q < 0. This motivates the
following integration of (42),

(
∫∫

A1

−

∫∫

A2

){

∂ω

∂t
+ kω + ∇ ·

((

ω +Qĥ
)

u
)

}

dA = 0 (53)

where we have applied ∇ · u = 0 in the final term of the integrand. We define the regions
A1 = {(r, θ) : Rw < r < Rh, 0 < θ < 2π} and A2 = {(r, θ) : Rh < r < Rc, 0 < θ < 2π}, such
that A = A1 ∪ A2. Thus ω ≥ 0 everywhere in A1 and ω ≤ 0 everywhere in A2. The first
two terms in the integrand in (53) may then be rewritten as
(

∫∫

A1

−

∫∫

A2

){

∂ω

∂t
+ kω

}

dA =

(

∂

∂t
+ k

)(
∫∫

A1

−

∫∫

A2

)

ω dA

=

(

∂

∂t
+ k

) (
∫∫

A1

+

∫∫

A2

)

|ω|dA =

(

∂

∂t
+ k

)

〈|ω|〉, (54)

where we use the shortened notation (
∫∫

A1
−

∫∫

A2
)F dA =

∫∫

A1
F dA −

∫∫

A2
F dA, and

where the angular brackets 〈 〉 denote integration over A, as in (52). The second equality
in (54) follows from the fact that ω is always positive in A1 and always negative in A2. The
final term of the integrand in (53) may be simplified using the divergence theorem,

I =

(
∫∫

A1

−

∫∫

A2

)

∇·
((

ω +Qĥ
)

u
)

dA =

(
∫

∂A1

−

∫

∂A2

)

(

ω +Qĥ
)

u · n̂ ds

=

∫

r=Rh

{(

ω1 +Qĥ1

)

u1 · n̂1 −
(

ω2 +Qĥ2

)

u2 · n̂2

}

ds. (55)

Here again ∂A1 and ∂A2 denote the boundaries of A1 and A2, n̂ denotes a unit vector
pointing normally outwards from the boundary, and ds denotes an infinitesimal distance
along the boundary. The second equality in (55) follows from the requirement that u · n̂ = 0
on r = Rw and r = Rc, so we need only integrate over the intersection of ∂A1 and ∂A2,
which is the shelf line r = Rh. The unit vectors n̂i are directed normally to the boundary
r = Rh and outwards from region Ai, so in fact n̂1 = −n̂2. Otherwise the subscripts i, where
i = 1, 2, denote that a quantity should be evaluated infinitesimally close to the boundary
in the region Ai.

Now by definition ĥ1 = 0, and ĥ2 = 1, and as we have taken the quasigeostrophic limit,
u must be continuous at r = Rh. This allows us to further simplify our expression for I to

I =

∫

r=Rh

{

ω1 + ω2 +Q
(

ĥ1 + ĥ2

)}

u · n̂ds =

∫

r=Rh

(|ω1| − |ω2|)u · n̂ds. (56)

The second equality follows from the fact that the total mass flux across r = Rh must be
zero,

∫

r=Rh
u · n̂ = 0, by conservation of mass. Thus I is the average around the shelf line

of the difference between the vorticity fluxes across the shelf line. Combining (54) and (56),
we obtain the following evolution equation for the total absolute vorticity in the annulus,

∂

∂t

(

〈|ω|〉ekt
)

+ Iekt = 0. (57)
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Applying the same integration to (49) yields exactly the same evolution equation for 〈|ω|〉.
The dependence of 〈|ω|〉 on I, and thereby on the average of the vorticity field around the
shelf line, means that the total absolute vorticity will evolve differently under (42) and (49).

Our parametrisation assumes, as before, that the fluid has been perturbed from a rest
state with r = Rh and ω = 0. All vorticity then decays exponentially at a rate k, regardless
of when the vorticity is generated by fluid crossing the shelf. As in the frictionless case,
only fluid within the envelope of the wave (between r = Rh and r = R) can have nonzero
vorticity. Thus, this equation exactly replicates the behaviour of fluid columns that are
perturbed across the shelf at t = 0 and remain there, or that do not cross the shelf at all. It
least accurately captures the behaviour of fluid columns that cross the shelf, remain there
for a period of time that is O (1/k), and then return, because these fluid columns end up
outside the envelope of the wave with non-negligible vorticity. One might expect to see such
behaviour, for example, in travelling wave solutions.

Nevertheless, we shall see in Section 7 that this parametrisation yields good agreement
with experimental results. This is because fluid columns tend to experience a loss of vor-
ticity when they cross the shelf line in the experiment, and so tend not to retain large
vorticities outside the envelope of the waves. Equation (49) is also useful because it allows
a straightforward derivation of an evolution equation for the interface r = R. Recalling
that in the quasigeostrophic limit we have ω = ∇2Ψ, as in Section 3, we let Ψf = Ψekt,
such that (49) becomes

D

Dt

(

∇2Ψf +
fh

H

)

= 0. (58)

We may then perform exactly the same analysis as was performed in Section 3, but replacing
Ψ and ψ by Ψf and ψf throughout. The equation for the evolution of the interface is then

∂R

∂t
= −

1

R

∂

∂θ
Ψ(R(θ, t), θ, t) = −

e−kt

R

∂

∂θ
Ψf (R(θ, t), θ, t). (59)

Thus, we obtain exactly the same solution for the evolution of the interface ∂R/∂t, but
multiplied by exp(−kt/Q), where t is now the dimensionless time. This means that the
solution evolves in a way that is identical to the frictionless case, but with the motion of
the interface decaying exponentially to zero.

6 Stability

The laboratory experiments with a rotating annulus have highlighed some instabilities of
the fluid under certain conditions. We now examine two specific types of instability in an
attempt to explain these results.

6.1 Stability of the Mean Flow

In Figure 4 we present snapshots of a laboratory experiment in which a mean flow is induced
by rapidly changing the rotation rate of the annulus once the fluid is in solid body rotation.
The flow becomes unstable and forms large eddies along the shelf line. It is desirable to
include a mean flow in our experiments to represent the presence of a current along the
shelf break, so it is of interest to determine the cause of this instability.
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Figure 4: Snapshots of an experiment exhibiting instability to a mean flow. Once the
fluid in the tank had achieved solid-body rotation, the rate of rotation of the tank was
rapidly reduced from f = 2.00 rad s−1 to f = 1.85 rad s−1. The fluid thus continues to move
anticlockwise around the tank, and develops large instabilities resembling Kelvin-Helmholz
rolls as it does so. These snapshots were taken 0 (top left), 45 (top right), 59 (bottom left)
and 77 (bottom right) seconds after the change in the tank’s rotation rate. The maximum
depth of the fluid is 25cm, and the radius of the inner wall is approximately 66cm.
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Consider a mean flow um = vm(r, t)êθ in a rotating annulus whose walls Rc and Rw

and shelf line Rh are independent of θ, and where um is initially a flow of constant angular
velocity α0, vm(r, 0) = α0r. We seek a radially symmetric solution of the dissipative shallow
water equations (41a), ensuring that mass and surface pressure are conserved across the shelf
line at r = Rh. The solution, which must be time-dependent due to the dissipative terms,
is

vm = α0re
−k̂t/η, πm = π0 + 1

2α0

(

r2 −R2
h

)

e−k̂t/η
(

f + α0e
−k̂t/η

)

, (60)

The fluid depth is η = H − h, where h is defined in Section 3. For t > 0 there is a
discontinuity in vm at r = Rh, and we expect that this velocity shear should be unstable to
small perturbations.

To demonstrate that this configuration is unstable we consider the simple problem of a
steady shear flow in the presence of a discontinuity in depth. We prescribe a mean flow of
the form

vm =

{

α1r, Rw < r < Rh,
α2r, Rh < r < Rc.

(61)

We might now naively seek a linear wave solution by following a method analogous to that
of [17], linearising the governing equations about the mean flow solution and requiring that
the mass flux and pressure across r = Rh should be continuous. However, this yields a
dispersion relation that has purely real modes, indicating that there is no instability in the
mean flow, and that does not reduce to the expected dispersion relation when there is no
discontinuity in depth. We must therefore approach the problem more carefully.

Figure 5: Schematic of a linear wave propagating in a small region of the annulus in the
presence of a sheared mean flow.

Let us consider the propagation of a linear wave along the line of the shelf, presented
diagrammatically in Figure 5. We split the domain into four regions, similar to the approach
taken in the derivation of the nonlinear wave equation in Section 3. In order to properly
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incorporate the influence of the shear, we must recognise that the mean flow in region 3 is
the same as that in region 1, and similarly that the mean flow in region 4 is the same as
that in region 2. The complete mean flow is then

umi = αjr êθ, πmi = π0 + 1
2αj

(

r2 −R2
)

, (62)

where j = 1 for i = 1, 3 and j = 2 for i = 2, 4, which also ensures continuity of pressure
across r = R and r = Rh. We linearise (41a) with k̂ = 0 about the mean flow solution,
setting ui = um,i + u′

i, πi = πm,i + π′i and R = Rh + R′, where u′
i ≪ um,i, π

′
i ≪ πm,i and

R′ ≪ L. This yields

∂u′
i

∂t
+ αj

∂u′
i

∂θ
+ (f + αj)ẑ × u′

i + ∇π′i = 0, ∇ · u′
i = 0, (63)

which is valid everywhere except at r = Rh. However, in the linear limit, the fluid in
regions 3 and 4 becomes infinitesimally close to the shelf line r = Rh, and so there we must
apply the linearised form of the complete mass conservation equation (41b), rather than
the two-dimensional incompressibility condition. Thus (63) holds only for i = 1, 2.

In order to avoid a detailed consideration of the dynamics in regions 3 and 4, we in-
stead make use of the fact that the linearised kinematic boundary conditions and pressure
continuity condition for the interface r = Rh +R′ are imposed on the shelf line r = Rh,

∂R′

∂t
+ α1

∂R′

∂θ
= u′3,

∂R′

∂t
+ α2

∂R′

∂θ
= u′2, π′2 = π′3, on r = Rh, R′ > 0, (64a)

∂R′

∂t
+ α1

∂R′

∂θ
= u′1,

∂R′

∂t
+ α2

∂R′

∂θ
= u′4, π′1 = π′4, on r = Rh, R′ < 0. (64b)

We combine these with the jump conditions for the shelf line, which state that mass flux
and surface pressure must be continuous across the discontinuity in depth,

Hu′1 = (H −Hs)u
′
3, π′1 = π′3, on r = Rh, R′ > 0, (65a)

Hu′4 = (H −Hs)u
′
2, π′4 = π′2, on r = Rh, R′ < 0. (65b)

We may now eliminate u′3, u
′
4, π

′
3, and π′4 between (65a), (65b), (64a) and (64b). We thereby

avoid any consideration of the structure of regions 3 and 4, instead connecting regions 1
and 2 directly via the following jump conditions,

∂R′

∂t
+ α1

∂R′

∂θ
=

1

∆H

u′1,
∂R′

∂t
+ α2

∂R′

∂θ
= u′2, π′1 = π′2, on r = Rh, R′ > 0, (66a)

∂R′

∂t
+ α2

∂R′

∂θ
= ∆Hu

′
2,

∂R′

∂t
+ α1

∂R′

∂θ
= u′1, π′1 = π′2, on r = Rh, R′ < 0, (66b)

where ∆H = (H −Hs)/H ≤ 1 is the depth ratio. Note that in the absence of a mean flow,
α1 = α2 = 0, we may reduce the boundary conditions to (H−Hs)u

′
2 = Hu′1 and π′1 = π′2 at

r = Rh for all θ, which corresponds to the approach of [17]. In fact, this reduction can be
performed for any continuous mean flow profile, and it is only in the case of a discontinuous
profile that this special consideration is required.
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We now make use of the fact that the velocity is divergence-free in regions 1 and 2 to write
u′

j = −∇× ψ′
j ẑ, and seek plane wave solutions of the form ψ′

j = Re{ψ̂j(r) exp[i(lθ − σt)]}.
Taking the curl of the linearised momentum equations in (63) yields a vorticity equation
that states that the vorticity must be uniformly equal to zero at all times, so ω′

1 = ∇2ψ′
1 = 0

and ω′
2 = ∇2ψ′

2 = 0. We may then solve for ψ̂i subject to the boundary conditions ψ′
1 = 0

at r = Rw and ψ′
2 = 0 at r = Rc. Substituting the result into (66a) and (66b) yields the

following dispersion relation,

σ =
1

c1∆H + c2

{

1
2(f2 − ∆Hf1) + (∆Hc1α1 + c2α2) l

±
√

1
4(f2 − ∆Hf1)2 + ∆H(f2c1 + f1c2)(α1 − α2)l − ∆Hc1c2(α1 − α2)2l2

}

, (67)

where f1 = f + 2α1, f2 = f + 2α2, and

c1(l) =
(Rh/Rw)l + (Rh/Rw)−l

(Rh/Rw)l − (Rh/Rw)−l
, c2(l) =

(Rc/Rh)l + (Rc/Rh)−l

(Rc/Rh)l − (Rc/Rh)−l
. (68)

When there is no mean flow (α1 = α2 = 0) this reduces to the dispersion relation for linear
shelf waves in an annulus. In the case of a sheared mean flow with no topography and no
rotation (∆H = 1, f = 0) we recover the expected instability of all wave numbers to small
perturbations.

In the short-wave limit, c1, c2 → ±1 as l → ±∞, so the term proportional to l2 in the
square root of (67) causes σ to have a positive complex component proportional to l for
sufficiently large l. Thus very short waves are always unstable. However, for small l the
frequency may become real, and so long waves may be stable. It may be shown that in the
limit of infinitely long waves, l → 0, σ is real if the velocity shear, α1 − α2, satisfies
∣

∣

∣

∣

∣

α1 − α2
1
2(f1 ln(Rh/Rw) + f2 ln(Rc/Rh))

− 1

∣

∣

∣

∣

∣

<

√

1 +
(f2 − ∆Hf1)2 ln(Rc/Rh) ln(Rh/Rw)

∆H(f1 ln(Rh/Rw) + f2 ln(Rc/Rh))2
. (69)

This is not an exact condition for the velocity shear because α1 and α2 appear within f1 and
f2. However, typically in both the laboratory experiments and in the ocean, α1, α2 ≪ f ,
and so (69) still provides us with some insight. Long waves are stable as long as the shear
is sufficiently small. For f > 0 a comparatively small negative shear (α1 < α2) will make
all wave numbers unstable, whereas a relatively large positive shear (α1 > α2) is required
to achieve the same effect. In Figure 6 we present plots of the real and imaginary parts of
(67) for typical experimental parameter values with a positive shear.

Long waves can be stabilised because the generation of vorticity within the envelope of
the wave creates a velocity shear about the shelf line. This shear, which is most pronounced
in long waves, may exceed the size of the mean shear and thereby stabilise the disturbances.
Despite this, short waves are almost completely unaffected by the presence of rotation and a
discontinuity in depth. Although we still expect the shortest waves to be the most unstable,
the largest instabilities in the experiment of Figure 4 have wavelengths on the order of 30cm,
so in fact the longer perturbations grow faster in practice. Thus, whilst our idealised theory
can qualitatively predict this instability, we require a more sophisticated treatment to make
realistic quantitative predictions.
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Figure 6: Real (left) and imaginary (right) parts of the dispersion relation for linear waves
propagating in the presence of a sheared mean flow. Here f = 1.5 rad s−1, α1 = 0.1 rad s−1,
U2 = 0.05 rad s−1, ∆H = 0.8, Rw = 66 cm, Rh = 96 cm and Rc = 106.5 cm, as in the
experiment shown in Figure 4.

6.2 Stability of Long Waves

We now turn our attention to another laboratory experiment, illustrated in Figure 7. Here
a long wave is generated by reducing the rotation rate of the tank for a few seconds, creating
a temporary mean flow that generates a perturbation past a long bump in the outer wall.
The perturbation quickly breaks up into short waves, with the rest of the dyed interface
following suit shortly afterwards. This raises the possibility that the nonlinear topographic
Rossby waves themselves may be intrinsically unstable.

We perform a simple stability analysis of the waves by using the fact that they are long
and slowly-varying to approximate them as a radially symmetric strip of constant vorticity
ω0, as shown in Figure 8. We retain the shelf line at r = Rh, but for now we let ω0 be
arbitrary, and do not require it to be equal to Q as we did in Section 3. We shall also
only consider the case where R > Rh, as in the experiment shown in Figure 7, with the
understanding that similar results hold in the case that R < Rh. In the analogous problem
for a straight channel with a symmetric strip of constant vorticity [5], the flow is found to
be unstable to long waves if the width of the strip is less than half the width of the channel.

We write the basic-state vorticity as

ω = ω0 [H(r −R) −H(r −Rh)] , (70)

as in (10), where the bar notation will be used henceforth to denote the basic flow. This
means that for ω0 > 0, ω < 0 in Rh < r < R, reflecting the f > 0 case in Section 3. We seek
a radially symmetric basic flow u = v(r)êθ, which by definition is incompressible, ∇·u = 0.
The corresponding streamfunction ψ matches the leading-order streamfunction (18) from
Section 3 exactly, subject to the requirement that it must be uniformly equal to zero on the
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Figure 7: Snapshots of an experiment in which an instability arises in a long perturbation.
Once the fluid in the tank had achieved solid-body rotation (top left), the rate of rotation
of the tank was rapidly decelerated from f = 1.50 rad s−1 to f = 1.20 rad s−1, and then
rapidly accelerated again to f = 1.45 rad s−1. The effect of this is to cause the fluid to
move anticlockwise around the tank for 6 seconds and then return to approximate solid-
body rotation. A bump in the side wall of length 1.5m and maximum amplitude 2cm,
highlighted in the diagram by the superposed dashed lines, leads to the formation of a
perturbation ahead of the bump (top right). After 12 seconds (bottom left), a growing
short wave instability appears in the perturbation, and after 17 seconds this instability is
affecting the entire annulus. The maximum depth of the fluid in this experiment is 20cm,
and the radius of the inner wall is approximately 75cm.
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walls r = Rw and r = Rc. Thus the basic-state velocity is

v(r) =
ω0

2r

[

H(r −R)(r2 −R2) −H(r −Rh)(r2 −R2
h)

+
1
2(R2 −R2

h) +R2 ln(Rc/R) −Rh ln(Rc/Rh)

ln(Rc/Rw)

]

. (71)

Note that although the vorticity is discontinuous at r = R and r = Rh, the velocity is
continuous at both radii. The corresponding basic-state surface pressure satisfies dπ/dr =
fv + v2/r, but its exact form has no bearing on the stability of the flow.

Figure 8: A strip of constant vorticity in a section of the annulus, approximating a long,
slowly-varying topographic Rossby shelf wave.

We now consider infinitesimal perturbations to the basic state, setting u = u + u′ and
π = π + π′, where u′ ≪ u and π′ ≪ π. Substituting these into the non-dissipative shallow
water equations, (41a) and (41b), and linearising yields

∂u′j
∂t

+
v

r

∂u′j
∂θ

−

(

f +
2v

r

)

v′j +
∂π′j
∂r

= 0, (72a)

∂v′j
∂t

+
v

r

∂v′j
∂θ

+

(

f +
v

r
+
∂v

∂r

)

u′j +
1

r

∂π′j
∂θ

= 0, (72b)

∇ · u′
j = 0, (72c)

for j = 1, 2, 3, which is valid everywhere except at r = Rh. We connect regions 1 and 2
across r = Rh and regions 2 and 3 across r = R by requiring that an interface propagating
about either of them should satisfy kinematic boundary conditions and continuity of surface
pressure. At r = R, these reduce to

u′2 = u′3, π′2 = π′3, at r = R. (73)

At r = Rh we must also ensure that mass flux and surface pressure are continuous across
the discontinuity in depth. An analysis similar to that performed in Section 6.1 shows that,
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because the basic velocity v is continuous, these are exactly the jump conditions required
to connect regions 1 and 2,

Hu′1 = (H −Hs)u
′
2, π′1 = π′2, at r = Rh. (74)

Taking the curl of (72a) and (72b) yields the vorticity equation

∂ω′
j

∂t
+
v

r

∂ω′
j

∂θ
+ u′j

∂ω

∂r
= 0. (75)

The last term on the left hand side of this equation is equal to zero because ω is piecewise-
constant. Thus, if we seek plane wave solutions of the form ψ′

j = Re{ψ̂j exp[i(lθ − σt)]},
then (75) states that ω′

j = 0 holds everywhere except at r = Rh.

Figure 9: Plot of the stability radius Rs (in metres) for the case R > Rh (solid line), defined
such that if Rh < R < Rs then the flow is unstable, but for Rs < R < Rc the flow is stable.
We also show the stability radius for the case R < Rh (dashed line), defined such that if
Rs < R < Rh then the flow is unstable, but for Rw < R < Rs the flow is stable. The dotted
lines mark the positions of the outer wall Rc, the shelf line Rh and the inner wall Rw.

We may now obtain the complete solution using ωj = ∇2ψ′
j = 0 in region j for j = 1, 2, 3,

which has the solution
ψ′

j = Re
{(

Ajr
l +Bjr

−l
)

ei(lθ−σt)
}

, (76)

where Aj and Bj are constants. We then apply the jump conditions (73) and (74), and
the boundary conditions ψ′

1 = 0 on r = Rw, ψ′
3 = 0 on r = Rc. This determines all of the

constants Aj , Bj in terms a single constant representing the amplitude of the wave, which re-
mains arbitrary, and yields a dispersion relation for the wave frequency σ(l). Unfortunately
the calculation quickly becomes too complicated to obtain meaningful analytical results,
and is best handled using symbolic computation packages and numerical calculation. We
find that if there is no shelf (∆H = 1) then, as in the case of a straight channel, the flow
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is unstable to long waves (l → 0) unless one of the discontinuities lies sufficiently close to
the edge of the channel. The stability here is also independent of the vorticity ω0 and the
Coriolis parameter f . This is illustrated in Figure 9.

If we include a shelf (∆H < 1) then, as we found in Section 6.1, long waves may be
stabilised. In Figure 10 we compare σ(l) between cases where ∆H = 0.75 and ∆H = 1, with
all other parameters chosen to match the experiment presented in Figure 7. We see that
the flow is stable to all wave numbers in the presence of the shelf, but is unstable to long
waves when the shelf is absent. The most unstable wave in the latter case has a length of
approximately π/16 radians, which almost exactly matches the the length of the instabilities
observed in the bottom-left frame in Figure 7. This raises the possibility that the stability
of the long nonlinear wave in this experiment, which utilised an absolute discontinuity in
the bottom topography, is not affected by the shelf.

Figure 10: Plot of the wave frequency σ in rad s−1 as a function of the wave number
l in rad−1 for linear perturbations to an annular strip of vorticity, where Rw = 0.75 m,
Rh = 0.96 m, R = 0.985 m and Rc = 1.065 m. The solid line corresponds to the wave
frequency when there is a discontinuity in depth (∆H = 0.75) at r = Rh, whilst the
dotted line corresponds to the case of no discontinuity in depth (∆H = 1). In both cases
f = 1.45 rad s−1 and ω0 = 0.3625 rad s−1, corresponding the theoretical vorticity of the
nonlinear topographic Rossby wave in Figure 7.

The analysis performed here is based on infinitesimal horizontal perturbations to the
fluid directly above the discontinuity. To comply with this theory, fluid columns are required
to cross the discontinuity rapidly and repeatedly, which is physically counter-intuitive, so
it is not surprising to see that this analysis breaks down. If indeed the stability of long
topographic Rossby shelf waves propagating about an absolute discontinuity in depth is
determined by the theory for the case of a flat channel, then we should expect almost all
such waves to be unstable, according to Figure 9. However, in both the real ocean and in the
later laboratory experiments, the discontinuity in the theory is actually an approximation
of a slope, whose width is assumed to be negligible compared to the amplitude of the
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waves. This casts doubt upon the validity of the linear theory, which assumes waves of
infinitesimally small amplitude. In order to accurately examine the stability of these waves,
we would require a considerably more complex treatment of the problem that accounted for
the slope connecting the regions of different depths across the shelf line.

7 Breaking Lee Waves

We shall now turn our attention to waves generated in the lee of a bump in the outer wall
of the annulus. Of all of the experiments performed in the course of this project, these were
the only ones that led to consistent and measurable results, as most were subject to rapidly
growing instabilities similar to those described in Section 6.

In Figure 11 we present a specimen experiment in which a bump has been created on
the inside edge of the tank using the deformable wall. This is compared with a numerical
solution to the nonlinear wave equation (22), computed using a pseudo-spectral code. Once
the fluid had reached solid-body rotation, we rapidly increased the rate of rotation of the
tank from f = 1.50 rad s−1 to f = 1.60 rad s−1 for 6 seconds, and then returned the rotation
rate to f = 1.54 rad s−1. This resulted in the generation of a wave behind the bump and a
mean flow of αm ≈ −0.02 rad s−1. This state is used as the starting point (t = 0 s) of the
experiment for the purpose of numerical calculation, and corresponds to the top frame in
each of the series of images in Figure 11.

In the laboratory experiment, both with and without a sloping shelf, the long lee wave
breaks at the end furthest from the shelf after approximately 8 seconds. This is not possible
in the numerical solution of the full nonlinear wave equation (22), as dispersion will always
“smooth out” any large gradients. We therefore also present the numerical solution when
the dispersive O (µ) terms are excluded, visible only in the second frame of the numerical
solution. In Figure 12 we compare the length of the lee wave at the point of breaking between
the experiments and the non-dispersive computations for a range of mean flow speeds. We
also plot the dispersive wavelengths at times correspoinding to the point of wave breaking
in the experiments. These results suggest that the dispersive theory accurately predicts the
wavelength for mean flow speeds less than −0.01 rad s−1, whilst the non-dispersive theory
is more accurate for larger mean flow speeds. However, there is some uncertainty in the
wavelength and exact time of breaking in the experiment. For αm > 0.01 rad s−1 the wave is
drawn under the bump in the wall before breaking can occur, whilst for αm < −0.02 rad s−1

the wave tends to be swept away from the bump by the strong mean flow.
At later times the behaviour of the experiments and the numerical solution diverge

from one another. In the presence of a steep slope, the wave grows in length and amplitude,
building up behind the bump in the wall. Meanwhile, instabilities arise at the end of the
wave furthest from the bump, and subsequently grow into short breaking waves. Thus
the wave gradually sheds vorticity and its amplitude slowly decays. By contrast, in the
presence of a discontinuous shelf the wave quickly loses energy and decays back down to
the shelf line. In the numerical solution, the wave also build up behind the bump in the
wall, but remains there because it can not shed vorticity. The dissipation introduced via
the parameterisation of section 5 gradually slows all motion of the interface, such that the
wave eventually comes to rest behind the bump. The behaviour described here was found
to be similar for any negative mean flow, αm < 0. For αm ≥ 0 the wave moves under the
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Figure 11: Snapshots of an experiment with a sloping shelf (left), and a discontinuous shelf
(middle), and in a numerical solution (right) of the nonlinear wave equation with (black
line) and without (dark grey line) its dispersive terms. The pictures have been taken 0, 8,
94 and 113 seconds after the generation of the lee wave.
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bump, but friction around the shelf line causes it to decay rapidly as it does so.
As was mentioned in Section 2, the most serious deviation of the experiment from the

theory was the use of an actual discontinuity in the depth. This experiment suggests that
the fluid loses substantially more energy in crossing the discontinuous shelf than it does
in crossing the steeply sloping shelf. Intuitively, this is because a Stewartson boundary
layer will form at vertical wall of the shelf, whereas the sloping shelf will only have a
bottom Ekman layer (see [22], p219). We therefore expect fluid columns to encounter more
resistance as they cross the discontinuity than they do when they cross the slope.
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Figure 12: A comparison of the lengths of breaking lee waves in laboratory experiments
(crosses) and nondispersive computations (circles), defined as the angular distance from
the point of breaking to the front of the wave. In the dispersive computations (triangles),
the length of the region of positive amplitude is calculated at the time of breaking in the
corresponding laboratory experiment.

Between the dispersive and non-dispersive nonlinear wave equations, the main features
of the flow in the sloping shelf experiment are captured quite well. The instability that
arises in the lee waves may be due to a mechanism similar to that discussed in Section 6.2,
but there is no reason to expect that linear analysis to apply to the case of a sloping shelf.
Either way, it seems that short-wave processes invariably become important within a finite
time.

8 Conclusion

This project was initially conceived as a means of testing the fundamental theory of non-
linear long Rossby shelf waves in a channel, but it has broadened to cover a much wider
range of topics. The traditional theory for a straight channel has been redeveloped for
application to an annular domain, and extended to include the effects of irregular walls,
yielding a similar nonlinear wave equation (22). In the weakly nonlinear limit, the equation
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is exactly the same as that found in the straight-channel case, but with slightly different
coefficients, so the amplitude of weakly nonlinear waves is too small for them to be affected
by the geometry of the annulus. The additional requirements that the waves must fit into
the annular domain, and conserve mass about the shelf line, severely constrain the types of
solution that are possible, and suggest that longer waves should exhibit the most nonlinear
behaviour.

We have also considered the way that bottom friction might act to dissipate energy
from the system. Even a simple representation of this dissipation in the quasigeostrophic
shallow water equations is impossible to include exactly in our nonlinear wave model, so we
constructed an alternative parametrisation on the basis of conservation laws for the global
vorticity.

In the experiment itself, the waves generated were found to deviate from the long-
wave theory in two important ways: they were able to break, and they were unstable to
shorter waves. We explored possible mechanisms for the observed instabilities in Section 6,
where a linear analysis showed that a mean flow about a discontinuity should be unstable,
and that long waves of sufficiently small amplitude should themselves be unstable to long
perturbations. A comparison with the experiment depicted in Figure 7 suggests that in fact
the stability may be unaffected by the presence of the shelf line, explaining the observed
instability at somewhat larger amplitudes.

The experiments discussed in Section 7 exhibited both breaking of long waves and
instability to shorter waves that themselves subsequently went on to break. The fact that
the instability arises at the rear of the lee waves, where the amplitude approaches zero,
suggests an agreement with the linear stability theory. Meanwhile, the breaking of long
waves suggests that in reality, dispersive effects are not strong enough to counteract the
nonlinear steepening of the waves. Thus, although the nonlinear long-wave theory provides
a good qualitative description of the behaviour, in practice short-wave phenomena tend to
become just as important in a short time.
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Nonlinear peristaltic waves:

a bitter pill to swallow

Daisuke Takagi
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Abstract

Nonlinear waves of fluid are driven in an elastic tube by imposing a
radial force of sinusoidal form. The governing equations of the deforma-
tion of the tube and the flow rate inside the tube are derived using linear
elasticity theory and lubrication theory. Steady and periodic solutions in
the reference frame of a steadily propagating wave are obtained by either
asymptotic theory in the two limits of small and large forcing amplitudes
or numerical techniques for moderate forcing amplitudes. A strongly de-
formed tube of Newtonian fluid is shown to feature an occluded region and
a peak region, which depends importantly on the elastic properties of the
tube and weakly on the large forcing amplitude. The flow rate inside the
tube reduces significantly when the fluid has a yield stress, as investigated
using a Bingham plastic model. The flow of Newtonian fluid containing
a rigid rod in the tube shows that a maximal speed of the rod is attained
by imposing a radial force of moderate amplitude. The rod generally de-
clines in speed with increasing radius, suggesting that the python, which
must take in food by peristalsis without grinding into smaller pieces, has
a bitter pill to swallow.

1 Introduction

Fluid inside a deformable tube can be driven by the mechanism of peristaltic
action. Many biological ducts convey contents, including a bolus in the gastro-
nomical duct and urine in the ureter, by propagating waves of muscular con-
traction and relaxation. A python is able to swallow prey of considerable size
this way. A related type of flow in a deformed tube occurs in peristaltic pumps,
which are used for the infusion of medication into the circulatory system and the
treatment of wastewater in the environment, amongst many other applications.
Pushing toothpaste out of its tube is another example of relevance.

Mathematical models of peristaltic motion can be developed using lubrica-
tion theory, provided that effects due to fluid inertia are negligible. The low-
Reynolds-number flow of Newtonian fluid was described in an axisymmetric
tube with either a sinusoidal (Shapiro et al., 1969) or non-sinusoidal (Lykoudis
and Roos, 1970) deformation in its radius. The flow of non-Newtonian fluid
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was studied in a similar fashion, given a small deformation in the tube radius
(Frigaard and Ryan, 2004; Vajravelu et al., 2005). Another variation is to in-
troduce a peripheral layer of Newtonian fluid adjacent to the wall, which has
a different viscosity from that of the inner fluid (Brasseur et al., 1987). These
models prescribe the tube deformation without taking elastic properties of the
tube into consideration.

Of interest is a situation where the shape of the tube is unknown a priori
and must be solved as part of the problem, given some coupling between the
hydrodynamics and the mechanics of the elastic tube. Related free-boundary
problems of flow near an elastic material arise in a range of contexts, includ-
ing the swimming of a microorganism near a rigid wall (Argentina et al., 2007;
Balmforth et al., 2009) and premelting of ice in a deformable capillary (Wett-
laufer and Worster, 1995; Wettlaufer et al., 1996). In the context of peristaltic
motion with a prescribed activation wave of muscular contraction, where elastic
tubes result in finite-amplitude deformations, tubes containing Newtonian fluid
(Carew and Pedley, 1997) and a rigid bolus (Bertuzzi et al., 1983) have been
solved numerically. Analytic solutions are desirable for gaining a deeper under-
standing of peristaltic flow inside a strongly deformed tube, where the response
in tube radius is a nonlinear function of the forces driving the flow.

Here, theoretical models of peristaltic flow are developed, given a sinusoidal
wave of radial force of arbitrary amplitude that translates along an elastic tube.
In the reference frame of the wave, steady and periodic solutions are obtained
to describe the motion of three different materials inside the tube. In section 2,
the flow of Newtonian fluid is investigated inside a linearly elastic tube and
separately inside a tube of finite bending stiffness. In section 3, the flow governed
by a Bingham plastic model is considered, which exhibits the dual behaviour
of a fluid and a solid. Familiar examples of non-Newtonian fluid described by
the Bingham model include mud, paint, slurry, and toothpaste. In section 4,
the propulsion of a rigid body in a Newtonian fluid is examined. The coupled
motion of the solid and the fluid provides useful insight into the flow of pills
in the gastronomical duct, kidney stones in the ureter, and blood cells in small
blood vessels. In each section, the governing equations are derived and solved
using asymptotic theory in the two limits of small and large forcing amplitudes,
which give rise to linear and nonlinear responses in tube radius respectively.
The theoretical results are complemented by numerical solutions that describe
responses to moderate forcing amplitudes.

2 Newtonian fluid

Consider a Newtonian fluid of density ρ and dynamic viscosity µ with pressure
p0, inside a cylindrical tube of constant radius R in its undeformed state. A
radial force per unit area of sinusoidal form F (z − ct) = η sin[(z − ct)2π/L] is
applied on the tube along the axial coordinate z at time t. The imposed force,
characterised by its amplitude η, steady speed c, and wavelength L, perturbs
the pressure p inside the tube and the tube radius a, as sketch in figure 1. The
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Figure 1: Schematic sketch in cylindrical polar coordinates of a deformed tube filled
with Newtonian fluid. A prescribed radial force F perturbs the tube of radius a and
induces flow with axial velocity w.

velocity u of the induced flow of fluid is governed by

ρ
Du

Dt
= −∇p+ µ∇2

u, (1)

subject to the condition of incompressibility,

∇ · u = 0. (2)

The elastic properties of the tube are such that the change in pressure across
the tube is of the form

∆p|r=a = D
∂n

∂zn
(a−R) + F, (3)

where n = 0, 4 characterises the type of elastic material constituting the tube
and D denotes its stiffness. The case of n = 0 corresponds to a linearly elastic
tube such that its deformation is proportional to the net radial force. For
example, the tube could be attached by springs to a rigid surrounding backing,
where D is the spring constant. The case of n = 4 corresponds to a thin shell
of bending stiffness D = h3E/12(1 − ν2), where h is the shell thickness, E
the Young modulus and ν the Poisson ratio (Love, 1944). The objective is to
determine the shape of the tube and the volumetric flow rate q per wave period,
L/c.

It is convenient to introduce dimensionless variables of axial coordinate z′ =
z/L, radial coordinate r′ = r/R, time t′ = tc/L, pressure p′ = pR/µc, tube
stiffness D′ = DR/µc, amplitude of forcing η′ = ηR/µc, and flow rate q′ =
q/πR2c. All quantities from here onwards are dimensionless, without the primes
for simplicity. In addition, it is convenient to formulate the problem in the
reference frame of the wave, moving at speed 1 in the z direction. The advantage
of moving with the wave is that the tube radius is steady in time in this reference
frame, as justified below. The axial velocity w and radial velocity u are governed
by (1)

δ2Re
Du

Dt
= −

∂p

∂r
+ δ2

1

r

∂

∂r

(

r
∂u

∂r

)

+ δ4
∂2u

∂z2
(4)

405



and

Re
Dw

Dt
= −

∂p

∂z
+

1

r

∂

∂r

(

r
∂w

∂r

)

+ δ2
∂2w

∂z2
, (5)

where

δ ≡
R

L
(6)

is the aspect ratio of the region of interest and

Re ≡
ρcR2

µL
(7)

is the Reynolds number. The deformation of the tube is small provided that δ ≪
1 under the long-wave approximation. Inertia is negligible compared to viscous
forces provided that Re ≪ 1. It is natural to seek steady solutions in the wave
frame because the explicit dependence on time is dropped by neglecting effects
due to inertia. Under these approximations of lubrication theory, the leading-
order equation of (4) indicates that the pressure inside the tube is uniform in
the radial direction. Consequently, ∆p|r=a = p− p0 so

dp

dz
= D

d1+na

dz1+n
+ η cos z, (8)

by differentiating (3) with respect to z. The leading-order equation of (5) gives
rise to a second-order differential equation for the axial velocity w,

dp

dz
=

1

r

∂

∂r

(

r
∂w

∂r

)

. (9)

The associated boundary conditions are w = −1 on r = a, by the condition
of no slip on the tube wall, and ∂w/∂r = 0 on r = 0, by either regularity or
axisymmetry of the flow. Note that w = −1 in the wave frame corresponds
to no axial flow in the lab frame. Integrating (9) twice and imposing the two
boundary conditions yield the velocity profile in the wave frame,

w =
1

4

dp

dz
(r2 − a2) − 1. (10)

Streamlines are determined by contours of the streamfunction

ψ = −
1

16

dp

dz
r2(2a2 − r2) −

1

2
r2, (11)

which is obtained by integrating w = r−1∂ψ/∂r.
A measure of the proportion of fluid propagating with a wave is given by

the time-averaged flow rate in the lab frame, denoted by q. The flow rate in the
lab frame at any axial coordinate is obtained by integrating the axial velocity
in the lab frame over the cross-section of the tube, 2

∫ a

0
(w + 1)r dr. Its average

in time, which is equivalent to its average in z over 2π, is computed by using
(10) and the global conservation of fluid volume

〈a2〉 = 1, (12)
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Figure 2: Numerical solutions of the tube radius perturbed by different forcing am-
plitudes η. The tube is of type n = 0 and has stiffness D = 1. As η increases, the
deformation of the tube increases.

where 〈·〉 ≡ (2π)−1
∫ 2π

0
· dz. The time-averaged flow rate in the lab frame is

given by

q = −
1

8

dp

dz
a4 − a2 + 1, (13)

where dp/dz is given by (8). When n = 0 in (8), the first-order differential
equation (13) must be solved subject to the periodic boundary condition a(0) =
a(2π). When n = 4 in (8), the fifth-order differential equation (13) must be
solved subject to periodic boundary conditions dia/dzi(0) = dia/dzi(2π) for
i = 0, 1, 2, 3, 4. A boundary-value problem with an eigenvalue to be determined,
q, must be solved to determine the radius of the tube.

The system of equations, (12) and (13), can be solved numerically using a
built-in function of Matlab called bvp4c. The forcing amplitude η is incremented
slowly from 0 with a = 1 to obtain a solution during each iteration, which forms
an initial guess for solutions with successive increments of η. A representative
set of solutions for the tube radius in response to different forcing amplitudes η
is plotted in figure 2. The associated solutions of the eigenvalue q are presented
later. For small η, the tube deformation is small as expected. As η increases,
the tube is occluded except near z = 3π/2, where its radius peaks due to the
imposed force that is maximal and radially outward. Streamlines of the flow
induced with forcing amplitudes η = 2 and η = 3 are shown in figures 3 and
4, obtained using equation (11). As η increases, a qualitative change in the
structure of the streamlines is observed, from axial flow that is everywhere
negative in the wave frame to the development of a recirculating zone where the
tube peaks in radius. Fluid inside the recirculating zone propagates with the
wave.

In the limit as η → 0, the tube is almost undeformed and flow inside the
tube is expected to be negligible. In the limit as η → ∞, the trapped core near
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Figure 3: Streamlines of flow driven by a radial force of amplitude η = 2. In the wave
frame, the axial velocity inside the tube is everywhere negative.
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Figure 4: Streamlines of flow driven by a radial force of amplitude η = 3. In the wave
frame, a trapped core, recirculating anti-clockwise, forms in the region where a peak
radius of the tube is attained.
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Figure 5: Theoretical prediction and numerical solutions of the time-averaged flow
rate in the lab frame for small forcing amplitudes η. The numerical solutions are
obtained with tube stiffness D = 1 and agree with the theoretical prediction in the
asymptotic limit as η → 0, independent of the type of tube, n = 0, 4.

z = 3π/2 is expected to increase in size and allow most of the fluid in the tube
to propagate with the wave. The two limits of small and large η are investigated
separately using asymptotic theory.

In the small-amplitude limit, η ≪ 1, it is fruitful to seek series solutions
of a and q about the base state, a = 1 and q = 0. The subsequent term in
a is of order η, which indicates that the leading term in q is of order η2, by
operating 〈·〉 on (13) and using the integral constraint (12). The radius of the
tube responds linearly to the amplitude of the external forcing. Substituting
a = 1 + ηa1 + o(η2) into (13) gives

D
d1+na1

dz1+n
− 16a1 = cos z, (14)

which is solved subject to periodic boundary conditions. The solution is given
by

a = 1 − η
16 cos z −D sin z

162 +D2
+ o(η2), (15)

independent of the type of tube characterised by n = 0, 4 because sin z and
cos z are invariant under four differentiations. Operating 〈·〉 on (13), which gives
q = −〈(dp/dz)a4/8〉, and imposing periodic boundary conditions at z = 0, 2π,
yield an expression for the time-averaged flow rate,

q =
4η2

162 +D2
+ o(η3), (16)

which is in agreement with numerical results for small η as shown in figure 5.
Note that the theoretical prediction given by (16) in the asymptotic limit as
η → 0 agrees with numerical results up to η ≈ 2 inside a tube of type n = 0
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Figure 6: Theoretical prediction and numerical solutions of the characteristic propor-
tion of fluid left behind the wave for large η, plotted on logarithmic scales. The tube
is of type n = 0 and has stiffness D = 1.

and up to η ≈ 5 inside a tube of type n = 4. The numerical results in the figure
suggest that q approaches 1 as η increases, which is investigated below.

In the large-amplitude limit, η ≫ 1, two qualitatively distinct regions de-
velop, one near z = 3π/2 where the tube radius peaks, and the other away from
z = 3π/2 where the tube is occluded. Quantitative details of the two regions
must be considered separately in the two types of tubes, n = 0 and n = 4. Of
interest is the quantity 1 − q, a measure of the proportion of fluid left behind
the wave.

When n = 0, the tube radius is expected to approach 0 in the occluded region
so the dominant contribution to dp/dz in (13) arises from the second rather than
the first term on the right hand side of (8). The governing differential equation
(13) reduces to an algebraic equation

−η cos z a4 − 8a2 + (1 − q) = 0. (17)

This quadratic equation in a2 results in two branches,

a2 =
4

η cos z

(

−1 ±

√

1 +
η

2
(1 − q) cos z

)

, (18)

where ± is either positive in the lower branch or negative in the upper branch.
Only the lower branch corresponds to a real tube radius throughout the domain
0 ≤ z ≤ 2π. However, its gradient is unphysically discontinuous at z = π, which
must be resolved by switching smoothly to the upper branch. The condition
that the lower and upper branches meet at z = π requires

q = 1 − 2η−1 + o(η−2). (19)

The theoretical prediction for the flow rate given by (19) is in excellent agree-
ment with numerical results, as shown in figure 6. Note that the characteristic
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Figure 7: Theoretical and numerical solutions of the tube radius deformed with forcing
amplitude η = 200. The theoretical solution, given by (21) in the peak region and (20)
in the occluded region, is in excellent agreement with the numerical solution obtained
using input parameters n = 0 and D = 1.

proportion of fluid left behind the wave is determined solely by the occluded
region, independent of the peak region to be examined later. Substituting (19)
into (18) gives the solution for the tube radius in the occluded region,

a =

{

2
(

1 −
√

2| cos z/2|
)−1/2

η−1/2 + o(η−1) π ≤ z < 3π/2,

2
(

1 +
√

2| cos z/2|
)−1/2

η−1/2 + o(η−1) 0 ≤ z < π, 3π/2 < z ≤ 2π,
(20)

which is continuous at z = π but discontinuous at z = 3π/2. The radius of
the tube diverges as z → 3π/2 from below and converges to

√

2/η from above.
The divergence and discontinuity represent the formation of a shock, which is
resolved mathematically by considering a boundary layer near z = 3π/2, the
peak region.

In the peak region, the tube radius is expected to grow arbitrarily with
forcing amplitude η, suggesting that only the first term on the right hand side
of (13) is dominant. This means that dp/dz = 0 so the pressure in the peak
region is uniform. It can be shown, by combining equations (8) and (12), where
cos z in (8) is expanded near z = 3π/2, that the rescaled tube radius is given
by A = η−1/5a and has a peak Amax at ζ = 0, where ζ is the rescaled axial
coordinate in the peak region such that z = 3π/2 + η−2/5ζ. The rescaled
equation of (8) reduces to DdA/dζ + ζ = 0 and is integrated to obtain

A = Amax −
ζ2

2D
. (21)

The tube radius in the peak region has a parabolic profile, provided that the tube
has stiffness D > 0. The peak radius of the tube is given by amax = η1/5Amax
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Figure 8: Theoretical prediction and numerical solutions of the peak radius of the
tube of type n = 0 and stiffness D = 1, plotted on logarithmic scales.

with

Amax =

(

152π2

27D5

)1/5

, (22)

which is obtained by solving the rescaled equation of (12),
∫ δ

−δ
A2 dζ = 2π,

where δ =
√

2DAmax corresponds to the half-width of the peak region. The
occluded region given by (20) and the peak region given by (21) agree with
numerical results, demonstrated in figure 7 for a tube of stiffness D = 1, forced
with amplitude η = 200. The scaling η1/5 and the prefactor (22) for the peak
radius of the tube also agree with numerical results as shown in figure 8. The
form of amax indicates that the peak radius depends importantly on the tube
stiffness but depends weakly on the forcing amplitude for large η.

When the type of tube is characterised by n = 4, different scalings of the
flow are obtained in both the occluded and peak regions. In the peak region,
the pressure is uniform and the rescaled equations are obtained by combining
equations (8) and (12), as before. The rescaled tube radius is given by A =
η−1/13a and satisfies Dd5A/dζ5 + ζ = 0, subject to the boundary conditions
that A, dA/dζ, and d2A/dζ2 all vanish near the ends of the peak region, as
ζ → ±δ, where z = 3π/2+ η−2/13ζ. These boundary conditions ensure that the
peak region matches smoothly to the occluded region, which is considered later.
Integrating the fifth-order differential equation fives times gives the radius of
the tube in the peak region,

a = η1/13 1

6!D

(

δ2 − ζ2
)3
, (23)

where

δ = (πD26!2)1/13

(

11

3
−

20

7
−

6

11
+

1

13

)

−1/13

(24)
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Figure 9: Theoretical and numerical solutions of the tube radius deformed with forcing
amplitude η = 200. The theoretical prediction, given by (23) in the peak region, agrees
with the numerical solution obtained using input parameters n = 4 and D = 1.
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Figure 11: Theoretical prediction and numerical solutions of the characteristic pro-
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is obtained using the rescaled integral constraint (12),
∫ δ

−δ A
2 dζ = 2π. The peak

region agrees with numerics, demonstrated by figure 9 for η = 200, D = 1. The
maximal radius of the tube at z = 3π/2, η1/13δ6/6!D, agrees with the numerics
as shown in figure 10. Note that the forcing amplitude must increase by thirteen
orders of magnitude to deform the tube radius by one order of magnitude. A
comparison of figures 7 and 9 indicates that for the same value of D and large
η, the peak region of the tube of type n = 4 is longer and less deformed than
that of the tube of type n = 0. The extremely weak dependence of the tube
deformation on the applied force in the limit of large η is attributed to large
amount of energy that is dissipated due to viscous forces in the highly occluded
region, instead of doing mechanical work to deflect and expand the peak region
of the tube.

In the occluded region away from z = 3π/2, the numerical solution in figure 9
suggests that the tube radius rapidly approaches zero with increasing η. This
implies that keeping the dominant terms of (13) reduces to a2 = 1 − q. The
occluded region has a constant radius. In contrast to the previous problem
inside a tube of type n = 0, in which q was determined by the occluded region,
q in a tube of type n = 4 must be obtained by matching the occluded and peak
regions using matched asymptotic expansions. It can be shown in the matched
region near z = 3π/2 ± η−2/13δ that all terms are dominant in (13), except
the contribution to dp/dz from η cos z, which drops to leading order. A scaling
analysis of the reduced equation of (13) and its boundary conditions in the
matched region indicates that 1−q = o(η−35/26). The prefactor of this scaling is
approximately 2.9 because numerical values of (1−q)η35/26 quickly approach this
value with increasing η. This theoretical prediction agrees well with numerical
results as shown in figure 11. Note that the characteristic proportion of fluid
left behind the wave approaches 0 more quickly in the limit of η → ∞ in a tube
of type n = 4 than n = 0. A tube of type n = 4 has a smaller occluded region
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Figure 12: Stress-strain relationships of a Newtonian fluid and a Bingham plastic.
The Newtonian curve has a slope corresponding to its viscosity. The Bingham curve
has a stress-intercept corresponding to the yield stress and a slope corresponding to
the plastic viscosity.

than a tube of type n = 0, implying a trapped core of larger size in the peak
region that allows more fluid to propagate with the wave.

It has been determined that a non-zero radial force always results in de-
formation of a tube of Newtonian fluid. This is no longer the case when the
tube contains fluid with a yield stress, where sufficient force on the tube must
be applied to induce any motion. The problem of pumping a Bingham plastic,
which is a type of non-Newtonian fluid with a yield stress, is considered in the
following section. For simplicity, the tube is of type n = 0 in the remaining
sections.

3 Bingham plastic

Consider a Bingham fluid with yield stress τ0 and plastic viscosity µ. The
Bingham fluid behaves either like a Newtonian fluid of viscosity µ in regions
where the shear stress exceeds the yield stress, or like a plug without deformation
in regions where the shear stress is below the yield stress. The stress-strain
relationship of a Bingham fluid is compared with that of a Newtonian fluid in
figure 12. The introduction of the yield stress modifies the force balance in the
axial direction (9) to the system of equations

dp

dz
=

1

r

∂

∂r
(rτrz) (25)

and

∂w

∂r
=

{

τrz − sgn
(

∂w
∂r

)

B |τrz| > B,

0 |τrz| < B,
(26)

where

B ≡
τ0R

µc
(27)
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is the dimensionless yield stress, also known as the Bingham number. Equation
(26) is the one-dimensional approximation of the Bingham constitutive law that
applies to the current problem in a slender geometry (Vajravelu et al., 2005).
The limit as B → 0 reduces to the Newtonian problem encountered in section
2.

The boundary conditions of the axial velocity w are the same as in the
Newtonian problem. The solution, satisfying the no-slip condition on the tube
wall and regularity at r = 0, is given by

w =

{

− 1

4

dp
dz [(a2 − r2) − 2r0(a− r)] − 1 r > r0

− 1

4

dp
dz (a− r0)

2 − 1 r ≤ r0,
(28)

where
r0 = min [2B/|dp/dz|, a] (29)

is the radius of the plug-like region inside the tube. The velocity profile is
either parabolic for r > r0 or uniform for r ≤ r0. The central region of the
tube, bounded by radius r0, is actually a pseudo-plug because the associated
velocity profile is flat in radius and only appears to be below the yield stress
to leading order (Balmforth and Craster, 1999). Indeed, this region is not truly
rigid because axial velocity variations remain, except if r0 = a, in which case
the fluid spanning that section of the tube becomes truly rigid.

The time-averaged flow rate in the lab frame, q = 2〈
∫ a

0
(w + 1)r dr〉, is

computed from the axial flow velocity w in the wave frame, as in section 2. The
expression for q is given by

q = −
1

24

dp

dz
(a− r0)

2
(

(a+ r0)
2 + 2a2

)

− a2 + 1, (30)

where dp/dz is given by (8) with n = 0. The expression on the right hand side
of (30) without the two final terms represents the steady flow rate in the wave
frame and is equivalent to the Buckingham-Reiner equation (Bird et al., 1987).
In the limit as B → 0, the flow rate in (30) with r0 = 0 reduces to (13) and
recovers the flow rate of Newtonian fluid, as expected.

The tube radius is determined by solving the governing equations as a
boundary-value problem in the domain 0 ≤ z ≤ 2π. Equation (30), subject
to the periodic boundary condition a(0) = a(2π), contains an eigenvalue q and
must be solved subject to the integral constraint (12). A sample solution is
shown in figure 13 and features three qualitatively distinct regions. A sheared
region, r0 < r < a, forms near the tube wall where the tube is most deformed.
A region of pseudo-plug, r < r0 < a, forms inside the sheared region. A solid
region, r < r0 = a, occupies the entire cross-section of the tube where its radius
is uniform in z. This means that at any extent along the tube in the lab frame,
a stationary region develops during an interval of time, which begins after the
departure of a sheared region and ends on arrival of another sheared region.

In the limit of small forcing amplitude η, solutions of the form a = 1+ηa1 +
o(η2) and q = η2q2 + o(η3) are sought, as in section 2. In a tube of type n = 0
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Figure 13: Numerical solution of the tube radius and the plug-like region inside a
Bingham fluid. The input parameters are n = 0, D = 0, η = 1, B = 0.1.
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Bingham number given by (27) from 0 to η/2.
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without stiffness, D = 0, it follows from (30) that

a = 1 −
η

48
cos z(1 − r0)

2
(

(1 + r0)
2 + 2a2

)

+ o(η2). (31)

The time-averaged flow rate q is computed by operating 〈·〉 on (30), the method
adopted in section 2. It can be shown, after some steps of algebra, that

q =
η2

96
〈cos2 z(1 − r0)

3
(

(1 + r0)
2 + 2

)

〉. (32)

There is no contribution to (32) from the solid region, where r0 = 1. The
flow rate is determined by the sheared regions, |z| < ξ and |z − π| < ξ, where
ξ ≡ cos−1(2B/η) is the half-width of each region. Substituting r0 = 2B/η| cos z|
into (32) and integrating over the sheared regions gives

q =
η2

48π
f(ξ), (33)

where

f(ξ) =
3ξ

2
−

11

4
sin(2ξ) + 4ξ cos2 ξ + tan ξ cos4 ξ

− cos5 ξ

(

tanh−1(tan
ξ

2
) +

1

4(1 − sin ξ)
−

1

4(cos ξ
2

+ sin ξ
2
)2

)

.(34)

Figure 14 shows the flow rate given by (33), scaled by the corresponding flow rate
of Newtonian fluid, (16), as a function of the rescaled Bingham number, 2B/η.
The theoretical prediction for D = 0 and small η is in excellent agreement with
numerical results. The rescaled flow rate is a monotonically decreasing function
of the rescaled Bingham number for 2B/η ≤ 1, as shown in figure 14, because
the plug-like region increases in size and reduces the flow due to a larger yield
stress. In the limit as 2B/η → 1, the flow rate q → 0 because the forcing
amplitude η is insufficient to drive much flow. For 2B/η ≥ 1, q = 0 because the
yield stress is not overcome by the imposed force, resulting in no motion. As
the Bingham number approaches 0, the flow rate given by (33) approaches the
corresponding flow rate of Newtonian fluid, as expected.

In the limit of large forcing amplitude η, solutions are obtained by examining
the flow near threshold of no motion, a = r0 = 1, which occurs in the limit as
2B/η → 1. The small parameter ǫ ≡ 1 − 2B/η is introduced to examine the
limit as ǫ → 0. Equations (29) and (30) respectively suggest solutions of the
form r0 = 1 − ǫr1 + o(ǫ2) and a = 1 + ǫ2a2 + o(ǫ3). The o(ǫ) correction to the
radius of the plug-like region

r1 =

{

1 − ζ2

2
|ζ| <

√
2, |ζ − ǫ−1/2π| <

√
2,

0 otherwise,
(35)

where ζ = ǫ−1/2z is the rescaled axial coordinate, is obtained by expanding cos z
near z = 0, π in (29). Substituting r1 into (30) gives

a2 = ±
ηr21
8
, (36)
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Figure 15: Theoretical prediction in the asymptotic limit as 2B/η → 1 and numerical
solutions of the time-averaged flow rate of Bingham fluid.

where ± is either + for |ζ| <
√

2 or − for |ζ − ǫ−1/2π| <
√

2. Operating 〈·〉 on
(30) gives

q =
23/2η2ǫ7/2

105
, (37)

which is in agreement with numerical results as shown in figure 15. The flow
rate scales like ǫ7/2, indicating that the flow of Bingham plastic increases very
weakly with the applied force as it overcomes the yield stress.

It has been determined that the flow rate of both Newtonian fluid and Bing-
ham fluid is a monotonically non-decreasing function of the forcing amplitude.
This is no longer the case for the speed of propulsion of a rigid body inside a
tube filled with fluid, as investigated in the following section.

4 Rigid body

Consider a rigid body of radius b surrounded by a Newtonian fluid of density
ρ and dynamic viscosity µ. For simplicity, the rigid body is considered to be
an infinitely-long rod of constant radius b so that steady and periodic solutions
can be obtained in the wave frame. The rod has steady axial velocity W in the
lab frame, as sketched in figure 16.

The axial velocity profile of the fluid is governed by (9), subject to no-slip
conditions on the tube wall and the rigid rod. The boundary conditions that
w = 0 on r = a and w = W on r = b determine the axial velocity in the lab
frame,

w = −
1

4

dp

dz
(a2 − r2) −

(

W + 1

4

dp
dz (a2 − b2)

log a
b

)

log
r

a
. (38)

In a similar manner to before in sections 2 and 3, the flow rate in the lab frame
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Figure 16: Schematic sketch in cylindrical polar coordinates of an elastic tube filled
with Newtonian fluid and a rigid rod. The rod has radius b and propels at a steady
axial velocity W in the lab frame.

is determined and given by

q = −
1

8

dp

dz

(

a4 − b4 −
(a2 − b2)2

log(a
b )

)

+
W (a2 − b2)

2 log(a
b )

− b2W − a2 + 1. (39)

In the limit as b → 0, the flow rate given by (39) reduces to the flow rate of
Newtonian fluid without any rod given by (13), as expected. Note that the
boundary-value problem governed by (39), with the same periodic boundary
condition a(0) = a(2π) as before, features W as an eigenvalue to be determined
in addition to the eigenvalue q.

The two eigenvalues are determined by imposing two integral constraints,
one of which is given by the global conservation of fluid, (12). Another integral
constraint is obtained from the axial force balance on the rigid rod. Given that
the rod is in steady motion, there is no net force exerted on the rod. This is
written mathematically as 〈[r∂w/∂r]r=b〉 = 0, which reduces to

〈
W + 1

4

dp
dz (a2 − b2)

log a
b

〉 = 0. (40)

Figure 17 shows a set of solutions of tubes containing rigid rods of different
size, where the forcing amplitude is fixed at η = 10. The associated eigenvalues,
q and W , are presented later. The special case of b = 0 corresponds to a tube of
Newtonian fluid only, which features an occluded region and a peak region, as
investigated in section 2. The peak radius of the tube decreases with increasing
b as shown in figure 17, indicating that the presence of the rigid rod reduces the
deformation of the tube. The tube is occupied with more solid and less fluid,
which partly explains the decreased deformation of the tube with increasing
radius of the rigid rod.

The flow rate q increases with η in a qualitatively similar manner, indepen-
dent of the rod radius b. However, the steady speed of the rod W increases for
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Figure 17: Numerical solutions of the deformed tube containing a rigid rod of different
radius b, propelled by a radial force of amplitude η = 10.
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Figure 18: Numerical solutions of the steady velocity of the rigid rod of radius b as a
function of the forcing amplitude η.
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Figure 19: Theoretical predictions in the asymptotic limit of η → 0 and numerical
solutions of the flow rate q of fluid and the steady speed W of rigid body.

small η and decreases for large η, as shown in figure 18 for three representa-
tive values of b. For all values of rod radius, a maximal speed is attained at
an intermediate value of η. The maximal attainable speed is less than half the
wave speed. The rod speed decreases with η thereafter because the large forcing
increases the viscous resistance in the occluded region, making it more difficult
for the rod to move relative to the tube. The rod speed generally decreases with
increasing b, indicating that it is more difficult to propel a rod of greater size.
The quantitative details of the two asymptotic limits of small and large forcing
amplitudes are investigated separately below.

In the limit of small η, solutions of the form a = 1 + ηa1 + o(η2), q =
η2q2 + o(η3), and W = η2W2 + o(η3) are sought. Equation (39) to order η
reduces to kDda1/dz + 16a1 = −k cos z, which is integrated subject to the
periodic boundary condition a1(0) = a1(2π) to obtain the solution

a = 1 − η
16k cos z + k2D sin z

(kD)2 + 162
+ o(η2), (41)

where k = 1 − b4 + (1 − b2)2/ log b.
The solution given by (41) is substituted into the integral constraint (40) to

obtain the leading-order speed of the rigid rod,

W =
2k

(kD)2 + 162

(

2 +
1 − b2

log b

)

η2 + o(η3). (42)

Operating 〈·〉 on (39) obtains the leading-order flow rate in the lab frame,

q =
2k

(kD)2 + 162

(

2 +
1 − b2

log b

)

(1 − b2)η2 + o(η3). (43)

Note that q →W in the limit as b→ 0, indicating that a rigid wire of negligible
radius propagates along the centreline of the tube at a steady speed correspond-
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Figure 20: Sketch of f(α) given by (49), which changes sign at α0 and attains its
minimum of −1 at α+. The value α− corresponds to the minimal radius of the tube
in the occluded region.

ing to the flow rate of the surrounding fluid. The solutions given by (42) and
(43) are in agreement with numerical results, as shown in figure 19.

In the limit of large η, the resultant deformation of the tube is qualitatively
similar to that of a tube containing Newtonian fluid only, as in section 2. A
peak region near z = 3π/2 and an occluded region away from z = 3π/2 are
expected to develop. The two regions are investigated separately below.

In the peak region near z = 3π/2, the peak radius is determined in a similar
manner to before in section 2. The conditions in the peak region are that the
pressure is uniform and that the total volume must be conserved by (12). The
peak radius is given by

amax =

(

152π2(1 − b2)2η

27D5

)1/5

, (44)

which scales like η1/5 with a prefactor that decreases with increasing b, in agree-
ment with numerical results.

In the occluded region, the radius of the tube is expected to approach the
radius of the rigid rod. Solutions of the form

a = b+ η−1/2α+ o(η−1) (45)

are sought, with the two eigenvalues of the form

W = W∞ + o(η−1/2) (46)

and
q = 1 − b2 − η−1/2bq̂ + o(η−1), (47)

where α, W∞ and q̂ are all of order 1 to be determined. Note that 1 − b2 − q
is a measure of the proportion of fluid left behind the wave, which is expected
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to scale like (a− b)b and diminish in the limit as η → ∞. This is because most
of the fluid is trapped in a recirculating core of the peak region and propagates
with the wave, while the remaining fluid lies in a thin shell of radius b and
thickness a− b, the gap between the tube and the rod. The choice of the scaling
η−1/2 for corrections to a, q and W is justified below. A cubic equation for α,

cos z α3 + 6(2 −W∞)α− 6q̂ = 0, (48)

is obtained by substituting (45), (46), and (47) into (39), and neglecting terms
of order η−1. All three terms in the cubic equation must be of order 1 by
demanding that a→ b+o(η−1/2), q → 1−b2+o(η−1/2) andW →W∞+o(η−1/2),
which justifies the earlier choice of the scaling η−1/2. The solution for α is
determined implicitly by a rearrangement of (48),

cos z = f(α) ≡
6

α3
(q̂ − α (2 −W∞)) . (49)

The function f has a local minimum at α+ = 3q̂/(4−2W∞) with the asymptotic
limits that f → ∞ as α → 0 and f → 0 as α → ∞, as sketched in figure 20.
Given that the tube radius must match smoothly with the peak region as z →
3π/2, f must attain a local minimum of −1. The equation f(α+) = −1 reduces
to

q̂ =
23/2

3
(2 −W∞)

3/2
, (50)

which provides an equation for the two unknown quantities, W∞ and q̂. A
minimal tube radius is attained at z = 0, where α = α− satisfies the cubic
equation f(α−) = 1. The function f changes sign at α0 = 2α+/3.

In addition to equation (50), another equation relating W∞ and q̂ can be
obtained by (40). Note that contributions to the integral (40) from the occluded
region are dominant because they are negligible from the peak region, where
a ∼ η1/5 as z → 3π/2. By substituting (45) into (40) and keeping only the
leading-order terms of order η1/2, we obtain

〈
2W∞

α
+ α cos z〉 = 0. (51)

This integral constraint indicates that the tangential-stress balance is between
the stress due to the rod speed and the radial forcing in the occluded region. The
tangential stress on the rod is independent of the peak region or the stiffness D
of the tube. Furthermore, the governing equations for W∞ and q̂, (50) and (51),
are independent of b. This indicates that in the limit of large forcing amplitudes,
the size of the rod does not influence its speed of propulsion to leading order.
The integral constraint (51) reduces to

(4W∞ − 6)〈α−1〉 + (4 − 2W∞)3/2〈α−2〉 = 0, (52)

by substituting (49) and (50) into (51). The integral 〈·〉 in z-space can be
evaluated in α-space by using (49), treating the three regions of 0 ≤ z ≤ π,
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Figure 21: The proportion of fluid left by the wave 1− b2
− q and the approach of the

rod speed W to W∞ ≈ 0.247 for large forcing amplitudes η, plotted on logarithmic
scales. The radius of the rod b = 0.5 is fixed. Theoretical prediction for the proportion
of fluid left by the wave, η−1/2bq̂, with q̂ ≈ 2.19, agrees with numerical results. The
slope of W − W∞ indicates that W approaches W∞ like η−1/2.

π < z < 3π/2 and 3π/2 < z < 2π separately. This gives

〈·〉 =

∫

∞

α+

·J dα −

∫ α0

α
−

·J dα−

∫ α+

α
−

·J dα, (53)

where

J =
df/dα

2π
√

1 − f2
. (54)

Solving equation (52), where 〈α−1〉 and 〈α−2〉 are evaluated numerically using
(53), gives W∞ ≈ 0.247. It follows that q̂ ≈ 2.19 by (50) and completes the
theoretical analysis of the problem.

A measure of the proportion of fluid left behind the wave is plotted as a
function of the forcing amplitude in figure 21. Numerical values approach slowly
to the theoretical prediction with increasing forcing amplitude. The difference
between the rod speed from W∞ ≈ 0.247, also shown in figure 21, approaches 0
like η−1/2, which is consistent with (46). In the limit of large forcing amplitude,
most of the fluid is carried with the wave while the rod propels at approximately
a quarter of the wave speed in the tube.

5 Conclusions

A theoretical analysis of fluid driven along a deformable tube by a prescribed
radial force provides important insight into peristaltic motion. For small forcing
amplitudes η, the deformation of the tube is of order η and the time-averaged
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flow rate is of order η2, independent of the three different types of fluid consid-
ered in the tube. For large forcing amplitudes η, different results are obtained
depending on the contents of the tube, as summarised separately below.

A tube of Newtonian fluid features an occluded region and a peak region,
where a trapped core of fluid recirculates in the wave frame. The peak region,
which is shorter and more deformed in a linearly elastic tube with a spring con-
stant D than a thin shell of constant bending stiffness D, depends importantly
on the elastic properties of the tube and weakly on the forcing amplitude. A
larger forcing amplitude increases the size of the trapped core in the peak region,
allowing more fluid to propagate with the wave.

A tube of Bingham plastic features a sheared region, a pseudo-plug region,
and a solid region in the wave frame, provided that the applied force has over-
come the yield stress. The existence of the three distinct regions reduces the
flow rate of the Bingham plastic considerably compared to that of a Newtonian
fluid, which is sheared everywhere. The flow rate of the Bingham plastic in-
creases from 0 extremely slowly with the forcing amplitude as the yield stress
is overcome.

The steady propulsion of a rigid rod surrounded by Newtonian fluid in a
tube shows that the size of the rod plays an important role. As the radius of
the rod increases, the tube deforms less with a smaller speed of propulsion of
the rod. The maximal speed of the rod, which is less than half the wave speed,
is attained at a moderate forcing amplitude. A larger body, which reduces the
maximal attainable speed of propulsion, is a bitter pill to swallow for the hungry
python.

The propulsion of a rigid body in a deformable tube could be pursued fur-
ther by modifying the underlying assumptions of the problem. The theoretical
analysis presented here is limited to describing steady and periodic solutions
in the wave frame. Time-dependent solutions in a non-periodic domain could
be investigated, for example, by prescribing a radial force with a solitary-wave
profile to drive a rigid body of finite length. This may provide further insight
into the motion of the rigid body, where the regions ahead and behind the body
in the tube are respectively relaxed and contracted.
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Linear Stability of Su-Gardner Solutions

to Small Two-Dimensional Perturbations
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October 1, 2009

1 Introduction

Many wave phenomena of interest in the ocean are strongly affected by mathematically
messy factors: variable bottom topography, shocks and wave breaking, and so on. The
original motivation for this project begins with the 2004 Indian Ocean tsunami, which
among many other difficult to model phenomena included examples of nearby villages (with
tiny separations on the scale of the tsunami front) experiencing great differences in the
severity of the arriving waves. Purely one-dimensional models of propagation are clearly
insufficient for such problems, so from here the focus of the project narrowed to examining
a particular model of waves in shallow water and the complications introduced by allowing
variation along a second direction of propagation.

A large amount of the material in the principal lectures this summer involved the
Korteweg-de Vries equation, a long wavelength and small amplitude treatment of waves
in shallow water. Here we advance the treatment a step by using the Su-Gardner equa-
tions, which maintain the requirement of long wavelength but allow for larger amplitudes
(and thus strongly nonlinear waves). The goal is to understand the one-dimensional system
first, then extend it to examine the stability of Su-Gardner solutions to small transverse per-
turbations via the Green-Naghdi equations, which provide a two-dimensional formulation
of Su-Gardner.

2 The 1D Problem

The Su-Gardner equations, which consist of shallow water plus several extra correction
terms, are derived here along with their solutions. Before moving on to the two-dimensional
case, we show that the Su-Gardner system reduces to the Korteweg-de Vries equation in
the limit of small wave amplitude.

2.1 Derivation of Su-Gardner Equations

These equations were first derived by Serre in 1953 [6], more widely known under the later
work of Su and Gardner [7]. The derivation below follows the latter (see also the appendix
of [2]).
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Figure 1: Flat bottom, with η = η(x, t) or η = η(x, y, t) for the 1D and 2D problems
respectively (in the later case, we also must consider the relative size of the y wavelength,
as discussed in 3.2).

We begin with the 2D Euler equations for inviscid and incompressible flow,

ut + uux + wuz = −px

wt + uwx + wwz = −pz − g

ux + wz = 0

where we have assumed a constant fluid density (ρ = 1). We consider the domain between
a flat bottom at z = 0 and a free surface at z = η as sketched in Figure 1. The boundary
conditions are

w = 0 at z = 0
w = ηt + uηx at z = η

p = 0 at z = η

representing respectively a flat impermeable bottom, and the kinematic and dynamic free
surface conditions. As solutions we are seeking the surface height η(x, t) and the depth-
averaged horizontal velocity ū(x, t).

From here we begin by integrating the incompressibility condition over the entire depth,
∫ η

0
ux dz +

∫ η

0
wz dz = 0

where application of the Liebniz integral rule transforms this to
(∫ η

0
u dz

)

x

− ηxu|η + 0 · u|0 + w|η0 = 0

Use of the kinematic free surface boundary condition gives

−ηxu|η = ηt − w|η
and the bottom boundary condition requires

w|0 = 0
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Applying these reduces the equation to
(∫ η

0
u dz

)

x

+ (ηt − w|η) + w|η = 0

which rearranges to the final form,

ηt + (ηū)x = 0

where the bar denotes a depth average,

ū(x, t) =
1
η

∫ η

0
u dz

Next we integrate the horizontal momentum equation over the water depth. Going term
by term, we have

∫ η

0
ut dz =

(∫ η

0
u dz

)

t

− ηtu|η + 0 · u|0
= (ηū)t − ηtu|η∫ η

0
uux dz =

1
2

∫ η

0
(u2)x dz

=
1
2

[(∫ η

0
u2 dz

)

x

− ηxu2|η − 0 · u2|0
]

∫ η

0
wuz dz =

∫ η

0
(uw)z dz −

∫ η

0
uwz dz

= (uw)|η0 +
∫ η

0
uux dz

= (uw)|η0 +
1
2

[(∫ η

0
u2 dz

)

x

− ηxu2|η
]

∫ η

0
px dz =

(∫ η

0
p dz

)

x

− ηx6 p|η + 0 · p|0

and putting the pieces together with use of boundary conditions:

(ηū)t − (w − uηx)u|η + (uw)|η0 +
(∫ η

0
u2 dz

)

x

− ηxu2|η = −
(∫ η

0
p dz

)

x

This reduces to
(ηū)t + [η(ū2 + p̄)]x = 0 (1)

where the bars over u2 and p denote depth averages, as above.
To deal with the averaged terms, we need to use the vertical momentum equation.

Multiplying by z and then integrating over depth gives
∫ η

0
z
dw

dt
dz = −

∫ η

0
zpz dz −

∫ η

0
gz dz

= −(pz)|η0 +
∫ η

0
p dz − 1

2
gη2
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where the first term on the right hand side is zero when evaluated at the endpoints, and
the rest rearranges to

ηp̄ =
1
2
gη2 +

∫ η

0
z
dw

dt
dz

After these integrations, we can rewrite equation 1 as

(ηū)t +
(

ηū2 +
1
2
gη2

)

x

+
(∫ η

0
z
dw

dt
dz + ηū2 − ηū2

)

x

= 0

or the shallow water momentum equation plus correction terms.
Instead of neglecting the last set of terms in parentheses, we can continue further to

approximate them using the additional assumptions of irrotationality (uz = wx) and long
wavelength (d ¿ L, see Figure 1). Beginning with the first of the correction terms, expand
u and w in a Taylor series at the bottom:

u(z) = u(0) + z
∂u

∂z

∣∣∣∣
0

+
1
2
z2 ∂2u

∂z2

∣∣∣∣
0

+ . . .

w(z) = w(0) + z
∂w

∂z

∣∣∣∣
0

+ . . .

Starting with the second expression, the first term disappears from the bottom boundary
condition, while the second can be rewritten using the incompressibility condition,

w(z) = −zũx + . . .

where ũ = u(0). Looking at the horizontal velocity next, from irrotationality the second
term is zwx, but when evaluated at the bottom wx = 0. This leaves

u(z) = ũ− 1
2
ũxxz2 + . . .

Now we can approximate the depth averaged velocity:

ū =
1
η

∫ η

0

(
ũ− 1

2
ũxxz2 + . . .

)
dz

≈ ũ− 1
6
ũxxη2

so ũ ≈ ū + 1
6 ūxxη2, and we can write

u(z) = ũ− 1
2
ũxxz2 + . . .

= ū +
1
6
ūxxη2 − 1

2
z2(ūxx + . . .)

w(z) = −zũx + . . .

= −z(ūx +
1
6
ūxxxη2 +

1
3
ūxxηηx)− . . .
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Finally, these expansions of u and w go into the integral we’re working to approximate:
∫ η

0
(zdtw)dz =

∫ η

0
z(wt + uwx + wwz) dz

≈ −
∫ η

0
z2ūxt dz −

∫ η

0
z2ūūxx dz +

∫ η

0
z2(ūx)2 dz

≈ −1
3
η3[ūxt + ūūxx − (ūx)2]

By a similar method, it can be shown that ū2 − ū2 is a higher-order correction term. Now
the Su-Gardner equations, for mass and momentum conservation, are

ηt + (ηū)x = 0 (2)

(ηū)t +
(

ηū2 +
1
2
gη2

)

x

=
{

1
3
η3[ūxt + ūūxx − (ūx)2]

}

x

(3)

2.2 Su-Gardner solutions

To look for solutions, we begin with the momentum equation in conservation form (3).
If we look for a traveling wave solution of speed c0, then the dependence of the velocity
and surface height becomes u(x, t) → u(x − c0t), η(x, t) → η(x − c0t), and the derivatives
transform to ∂x → ∂ζ , ∂t → −c0∂ζ , where ζ = x − c0t is the moving coordinate. Now the
equation can be integrated once:

−c0(ηu) + ηu2 +
1
2
gη2 =

η3

3
[−c0uζζ + uuζζ − (uζ)2] + K

(ηu)(u− c0) +
1
2
gη2 =

η3

3
[(u− c0)uζζ − (uζ)2] + K

(From this point forward, we work only with the depth-averaged velocity, and so drop the
overbars.)

Next we step back to the continuity equation for a moment, where the same transfor-
mation gives

−c0ηζ + (ηu)ζ = 0

which we can integrate over ζ:

−c0η + ηu = K ′

u− c0 =
K ′

η
(4)

where K ′, like K, is an integration constant. To make full use of this relation, first rewrite
the momentum equation in terms of u− c0,

(ηu)(u− c0) +
1
2
gη2 =

η3

3
{(u− c0)(u− c0)ζζ − [(u− c0)ζ ]2}+ K
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and then simplify the resulting η terms:

K ′u +
1
2
gη2 =

η3

3





K ′

η

(
K ′

η

)

ζζ

−
[(

K ′

η

)

ζ

]2


 + K

K ′
(

K ′

η
+ c0

)
+

1
2
gη2 =

η3

3

[
K ′

η

(
−K ′ηζ

η2

)

ζ

−
(
−K ′ηζ

η2

)2
]

+ K

K ′c0 +
K ′2

η
+

1
2
gη2 =

η3

3

[
K ′

η

(
−K ′ηζζ

η2
+ 2

K ′η2
ζ

η3

)
− K ′2η2

ζ

η4

]
+ K

=
η3

3

(
−K ′2ηζζ

η3
+

K ′2η2
ζ

η4

)
+ K

=
K ′2

3

(
η2

ζ

η
− ηζζ

)
+ K

But the first term on the right hand side can be rewritten as another derivative,

K ′c0 +
K ′2

η
+

1
2
gη2 = −K ′2η

3

(
ηζ

η

)

ζ

+ K

Now multiply both sides by ηζ/η2, and note that this lets us rewrite both sides as derivatives:

−K ′2

6

[(
ηζ

η

)2
]

ζ

=
ηζ

η2

(
K ′c0 −K +

K ′2

η
+

1
2
gη2

)

=
(
−K ′c0 −K

η

)

ζ

+
(
−K ′2

2η2

)

ζ

+
(

1
2
gη

)

ζ

Integrating to remove the ζ derivative, we have
(

ηζ

η

)2

= − 6
K ′2

(
−K ′c0 −K

η
− K ′2

2η2
+

1
2
gη + K ′′

)

(ηζ)2 = − 3g

K ′2 η3 − 6K ′′

K ′2 η2 +
6(K ′c0 −K)

K ′2 η + 3

ηζ = ±
√

3g

K ′2

(
−η3 − 2K ′′

g
η2 +

2(K ′c0 −K)
g

η +
K ′2

g

)
(5)

The solution, available in El et al. [3], is in the form of the Jacobian elliptic function cn(ζ; m),

η(ζ) = η2 + a cn2

(
1
2

√
3g

K ′2 (η3 − η1) ζ;m

)
(6)

where ζ is the moving coordinate (ζ = x− c0t), the ηi are the roots of the cubic in (5), with
η3 ≥ η2 ≥ η1 > 0, and the elliptic modulus is m = η3−η2

η3−η1
.
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2.3 A limit of the equations

Equations 2 and 3, above, assume long wavelengths but place no restrictions on wave am-
plitude. In the small amplitude limit—in particular, when a/d ∼ (d/L)2—we demonstrate
that Su-Gardner reduces to the well-known Korteweg-de Vries equation. Starting from (2)
and (3), we follow the method of Su and Gardner [7] and switch to the moving frame, where
ξ = εα(x− c0t), τ = εα+1t, and thus

∂t = εα+1∂τ − εαc0∂ξ

∂x = εα∂ξ

After making the transformation and canceling common powers of epsilon, we have

εητ + (u− c0)ηξ + ηuξ = 0

ε(ηu)τ − c0(ηu)ξ + +ηξu
2 + 2ηuuξ + gηηξ − 1

3
ε2α

{
η3[εuξτ + (u− c0)uξξ − u2

ξ ]
}

ξ
= 0

If we now try expansions of the form η = η0 + εη(1) + . . . and u = 0 + εu(1) + . . ., where η0

is the constant equilibrium height (η0 > 0 in our coordinate system), then at leading order
all terms are zero in both equations. At O(ε),

−c0η
(1)
ξ + η0u

(1)
ξ = 0

−c0η0u
(1)
ξ + gη0η

(1)
ξ = 0

These two equations together have a nontrivial solution only if c2
0 = gη0, so by integrating

we just have c0η
(1) = η0u

(1). Now that we can eliminate u(1), take a look at O(ε2):

η(1)
τ + u(1)η

(1)
ξ − c0η

(2)
ξ + η0u

(2)
ξ + η(1)u

(1)
ξ = 0

η0u
(1)
τ −c0η0u

(2)
ξ −c0η

(1)u
(1)
ξ −c0η

(1)
ξ u(1)+2η0u

(1)u
(1)
ξ +gη0η

(2)
ξ +gη(1)η

(1)
ξ −1

3
ε2α−1η3

0(−c0u
(1)
ξξ ) = 0

or after eliminating u(1) (and canceling terms),

η(1)
τ + 2

c0

η0
η(1)η

(1)
ξ − c0η

(2)
ξ + η0u

(2)
ξ = 0

c0η
(1)
τ − c0η0u

(2)
ξ + gη0η

(2)
ξ + gη(1)η

(1)
ξ +

1
3
ε2α−1c2

0η
2
0η

(1)
ξξξ = 0

Finally, multiply the first equation by c0 and add it to the second to cancel the η(2) and
u(2) terms, leaving

2c0η
(1)
τ + 3gη(1)η

(1)
ξ +

1
3
ε2α−1c2

0η
2
0η

(1)
ξξξ = 0

Finally, we set α = 1/2, so that the dispersion term comes in at the same order as the
nonlinear term, which is the balance described by the KdV equation. (See the notes on
Lecture 5 in this volume for more about the scaling of the small parameters.) This gives

η(1)
τ +

3
2

c0

η0
η(1)η

(1)
ξ +

1
6
c0η

2
0η

(1)
ξξξ = 0 (7)
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which matches the KdV form of ητ + βηηξ + µηξξξ = 0. Note that up to O(ε2), only
one piece of the Su-Gardner correction to shallow water is relevant, specifically the c0uξξξ

term. As the wave amplitude increases, we expect the other parts of the correction term to
become non-negligible, but in the KdV range of small amplitudes the two solutions should
be indistinguishable.

3 The 2D Problem

With the 1D problem treated analytically, we want to examine the stability of those solu-
tions to small disturbances along the direction perpendicular to propagation. Fortunately,
the task of extending the Su-Gardner equations to two dimensions has already been accom-
plished by Green and Naghdi [4], so we can work from there to linearize around the 1D
solutions.

3.1 The Green-Naghdi equations

Originally from Green and Naghdi in 1976 [4], using the updated form of Nadiga et al. [5],
we have the Green-Naghdi equations for conservation of mass and momentum:

ηt +∇ · (ηu) = 0 (8)

ut + u · ∇u + g∇η =
1
3η
∇ [

η2(∂t + u · ∇)(η∇ · u)
]

(9)

Note that the velocity here is the depth-averaged quantity, so u = (u, v) and ∇ = î∂x + ĵ∂y.
It is not completely obvious from inspection that these become the Su-Gardner equations
in one dimension,

ηt + (ηu)x = 0

ut + uux + gηx =
1
3η

[
η3(uxt + uuxx − u2

x)
]
x

but the verification is straightforward. Reducing to one dimension, u → u and ∇ → ∂x.
Applied to mass conservation (8), this simply becomes

ηt + (ηu)x = 0

while the momentum equation becomes

ut + uux + gηx =
1
3η

[
η2(∂t + u∂x)(ηux)

]
x

=
1
3η

[
η2(ηtux + ηuxt + ηxuux + ηuuxx)

]
x

=
1
3η

[
η2(−ηu2

x + ηuxt + ηuuxx)
]
x

where the last line follows via substitution from the continuity equation. But this rearranges
to

ut + uux + gηx =
1
3η

[
η3(uxt + uuxx − u2

x)
]
x

which is the second of the Su-Gardner equations, so the match is complete.
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3.2 A limit of the equations

In the previous section, we looked at the behavior of the Su-Gardner equations in the small
amplitude limit, and showed that they reduce to the KdV equation, providing a useful
body of existing solutions to compare with numerical Su-Gardner results. It is reasonable
to ask if a similar comparison can be found in two dimensions, and indeed the Kadomtsev-
Petviashvili equation provides a weakly two-dimensional extension of KdV. In particular,
the KP regime assumes scaling between the x and y derivatives such that the two highest-
order spatial terms in the equation, uxxxx and uyy, come in at the same order. For this to
happen we need not only the requirements of KdV,

a

h
= O(ε) ,

(
h

Lx

)2

= O(ε)

but additionally that the x and y wavelengths compare as
(

Lx

Ly

)2

= O(ε)

representing a y variation which is even slower than the already slow variation in the x-
direction.

If these conditions are met, we conjecture that the Green-Naghdi solutions in this limit
should recapture the known stability results for KdV solitons in KP: either linearly stable
or unstable to small transverse perturbations, depending on relative signs of two highest
derivatives (uxxxx and uyy) in the KP equation.

3.3 Linear stability of 1D solutions

To examine the stability of the known Su-Gardner solutions to transverse disturbances, add
small perturbations to the variables of interest:

η = η(0) + εη(1) + . . .

u = u(0) + εu(1) + . . .

v = 0 + εv(1) + . . .

where η(0)(x, t), u(0)(x, t) represent the one-dimensional Su-Gardner solutions discussed
above in (2.2). If we start with the simple case of η(0) and u(0) both constant, the equations
then substantially reduce in complexity to

η
(1)
t + η(0)u(1)

x + u(0)η(1)
x + η(0)v(1)

y = 0

u
(1)
t + u(0)u(1)

x + gη(1)
x =

1
3η(0)

[
(η(0))3(∂t + u(0)∂x)(u(1)

x + v(1)
y )

]
x

v
(1)
t + u(0)v(1)

x + gη(1)
y =

1
3η(0)

[
(η(0))3(∂t + u(0)∂x)(u(1)

x + v(1)
y )

]
y

Now look for normal modes,
{
η(1), u(1), v(1)

}
= {η̂, û, v̂} exp (λt + ikx + ily), and the
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equations become

(λ + iku(0))η̂ + η(0)(ikû + ilv̂) = 0

(λ + iku(0))û + ikgη̂ = ik
(η(0))2

3
(λ + iku(0))(ikû + ilv̂)

(λ + iku(0))v̂ + ilgη̂ = il
(η(0))2

3
(λ + iku(0))(ikû + ilv̂)

which combines into[
1 +

1
3
(η(0))2(k2 + l2)

]
(λ + iku(0))2 + gη(0)(k2 + l2) = 0

We can rearrange this for the growth rate, λ, as

λ = −iku(0) ± i

√
gη(0)(k2 + l2)

1 + η(0)(k2 + l2)/3

so the growth rate is entirely imaginary, representing pure oscillation. Additionally, when
moving from the system of three equations to the quadratic form above, we factored out an
additional root, λ = −iku(0), so all roots of the system are purely imaginary. If we rewrite
the quadratic root slightly in terms of the angular frequency, we have (with λ = iω and
K2 = k2 + l2)

ω = −ku(0) ±K

√
gη(0)

1 + η(0)K2/3
(10)

For the special case of constant η(0) and u(0), then, the Su-Gardner system plus small
transverse perturbations is linearly stable, with weak dispersion for two of the three modes.

Without the assumption of constant leading-order velocity and surface displacement,
the O(ε) picture is considerably less pretty:

η
(1)
t + (u0η

(1) + u(1)η0)x + (η0v
(1))y = 0

(η(1)u0 + η0u
(1))t + (2u0u

(1)η0 + u2
0η

(1) + gη0η
(1))x + (u0v

(1)η0)y

=
1
3

{
2η0η

(1)(∂t + u0∂x)(η0u0x) + η2
0(u

(1)∂x + v(1)∂y)(η0u0x)

+η2
0(∂t + u0∂x)(η(1)u0x) + η2

0(∂t + u0∂x)
[
η0(u(1)

x + v(1)
y )

]}
x

(η0v
(1))t + (u0η0v

(1))x + (gη0η
(1))y =

1
3
{. . .}y

Even assuming normal modes of the form
{
η(1), u(1), v(1)

}
= {η̂(x), û(x), v̂(x)} exp (λt + ily),

these equations have not proved tractable to simplify to a dispersion relation comparable
to (10) above. The next step is to treat them numerically, discussed below.

4 Numerical solutions

While the one-dimensional Su-Gardner system has been solved, the 2D case is much more
difficult to reduce analytically, and to make substantial further progress it seems that numer-
ical solutions will be required. To apply transverse perturbations to the cnoidal solutions of
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the Su-Gardner equations, we first need them in numerical form, and so we take a step back
to the one-dimensional system to capture that starting point. The first stage of this work
seeks solutions of the KdV equation, as a simpler test case which should be comparable
with low-amplitude Su-Gardner. The tool used was a Newton-Raphson-Kantorovich solver
previously developed by P. Garaud, which treats two-point boundary value problems for
systems of ordinary differential equations by the method of relaxing to a solution.

4.1 KdV numerical solution

Starting with the KdV equation, to eliminate the τ derivative and express the problem as
a set of ODEs, we shift to a frame that is moving with the speed of the soliton solution,
V . (Note that this is the speed of the soliton with respect to the frame that is already
moving with the linear wave speed, so that in the notation of the previous sections, the
total solution speed in the rest frame is c = c0 + εV .) Once this is done the problem can
be expressed in terms of ordinary differential equations,

Y1 = η1

Y2 = η′1
Y3 = η′′1
Y4 = V

Y5 =
∫ x

0
η1 dx

where the primes denote spatial derivatives in the frame moving with speed c, the soliton
speed V is solved for as an eigenvalue, and the fifth equation is used to impose a mass
conservation boundary condition. The system fed into the solver, then, is

Y ′
1 = Y2

Y ′
2 = Y3

Y ′
3 = Y2Y4 − Y1Y2

Y ′
4 = 0

Y ′
5 = Y1

The boundary conditions supplied are as follows. At the first endpoint, xa = 0, we require
that Y1 = H (the surface height perturbation equals some specified amplitude), that Y2 = 0,
and that Y5 = 0. At the second endpoint, xb = L, we again fix the amplitude at Y1 = H
(the solution should be periodic), and also require that Y5 = 0 (the total mass integrated
over the domain is zero, which should be the case since we are solving for the perturbation
to the equilibrium height η0).

Finally, we need a set of initial guesses at the solution. For Y1, Y2, and Y3, a cosine and
its first two derivatives are used, while for Y4 and Y5 nonzero constants are supplied. The
system was integrated over a sample domain of horizontal extent L = 10 with amplitude
a = 1 (see Figure 2).
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Figure 2: Sample integration of KdV equation for η1 with the background amplitude η0

subtracted.

4.2 Su-Gardner numerical solution

With the KdV numerical solution in hand, treatment of the Su-Gardner equations begins
with the conservation form of equation 3, shifted to a frame moving with speed c. The
continuity equation is integrated to give u − c = K ′/η, but further integrations of the
momentum equation in section 2.2 are not carried out. The momentum equation at this
point is

−c(ηu)ζ + (ηu2)ζ +
1
2
(gη2)ζ =

[
1
3
η3(−cuζζ + uuζζ − u2

ζ)
]

ζ

where derivatives are in the frame of the moving coordinate, ζ = x − ct. If we rewrite in
terms of (u− c),

[
(u− c)ηu +

1
2
gη2

]

ζ

=
1
3

{
η3

[
(u− c)(u− c)ζζ − (u− c)2ζ

]}
ζ

then substitute using the integrated continuity equation,

[
η
K ′

η

(
K ′

η
+ c

)
+

1
2
gη2

]

ζ

=
1
3

{
η3

[
K ′

η

(
K ′

η

)

ζζ

−
(

K ′

η

)2

ζ

]}

ζ

After expanding the derivatives on both sides this leaves

−K ′2 ηζ

η
+ gηηζ =

K ′2

3

(
2ηζηζζ

η
− η3

ζ

η2
− ηζζζ

)

439



which rearranges to

−3ηζ +
3g

K ′2 η3ηζ = 2ηηζηζζ − η3
ζ − η2ηζζζ

Note that η here is the total quantity, so to compare with the KdV solution above, we
rewrite in terms of η1 = η − η0 = η − 1 (normalizing the equilibrium level η0 to 1). The
equation is now

(η1 + 1)2η1ζζζ = 2(η1 + 1)η1ζη1ζζ − η3
1ζ + 3η1ζ − 3

K ′2 (η1 + 1)3η1ζ

where we have also set g = 1 for convenience. Finally we have the first system of equations
tried numerically for Su-Gardner,

Y1 = η1

Y2 = η1ζ

Y3 = η1ζζ

Y4 =
∫ x

0
η1 dx

and its derivatives

Y ′
1 = Y2

Y ′
2 = Y3

(Y1 + 1)2Y ′
3 = 2(Y1 + 1)Y2Y3 − Y 3

2 + 3Y2 − (3/K2)(Y1 + 1)3Y2

Y ′
4 = Y1

With four unknowns we require four boundary conditions, which are to specify the amplitude
η1 = H at both endpoints, and to set the first derivative and the integral of η1 to zero at the
first endpoint. The same initial guesses and endpoint amplitude as above were used, and
various values of the integration constant K ′ were tried, but the system failed to converge.
A second attempt was made by additionally solving for the eigenvalue Y4 = K ′ (making Y5

the mass integral, as in the KdV case above), but this also did not converge.
This numerical work was begun in the later stage of the summer, and was not successfully

completed by the end. To continue in this direction, clues to the lack of convergence might
be sought in the recent work of Carter and Cienfuegos [1], who numerically examine the
stability of Su-Gardner solutions to small perturbations along the direction of propagation
and find that only solutions of sufficiently small amplitude and steepness are stable.

5 Conclusion

By the end of this project, I hoped to have an answer, either analytic or numerical, for
the stability of Su-Gardner solutions to small transverse perturbations. The desired end
result was a better understanding of large-amplitude waves in shallow water, specifically
the stability of known 1D solutions to small transverse perturbations. Toward this goal I
made the most progress in the one-dimensional analytics, which are now well understood.
Analysis of the two-dimensional case was also begun but not yet complete, with linear
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stability results obtained for the simplest case of constant η0 and u0, and the more general
case most likely needing a numerical treatment. Numerical results in 1D for the purposes of
extending to the 2D problem were begun but not completed, with several avenues remaining
to explore to track down the non-convergence of the code. To continue from this point will
necessitate further attention to the numerical solutions in one dimension, to compare with
recent results [1] before extending along the second direction of propagation.
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Turbulent Plumes in a Rotating Fluid

Hiroki Yamamoto, supervised by Claudia Cenedese
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1 Introduction

Turbulent plumes from a point source can be observed at various scale. Eruption of a vol-
cano, smoke from a chimney, and seafloor vents are good examples. Such kind of plumes
are called axisymmetric turbulent plumes. The presence of ambient rotation and/or strat-
ification affects the behavior of axisymmetric turbulent plumes, and various experiments
were carried out (see Table 1 of Bush and Woods (1999) for a summary).

Fernando, Chen, and Ayotte (1998; FCA hereafter) investigated the development of
a single axisymmetric turbulent plume in a homogeneous, rotating fluid. They showed
experimentally that the rotational effects become important after the plume descends a
vertical distance zf ≈ 3.3(F0/Ω3)

1
4 for a time 0.75Tf . Here F0 is the buoyancy flux, Ω

the angular velocity of background rotation, and Tf = π/Ω the inertial period. They also

showed that the plume’s front descends as z ≈ 1.7F
1
4
0 t

3
4 for t ≤ 0.75Tf and z ≈ 1.8F

1
4
0 t

3
4 for

t > 0.75Tf .
Meanwhile, the coalescence of axisymmetric turbulent plumes to form a single plume is

an interesting problem. Kaye and Linden (2004; KL hereafter) investigated this problem in
a non-rotating, homogeneous fluid. They introduced a theoretical model for merging height
of two coalescing axisymmetric turbulent plumes in a homogenous fluid. They considered
both equal and unequal plumes’ cases. Their theory for equal plumes found that the rela-
tion between the separation length x0 and the merging height zm is zm ≈ (0.44/α)x0, where
α is the entrainment constant. They also carried out laboratory experiments and showed
that their model is qualitatively correct but over predicts the merging height slightly. How-
ever, they mentioned that a quantitative prediction is highly dependent on the value of
entrainment constant.

In this study, we investigate the behavior of two coalescing plumes in a homogeneous,
rotating fluid. During my project at the GFD Summer School, three kinds of experiments
were carried out: a filling tank experiment (Baines and Turner, 1969), two plumes experi-
ments without rotation (KL), and two plumes experiments with rotation. The filling tank
experiment was carried out to determine the values of the virtual origin height and the
entrainment constant; this is explained in appendix A. The derivation of the theory of KL
is explained in appendix B.
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Figure 1: Schematic illustration of the dye attenuation technique.

2 Experimental set up

A transparent tank which has 60 × 60 cm2 cross section was used. Fresh water (1.0 g/cm3)
was filled up to 45 cm depth for the ambient fluid, and dyed sea water (1.25 g/cm3) was
used for the fluid of the axisymmetric turbulent plume. The plume was generated by 5 mm
diameter Cooper nozzle which was positioned just below the surface, and its constant flow
rate was 1.7 cm3/s, namely the buoyancy flux was F0 = 41 cm4/s3.

A dye attenuation technique was used to visualize the plumes’ behavior. Figure 1
shows a schematic illustration of this technique. A sequence of dye images were captured
with side-view video recordings and the background image was subtracted from them using
Digiflow. The color tone of the subtracted images shows the snapshots of distribution of
dye concentration (i.e. distribution of buoyancy). This is because the intensity of the
light recorded is associated with the dye concentration. Then the sequence of subtracted
images were averaged to obtain the image of average distribution of buoyancy. The time
interval between dye images is shown in table 1. The averaging period was 2 minutes for the
non-rotating cases and 0.25Tf for the rotating cases. See KL for details of this technique.

For accuracy, we wrote and used an algorithm to determine the merging height. Our
algorithm works as follows.

1. Smooths horizontally the time averaged image by box averaging every 7 pixels (if
x0 > 6 cm, 13 pixels) to remove noise.

2. Finds a large slope of concentration (dc/dx > δ; c is concentration) starting from the
left.
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f = 2Ω (s−1) time interval (s)
0 (x0 < 6 cm) 1
0 (x0 > 6 cm) 0.25

0.05 1
0.1 0.5
0.25 0.25
0.5 0.1
0.75 0.1
1 0.1

Table 1: Time interval between dye images.

3. From this point, finds the location where the slope is negative (dc/dx < 0), and defines
this point as x1.

4. Finds a large slope of concentration (dc/dx < −δ) starting from the right.

5. From this point, finds the location where the slope is positive (dc/dx > 0), and defines
this point as x2.

6. Comparers x1 with x2 at every height, then x1 > x2 indicates that plumes are merged,
x1 < x2 indicates that plumes are not merged.

In order to visualize the vortices generated by the plumes in the rotating experiments,
the free surface was colored with powder dyes. The evolution of the resulting vortices were
recorded with top-view video recordings. Note that it is reasonable to consider that the
vortices are barotropic, because of the absence of stratification.

For the non-rotating cases, 23 experiments were carried out, and the separation length
x0 varied between 2.4 and 10.3 cm.

For the rotating cases, the Coriolis parameter f = 2Ω, where Ω is the angular velocity
of the background rotation, and the separation length x0 are important parameters. We
carried out rotating experiments with combinations of f = 0.05, 0.1, 0.25, 0.5, 0.75, 1.0 s−1

and x0 ≈ 3, 5, 8, 10 cm.

3 Experimental results

3.1 Without rotation

A summary of the two plumes experiments without rotation is shown in figure 2. The
solid line and dashed line in figure 2 are the linear fit of our experimental data and the
theoretical prediction, zm = (0.44/α)x0, from the model of KL, respectively. Note that zm

is the merging height measured from the virtual origin. The virtual origin height zV = 1.0
cm and the entrainment constant α = 0.12 were determined by the filling tank experiment
(Baines and Turner, 1969); see appendix A for details.
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Figure 2: Plume merging height zm plotted against the initial separation length x0. The
solid line is the linear fit of experimental data and the dashed line is the theoretical predic-
tion, zm ≈ (0.44/α)x0, from the model of Kaye and Linden (2004).

Our experimental results show the linear relationship between x0 and zm, which is
in agreement with the theoretical prediction. However it should be mentioned that the
prediction zm = (0.44/α)x0 is highly dependent on the value of α.

3.2 With rotation

Figure 3 shows the evolution of two plumes and the single vortex induced by the plumes for
x0 = 5 cm, f = 0.25 s−1. It was observed that the axes of the plumes tilted off the vertical
and a single vortex was generated at the center of two plumes for t > 0.8Tf . Figure 4 shows
a similar sequence for x0 = 5 cm, f = 1 s−1. In this case, two vortices are generated, one
from each plume. After t ∼ 3Tf the vortices started shedding from the sources (not shown).

In all cases, the plumes did not reach a steady state, because they were advected by the
vortex/vortices which was/were generated by the plumes themselves. These processes are
so complicated that, in this study, we do not consider the plumes after rotation dominates
the dynamics but focus on the vortex/vortices generated by the plumes.

Types of vortex/vortices generated by the plumes for each case are shown in table 2.
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t = 0.4Tf 0.6Tf 0.8Tf 1.0Tf 1.2Tf

Figure 3: Evolution of two plumes with separation x0 = 5 cm, rotation f = 0.25 s−1. Upper
pictures are snapshots of side-view dye concentration, and lower pictures are snapshots of
top view. Tf = 2π/f is the inertial period.

t = 0.4Tf 0.6Tf 0.8Tf 1.0Tf 1.2Tf

Figure 4: Same as figure 3 but for rotation f = 1 s−1.
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x0 (cm)
3 5 8 10

0.05 1 1 1 1
0.1 1 1 1 1
0.25 1 1 1 2

f(s−1) 0.5 1 1 2 2
0.75 1 2 2 2
1 2 2 2 2

Table 2: Types of vortices generated by the plumes. Number 1 denotes that a single vortex
was generated at the center of two plumes, and 2 denotes that two vortices were generated,
one from each plume.

4 Quantitative analysis

4.1 Merging height

Figure 5 shows the relation between zm and x0 for 0.5Tf < t < 0.75Tf for the rotating cases.
It is shown that, in this time range, the two plumes do not feel the effect of rotation, so the
merging height is same as in the non-rotating cases. In cases of (f, x0) = (0.05, 10), (0.25,
3), and (0.5, 3), zm obtained for 0.5Tf < t < 0.75Tf are far from the theoretical prediction,
but those obtained for 0.25Tf < t < 0.5Tf agree well with the prediction. For (f, x0) =
(0.05, 10), this is because the averaging time interval was so long that zm was affected by
dyed water filling up the tank from the bottom. For (f, x0) = (0.25, 3) and (0.5, 3), the
effect of rotation may have appeared earlier.

Figure 6 shows the relation between zm and x0 for 0.75Tf < t < Tf for the rotating
cases. For this averaging time interval, zm is affected by rotation, and there is not a clear
relation between zm and x0. The scatter S defined as

S =

√∑N
i (ztheory

m,i − zexperiment
m,i )2

N
, (1)

where N is the number of experiments, ztheory
m,i the theoretical prediction of the merging

height, zexperiment
m,i the experimental merging height, for the non-rotation experiments, ro-

tating experiments for 0.5Tf < t < 0.75Tf , and for 0.75Tf < t < Tf is 1.85, 2.89, and 10.98
cm, respectively.

From the above results, we deduce that the effect of rotation becomes important after
t > 0.75Tf , in agreement with the result of FCA. Our experimental results also show that
the merging height for t < 0.75Tf agrees with the theoretical model for no rotation.

4.2 Vortex generated by the plumes

The process of generating a single or two vortices can be described as follows. When the
separation length is small and the rotation rate is low, the plumes feel the effects of rotation
after they merged and a single vortex will be generated by the resulting single plume. On
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Figure 5: Plume merging height zm plotted against the separation length x0 for 0.5Tf <
t < 0.75Tf (filled square), where Tf is the inertial period. Asterisks denote the results of
experiments without rotation, solid line denotes the theoretical prediction for no rotation,
zm = (0.44/α)x0. Open squares are zm for 0.25Tf < t < 0.5Tf .
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Figure 6: Same as figure 5 but for 0.75Tf < t < Tf .
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small separation
slow rotation

large separation
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Figure 7: Schematic illustration of the two plumes generating a single vortex after merging
(left) and two vortices before merging (right).

the other hand, when the separation length is large and the rotation rate is high, the plumes
feel the effects of rotation before merging and two vortices are generated, one by each plume
(figure 7).

Considering the process described above, we can predict the number of vortices generated
by the two plumes using the results of FCA for the development of a single plume in a
homogeneous, rotating fluid, and the theory of KL for the merging height in a non-rotating
fluid. FCA showed experimentally that a single axisymmetric turbulent plume’s front in a
homogeneous, rotating fluid descends as

z ≈ 1.7F
1
4
0 t

3
4 for t ≤ 0.75Tf , (2)

z ≈ 1.8F
1
4
0 t

3
4 for t > 0.75Tf . (3)

We measured the plume’s front descent in the rotating and non-rotating experiments (figure
8). Our experimental results agree well with FCA.

Figures 5, 6, and 8 show that the time when rotational effects become important and
the descent of the plume’s front in our experiments agree with FCA. Therefore, the depth
zf where plumes feel rotation can be written as

zf ≈ 1.7F
1
4
0 (0.75Tf )

3
4 ≈ 5.5F

1
4
0 f− 3

4 . (4)

Remember that the theoretical prediction of the merging height

zm ≈ 0.44
α

x0, (5)

can be applied to rotating cases for t < 0.75Tf . Therefore, we can predict that a single
vortex will be generated if zf > zm, and two vortices will be generated if zf < zm. Figure 9
shows the number of generated vortices in the zm-zf plane. Our experimental results agree
well with the prediction described above. Therefore, we can predict the number of vortices
generated by the two plumes from the values of the entrainment constant (α), separation
length (x0), Coriolis parameter (f), and buoyancy flux (F0).
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Figure 8: Depth of the plume’s front as a function of time. Black lines are experimental

results for various rotation rates and the red line is z ≈ 1.7F
1
4
0 t

3
4 (Fernando, Chen, and

Ayotte, 1998).
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Figure 9: Number of vortices generated by the plumes, in the zm-zf plane. Blue circles
denote single vortex and red squares denote two vortices. Solid line denotes zf = zm. The
results for f = 0.05, 0.1 s−1 are not shown.
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5 Summary

Laboratory experiments on two coalescing axisymmetric turbulent plumes in a homoge-
neous, non-rotating and rotating fluids were carried out. The merging height zm is defined
as the height from the virtual origin where the time averaged horizontal buoyancy profile
has a single local maximum. The values of the virtual origin height zV = 1.0 cm and en-
trainment constant α = 0.12 were determined by the filling tank experiment (Baines and
Turner, 1969).

For the non-rotating experiments, our experimental results (figure 2) agree well with the
theory of Kaye and Linden (2004) predicting a merging height zm ≈ (0.44/α)x0, where x0

is an initial separation length of the two plumes’ sources. However, as mentioned in Kaye
and Linden (2004), this prediction is highly dependent on the value of α.

For the rotating experiments, our experimental results show that the merging height
zm agrees with the theory of Kaye and Linden (2004) for no rotation, for t < 0.75Tf

(figure 5). However, for t > 0.75Tf , the plumes were not steady and zm did not agree with
the theory (figure 6). Namely, the effects of rotation became important after t > 0.75Tf ;
this is in agreement with the experimental results of Fernando, Chen, and Ayotte (1998)
who studied the development of a single axisymmetric turbulent plume in a homogeneous,
rotating fluid. Fernando, Chen, and Ayotte (1998) also obtained experimentally the height

of the plume’s front as a function of time t as z ≈ 1.7F
1
4
0 t

3
4 , and our results are in agreement

with this expression (figure 8).
In the rotating experiments, vortices were generated by the plumes. Two types of

vortices were observed: a single vortex generated at the center of the two plumes, and two
vortices generated, one from each plume. We showed that the number of vortices can be
predicted using the theory for the merging height zm ≈ (0.44/α)x0 and the experimental

prediction for the height where the plumes start feeling rotation zf ≈ 5.5F
1
4
0 f− 3

4 . When
zf > zm, a single vortex is generated, and when zf < zm, two vortices are generated (figure
9).
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Appendices

A Filling tank experiment

In order to determine the values of the virtual origin height and the entrainment constant
a filling tank experiment was carried out. Theoretically, the origin of an axisymmetric
turbulent plume is assumed to be a point. However, in laboratory experiments, the real
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: virtual origin heightzv

virtual origin

Cooper nozzle

plume

Figure 10: Schematic illustration of virtual origin.

origin of the plume (i.e. Cooper nozzle) has a finite cross section, so it is assumed that
there is a virtual origin which is considered to be a point source of the plume (figure 10).

Turbulent plumes entrain the ambient fluid by turbulent mixing, and the horizontal
velocity of the entrained flow ue is assumed to be ue = −αw, where α is the entrainment
constant and w is the vertical velocity. This assumption is called the entrainment assump-
tion, and it is a good approximation (Turner, 1973). However the value of α has to be
determined experimentally.

The filling tank experiment is a good method to determine both the virtual origin height
and the entrainment constant.

A.1 Theory of the filling tank experiment

In this section, the theory of the filling tank experiment (Baines and Turner, 1969) is ex-
plained. First, some general properties of an axisymmetric turbulent plume are derived.
Then the method for determining both the virtual origin height and the entrainment con-
stant is explained.

A.1.1 General properties of an axisymmetric turbulent plume

It is assumed that the profiles of vertical velocity w and buoyancy g′ of the plume are of
Gaussian form,

w(r, z) = W (z) exp
(
− r2

b(z)2

)
, (6)

g′(r, z) = g

(
ρA − ρP (r, z)

ρR

)
= G′(z) exp

(
− r2

b(z)2

)
. (7)

Here z is the vertical coordinate, r the radial distance from the axis of the plume, g the
gravitational acceleration , W (z) = w(z, 0), and G′(z) = g′(z, 0). Then ρA and ρP are the
densities of the ambient fluid and the plume, respectively, ρR is the reference density for
the system. Note that b(z) is the radius where buoyancy and vertical velocity are reduced
by a factor 1/e from those on the plume’s axis.
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Volume flux Q of the axisymmetric turbulent Gaussian plume is

Q =
∫ 2π

0

∫ ∞

0
wrdrdθ = πb2W, (8)

where θ is the angular coordinate.
The momentum flux M is

M =
∫ 2π

0

∫ ∞

0
w2rdrdθ =

π

2
b2W 2. (9)

Then b can be written as
b =

1√
2
π− 1

2
Q

M
1
2

. (10)

The buoyancy flux F is

F =
∫ 2π

0

∫ ∞

0
g′wrdrdθ =

G′

2
Q. (11)

The velocity of the entrained flow, ue, is now assumed to be horizontal,

ue = −αW, (12)

where α is the entrainment constant.
The volume flux Q increases with z, because of the entrained flow, so

∂Q

∂z
= −2πbue, (13)

= 2παbW, (14)

= 2
√

2π
1
2 αM

1
2 . (15)

Because the plume is accelerated by buoyancy, the momentum flux changes with z as

∂M

∂z
= πb2G′, (16)

=
(πG′b2W )/2 · πb2W

(πb2W 2)/2
, (17)

=
FQ

M
. (18)

We can set F = F0 (constant) because the entrainment not only decrease the buoyancy
g′ but also increase the flow flux Q. Therefore, equation (18) can be written as

∂M

∂z
=

F0Q

M
. (19)

Now, we assume that Q and M can be expressed as

Q = Q0(z + zV )q, (20)
M = M0(z + zV )m, (21)
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where zV is the height of virtual origin, and Q0, M0 are constants. This assumption implies
that the radius of the plume, b, increases linearly from 0 at its virtual origin z = −zV . Then
(15) and (19) become

Q0q(z + zV )q−1 = 2
√

2π
1
2 αM

1
2
0 (z + zV )

m
2 , (22)

M0m(z + zV )m−1 =
F0Q0

M0
(z + zV )q−m. (23)

From the above equations, we obtain

q =
5
3
, (24)

m =
4
3
. (25)

Substituting (24) and (25) into (22) and (23), with some algebra, we obtain

M0 =

(
9
√

2π
1
2 αF0

10

) 2
3

, (26)

Q0 =
6π

1
2 α

5

(
18π

1
2 αF0

5

) 1
3

. (27)

Eventually, the volume flux Q and the momentum flux M are written in the buoyancy flux
F0 and the entrainment constant α.

A.1.2 Method to determine the virtual origin height and the entrainment con-
stant

We consider a tank of cross section AC filled with ambient fluid, and an axisymmetric
turbulent plume which is denser than the ambient fluid and is dyed, descending from the
top of the tank (z = 0), as in figure 11. After the front of the plume reaches bottom of the
tank, a layer of dyed fluid forms at the bottom of the tank and starts filling up the tank.
We set the time t = 0 when zF (t) = zF0, where zF is the height of the dyed fluid’s front
which comes up from the bottom. It is convenient to choose zF0 as the height where we
can measure zF accurately enough.

Considering the balance of the volume flux of the dyed fluid at z = zF , the time derivative
of (zF (t) + zV ) can be written as

∂

∂t
(zF (t) + zV ) ≈ −Q(zF )

AC
,

= −Q0

AC
(zF + zV )

5
3 . (28)

Here it is assumed that the cross section of the plume is negligible. Integrating (28), we
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Figure 11: Schematic illustration of the filling tank experiment.

obtain
∫ zF

zF0

(zF + zV )−
5
3 d(zF + zV ) = −Q0

AC

∫ t

0
dt, (29)

−3
2

[
(zF + zV )−

2
3 − (zF0 + zV )−

2
3

]
= −Q0

AC
t, (30)

(zF + zV )−
2
3 =

2
3

Q0

AC
t + (zF0 + zV )−

2
3 . (31)

In other words, there is a linear relation between (zF + zV )−
2
3 and t.

We can measure zF and t from the experiment, so we can determine the value of zV

which produce a straight line in the plot of (zF + zV )−
2
3 against t. After determining zV ,

we can estimate the value of α by choosing the value that makes fit equation (31) best to
the experimental data with the determined zV .

A.2 Experimental set up

Experimental equipments and their settings are the same as those explained in section 2,
but the depth of the fresh water was 40 cm. We captured the digital images every minute
and determined zF by looking at the the horizontally averaged (excluding the region of the
plume) height where the value of concentration of the dye is that of the interface between
fresh water and dyed water.

A.3 Experimental results

Figure 12 shows measured values of (zF +zV )−
2
3 against t for various values of zV . From this

figure we can determine zV = 1.0 cm, because this value gives the highest R2 for the linear
fit to the data, where R2 is the coefficient of determination. Figure 13 shows the measured
values of (zF + zV )−

2
3 against t with zV = 1.0 cm, and the theoretical lines calculated from

equation (31) with various values of α. From this figure we can estimate that the value
α = 0.12 fit best the experimental data.
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zV = 0 (cm)
zV = 0.75 (cm)
zV = 1.0 (cm)
zV = 1.25 (cm)
zV = 1.5 (cm)

time (sec)

(z
F
+
z V

)-2
/3

10
4  

(c
m

-2
/3

)

y = 1.5346x + 1054.6
R2 = 0.99859

y = 1.4418x + 1077.1
R2 = 0.99869

y = 1.2845x + 1109.4
R2 = 0.99764

y = 1.3589x + 1095.1
R2 = 0.99834

Figure 12: Measured values of (zF + zV )−
2
3 against t for various values of zV . Solid lines

are linear fits of each data set. This figure shows that the best linear fit (highest value of
R2) occurs for zV = 1.0 cm.

 = 0.10
 = 0.11
 = 0.12
 = 0.13

(cm)

(cm)

time (sec)

(z
F
+

z V
)-2

/3
10

4  
(c

m
-2

/3
)

zV = 0 (cm)
zV = 1.0 (cm)
theory zV = 1.0 (cm),  = 0.12

Figure 13: Measured values of (zF + zV )−
2
3 against t for zV = 1.0 cm. Thick solid lines are

theoretical lines calculated from equation (31) with various values of α. This figure shows
that the value of α = 0.12 fit best the experimental data.
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Figure 14: Merging Gaussian functions for a unit sources separation. (Kaye and Linden,
2004)

B Theory of coalescing axisymmetric turbulent equal plumes

In this section the theory of Kaye and Linden (2004) for equal plumes is summarized.
First, we define dimensionless variables as followings,

λ =
z

x0
, φ =

x

x0
, γ =

b

x
, (32)

where z is the height above the point plume sources (i.e. including the virtual origin), x0

the separation of the plume sources, x the separation of the plume axes at any given height,
and b the plume radius.

Consider two equal plumes with origins at the same height. The average buoyancy
profile of a single turbulent plume can be taken as Gaussian, with a radius given by

b =
6
5
αz, (33)

where α is the entrainment constant. Assuming that the plumes do not interact, the buoy-
ancy profile function is given by

g′(r, z) ∼ G′(z)E(r), (34)

E(r) = exp

[
−(r − 1

2x0)2

b2

]
+ exp

[
−(r + 1

2x0)2

b2

]
. (35)

Here r is the distance from the center of the two plumes and g′ is the buoyancy.
The function (34) is plotted in figure 14 for 1 < λ < 8 and x0 = 1. Clearly the two

Gaussians coalesce when λ is large enough. We define the merging height to be the height
where the trough in the buoyancy profile disappears, that is,

d2E

dr2
= 0 at r = 0. (36)

457



For non-interacting plumes (i.e. x(z) = x0), (36) is easily solved to give

x0 =
√

2bm. (37)

Here the subscript m denotes the value at the point where plumes merge. Dividing (37) by
x, we obtain

γm =
1√
2
, (38)

so, in terms of the non-dimensional height we obtain

λ̂m =
1√
2

5
6α

. (39)

Here (̂·) denotes the upper bound on the value. As shown by Bjorn and Neilsen (1995) this
estimate of λm is poor. In order to model the drawing together of two equal plumes we
need to consider the entrainment of one plume by another.

Based on experimental results (e.g. Rouse, Yih, and Humpherys, 1952) it is reasonable
to take the velocity field outside the plumes, created by entrainment, as horizontal. The
mean entrainment velocity field, over a horizontal plane across the two plumes, may be
approximated by two sinks of strength −m(z) placed at (−1

2x, z) and (1
2x, z). The complex

velocity potential in this horizontal plane is given by

Ψ = − m

2π

[
ln
(

Z +
1
2
x

)
+ ln

(
Z − 1

2
x

)]
, (40)

where Z is the complex variable reiθ. The velocity field is given by

U =
∂Ψ
∂Z

= − m

2π

(
1

Z + 1
2x

+
1

Z − 1
2x

)
. (41)

The sink strength of the plume is

m =
∫ 2π

0
bαwdθ. (42)

Along the line joining the sources of the plume (θ = 0) the velocity is given by

Uθ=0 = −bαw

(
1

r + 1
2x

+
1

r − 1
2x

)
. (43)

On the plume axis (r = −1
2x, 1

2x), the value of horizontal entrained velocity due to that
plume is zero, and only the term resulting from the other plume needs to be considered.
Therefore, (43) gives an expression for the mean horizontal velocity u on the plume axis

u = −bαw

x
. (44)
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Assuming that each plume is passively advected by the entrainment field of the other, the
rate of change of the plumes’ separation with height is given by the ratio of the vertical and
horizontal velocities at the plume axis. As both plumes are deflected equally, the rate is

dx

dz
= −2

1
w

αbw

x
. (45)

Substituting b = 6αz/5, λ = z/x0, and φ = x/x0 gives

dφ

dλ
= −12α2

5
λ

φ
, (46)

which can be integrated to give

φ2 − φ2
0 =

12α2

5
(λ2

0 − λ2), (47)

where φ0 = 1 and λ0 = 0. Using (38) to (47) we obtain

λm =
1
α

√
25
132

≈ 0.44
α

. (48)

In other word, the merging height is predicted as

zm ≈ 0.44
α

x0. (49)

Note that the use of (38) derived for the non-interacting model is appropriate here as the
correction for drawing together of the plumes assumes that they are passively advected only.
The radial growth rate of each plume is assumed to be unaffected by this process.
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