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The GFD Program in 2008 ran with a special theme, in view of the 50th anniver-
sary of the beginning of the program. The first two weeks of Principal Lectures dealt
with “Perspectives and Challenges” of the subject, and we commemorated by hav-
ing ten different lecturers with a diversity of viewpoints and opinions. Though the
lectures thereby took less of a pedagocial flavour, each afternoon we saw the fellows
grill the lecturers in informal afternoon tutorials.

Also by way of celebration, the Oceanographic Institution threw a 50th anniversary
party in honour of the Program and the “Founding Fathers.” This was held on one
of the lawns in front of Walsh Cottage on Friday, June 27th. We saw a variety of
familiar faces, some from the very first years of the Program, others from more recent
summers. George Veronis and Jack Whitehead read short pieces about the past fifty
years, including the unveiling of the “2008 AGU Award for Excellence in Geophysical
Education” awarded to the Program by the American Geophysical Union. The party
was skillfully organized by Janet Fields and uniformly enjoyed by all.

In 2008 the Sears Public Lecture was delivered by Andy Ingersoll (Caltech) and
entitled “Weather and Climates of Other Worlds: Lessons for Earth”. Andy, a par-
ticipant at the program for many years, described the insights that could be drawn
regarding our own climate from observing those of the other planets in the solar sys-
tem, observations made particularly clear and compelling by recent space missions.
Over a hundred people gathered at Redfield for the lecture, many of whom paused
afterwards to enjoy conversation and refreshment at the reception that followed.

Other novelties at the 2008 program included Bill Dewar’s delivery of a seminar
at Walsh in full Scottish regalia, kilt and all. Last, and of course most importantly,
we had an industrious group of fellows who rose to the challenge of the Program and
contributed tremendously to the anniversary. As always, WHOI Education provided
the administrative backbone to the summer, and Walsh Cottage was perfectly un-
changed in its intimacy and rustic atmosphere. Jeanne Fleming, Penny Foster and
Janet Fields contributed importantly to the smooth running of the program.
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Dynamo theory and GFD

Steve Childress

16 June 2008

1 Origins of the dynamo theory

Dynamo theory studies a conducting fluid moving in a magnetic field; the motion of the

body through the field acts to generate new magnetic field, and the system is called a

dynamo if the magnetic field so produced is self-sustaining.

1.1 Early ideas point the way

In the distant past, there was the idea that the earth was a permanent magnet. In the

1830s Gauss analyzed the structure of the Earth’s magnetic field using potential theory,

decomposing the field into harmonics. The strength of the dominant field was later found

to change with time.

In 1919 Sir Joseph Larmor drew on the induction of currents in a moving conductor, to

suggest that sunspots are maintained by magnetic dynamo action. P. M. Blackett proposed

that magnetic fields should be produced by the rotation of fluid bodies.

The ‘current consensus’ is that the Earth’s magnetic field is the result of a regenerating

dynamo action in the fluid core. The mechanism of generation of the field is closely linked

dynamically with the rotation of the Earth. Similar ideas are believed to apply to the solar

magnetic field, to other planetary fields, and perhaps to the magnetic field permeating the

cosmos.

1.2 Properties of the Earth and its Magnetic Field

The magnetic field observed at the Earth’s surface changes polarity irregularly. The non-

dipole components of the surface field also vary with time over many time scales greater

than decades, and have a persistent drift to the west. The fluid core of the Earth is a

spherical annulus, bounded by the solid inner core and the mantle. It is believed that the

motion of the inner and outer core are sufficient to drive the geodynamo.
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2 The homogeneous kinematic dynamo

The pre-Maxwell equations for a homogeneous moving conductor are

∇×B = µJ

∇×E = −∂B
∂t

J = σ (E + u×B)

∇ ·B = 0

∇ ·E = q/ε

(1)

Combined, these equations simplify to

∂B

∂t
−∇× (u×B) − η∇2B = 0 (2)

where η = (µσ)
−1

is the magnetic diffusivity. This equation is called the magnetic induction

equation.

2.1 Kinematic Dynamo Model of the Earth’s Core

Neglecting the inner core, the conducting fluid is contained in a sphere of radius r = rc.

The exterior is regarded as free space. The equations are to be solved with a prescribed

divergence-free (the core fluid is assumed incompressible) velocity field which is independent

of time. On r = rc, the magnetic field is continuous owing to the absence of magnetic

monopoles and a concentrated surface current layer. The magnetic field on r > rc also

matches with an external vacuum magnetic field

Be = ∇φe. (3)

The tangential component of

E = η∇×B − u×B (4)

is also continuous at r = rc. We take the external field to decay like a potential dipole at

r = ∞, i.e., B ≈ O(r−3
).

We pass to a dimensionless form using a characteristic length scale L, velocity scale U
and time scale L/U . Using the vector identity

∇× (u×B) = B · ∇u + u∇ · B− u · ∇B−B∇ · u, (5)

and since the velocity and magnetic fields are divergence free (∇ · u = ∇ · B = 0), the

induction equation can be written in the form

DB

Dt
− 1

R
∇2B = B · ∇u (6)

in terms of the material derivative

DB

Dt
=
∂B

∂t
+ u · ∇B. (7)
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Here R is the magnetic Reynolds number, R = UL/η = ULσ µ. For R << 1, the magnetic

field diffuses easily through the conductor. For R >> 1, the magnetic field is ‘frozen into

the moving conductor’. In this case, distortion and stretching of the field lines are caused by

the term B ·∇u. Notice that eq. (6) corresponds to the vorticity equation upon substitution

of ∇× u in place of B.

2.2 Kinematic Dynamo as an Eigenvalue Problem

For a given velocity field u, eq. (6), is linear for the magnetic field B, and we may separate

variables

B = eλt b(x), r < 1

B = eλt ∇φ, r > 1

(8)

Upon change of variable (8), the induction equation becomes

Lb =
1

R
∇2b− u · ∇b + b · ∇u = λb (9)

Here, length dimension L is L = rc. The values of λ allowing acceptable solutions b are

the eigenvalues, and depend on R. We say u(x) is a (steady) kinematic dynamo if for some

R > 0 there exists an eigenvalue λ(R) such that the real part of λ is greater than zero.

Elsasser, Bullard, and others developed a theory of the spherical dynamo in this setting.

Note that although the kinematic equation is linear in B, the dynamo problem has a

nonlinear character, since the ‘correct’ velocity field u is not known a priori. Mathemat-

ically, we are trying to find the right function u(x) determining L, so that the dynamo

property is realized. More generally, we might consider a time periodic x and an analogous

Floquet problem.

2.3 Expansion in eigenfunctions

Consider the space of complex-valued divergence-free vector fields b(x) in r < 1, matching

continuously with a potential field in r > 1. The eigenfunctions bn satisfy

Lbn = λn bn, r < 1

bn = ∇φn, r > 1
(10)

and are continuous on r = 1. The eigenvalues are known to be discrete and countable, and

the eigenfunctions are complete in the above space. If the eigenfunctions were known to be

mutually orthogonal, in the inner product

(bm,bn) =

∫

R3

b∗
m bn dV (11)

then, we would have
∫

R3

|B| =

∞
∑

n=1

e2<(λn)||bn||2 (12)

Thus, if <(λn) 6= 0 for all n the magnetic energy would be bounded by its initial value. This

is the case for a normal operator on a Hilbert space, one which commutes with its adjoint.
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However, the operator L is not normal so the energy is not a simple sum of decaying

non-negative terms. In fact, substantial transient growth of field energy is possible even if u

is not a dynamo. This complicates numerical proofs of the dynamo property. The dynamo

problem is one of the best examples of non-normality, and the effects become especially

pronounced in the limit of large magnetic Reynolds number R. In the case of the Earth, R
is of the order 10

3
.

2.4 Free-decay modes for a rigid spherical core

In can be shown that in R3
, the following decomposition of a divergence-free vector field A

is possible

A = ∇× (T r) + ∇×∇× (P r) (13)

where T = T (r) and P = P (r) are scalar functions called the toroidal and poloidal com-

ponents of A, respectively (figure 1). Consider this decomposition for u = 0, so that we

have
1

R
∇2bn = λn bn (14)

The eigenfunctions bn are decomposed as follows:

bn = ∇× (Tn r) + ∇×∇× (Pn r) (15)

In the case of an axis-symmetric problem, one can express the eigenfunctions in terms of

their components in spherical coordinates as follows:

bn =
1

r
L2P er +

1

r

∂

∂θ

∂

∂r
rP eθ +

∂

∂θ
T eφ (16)

where L2 is the surface Laplacian. If bn is expanded in spherical harmonics

bn =

∞
∑

l=1

l
∑

k=−l

bml f(r)Y m

l (θ) eimφ
(17)

the surface operator has the property

L2 bn = −l(l + 1)bn (18)

The exterior of the dynamo is current free, and with the pre-Maxwell equation ∇×B = µJ
one obtains ∇× B = 0. In terms of eigenfunctions, the curl of the magnetic field can be

written

∇× bn = ∇× (−∇2
(Pn r) + ∇∇ · (Pn r)) + ∇×∇× (Tn r)

= ∇× (−∇2
(Pn r)) + ∇×∇× (Tn r)

(19)

where we have used the identity ∇×∇×A = ∇∇ ·A−∇2A. We reckon that the toroidal

component of the magnetic field is the poloidal component of the curl of the field, and

similarly −∇2Pn becomes the toroidal component of the curl of the field:

(∇× bn)T = −∇2Pn

(∇× bn)P = Tn

(20)
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Figure 1: Toroidal and poloidal field lines for a sphere rotating about the z axis.

Using eq. (16) and considering the poloidal and toroidal components of the curl of the field,

we obtain
1

r
L2Tn = −1

r
l(l + 1)Tn = 0 (21)

so the toroidal field is zero at the exterior (Tn = 0, r > 1). Looking at the φ-component of

the field rotational, we have

∂

∂θ
(∇2Pn) = 0 (22)

Using the matching condition on the core boundary, one obtains ∇2Pn = 0, r > 1.

It then follows that we may consider separately problems for Tn and Pn

∇2Tn = λnTn

∇2Pn = λnPn

r < 1

Tn = 0

∇2Pn = 0
r ≥ 1

(23)

Here Tn, Pn, ∂Pn/∂r are continuous on r = 1, and Pn ∼ O(r−2
) as r → ∞.

The first few solutions are

T1 =
sinπr

r
, λ1 = −π2, (24)

where r = |x|, (this mode is not believed to be relevant to the Earth’s toroidal field except

perhaps during reversals);

P1 =

(

π cos πr

r
− sinπr

r2

)

cos θ, r < 1, P1 = −π cos θ

r2
, r > 1, (25)

(this is the basic dipole component of the Earth’s field with axis aligned with the rotation

axis);

T2 =

(

µ cosµr

r
− sinµr

r2

)

cos θ, λ2 = −µ2 ≈ −20.2, (26)
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where µ is the first zero of the spherical Bessel function j1, given by tanµ = µ (this is a

plausible dominant toroidal component of the Earth’s field).

2.5 The Omega Effect

An example of transient growth of magnetic energy in a non-dynamo is the so called Omega

Effect, in which differential rotation causes deformation of poloidal field lines, which induce

a toroidal field (figure 2). Let u = U(r)eφ, where r =

√

x2 + y2 in cylindrical polars,

and represent the magnetic field, taken as symmetric with respect to the z-axis, in the

alternative poloidal-toroidal decomposition

B = B(r, z, t)eφ + ∇×A(r, z, t)eφ. (27)

Now assume A = rP determines the z-aligned dipole field and is independent of time.

Taking the eφ components of the induction equation, B is then found to satisfy

∂B

∂t
+ r

∂A

∂z

∂

∂r

(

U(r)

r

)

− 1

R

(

∇2 − 1

r2

)

B = 0. (28)

The second term here represents the omega effect - depending on U(r) it can act as a

source term for the toroidal component B, and shows how the poloidal field is coupled to

the toroidal field and can cause the latter to grow. This however is not enough to create a

dynamo, as we shall see below. Note a velocity U(r)eφ is easily realized in a rotating sphere

of fluid as a geostrophic flow.

3 Establishing the possibility of a homogeneous dynamo

3.1 A negative result: Cowling’s theorem

Cowling (1934) argued that no homogeneous dynamo can exist for axisymmetric u and B.

This is a result of the failure of the poloidal field to be maintained against ohmic dissipation.

Taking

u = U(r, z, t)eφ + ∇× ψ(r, z, t)eφ, B = B(r, z, t)eφ + ∇×A(r, z, t)eφ, (29)

we find

∂A

∂t
− ∂ψ

∂z

1

r

∂

∂r
(rA) +

∂A

∂z

1

r

∂

∂r
(rψ) − 1

R

(

∇2 − 1

r2

)

A = 0, (30)

∂B

∂t
+ r

∂A

∂z

∂

∂r

(

U

r

)

− 1

r

∂

∂r
(rA)

∂U

∂z
− r

∂ψ

∂z

∂

∂

(

B

r

)

+
1

r

∂

∂r
(rψ)

∂B

∂z
− 1

R

(

∇2 − 1

r2

)

B = 0.

(31)

It is immediately clear from the equation for A that there is no coupling from the toroidal

field to the poloidal field, and that the poloidal field will inevitably decay. Multiplying this

equation for A by r2A and integrating by parts, one finds

d

dt

∫

r<1

1

2
(rA)

2
dV = − 1

R

∫

R2

|∇(rA)|2 dV ≤ 0, (32)
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Figure 2: The Ω effect: differential rotation causes the twisting of poloidal field lines which

generates toroidal field.

and this implies that the poloidal field must necessarily decay over time.

There are many such anti-dynamo theorems. The upshot is that although the velocity

field may be simple, the magnetic field must be fully three-dimensional. It is thus significant

that the observed planetry and stellar magnetic fields exhibit non-axisymmetric components.

3.2 A necessary condition for dynamo action

Note that the existence or non-existence of dynamo action will depend upon the value of

R = ULσµ. The magnetic energy is

Em =

∫

V

1

2µ
|B|2 dV, (33)

and its rate of change is

µ
dEm

dt
=

∫

V

B · ∂B
∂t

dV

= −
∫

V

B · ∇ ×EdV

= −
∫

V

E · ∇ ×BdV

=

∫

V

u · (B ×∇×B) − 1

σµ
|∇ ×B|2 dV.

(34)
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For a dynamo to exist we need this rate of change of magnetic energy to be non-negative.

Now if Um = maxV |u|, the we can write

∫

V

u · (B×∇×B) dV ≤ Um

∫

V

|B||∇ ×B|dV

≤ Um

[
∫

V

|B|2 dV

]1/2 [
∫

V

|∇ ×B|2 dV

]1/2

,

(35)

using the Cauchy-Schwarz inequality. It is known that for a bounded homogeneous con-

ductor V surrounded by vacuum there is a length LV such that, for any B in the space of

realizable magnetic fields,

∫

V

|∇ ×B|2 dV ≥ 1

L2
V

∫

R3

|B|2 dV. (36)

Thus we have
∫

V

u · (B×∇×B) dV ≤ UmLV

∫

V

|∇ ×B|2 dV, (37)

so

µ
dEm

dt
=

(

UmLV − 1

σµ

)
∫

V

|∇ ×B|2 dV. (38)

This is negative if UmLV σµ < 1 in which case a dynamo cannot exist. Thus a necessary

condition for dynamo action is that UmLV σµ ≥ 1. In particular dynamo action occurs

as a bifurcation from the state of no magnetic field, as the magnetic Reynolds number is

increased.

3.3 The Bullard-Gellman computation

There was an early attempt to solve the eigenvalue problem utilizing direct expansion in

the models of free decay of a spherical conductor. A steady velocity field was chosen as

representative of rotating convection. The truncated system of modal equations produced

a positive result, but in 1969 Gibbons and Roberts re-examined this choice of u and es-

tablished that it was not in fact a kinematic dynamo. The original result was a numerical

artifact.

3.4 Parker’s model: The α effect

In 1955, Parker addressed the problem of producing poloidal field from toroidal field, to

complement the omega effect. As we have seen, this is impossible if both the velocity field

and the magnetic field are axisymmetric, but Parker envisaged averaging of the effects of

small up-wellings within the core which could lift and twist poloidal field lines. The local

magnetic Reynold’s number was take to be large, so that the magnetic field was ‘frozen’ into

the fluid as it was lifted and twisted (figure 3). Under averaging, the twisted loops produced

a mean current, aligned with the local toroidal field line. In this way the poloidal field can be

induced from the toroidal field, thus completing the dynamo cycle and maintaining it against

dissipation. This mechanism is now know as the ‘α effect’. Although Parker’s supporting
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Figure 3: Toroidal field lines are lifted and twisted by small scale non-axisymmetric com-

ponents of the velocity field. This generates a mean current in the toroidal field direction

which induces a poloidal field, and is termed the α effect.

calculations left many gaps, these have since been filled in and the model provides a crucial

element of the dynamo cycle, breaking the constraints of Cowling’s theorem.

If u = U(s)eφ, the induction equation in this model is written as

B = B(r, z, t)eφ + ∇×A(r, z, t)eφ, (39)

∂A

∂t
− 1

R

(

∇2 − 1

r2

)

A = αB, (40)

∂B

∂t
+ r

∂A

∂z

∂

∂r

(

U

r

)

− 1

R

(

∇2 − 1

r2

)

B = 0. (41)

The added αB term here is crucial and completes the ‘α− ω dynamo cycle’.

3.5 Early examples of dynamo action

The Herzenberg dynamo (1958), comprises two solid rotating spheres of radius a embedded

inside a larger sphere of radius R, with a � R and a also small compared to the distance

between the two spheres. Each sphere produces an ω effect determined by the local field

at that sphere. The resulting induced field increases the local field at the other sphere,

and regenerative dynamo action can result. Herzenberg’s theoretical analysis of this system

relies on the smallness of the embedded spheres and the geometrical decay of the induced

field components, leading to a spatial filtering. Such a dynamo was realized experimentally

in solid iron by Lowes and Wilkinson (1963).

Backus (1958) gave a proof of dynamo action for a kinematic dynamo in a homogeneous

spherical fluid conductor based upon temporal filtering of magnetic decay modes. This

involves applying a velocity field u1(x) for time 0 < t < T1, and then setting u = 0 for

time T1 < t < T2, during which time the magnetic field decays, filtering out modes with

the faster decay. A new velocity field u2(x) is then applied for T2 < t < T3 and then u = 0

again. This sequence of applying velocity fields and then setting u = 0 to filter out fast

decaying modes is then continued.

If the ‘basic mode’ (involving the slower decaying poloidal and toroidal components) is

D with ||D|| = 1, an initial magnetic field involving this basic mode with amplitude A, plus

10



some arbitrary magnetic noise N(0), with ||N(0)|| ≤ ε for some ε > 0, is

B(x, 0) = AD(x) + N(0). (42)

If it can then be shown that at time t = T2N the magnetic field has the form

B(x, T2N ) = AND(x) + N(T2N ), (43)

where |AN | ≥ |A| and ||N(T2N )|| ≤ ε, then dynamo action occurs. Thus the noise gets no

bigger, and the basic field is at least maintained.

3.6 Smoothing Applied to the Kinematic Equation

The smoothing method consists in splitting the dynamo kinematic equation operator

LB =
∂

∂t
B −∇× (u ×B) − η∇2B = 0, (44)

and the velocity and magnetic field into some rough and smooth components:

u = uS + uR,

B = BR + BS ,

L = LR + LS,

LR B = −∇× (uR ×B),

LS B =
∂

∂t
B −∇× (uS ×B) − η∇2B.

(45)

Let P be a projection onto smooth fields (P 2
= P ), such as

P B = BS (46)

and assume P LS = LS P . Subtracting PL from L, one gets

−(LR − PLR)B = (LS − P LS)B = LSB−LSBS = LSBR (47)

The smooth projection of (LR − PLR)B is

P (LR − PLR)B = PLR − P 2LRB = PLR − PLRB = 0 (48)

so (LR − PLR)B is a rough field. Assuming that LS can be inverted on rough fields, we

have

BR = −L−1
S

(LR − PLR)B ≡M B (49)

So, one has

B−BS = BR = M B (50)

or, if I −M is invertible on smooth fields, we obtain B in terms of its smooth component,

B = (I −M)
−1BS (51)
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Thus, one can write

P LB = P (LS + LR)B = LSBS + PLR(I −M)
−1BS

= [LS + PLR(I −M)
−1

]BS = 0
(52)

and it can be shown by substitution that if BS satisfies

[LS + PLR(I −M)
−1

]BS = 0 (53)

then B = (I − M)
−1 BS solves LB = 0. The smoothing method can be used to treat

analytically the creation of the α-effect.

3.6.1 First-Order Smoothing

Assuming that LRBS is a rough field such as P LRBS = 0, one can make the following

approximations

0 = [LS + PLR(I −M)
−1

]BS ≈ [LS + PLR(I +M)]BS = [LS + PLRM ]BS. (54)

Here, we have

LS BS =
∂

∂t
BS −∇× (uS ×BS) − 1

R
∇2BS (55)

and

P LRM BS = −P [LRL−1
S

LR]BS ≈ PLR BR (56)

with BR a linear function of BS . This is the basis of mean field electrodynamics developed

by Krause, Radler and others in the 60’s.

For example, set uS = 0 and let uR be a real steady solenoidal field of the form

uR =

∑

k∈K

ake
ik.x

(57)

where K is all 3-vectors excluding the zero vector. If BS is large scale relative to uR, then

∇× (uR ×BS) = − 1

R
∇2BR (58)

implies

BR = R i
∑

k∈K

k−2 k ·BS ake
ik·x, (59)

and

P [uR ×BR] ≈ R i
∑

k∈K

k−2
(a∗ × ak)BS · k ≡ α ·BS . (60)

It can be shown, by using the substitution ak = k× bk, that α is real and symmetric. For

isotropic uR, of this form we may assume αij = αδij where

α =
1

3
R i

∑

k∈R

k−2
(a∗

k
× ak) · k. (61)
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If all k have unit length we see that

α =
R

3
uR · (∇× uR), (62)

involving a spatial average of the helicity density uR · (∇×uR) of the velocity field. A field

satisfying all the above conditions is the Beltrami field (in which u is parallel to ∇× u)

uR = (sin z + cos y, sinx+ cos z, sin y + cos x), (63)

with α = R/3. The role of helicity is reminiscent of Parker’s ’upwellings’, which involved a

rising, twisting flow.

3.6.2 Spatially periodic kinetic dynamos

This is a setting where complete analysis of the smoothing method may be carried out

explicitly, with or without time dependence. Considering here only steady fields, the real

velocity field has the form

u = uR =

∑

k∈K

ake
ik·x

(64)

The admissible magnetic fields have the complex form

B = ein·x
∑

k∈K+(0,0,0)

Bke
ik·x, |n| < 1 (65)

so B0 = BS (the components for k 6= 0 are all rough). Kinematic dynamo action can

be defined by growth of field if n is sufficiently small. This is the palindromic ‘so many

dynamos’ theorem (G. O. Roberts): almost all such u are kinematic dynamos.

3.7 Braginskii’s theory for nearly axisymmetric dynamos (1964)

Braginskii used a smoothing technique for nearly axisymmetric flows to derive the α effect.

Here, the ’smooth’ parts of the variables are the axisymmetric components, and the rough

parts are the non-axisymmetric components. The smoothing operation is therefore an angle

average over φ in cylindrical polar coordinates. Motivated by the fact that the magnetic

Reynolds number R is large for the Earth and that the field is dominated by a dipole aligned

with the rotation axis, Braginskii considers expanding the fields in powers of ε = R−1/2
;

u = U(r, z)eφ + εu′
+ ε2uP , (66)

B = B(r, z, t)eφ + εB′
+ ε2BP , (67)

where < u′ >=< B′ >= 0 where < · > means an angle average. The relevant timescale is

shorter, so writing τ = ε2t, the order ε terms in the induction equation give

∂B

∂τ
+ ruP · ∇

(

B

r

)

= rBP · ∇
(

U

r

)

+ (∇× E)
φ

+

(

∇2 − 1

r2

)

B = 0, (68)
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where E =< u′ ×B′ >. If BP = ∇×A(r, z, t)eφ, we also find

∂A

∂τ
+ ruP · ∇

(

A

r

)

= Eφ +

(

∇2 − 1

r2

)

A. (69)

Braginskii found that the contributions from E can be mostly absorbed into ‘effective’

variables, denoted with a superscript e:

∂B

∂τ
+ rue

P · ∇
(

B

r

)

= rBP · ∇
(

U

r

)

+

(

∇2 − 1

r2

)

B = 0, (70)

∂Ae

∂τ
+ rue

P · ∇
(

Ae

r

)

= αB +

(

∇2 − 1

r2

)

Ae. (71)

The term which cannot be absorbed gives rise to the α term, and in effective variables these

equations are identical to the Parker model, the toroidal field exhibiting the α effect.

3.8 Soward’s Lagrangian analysis of Braginskii’s problem

The same situation of a nearly axisymmetric flow was analysed in a slightly different way by

Soward (1972). The key idea of this method is to make use of an invariance of the induction

equation for the diffusionless case R = ∞;

Bt + u · ∇B = B · ∇u. (72)

Consider two (prescribed) velocity fields u(x, t) and ũ(x̃, t), and the Lagrangian variables

x(a, t) and x̃(a, t) for these flows defined by

dx

dt

∣

∣

∣

∣

a

= u(x, t),
dx̃

dt

∣

∣

∣

∣

a

= ũ(x, t). (73)

Then

ũi =
∂x̃i

∂t

∣

∣

∣

∣

x

+
∂x̃i

∂xj

uj. (74)

The solutions to the induction equation for the two flows are

Bi(x, t) = Bj(a, 0)
∂xi

∂aj

, B̃i(x̃, t) = B̃j(a, 0)
∂x̃i

∂aj

. (75)

Using the chain rule

∂x̃i

∂aj

=
∂x̃i

∂xk

∂xk

∂aj

(76)

we obtain

B̃i =
∂x̃i

∂xk

Bk (77)

Now the idea is to consider one of the velocity fields as including the ‘rough’ components

while the other is the smooth velocity field without these rough components. For the Bragin-

skii problem this means taking the tilde variables to include non-axisymmetric components

of order ε, while the x variables do not include these. The x variables will therefore not be
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physical. We seek a near identity transformation x(x̃, t) = x̃ +O(ε) of R3
which eliminates

the O(ε) in the velocity, so that

u(x, t) = U(r, x)(1 +O(ε2))eφ + ε2ue

P (x) + ε2u′′
(x, t) + o(ε2). (78)

The equations in x space can be angle averaged, and this results in Braginskii’s result (70)

and (71) with A(x, τ) in place of Ae
(x̃, τ). The α effect is missing - it comes from the non-

invariant diffusive term. The effective variable Ae
occurs when we transform the unphysical

x variables back into the real physical space x̃.

The key point is that, by including the non-invariant diffusive term in this analysis, one

obtains the α effect term in (71), along with terms which can be absorbed into effective

variables.

4 Some examples of analytically accessible dynamos

There are some simple velocity fields for which dynamo action is known to occur. The

Ponomarenko dynamo is a flow in a cylinder in which the fluid travels axially while rotating,

u = U(r)ez + rΩ(r)eφ (79)

The magnetic field is periodic in z,

B = b(r)eλt+imφ+ikz . (80)

This can be analysed for large R. The dynamo mechanism here involves the Ω effect

which maintains the toroidal field from the poloidal field, and diffusion which maintains the

poloidal field from the toroidal field.

Another simple dynamo is the Roberts cell, which like the Beltrami flow is periodic in

two dimensions

u = (cos y, sinx, cos x+ sin y). (81)

By transforming the variables x→ x− y, y → π/2 + x+ y, the Roberts cell takes the form

u = (cos y sinx,− cos x sin y,
√

2 sinx sin y) (82)

An illustration of this flow and the generation of magnetic field is shown in figure 4.

5 MHD dynamos

So far we have only talked about kinetic dynamo theory, when the velocity field is somehow

prescribed and unaffected by the magnetic field. In magnetohydrodynamics the velocity

and magnetic fields both interact with each other and some physical mechanism (such as

convection) which drives the fluid velocity must be included. The momentum equation for

the fluid in a rotating frame with angular velocity Ω includes the Coriolis force and the

Lorentz force,

ρ
Du

Dt
+ ∇p+ 2ρΩ× u +

1

µ
B × (∇×B) − ρν∇2u = cg. (83)
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Figure 4: The Roberts cell with a z periodic field applied. The flow causes the production

of z periodic y-field from x-field, and vice versa.
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Figure 5: Magnetic field from a numerical MHD simulation of the Earth’s core by Glatzmaier

and Roberts.

The motion here is assumed to be driven by convection of some scalar c (temperature or

composition, for instance),

Dc

Dt
−Dc∇2c = Q. (84)

If the convective forces are absent, and the velocity is axisymmetric, but the alpha-effect

is included as in Braginskii’s model, and the normal component of u vanishes at the core

boundary, it is found that such an axisymmetric dynamo cannot be sustained in MHD.

The microscale driving needed to produce the small scale fields associated with an alpha

effect can not sustain the dynamo. The Earth’s dynamo is now believed to be a result of

larger scale driving as a result of thermal and compositional convection associated with the

formation of the inner core.

Figure 5 shows a numerical simulation by Glatzmaier and Roberts, of a convective model

of the Earth’s core. This simulation exhibits the observed full reversals of the magnetic field

on timescales of geophysical relevance. The role of the inner core is established as a reservoir

of magnetic field during these reversals.
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Convection, Stability and Turbulence

Lecturer: Charlie Doering
Notes written by: Chris Cawthorn & Toby Wood

18 June 2008

1 Introduction

The three basic forms of heat transport are:

• Radiation

• Conduction

• Convection

In many physical systems, all of these processes may play a role (see Figures 1–2 below).

Convection is buoyancy-driven flow due to density variations in a gravitational field. It is

particularly important as it enhances the vertical heat transport. For example, without

convection, it would take many hours to heat a saucepan of water to boiling point, simply

because heat diffusion in water is so weak (κ ≈ 1.5 × 10
−3

cm
2
s
−1

).

Figure 1: Heat transfer in a saucepan.

2 Rayleigh-Bénard convection

In 1900, Henri Bénard [2] performed an experiment concerning convection cells in a thin

liquid layer. He observed spontaneous pattern formation - the convection was seen to

organise itself into hexagonal cells throughout the entire domain, as shown in Figure 3.
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Figure 2: Heat transfer in the Earth and Sun.

Figure 3: Convection cells in Bénard’s experiment and on the surface of the Sun.

Rayleigh [28] was the first to undertake a mathematical theory of fluid convection. His

analysis described the formation of convection rolls for fluid confined between parallel plates

held at different temperatures. The width of the rolls at convective onset is proportional to

the depth of the fluid layer, but also depends on details of the boundary conditions.

However, these convection rolls are a different physical phenomenon to the convection

cells observed by Bénard. Such convection cells are now known to be associated with

Marangoni flows, where variations of surface tension with temperature play a crucial role.

In fact, there are several regimes of convection. As the temperature difference is increased,

spiral defect chaos may be observed, before finally giving way to fully turbulent convection,

with the associated breakdown of spacial–temporal correlations (see Figure 4).

2.1 A mathematical theory of convection

The theory first developed by Rayleigh is now known as Rayleigh–Bénard convection. Pro-

vided that the temperature variations within the fluid layer remain small, we may adopt

the Boussinesq approximation, which neglects compressibility except for the presence of a

buoyancy term in the momentum equation. Furthermore, it may be shown that viscous

heating is often negligible compared to thermal driving from the boundary conditions. The
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Figure 4: Convection rolls give way to complex spatio–temporal dynamics, and eventually

to fully-developed turbulent convection. (The last figure is a side view.)

equations of mass, momentum and heat conservation are

0 = ∇ · u, (1)

∂u

∂t
+ u · ∇u +

1

ρ0
∇(p − p0) = ν∇2u + gαk̂(T − T0), (2)

∂T

∂t
+ u · ∇T = κ∇2T. (3)

The last equation arises from the energy equation

∂q

∂t
+ ∇ · J = 0 (4)

where q = cT is the thermal energy density and J = c(uT − κ∇T ) is the heat flux. In

equation (2) ν is kinematic viscosity, g is acceleration due to gravity, c is specific heat

capacity and α is the thermal expansion coefficient, which also appears in the equation of

state
ρ − ρ0

ρ0
= α(T − T0). (5)

Rayleigh considered a domain confined between two impermeable flat horizontal plates,

each held at a different temperature. The distance between the plates is h, and the problem

is assumed to be periodic in the two horizontal directions, x and y (see Figure 5). We are

primarily concerned with the mean vertical heat flux, namely

〈Jz〉 =

〈

wcT − cκ
∂T

∂z

〉

(6)

=
cκ

h
(Thot − Tcold) + c 〈wT 〉 (7)
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Figure 5: The mathematical domain.

where 〈·〉 denotes a space-time average.

From this point onwards, we shall work with non-dimensionalised equations. The char-

acteristic length scale of the system is the height h, and the characteristic time scale is the

thermal diffusion time over this distance, h2/κ. We therefore formally define the following

dimensionless variables:

x̃ = x/h (8)

t̃ = κt/h2
(9)

ũ = uh/κ (10)

T̃ =
T − T0

Thot − Tcold
(11)

p̃ =
p − p0

ρ0

h2

κ2
(12)

If we further define the dimensionless parameters

• Rayleigh number, Ra =
gα(Thot − Tcold)h3

νκ

• Prandtl number, Pr = ν/κ

then the governing equations become (after dropping the ‘∼’s)

0 = ∇ · u, (13)

1

Pr

(

∂u

∂t
+ u · ∇u

)

+ ∇p = ∇2u + Ra k̂T , (14)

∂T

∂t
+ u · ∇T = ∇2T (15)

The boundary conditions on T are now simply T = 1 on z = 0 and T = 0 on z = 1. Finally,

we define the Nusselt number, Nu, which measures the enhancement of heat transport due

to convection, relative to conductive heat transfer:

Nu = 〈Jz〉 /Jcond (16)
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We wish to determine how Nu varies with the parameters Ra and Pr
1
. From the equations

of motion, it can be shown (see Appendix A) that

Nu = 1 + 〈wT 〉 (17)

=
〈

|∇T |2
〉

(18)

= 1 +
1

Ra

〈

|∇u|2
〉

≥ 1, (19)

the last expression showing that convection always increases the rate of heat transfer. If we

chose to represent the convective heat flux in terms of an effective “eddy diffusion” κeddy,

so that 〈Jz〉 = cκeddy(Thot − Tcold)/h, we would then find that κeddy = Nu κ. In the case of

no convection we have the “conduction solution”, u = 0, T = τ(z) = 1 − z, with Nu = 1.

2.2 Linear instability

As we increase the temperature difference between the two plates (i.e. increase the Rayleigh

number) we expect the conduction solution to become unstable. We therefore analyse the

linear stability of the system by defining a perturbation θ such that T = τ(z) + θ(x, t). We

now linearise our equations in order to obtain a single linear equation for θ:

(− 1
Pr∂t + ∇2

)(−∂t + ∇2
)∇2θ − Ra(∇2 − ∂2

z )θ = 0. (20)

We look for solutions of the form θ ∝ e
−λt+ikxx+ikyy

, which yields the 1D eigenfunction

problem

(
1
Prλ + ∂2

z − k2
)(λ + ∂2

z − k2
)(∂2

z − k2
)θ + Ra k2θ = 0, (21)

where k2
= k2

x +k2
y. On both plates we have θ = 0 and ∂2

zθ = 0 so that w = 0. If we further

assume, for simplicity, that we have no-stress boundary conditions on the two plates, then

the solutions of (21) are θ ∝ sin(nπz) for n ∈ Z. We find that λ ∈ R ∀k, n, so the condition

for marginal stability is λ = 0. The marginally stable modes have

Ra =
(k2

+ n2π2
)
3

k2
, (22)

and we find the critical Rayleigh number Rac (above which the system is unstable to dis-

turbances of some wavelength) by minimising this expression over k and n. Therefore,

regardless of the choice of Pr, we find Rac =
27
4 π4 ≈ 657, at which point convective rolls

appear with width π/kc =

√
2h. If we instead choose no-slip boundary conditions on the

two plates, then the eigenfunctions become more complicated, and the critical Rayleigh

number increases to Rac ≈ 1708.

2.3 Nonlinear stability

Linear stability does not rule out the possibility that the system might become nonlinearly

unstable at Rayleigh numbers smaller than Rac. In order to determine sufficient conditions

for stability, we can perform an “energy analysis”, retaining all terms in the equations. We

1In a domain of finite horizontal extent, the cross-sectional area would also enter as a parameter.
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again suppose that T = τ(z) + θ(x, t), where τ(z) = 1− z, and consider perturbations that

are periodic in x and y. By taking the scalar product of u with (14) and applying (13) we

find

∂

∂t

(

u2

2Pr

)

+ ∇ ·
(

u2

2Pr
u + pu

)

= ∇2
(
1
2u2

) − |∇u|2 + Ra Tw. (23)

Integrating over the domain and applying the boundary conditions, we find

1

PrRa

d

dt

∫

V

1
2u2 dV = − 1

Ra

∫

V

|∇u|2 dV +

∫

V

θw dV. (24)

Similarly, we can multiply (15) by θ = T − τ(z) to obtain

∂

∂t
(
1
2θ2

) + ∇ · (1
2θ2u) = −(τ ′w − τ ′′

)θ + ∇2
(
1
2θ2

) − |∇θ|2, (25)

which becomes, after integration,

d

dt

∫

V

1
2θ2 dV = −

∫

V

|∇θ|2 dV −
∫

V

(τ ′w − τ ′′
)θ dV. (26)

Since τ(z) = 1 − z, the sum of equations (24) and (26) is

dE

dt
= −Q (27)

= −(Q/E)E ≤ −
(

min
θ,u

[Q/E]

)

E (28)

where

E{θ,u} =

∫

V

1

2

[

u2

PrRa
+ θ2

]

dV (29)

and

Q{θ,u} =

∫

V

[ |∇u|2
Ra

+ |∇θ|2 − 2θw

]

dV. (30)

If we can show that minθ,u[Q/E] is strictly greater than zero (for given Ra), then

equation (28) implies that E tends exponentially to zero, so the system is absolutely stable.

Since both E and Q are quadratic forms, it suffices to minimise over θ and u such that

E{θ,u} = 1. We therefore seek to extremise the functional

F{θ,u} = Q{θ,u} − 2λE{θ,u} −
∫

V

2

Ra
p(x)∇ · u dV (31)

where λ and p(x) are, respectively, global and pointwise Lagrange multipliers, designed to

ensure that E = 1 and ∇ · u = 0 throughout the domain. The Euler–Lagrange equations

for this system are

− λ

Pr
u + ∇p = ∇2u + Ra θk̂ (32)

−λθ − w = ∇2θ (33)
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From these, it can be shown that Q{θ,u} = 2λ, so it just remains to show that λ is positive.

In fact, we can combine (32–33) into the single equation

(
1
Prλ + ∇2

)(λ + ∇2
)∇2θ − Ra(∇2 − ∂2

z )θ = 0. (34)

Comparing this to equation (20), we see that the nonlinear stability criterion is identical to

the linear stability criterion.

In principle, we could repeat this analysis for a different functional form of τ(z) in

equation (26). We shall see in §4.1 that this approach allows us to derive upper bounds for

the Nusselt number Nu when Ra > Rac.

3 Heat transport at high Ra

In the decades following Rayleigh’s discovery, most studies of convection focused on the

weakly nonlinear regime at Rayleigh numbers just above critical. The first author to study

fully turbulent convection was Malkus [18]. Later, Kraichnan [16] applied mixing length

theory to predict the behaviour of the Nusselt number in the limit of large Rayleigh number.

A more extensive theory was proposed by Grossmann & Lohse [12], which led to a

complicated picture with eight separate parameter regimes, depending on the values of Ra

and Pr (see Figure 6). The “ultimate” scaling obtained in the limit of large Rayleigh number

Figure 6: The various parameter regimes predicted by [12].

was predicted by both Kraichnan and Grossmann & Lohse to be Nu ∼ (PrRa)
1/2

.

3.1 The “ultimate” scaling: Nu ∝ (Pr Ra)1/2

In fact, the “ultimate” scaling law can be derived from the so-called “free-fall” argument

of Spiegel [31]. If the diffusivities are sufficiently small, then the rate of heat flux may be

determined by the bulk dynamics. The vertical velocity scale is therefore set by balancing

inertia and buoyancy acceleration:

w2/h ∼ gαδT. (35)
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Figure 7: A sketch of the mean temperature in a turbulently-convecting Rayleigh-Bénard

cell.

Since the thermal energy density is cδT , the effective vertical heat flux is then Jconv ∼ cδTw,

which is independent of ν and κ. Thus

Nu ∼ Jconv

Jcond

(36)

∼ c∆T [gαh∆T ]
1/2

cκ∆T/h
(37)

∼ (PrRa)
1/2. (38)

3.2 The “classical” scaling: Nu ∝ Ra1/3

An argument in favour of the scaling Nu ∝ Ra
1/3

was originally proposed by Malkus [19],

and quantitatively articulated by Howard [13]. Howard’s argument, which appeals to a

plume-like, time-dependent solution of the heat equation, is omitted here in favour of a

simpler, though less precise, approach.

In a statistically steady state, the mean temperature in a turbulently-convecting cell

should be uniform in the well-mixed interior, with most of the variation occuring in thin

boundary layers of thickness δ at the top and bottom of the cell, as illustrated in Figure

7. In dimensionless variables, the heat flux (hence the Nusselt number Nu) away from the

lower boundary will be proportional to the gradient of T there, namely δ−1
. In order to

determine the boundary layer thickness, we assume marginal stability. That is, we assume

that the Rayleigh number based on conditions in the boundary layer is (almost) exactly

critical. Thus

Rac ≈ Raδ =
αg(δh)

3
∆T

2νκ
=

1

2
δ3

Ra (39)

⇒ δ ≈ (2Rac)
1/3

Ra
−1/3 ⇒Nu ∝ Ra

1/3. (40)

An interesting aside is that the prediction made here for the prefactor is fairly accurate,

lending further weight to this simple argument.
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3.3 Experimental and numerical validation of the scaling laws

Recent years have seen several experimental works attempt to verify the various propsed

scalings for heat transport at high Rayleigh number. In experiments with gaseous helium,

Chavanne et al.[4] claimed to have observed a distinct high-Ra (in their case, Ra > 10
11

)

scaling for Nu, perhaps matching the predictions of Kraichnan. Their results were later

contradicted by Glazier et al. [11], who observed no deviation from another scaling, Ra
2/7

,

in their experiments with liquid mercury, though the experimental Prandtl number was

much smaller than in [4]. Experimental evidence for a Ra
0.301 ≈ Ra

3/10
scaling (or perhaps

a (Ra log Ra)
3/10

scaling) was obtained by Niemela et al. [21]. High-precision experiments

carried out by Nikolaenko et al.[22] suggest that the Ra
1/3

scaling can be observed for

convecting cells with large aspect ratio. While the debate over the correct scaling is by no

means settled, the three-dimensional simulations of Amati et al. [1], reproduce the classical

Ra
1/3

scaling.

The somewhat ephemeral nature of the high-Ra scaling may perhaps be indicative of

the fact that boundaries play a non-trivial role in determining turbulent heat transport,

accentuating differences in experimental apparatus. A sufficiently rough boundary may

disrupt any boundary layers, changing the behaviour of the system. Experiments in a

rough-walled container by Roche et al. [29] produced evidence for the Ra
1/2

scaling, a

result that was reproduced by the numerical simulations of Stringano et al [32]. Notably,

their simulation yielded different results when their jagged bottom boundary was replaced

by a smooth, flat boundary.

4 Analytical upper bounds on Nu

With so many experiments giving different results, one would like to investigate the possi-

bility of calculating mathematical upper bounds for the Nusselt number Nu. This can be

done by using the integral identities for Nu (17-19) and applying standard inequalities from

calculus in order to obtain bounds. One method of carrying out such a calculation is the

so-called background method, which is outlined below.

4.1 The background method

We begin by allowing the temperature field T to take the form

T (x, t) = τ(z) + θ(x, t) (41)

We are entirely free to choose τ(z), as long as it satisfies the inhomogeneous boundary

conditions. Unlike in the energy analysis of stability described earlier in §2.3, it need not

satisfy the steady-state conduction equation (with u = 0). Unlike a linear stability analysis,

we do not intend to linearise about τ(z), so a difference of any size between this and the

‘true’ steady background state may be included in the perturbation θ.

Using the above form of the temperature field, the equations of heat and momentum
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conservation become

∂θ

∂t
+ u · ∇θ = ∇2θ + τ ′′ − wτ, (42)

1

Pr

(

∂u

∂t
+ u · ∇u

)

= −∇p + ∇2u + Ra(τ + θ)ẑ, (43)

with boundary conditions θ(0) = θ(1) = 0. Using the identity (18), and denoting by angled

brackets a combined spatial/temporal average, we find that

Nu =
〈

|∇T |2
〉

=

∫ 1

0
[τ ′

(z)]
2
dz + 2

〈

τ ′ ∂θ

∂z

〉

+
〈

|∇θ|2
〉

. (44)

We can eliminate the term involving τ ′
dθ/dz in (44) by multiplying the heat equation (42)

by 2θ taking the time/space average and integrating by parts. The resulting equation is

Nu =

∫ 1

0
[τ ′

(z)]
2
dz −

〈

|∇θ|2 + 2τ ′wθ
〉

(45)

Finally, for convenience later, we add the time/space-average of 2u·(43) to (45) to find that

Nu =

∫ 1

0
[τ ′

(z)]
2
dz − Q{θ,u}, (46)

where

Q{θ,u} =

〈

|∇θ|2 +
2

Ra
|∇u|2 + 2(τ ′ − 1)wθ

〉

. (47)

This general result forms the backbone of the background method. If one can find a partic-

ular τ(z) such that the quadratic form Q is non-negative definite, then the first term on the

right-hand side of (46) provides an upper bound on the Nusselt number Nu. An illustration

of how one could perform such an analysis is given in detail in the Appendix.

One should not expect that there is a unique τ(z) that will give a positive definite

quadratic form Q. Indeed, one may formulate a variational calculus problem based upon

choosing τ(z) in order to minimise the upper bound subject to the temperature boundary

conditions. This very problem has been solved, numerically, by Plasting & Kerswell [27].

It is interesting to note that the background method may be thought of a rigorous

implementation of the marginal stability argument proposed in §3.2. For a hypothesised

temperature profile (for example, the well-mixed interior with thin boundary layers in Figure

7), we aim to estimate the heat flux obtained as if this profile were an equilibrium solution.

4.2 A brief history of bounds on Nu

The background method is not the only analytical technique to have been applied to the

problem of high-Ra convection. The original analysis by Howard [13] used a power balance

combined with some statistical hypotheses about the nature of turbulent convection to

arrive at the bound Nu < CRa
1/2

uniformly in Pr. No author since has been able to

improve the exponent of Ra for arbitrary (finite) Pr, lending support to the ‘ultimate’

scaling Nu ∝ Ra
1/2

. The prefactor was improved, however, through the asymptotics of
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Busse [3]. This bound was originally unchallenged by the application of the background

method Constantin & Doering [5], until Nicodemus et al. [20] introduced a so-called ‘balance

parameter’ to the background method, allowing the use of largely-isothermal background

temperature profiles. It was shown by Kerswell [15] that the best possible bounds obtainable

by the background method and by Howard [13] should be one and the same. The most

strict currently-known bound was determined by Plasting & Kerswell [27], who obtained

the optimal profile for use in the background method, and arrived at the bound

Nu < 0.0264Ra
1/2. (48)

4.3 Convection and heat transport at Pr = ∞
Several authors have extended the the search for a high-Ra scaling to fluids with infinite

Prandtl number - that is, fluids with very small thermal diffusivity, relative to their (kine-

matic) viscosity. A very important example of such a fluid is the Earth’s mantle. In the

infinite-Pr regime the equations of heat, momentum and mass conservation are

∂T

∂t
+ u · ∇T = ∇2T, (49)

∇p = ∇2u + RaT ẑ, (50)

∇ · u = 0. (51)

Note that the velocity and pressure fields are slaved to the temperature field T in this case.

One can perform both a linear stability analysis and an energy analysis in exactly the same

manner as for the finite Pr fluid case illustrated in §§2.2-2.3, arriving at precisely the same

result. The flow is linearly unstable for Ra > Rac and nonlinearly stable for Ra < Rac,

with Rac = 1708 for a problem with no-slip boundaries at the top and bottom of the cell,

Rac = 27π4/4 with stress-free boundaries and so on. Note that, although the marginal

stability conditions remain the same, behaviour above Rac does depend on Pr.

If one were to investigate the behaviour of the Nusselt number Nu at high Ra, however,

one finds notable differences between this and the finite Pr case. It is still possible to find

analytical upper bounds for Nu using the background method described above; the Nusselt

number still takes the form

Nu =

∫ 1

0
[τ(z)]

2
dz − Q{θ} (52)

but the quadratic form Q becomes

Q{θ} =
〈

|∇θ|2 + 2τ ′wθ
〉

, where ∇2w = −Ra∇2
Hθ. (53)

Analyses have yielded a number of bounds on Nu, each specifying different power laws.

The first application of the background method to this problem Doering & Constantin [9]

yielded a bound of the form Nu ≤ CRa
2/5

. It was later proved, both by Otero [23] and by

Plasting [26], that Ra
2/5

is the best possible scaling that may be obtained with a monontone

background τ(z), using the background method alone. Yan [33] improved the bound to

Ra
4/11

by instead using a maximum principle applied to a monotone profile. The addition

of a singular integral analysis to this maximum principle can yield a scaling of the form
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Figure 8: The non-monotonic average temperature profile found by Sotin & Labrosse [30].

Nu ≤ cRa
1/3

(log Ra)
2/3

[6]. More recently, Doering, Otto & Reznikoff [10] further refined

the rigorous bound to (Ra log Ra)
1/3

by applying the background background method with

a non-monotone background function. A numerical computation of the optimal background

profile (which turns out to be non-monotone), suggests a simple Ra
1/3

scaling for the Nu

bound [14].

The need for a non-monotonic background function for the temperature was anticipated

by the observations of Sotin & Labrosse [30], who carried out a detailed numerical simulation

of infinite Prandtl number convection. In their simulations
2
, it was apparent that cold fluid,

after having decended close to the base of the convection cell, ‘pools’ above the thermal

boundary layer due to heating of the lower boundary. This results in a small depression

of mean temperature between the edge of the lower boundary layer and the well-mixed

central region. The same phenomenon occurs with hot fluid just below the upper boundary

layer. This ‘lid’ on the boundary layer stabilizes it, allowing it to grow nearly to Ra
−1/3

as

conjectured by the marginal stability argument given in §3.2. The resulting time-averaged

temperature profiles resemble those shown in Figure 4.3.

4.4 Bounds on convection in porous media

One can also investigate convection in a porous medium, where the fluid flow is governed

by Darcy’s law

∇p = −u + RaDT ẑ, ∇ · u = 0, (54)

with the Darcy-Rayleigh number

RaD =
gα∆ThK

νκ
. (55)

K here represents the permeability of the medium (the square of the lengthscale of the

pores, essentially a measure of the mobility of fluid within the porous matrix). In this

problem, at least, there is much less controversy over the scaling of the Nusselt number

for large RaD. Analogous arguments to those used to get the Ra
1/2

and Ra
1/3

scalings for

2viewable online at the time of writing at http://www.ipgp.jussieu.fr/∼labrosse/movies.html
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open fluids both suggest that Nu ∝ Ra
1
D

as RaD → ∞. This statement is further supported

by an application of the background method, such as has been performed by Doering &

Constantin [8].

It should be noted, however, that the scaling Nu ∝ RaD is rarely observed in experi-

ments. Indeed, it is difficult to extract a single scaling law from the experimental data, as

compiled by Lister [17]. Part of the problem lies in attempting to define a global Darcy-

Rayleigh number on what is inevitably a heterogeneous medium. Furthermore, Darcy’s law

itself can be called into question, depending upon the physical parameter used to increase

RaD. See also Otero et al. [24] for a detailed discussion of the analysis of convection in a

porous medium.

5 Open problems and challenges

We conclude with a small subset of the many open problems and challenging aspects not

yet fully explored in this interesting field.

Given the numerous inconsistent experimental results for the scaling of Nu at high

Ra, one would very much like to know the ultimate state of Rayleigh-Bénard convection.

Does a single ultimate state exist, or are different states reached, depending on the specifiy

geometry or region of parameter space, as suggested by Grossmann & Lohse [12]?

Bounds on Nu derived via the background method do not yet include details of high-Ra

dependence of Nu on the Prandtl number Pr. Is it possible to obtain sharp, uniform bounds

on the Nusselt number when considering both dimensionless parameters?

Several generalisations of simple Rayleigh-Bénard convection are of interest to geophysi-

cists, in the context of thermal transport in the mantle, or in the oceans and atmosphere.

We could ask about the comparison between fixed temperature and fixed heat flux bound-

ary conditions (see [25]), or examine the effect of adding rotation in the form of a Coriolis

force (see [7], for example).

Finally, problems involving free boundaries present an interesting variation on convection

problems, largely neglected in the current literature (except of course for the original closed-

form linear solution of Rayleigh [28]). Not only would stress-free boundary conditions
3

alter

the analysis leading to upper bounds, but more Marangoni effects, due to the variation of

surface tension with temperature, could present some interesting results. Indeed, this would

bring us back to our starting point, with the observations of Bénard [2].

A Derivation of integral identities for Nu

Integrating equation (15) over the domain V , we obtain

d

dt

∫

V

T dV +

∫

∂V

Tu · dS =

∫

∂V

∇T · dS, (56)

3[23] has conjectured, based on a numerical implementation of the background method, that Nu . Ra5/12

for two-dimensional convection with stress-free boundaries
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where we have used the fact that ∇ ·u = 0. After applying our boundary conditions to the

two surface integrals, we are left with

d

dt

∫

V

T dV =

∫

z=1

∂T

∂z
dS −

∫

z=0

∂T

∂z
dS. (57)

Similarly, after multiplying equation (15) by T and integrating over V , we obtain

d

dt

∫

V

1
2T 2 dV +

∫

∂V

1
2T 2u · dS =

∫

∂V

T∇T · dS−
∫

V

|∇T |2 dV (58)

⇒ d

dt

∫

V

1
2T 2 dV =

∫

z=0
−∂T

∂z
dS −

∫

V

|∇T |2 dV. (59)

Finally, multiplying equation (15) by z and integrating over V , we obtain

d

dt

∫

V

zT dV +

∫

∂V

zTu · dS −
∫

V

wT dV =

∫

∂V

z∇T · dS−
∫

V

∂T

∂z
dV (60)

⇒ d

dt

∫

V

zT dV −
∫

V

wT dV =

∫

z=1

∂T

∂z
dS +

∫

z=0
dS. (61)

We now put (57), (59) and (61) together to find

d

dt

∫

V

(T − 1
2T 2 − zT ) dV +

∫

V

wT dV =

∫

V

|∇T |2 dV −
∫

z=0
dS. (62)

We define the time average operator · by

f = lim
T →∞

1

T

∫

t=T

t=0
f(t) dt (63)

and note that, if f(t) is bounded, then
df

dt
vanishes

4
. Assuming that T remains bounded

throughout the domain, the time average of (62) then yields

∫

V

wT dV =

∫

V

|∇T |2 dV −
∫

z=0
dS (64)

⇒ 〈wT 〉 =
〈

|∇T |2
〉

− 1. (65)

Furthermore, if we integrate equation (23) over the domain, we find

1

Pr

d

dt

∫

V

1
2u2 dV = −

∫

V

|∇u|2 dV + Ra

∫

V

Tw dV (66)

and so

0 = −
〈

|∇u|2
〉

+ Ra 〈Tw〉 . (67)

4If, say, |f(t)| ≤ C < ∞ ∀t then 1

T

˛

˛

˛

R

T

0

df

dt
(t) dt

˛

˛

˛
= 1

T
|f(T ) − f(0)| ≤ 2C

T
→ 0 as T → ∞.
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Figure 9: The piecewise linear background function (71) used in the derivation of an upper

bound for Nu.

B A sample application of the background method

In this appendix, we give an example of the application of the background method to a

simple case, in order to obtain a relatively crude upper bound for Nu. As in the main body

of the notes (see §4.1), we write the temperature field in the form

T (x, t) = τ(z) + θ(x, t) (68)

and consider the magnitude of the Nusselt number in the form

Nu =

∫ 1

0
[τ ′

(z)]
2
dz − Q{θ,u}, (69)

where the quadratic form Q is given by

Q{θ,u} =

〈

|∇θ|2 +
2

Ra
|∇u|2 + 2(τ ′ − 1)wθ

〉

. (70)

We would now like to find a lower bound for Q, giving us an upper bound for Nu. Each

of these bounds will depend upon the form of the background function τ(z). Whilst the

first two terms in Q are positive definite, we can say very little about the last. Using our

freedom to choose the background temperature field, we use a piecewise linear background

τ(z) illustrated in Figure 9, and defined mathematically by

τ(z) =











1 −
(

1−δ

δ

)

z for 0 < z < δ,

z for δ < x < 1 − δ,
(

1−δ

δ

)

(1 − z) for 1 − δ < z < 1,

(71)

which eliminates the final term in Q everywhere except within a region of width δ at each

boundary. For this τ(z), we note that

∫ 1

0
[τ ′

(z)]
2
dz =

2

δ
− 3, (72)

before concentrating our attention on bounding the quadratic form Q{θ,u}.
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The absolute value of the last term in (70) is given for the background temperature field

(71) by

∣

∣

∣

∣

∫

V

(τ ′
(z) − 1)wθdV

∣

∣

∣

∣

=
1

δ

∣

∣

∣

∣

∫ ∫
(
∫

δ

0
wθdz

)

dy dx +

∫ ∫
(
∫ 1

1−δ

wθdz

)

dy dx

∣

∣

∣

∣

. (73)

Using a combination of the fundamental theorem of calculus and the Cauchy-Schwarz in-

equality, we can bound the temperature perturbation as follows

|θ(x, y, z)| =

∣

∣

∣

∣

∫

z

0

∂θ

∂z
(x, y, ζ)dζ

∣

∣

∣

∣

(74)

≤
(
∫

z

0
dζ

)1/2
(

∫

z

0

(

∂θ

∂z

)2

dζ

)1/2

(75)

≤ z1/2

(

∫ 1/2

0

(

∂θ

∂z

)2

dζ

)1/2

(if z ≤ 1/2). (76)

After having found a similar bound for the vertical velocity w, and using a similar argument

for 1/2 ≤ z ≤ 1, we can now bound the integrals in (73) in the following way

1

δ

∣

∣

∣

∣

∫ ∫
(
∫

δ

0
wθdz

)

dy dx

∣

∣

∣

∣

≤ δ

2

∫ ∫







(

∫ 1/2

0

(

∂θ

∂z

)2

dζ

)1/2(
∫ 1/2

0

(

∂w

∂z

)2

dζ

)1/2






dxdy

(77)

≤ δ2
Ra

16

∫

z≤1/2

(

∂θ

∂z

)2

dV +
1

Ra

∫

z≤1/2

(

∂w

∂z

)2

dV. (78)

In obtaining the above bound, we have used the inequality 2ab ≤ a2
+ b2

, with a and b
carefully chosen so that the velocity gradient term will have the same prefactor (2/Ra) as

in the expression for Q{θ,u} (70). After combining the contributions from the boundary

layers near 0 and 1, we can write

∣

∣

〈

2(τ ′
(z) − 1)wθ

〉
∣

∣ ≤ δ2
Ra

8

∫

V

(

∂θ

∂z

)2

dV +
2

Ra

∫

V

(

∂w

∂z

)2

dV, (79)

therefore we can bound the quadratic form Q from below as follows

Q{θ,u} =

〈

|∇θ|2 +
2

Ra
|∇u|2 + 2(τ ′ − 1)wθ

〉

(80)

≥
〈

(

∂θ

∂z

)2

+
2

Ra

(

∂w

∂z

)2

− δRa

8

(

∂θ

∂z

)2

− 2

Ra

(

∂w

∂z

)2
〉

(81)

=

(

1 − δ2
Ra

8

)

〈

(

∂θ

∂z

)2
〉

. (82)

34



If we use our freedom to choose the background function so that δ = 2

√

2/Ra, we can

guarantee that Q ≥ 0 for all θ and u. Substituting this information into equations (71) and

(72), we find that

Nu ≤
√

Ra

2
− 3. (83)

For consistency, we require that δ ≤ 1/2, as the background function must be single-valued.

The above analysis therefore only holds for Ra ≥ 32.
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Waves and Vortices Driven by Interfacial Fluxes

Lecturer: Kerry A. Emanuel
Notes written by: Malte F. Jansen & Yutian Wu

November 17, 2008

Figure 1: Satellite image of Hurricane Floyd approaching the east coast of Florida in 1999.

The image has been digitally enhanced to lend a three-dimensional perspective. Credit:

NASA/Goddard Space Flight Center.

1 Atmospheric Boundary Layers

The flux of sensible and latent heat at the surface boundary layer can drive major at-

mospheric disturbances as for example hurricanes. On the other hand the surface winds

associated with these disturbances, influence the surface fluxes which leads to an essential

feedback. Our understanding of boundary layer fluxes is therefore crucial for the under-

standing of many meteorological phenomena. We will here derive some simple scaling laws

for the simplified cases of a boundary below a semi-infinite domain. First we will consider

the cases of convective and mechanically driven turbulence separately and then briefly dis-

cuss how the results might be generalized. In section 1.4 we will show how the interaction

between surface winds and surface heat flux can lead to growing wave-like perturbations.
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Finally section 1.5 will show that turbulent heat flux in the boundary layer is essential to

wipe out the thermodynamically unstable radiative equilibrium state.

1.1 Convective Boundary Layers

Assume a lower boundary under a semi-infinite domain. The turbulent flux of buoyancy

through the boundary at z=0 is then given by

Q = w′B′ = −
∫

∞

0
Ḃdz , (1)

where Ḃ denotes the radiative cooling in the domain. The buoyancy flux has the dimension

of a length squared over a time cubed:

Q ∼ L2t−3
(2)

Since no length scale is intrinsic to the system, dimensional analysis gives a velocity scale

w′ ∼ (Qz)
1

3 (3)

i.e. the turbulent velocity increases as z
1

3 . Similarly we find

B′ ∼ Q
2

3 z−
1

3 (4)

This would imply infinite buoyancy perturbations as z → 0. To overcome this problem we

have to consider a thin surface layer in which diffusion or the roughness of the boundary

becomes important. For atmospheric applications the boundary roughness scale is generally

much larger than the scale at which molecular diffusion starts to play a role. The above

scaling laws then apply only down to the height of the boundary layer roughness scale zT
0

(where T stands for ”thermal”) and from (3) and (4) we get

w′
0 ∼ (QzT

0 )
1

3 (5)

and

B′
0 ∼ Q

2

3 zT

0
−

1

3 . (6)

Similar to the buoyancy perturbations, the mean buoyancy above the roughness scale has

to vary as z−
1

3 . We thus find

B̄ − B̄0 ∼ Q
2

3 [(zT

0 )
−

1

3 − z−
1

3 ] . (7)

This result implies that for z � zT
0 , B̄ converges to the constant value B̄ ∼ Q

2

3 zT
0
−

1

3 which

is determined by the surface flux and the roughness length.

Note that the above arguments change dramatically if an upper lid would be considered.

In this case another length scale h given by the height of the domain would exist. The

turbulent velocity scale in this case is given by the Deardorff [2] scaling.

w′ ∼ (Qh)
1

3 (8)

If more than one length scale exists in the problem, simple scaling laws can generally no

longer be found, since all quantities can be functions of the non-dimensional numbers that

are then intrinsic to the problem.
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1.2 Shear Driven Boundary Layers

A similar analysis can be performed if turbulence is dominated by mechanical forcing. Again

assuming a semi-infinite domain we find that the flux of momentum through the boundary

is given by

M =

∫

∞

0
(u̇)dz (9)

where u̇ generally represents any velocity source. In a steady state and in a nonrotating

system (or if rotation can be neglected on the regarded scales) we find:

M =

∫

∞

0

1

ρ

∂p

∂x
dz . (10)

M has the dimension of a velocity squared. Defining u∗2 ≡ M we directly find that the

turbulent velocity has to scale as

w′ ∼ u∗ (11)

and is thus constant with height, unlike in the buoyancy driven case. A scaling for the shear

of the mean wind is given by

dū

dz
∼ u∗

z
. (12)

Integrating and assuming that ū vanishes at z0, which is the roughness length for momen-

tum, gives

ū ∼ u∗ ln
z

z0
. (13)

And for the background velocity difference between the heights z1 and z2

∆ū ∼ u∗ ln
z2
z1
. (14)

This can be solved to get an equation for the surface momentum flux

M = u∗2 ∼ (∆ū)2

(ln
z2

z1
)2
. (15)

This equation allows one to determine the surface flux from a given mean velocity profile

(given that the necessary proportionality constant is determined).

More generally, scaling analysis show that the surface flux of any tracer θ in a mechan-

ically driven boundary layer is given by

F = cu∗(θ̄0 − θ̄a) , (16)

where θ̄a denotes the background tracer concentration at some fixed height and c is a

constant that depends on the choice of this height. For more details on the derivation of

this equation see chapter three in [4].
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1.3 Boundary Layers with Shear and Convection

In real atmospheric boundary layers, thermal convection and vertical shear of the back-

ground flow usually come together. Assuming prescribed surface fluxes of buoyancy and

momentum, Q and M , a natural length scale is given by

L =
M

3

2

Q0
=

u∗3

w′B′
. (17)

This is referred to as the Monin-Obukov length
1
. It can be gained by comparing the

turbulent vertical velocities in the buoyancy driven boundary layer (3) and in the shear

driven boundary layer (11). This makes clear that the Monin Obukov length separates the

boundary into regions where the turbulence is dominantly driven by shear (z � L) and by

convection (z � L). Since this adds a lengthscale to the system, all vertical dependences

of quantities can now contain functions of the nondimensional number z/L, which can

obviously not be determined from simple scaling laws.

1.4 The Linear WISHE Model

Figure 2: Sketch of the mechanism acting in the WISHE model. Positive superposition of

the background easterlies with the easterly disturbance gives rise to an increased surface

buoyancy flux, while the partial cancellation of the background flow and the disturbance

reduces the buoyancy flux on the left.

The fact that when a momentum source is present, the surface flux of heat depends on

the surface wind speed can cause a convective disturbance in the presence of a background

flow to grow and propagate, as sketched in figure 2. A simple linear model describing this

will be derived in this section. The model is a dry version of the WISHE model derived in

[3]. Assuming that the surface heat flux is dominated by mechanically driven turbulence,

we can use equation (16) to get the buoyancy flux at the surface

Q = c2u(Bs −B) , (18)

1Strictly speaking the Monin-Obukov length is conventionally defined with the opposite sign, thus being
negative if the surface buoyancy flux is positive
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where Bs denotes the buoyancy at the surface (which will be assumed to be constant in the

following) while B denotes the buoyancy at some fixed finite height above the surface. All

variables in (18) denote mean values over a temporal and spatial scale larger than the scale of

the background turbulence. In the following we will consider two-dimensional pertubations

u′, B′
with much larger temporal and spatial scale then the background turbulence and a

constant zonal background flow ū and buoyancy B̄. We further assume that the buoyancy

fluctuations are constant with height over the whole depth h of the boundary layer
2
. This

is generally a good approximation in a convective layer. Linearizing in the perturbations

we then get for the anomalous surface heat flux

Q′
= h

(

∂B′

∂t
+ ū

∂B′

∂x

)

= [c2u
′
(Bs − B̄) − c2ūB

′
]|z=0 , (19)

where h is the depth of the boundary layer.

The vorticity equation in the x-z plane becomes

(

∂

∂t
+ ū

∂

∂x

)

∆ψ =
∂B′

∂x
(20)

where we used the incompressibility condition which allows us to introduce a streamfunction

so that

u′ = −∂ψ
∂z

and w′
=
∂ψ

∂x
. (21)

Rescaling

(x, z) → h(x, z) and t→ h

ū
t (22)

and using (19) and (21), we get

(

∂

∂t
+

∂

∂x

)2

∆ψ = −
[

α
∂2ψ

∂x∂z
+ c2

(

∂

∂t
+

∂

∂x

)

∆ψ

]

z=0

(23)

where

α =
Q̄h

ū3
.

Using an approach of the form ψ = f(y) exp(i(kx − ct)) this can be solved for the phase

velocity cr = <(c) and growth rate σ = =(c). The results for c2 = 10
−3

and α = 1 as

well as α = 5 are shown in figure 3. We find exponentially growing disturbances in all

cases. The growth rate increases with wavenumber, though the increase stagnates as the

wavelength becomes short compared to the depth of the fluid. Further we find that the

phase velocity relative to the mean flow is always opposite to the latter. For large α, i.e.

small background flows or strong heatflux, and long horizontal wavelength, we even find

absolute phase propagation opposite to the mean flow.

2The boundary layer here is in general the convective part of the atmosphere up to the first inversion. In
the tropics this would usually be the tropopause
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Figure 3: Left: Nondimensional growth rate (blue) and phase propagation (green) for the

WISHE model with α = 1 and c2 = 10
−3

. Right: As left but for α = 5. Note that the mean

flow has velocity 1, i.e. the phase propagation relative to the mean flow is always negative.

1.5 Radiative Equilibrium and Thermodynamic Disequilibrium

Convective adjustment is an important process in the atmosphere, because radiative equilib-

rium temperature profiles are generally in thermodynamic disequilibrium with the surface.

This shall be illustrated here with a simple layered radiative equilibrium model for the

atmosphere.

The model is sketched in figure 4. The incoming shortwave radiation is described by

an equivalent effective emission temperature Te. The atmosphere consists of one layer

which is completely opaque (ε = 1) for longwave radiation but transparent to short-wave

radiation.An additional thin layer (εA � 1) represents the atmospheric boundary just above

the surface. The radiative equilibrium for the whole system directly yields that

T1 = Te . (24)

From the radiative equilibrium for the surface and the boundary layer, and neglecting the

radiative effects of this thin surface layer, layer we find

Ts
4

= Te
4
+ T1

4
(25)

and

2TA
4

= T1
4
+ Ts

4 . (26)

This yields

TA
4

=

(

3

4

)

Ts
4

(27)

and therefore TA < Ts. We thus find that in radiative equilibrium the temperature of

the atmosphere right above the surface would be lower than the surface temperature itself

which would be instable and trigger convection. Qualitatively similar result are obtained

with more complex continuous radiative equilibrium models. Thus radiative equilibrium

states will generally have convecting boundary layers.
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Figure 4: Sketch of a radiative equilibrium model. See text for details.

2 Compressible Convection

For a homogeneous fluid, the specific volume α (=1/ρ) can be expressed as a function of

two variables, which are chosen to be pressure p and entropy sd here, i.e. α = α(p, sd). The

entropy (in dry case) sd is defined by:

sd = cp ln(
T

To

) −Rd ln(
p

po

) (28)

where To and po are reference temperature and pressure. We can derive buoyancy B based

on entropy sd:

B = −g (δρ)p

ρ
(29)

= g
(δα)p

α

= −dp
dz

(δα)p (by hydrostatic balance)

(30)

then, since

(δα)p = (
∂α

∂sd

)pδsd = (
∂T

∂p
)s

d
δsd, (31)

where the last equation is because of the Maxwell equation:

(
∂α

∂sd

)p = (
∂T

∂p
)s

d
(32)
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Figure 5: Entropy sd as a function of height z.

B = −dp
dz

(
∂T

∂p
)s

d
δsd (plug equation 31 into 30)

= −(
∂T

∂z
)s

d
δsd (33)

≡ Γδsd (34)

where Γ ≡ −(
∂T

∂z
)s

d
= dry adiabatic lapse rate (rate of change of T for a parcel of air moved

vertically and adiabatically) =
g

cp
= 9.8K/km for the Earth’s atmosphere.

The potential temperature θ, a measure of the entropy of a gas, is defined by

θ = T (
po

p
)
R/cp (35)

where p is the pressure, po some reference pressure, R the ideal gas constant, and cp the

heat capacity of the gas at constant pressure. The relation between θ and sd is given by:

sd = cp ln(θ) + constant. (36)

Both variables are conserved for reversible dry adiabatic processes. Figure 5 shows the

stability of entropy as a function of height. It is unstable if entropy decreases with height

while it is stable if entropy increases with height. A model aircraft measurement in a desert

region near Albuquerque, New Mexico, on August 1993 is shown in Figure 6. In this dry

case, the virtual potential temperature doesn’t change much with height and the mean

entropy is conserved [7].

However, above a thin boundary layer, most atmospheric convection involves phase

change of water. Moist convection has significant heating owing to phase changes of wa-

ter, and helps global redistribution of water vapor. Water vapor, being one of the most

important greenhouse gases, is the primary tropospheric infrared absorber while condensed

phases are a significant contributor to stratiform cloudiness which absorb infrared radiation

and scatter short wave radiation as well. Figure 7 shows the phase equilibria of H2O, and

changes of phase cause significant release or absorption of heat.
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Figure 6: Observations of virtual potential temperature made with an RPV (remotely

piloted vehicle) flight in a desert region near Albuquerque, New Mexico, on August 1993.

The observations during ascent (inside the plume) are represented by dots; observations on

descent (outside of the plume) are represented by crosses.

Figure 7: Phase equilibria of H2O.
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The equation of state for water vapor is given by:

eαv = RvT (37)

where e is the vapor pressure, αv the specific volume for water vapor, and Rv = R
m

mv

the

gas constant for water vapor.

e =
RvT

αv

=

R
m

mv

T

αv

= qp
m

mv

(38)

gives the expression for vapor pressure, where q is the mass concentration of water vapor,

m the mean molecular weight of air, mv the molecular weight for water vapor. Saturation

vapor pressure e∗ is also a function of T, i.e. e∗ = e∗(T ). If we decrease p(or q), both e
and e∗ will decrease, but since e∗ decreases more rapidly, i.e. e > e∗, water vapor will be

supersaturated.

Supersaturated vapor always condenses onto ambient aerosols called cloud condensation

nuclei in a process called heterogeneous nucleation. Cloud condensation nuclei include sea

salt from bursting bubbles, windblown dust, combustion products (i.e., organic carbon and

soot), photochemically-produced sulfate (i.e., smog), volcanic aerosols, and meteoric debris.

The drop size distribution is quite sensitive to the size distribution of cloud condensation nu-

clei. While stochastic coalescence is a way to form precipitation, the Bergeron-Findeisen pro-

cess is another important alternative way of initiating precipitation in mid-latitude clouds.

Precipitation formation is a strongly nonlinear function of the cloud water concentration.

The time scale of precipitation formation is about 10 to 30 minutes.

We used entropy sd to discuss the stability for dry air, and specific volume α can be

expressed as a function of sd and p, i.e. α = α(sd, p). In the moist convection case, we

can define an approximately conserved thermodynamic variable, the specific entropy s, a

function of temperature, pressure, and water concentration,

s = cp ln(
T

To

) −Rd ln(
p

po

) + Lv

q

T
− qRv ln(H) (39)

where H ≡ e

e∗
= relative humidity. Specific volume α now depends on three variables

rather than two, i.e. α = α(s, p, qt), where qt is the total concentration of H2O of all

phases, thus we cannot compare the densities of two samples at the same pressure using

just a single entropy variable, a fact of profound consequences for the character of moist

convection. But we can make progress by first defining a saturation entropy s∗, the specific

entropy air would have if it were saturated with water vapor at the same temperature and

pressure. It is given by:

s∗ = cp ln(
T

To

) −Rd ln(
p

po

) +
Lvq

∗

T
= s(T, p, q∗) (40)

and

α = α(s∗, p, qt) (41)
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Figure 8: Structure of s′ and s∗′.

Then we can add an arbitrary function of qt to s∗ such that the specific volume can be

expressed approximately by two variables,

α ∼= α(s∗′, p) (42)

Figure 8 gives the profile of entropy s′ and saturation entropy s∗′ of the surrounding atmo-

sphere. The straight upward lines are the entropy profile of a parcel which is lifted upward

or downward since entropy is conserved. If a parcel is lifted upward with the same entropy

as the surrounding atmosphere at the surface, it will rise dry adiabatically until reaching

the lifting condensation level (LCL); further ascent will be saturated adiabatic. However

only until reaching the crossing point with s∗′ will the parcel be stable; after that the parcel

would attain positive buoyancy since its entropy (which will equal its saturation entropy

since by then the parcel is saturated) will be larger than that of its environment.

Tropical temperature soundings are, to a first approximation, moist adiabatic. Figure 9

is a buoyancy diagram, showing the difference between the density temperature (a temper-

ature that has been corrected for the presence of water vapor and condensed water, so as

to accurately measure the density of the air sample) of a reversibly lifted parcel and that

of its environment, as a function of the level from which the parcel is lifted and the level to

which it is lifted. Note that the environment is almost neutral to a parcel lifted reversibly

from around 950 hPa.

When condensed water precipitates, this irreversible process depletes water from the

ascending cloudy currents and causes much of the air to be subsaturated when it subse-

quently descends. Updrafts due to convective instability can be quite strong over a very

small fractional area. After reaching the level of neutral buoyancy, it diverges and spreads

out laterally, injecting its properties into the large-scale environment. In equilibrium, the

surface enthalpy flux Fk, which is given by Ckρ|V |(k∗o −ka), with k∗o representing the satura-

tion enthalpy of air in contact with the ocean and ka the enthalpy at the boundary, should

be equal to the vertically integrated radiative cooling, where Ck is the enthalpy exchange

coefficient, |V | the magnitude of the surface wind, and the specific enthalpy k given by

k = cpT + Lvq.
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Figure 9: Contour plot of the difference between the environmental density temperature

and the density temperature of a parcel lifted reversibly and adiabatically from the pressure

level given on the abscissa to the pressure level on the ordinate. This quantity has been

averaged over several thousand soundings taken at Kapingamarangi in the tropical western

South Pacific.

3 Hurricanes and friends

There are lots of meteorological phenomena related to waves and vortices driven by interfa-

cial fluxes, such as hurricanes, polar lows, dust devils, agukabams, and convectively coupled

equatorial waves.

Figure 10 shows the equivalent potential temperature (a measure of moist entropy)of

Hurricane Inez in September 28, 1966 as a function of radial distance from the geometrical

center of the eye and pressure. Note that the entropy is high at the hurricane center.

By using conserved variables, such as energy, saturation entropy and angular momen-

tum, the potential intensity of the hurricane within the eyewall region can be expressed

as:

|V |2 =
Ck

CD

Ts − To

To

(k∗o − k) (43)

where CD is the surface drag coefficient, Ts the sea surface temperature and To the temper-

ature at the top of the hurricane [1].

Like the engine in a Carnot Cycle, the energy cycle of hurricanes is one of isothermal

expansion, adiabatic expansion, isothermal compression and adiabatic compression. The

total rate of heat input to the hurricane is given by:

Q̇ = 2π

∫

ro

0
ρ[Ck|V |(k∗o − k) + CD|V |3]rdr (44)

where ro is the radius from the storm center, and the first term within the square brackets

is the surface enthalpy flux and the second one is the dissipative heating. In steady state,

work is used to balance frictional dissipation:
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Figure 10: Equivalent potential temperature of Hurricane INEZ in September 28, 1966 as

a function of radial distance from the geometrical center of the eye and pressure.

W = 2π

∫

ro

0
ρ[CD|V |3]rdr (45)

=
Ts − To

Ts

Q̇ (46)

= 2π
Ts − To

Ts

∫

ro

0
ρ[Ck|V |(k∗o − k) + CD|V |3]rdr. (47)

If we assume that the integrals are dominated by the values of their integrands near the

radius of maximum wind speed, then it gives an approximate expression for the maximum

wind speed:

|Vmax|2 ∼= Ck

CD

Ts − To

To

(k∗o − k) [6]. (48)

This equation, however, can be derived exactly from considerations of thermal wind balance.

Figure 11 shows the maximum wind speed profile as a function of sea surface temperature

(SST) and To when the relative humidity is 0.75 and Ck/CD equals 1.2.
Figures 12 and 13 exhibit the relationship between the potential intensity (PI) and

intensity of real tropical cyclones [5] [6]. Since the cumulative distribution function (CDF)

is linear for tropical storms, within each regime, there is a roughly equal likelihood of a given

storm reaching any given intensity up to its potential intensity. In addition, CDFs of the

wind speeds in North Atlantic and western North Pacific tropical cyclones were calculated.

The peak winds reached during the storms, normalized by their theoretical maximum values,

tend to fall into one of two linear CDFs depending on whether the storm does or does not

reach hurricane intensity, as shown in Figure 9. This means that a randomly chosen tropical

cyclone has the same probability of reaching any given intensity up to marginal hurricane

intensity, and another probability of reaching any intensity between marginal hurricane

intensity and the maximum theoretical intensity at that time and place.
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Figure 11: Maximum wind speed profile as a function of sea surface temperature (SST) and

To when the relative humidity is 0.75 and Ck/CD equals 1.2.

Figure 12: Cumulative distribution function (CDF) of lifetime maximum wind speeds for

all tropical cyclones of tropical storm strength 18 m s−1
or greater after 1957 whose life-

time maximum intensity was not limited by declining potential intensity. Wind speed is

normalized by monthly climatological potential wind speed at the reported position of the

tropical cyclones. The ordinate shows the total number of events whose normalized lifetime

maximum wind speed exceeds the value on the abscissa.
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Figure 13: Total number of tropical cyclones with normalized wind speeds exceeding the

value on the abscissa, from 1957 to 1999 in the North Atlantic and from 1970 to 1999 in the

western North Pacific. Wind speed is normalized by the theoretical maximum wind speed

calculated from climatological data.

Polar lows, agukabams, dust devils and convectively coupled equatorial waves are, to-

gether with hurricanes, meteorological phenomena related to waves and vortices driven by

interfacial fluxes. Polar lows have similar mechanisms as hurricanes, but they are small-scale

storms with ice. Their smaller scale is consistent with theoretical estimates of the maximum

radius of a convective storm which is proportional to 1/f . Agukabams draw their energy

from enthalpy transferred from hot, moist soils. When agukabams happen, there is usually

a big drop in the soil temperature, reflecting the heat transferred from the soil to the air.

Dust devils are essentially dry hurricanes, and like agukabams, they draw energy from the

sensible heat of the sand. It has been observed that Dust devils happen not only on the

Earth but also on Mars.

For convectively coupled equatorial waves, a wavenumber-frequency spectrum analysis

of the satellite-observed outgoing longwave radiation (OLR) was performed within the re-

gion between 15
oS− 15

oN by Wheeler and Kiladis (1999) [8]. After removing an estimated

background spectrum, the spectral peaks correspond nicely with dispersion relations from

equatorially trapped wave modes of shallow water theory. Figure 14 shows the symmetric

component of OLR and some peaks corresponding to the dispersion relations of the equa-

torially trapped wave modes. These so-called convectively coupled equatorial waves are the

Kelvin, n = 1 equatorial Rossby wave, mixed Rossby-gravity, n = 0 eastward inertio-gravity,

n = 1 westward inertio-gravity (WIG), and n = 2 WIG waves. The Madden-Julian oscilla-

tion (MJO) and the tropical depression-type (TD-type) disturbances are also present in the

spectra, but they are unlike the convectively coupled equatorial waves due to their location

away from the equatorial wave dispersion curves in the wavenumber-frequency spectrum.
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Turbulent dynamos:
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field reversals
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1 Introduction

Magnetic fields are present at almost all scales in the universe, from the Earth (roughly 0.5
G) to the Galaxy (10

−6
G). It is commonly believed that these magnetic fields are generated

by dynamo action i.e. by the turbulent flow of an electrically conducting fluid [12]. Despite

this space and time disorganized flow, the magnetic field shows in general a coherent part

at the largest scales. The question arising from this observation is the role of the mean flow:

Cowling first proposed that the coherent magnetic field could be due to coherent large scale

velocity field and this problem is still an open question.

2 MHD equations and dimensionless parameters

The equations describing the evolution of a magnetohydrodynamical system are the equation

of Navier-Stokes coupled to the induction equation:

∂v

∂t
+ (v · ∇)v = −∇π + ν∆v + f +

1

µρ
(B · ∇)B , (1)

∂B

∂t
= ∇× (v ×B) + η ∆B . (2)

where v is the solenoidal velocity field, B the solenoidal magnetic field, ∇π the pressure

gradient in the fluid, ν the kinematic viscosity, f a forcing term, µ the magnetic permeabil-

ity, ρ the fluid density and η the magnetic permeability.

Dealing with the geodynamo, the minimal set of parameters for the outer core are :

• ρ : density of the fluid

• µ : magnetic permeability
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• ν : kinematic diffusivity

• σ: conductivity

• R : radius of the outer core

• V : typical velocity

• Ω : rotation rate

The problem involves 7 independent parameters and 4 fundamental units (length L,

time T , mass M and electic current A). Therefore there are 3 dimensionless parameters:

the magnetic Reynolds number Rm = µ0σV R, the Reynolds number Re = V R/ν and

the Rossby number Ro = V/(RΩ). One can also define the magnetic Prandtl number

Pm = νµ0σ = Rm/Re.

3 Numerical simulations, experiments and the universe

In 1995, the first direct numerical simulation of dynamo was obtained by Glatzmaier and

Roberts [11]. The magnetic structure observed was very similar to the Earth’s one but

dimensionless parameters are up to ten orders of magnitude away from realistic values. For

instance, Pm is of order 1 in these simulations whereas it is 10
−5

in the Earth.

On the figure 1, we can observe that the experiments are closer to the natural objects in

term of Pm than the numerical simulations. This situation is a strong motivation to carry

out dynamo experiments. In such experiments, liquid sodium is used instead of liquid iron

due to the higher electric conductivity. However taking into account rotation, the situation

is more dramatical for experiments since there is more than ten order of magnitude for

Rossby number between the Earth and experiments. Dynamo action can only occur for

sufficient Rm, typically greater than 10. Since the Prandtl number is 10
−5

in experiments,

this yields very large Reynolds number Re > 10
6

and consequently very turbulent flow.

The power needed to drive the flow is typically P ∼ ρV 3R2f(Re). Because of the low value

of the viscosity, Re will be dropped in first approximation in the previous relation. This

leads to

Rm ∼ µ0σ

(

PR

ρ

)1/3

(3)

Using liquid sodium, 100 kW are required to reach Rm = 50 with R = 1m. Moreover, to

increase Rm by a factor 10, P should be increase by a factor 1000.

The first experimental dynamos were independently observed in 2001 in Riga [8], Latvia

and Karlsruhe [19], Germany. Both experiments are based on analytical flows known to

produce dynamo action for relatively low Rm.

The Riga experiment is based on the Ponomarenko flow with a well known dynamo thresh-

old. It consists of a cylindrical pipe divided into three cylindrical shells. The external one

is filled with liquid sodium at rest. The internal vessel contains an downward helical flow

and the fluid recirculates upward in the intermediate shell (figure 2). The experimental
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Figure 1: Parameter range for numerical simulations, experiments and natural systems.

threshold was found to be in good agreement with theoretical predictions. Moreover the

Hopf bifurcation observed matched theory. The agreement between experiment and laminar

kinematic dynamo theory is remarkable. However, using the non-linear theory the value of

the satured magnetic field is underestimated by a factor 10
6
.

The Karlsruhe experiment is based on the G.O. Roberts flow consisting in an array of

whirling flow composed with azimuthal and axial flows (figure 2). The kinematic helicity

defined by (∇× u) · u is the same in all the pipes. The large scale magnetic field observed

in this experiment involves an α − effect due to small scale flow. The threshold decreases

when the large length scale increases but not if one decreases the small length scale.

In both experiments, the magnetic field is generated as if the mean flow were acting alone.

This is probably due to the fact that the level of turbulence in these experiments is limited

by the constraint of the pipes containing the flow.

The flow is very constrainted in these two experiments and does not allow to study the

effect of the turbulence on the dynamo action. In the situation of a bifurcation from a

strongly turbulent flow, two questions arise:

• What is the effect of the turbulence on the dynamo threshold?

• What is the value of the saturated magnetic field above the dynamo threshold?

In order to study a turbulent flow, it can be useful to define the Reynolds decomposition
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Figure 2: First experimental dynamos in constrained flows. Left: Riga experiment; Right:

Karlsruhe experiment.

for the velocity field:

V(r, t) = 〈V〉(r) + ṽ(r, t) (4)

where 〈V〉 represents the mean flow and ṽ stands for the turbulent fluctuations. Then, the

induction equation becomes

∂B

∂t
= ∇× (〈V〉(r) ×B) + ∇× (ṽ(r) ×B) + η∆B . (5)

We see that the mean flow like the turbulent fluctuations can act as a source term for

the magnetic field. There is two different approach for such problem: one can try to avoid

large scale fluctuations using forced flow, like in Riga or Karlsruhe experiment. Another

approach is to study the effect of velocity fluctuations on the dynamo instability which is

the purpose of the VKS experiment.

4 The VKS experiment

4.1 Experimental set-up

The VKS (Von Karman Sodium) dynamo [13] is based on the so called Von Karman flow

(figure 3). It consists of two toroidal cells in contrarotation driven by two impellers with 8

blades. Between two successive blades, the centrifigual flow is strongly expelled, creating a

pumping of the flow near the axis. Both poloidal recirculation and azimuthal flow create a

strongly turbulent velocity field with an important shear layer in the midplane due to the

differential rotation. This flow is also known to produce a strong helical flow. The VKS

flow is carried out in a cylindrical vessel, a geometry which, because of the fast rotation of
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the Earth, appears to be not so far from a geodynamo situation. In this experiment the

seed field is the magnetic field of the Earth.

Figure 3: Sketch of the VKS flow.

There are other experimental attempts to observe self generation of magnetic field in a

non-forced flow. The Madison experiment [7], in the University of Wisconsin, is based on

Dudley & James flow and has been built to create a magnetic field due to this mean flow.

Trials to observe dynamo in spherical couette flow, i.e. flow between two spherical shells

in differential rotation are also made: the DTS (Derviche-Tourneur Sodium) experiment in

Grenoble [14] and the Maryland experiment [18].

In the VKS experiment, 150-liters of liquid sodium are driven by the impellers with

a power input of 300 kW. The temperature is monitored and 3 types of measurement are

made: power, pressure and magnetic field. The last modification leading to the observation

of a self-sustained magnetic field is the use of Iron discs with a strong magnetic perme-

ability. This modification is known to reduce the threshold of the dynamo by changing

the boundary conditions for the magnetic field [10]. The coercive field of the discs is close

to 1 Gauss which is small compared to the magnitude of the magnetic field observed (100 G).

4.2 Results and interpretation

In exact contrarotation, first the generated magnetic field shows an exponential growth dur-

ing the kinematic stage and then saturates at a strongly fluctuating state. The magnetic

field is stationary and strongly axisymmetric. Generally the azimuthal part dominates the

other components except near the axis, where the field is roughly an axial dipole. Figure 5

shows a typical evolution of the magnetic field of VKS.

The control parameter of the dynamo is the magnetic Reynolds number Rm. In the

experiment, Rm can be varied by increasing the rotation rate of the propellers or by varying
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Figure 4: Sketch of the VKS experiment.

Figure 5: Time evolution of the magnetic field in the VKS experiment when the rotation

rate of the discs is increased.

the temperature (and so the conductivity of sodium). The dynamo instability is a super-

critical bifurcation with a threshold around Rmc = 30. The saturated value of the magnetic

field is in relatively good agreement with theoretical predictions (see lecture 2).

The generation of this magnetic field is understood as an α−ω process [15]: due to the

differential rotation between the two discs, the poloidal field is converted into a toroidal field

by the so called ω-effect. In addition, the helicity of the flow will produce poloidal field from

toroidal one: this α-effect is created by the flow near each disk. Between two successive

blades of a disc, a strong centrifugal flow with helicity is created (figure 6). Thus, the VKS
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dynamo is driven by the turbulent non-axisymmetric part of the flow. Indeed, numerical

simulations based on the large scale mean flow alone always predicts an equatorial dipole

breaking axisymmetry, in agreement with Cowling’s theorem.

Bt

Bt

j
θ

Ω-effect

α-effect

Bp

Figure 6: α and ω mechanisms in the VKS experiment.

Cowling’s theorem states that an axisymmetric velocity field can not maintain an ax-

isymmetric magnetic field. Because of the axisymmetrical nature of the forcing and the

mean flow in the VKS experiment, one can be surprised by the observation of a strongly ax-

isymmetric magnetic field. In fact, turbulent fluctuations have often been invoked to break

the restriction imposed by Cowling’s theorem. More surprising, even without such velocity

fluctuations, it is possible to bypass the constraint of Cowling’s theorem by a secondary bi-

furcation (figure 7). Indeed, the axisymmetric mean flow always generates a magnetic field

breaking the axisymmetry, for instance an equatorial dipole in the case of the VKS experi-

ment. The feedback of the Lorentz force immediatly creates non-axisymmetric components

in the velocity field, offering a way for the system to generate an axisymmetric magnetic

field. This self-killing nature of the theorem can yield complex behavior like competition

between equatorial and axial dipoles [9].

In the VKS experiment, the parameter space can be explored by imposing different

rotation rates for each disk (non-exact counter-rotation). The figure 8 shows the different

dynamics in the parameter space when the frequency of the propellers is modified. Three

kinds of dynamics are observed: stationary, oscillatory and intermittent dynamos. Chaotic

field reversals are also observed [2].

For example, decreasing the rotation rate of one propeller from 11 to 10 Hz and keep-

ing the other one constant(28 Hz) yields a transition between a stationary regime to an

oscillation. One can also notice subcritical bifurcation between oscillations and stationary

field in the presence of bistability (figure 9). However, no transition occurs between the two
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Figure 7: Numerical simulation showing how axial dipole can be generated using an ax-

isymmetric forcing.

Figure 8: Different kinds of dynamics in the parameter space: open: no dynamo; closed

dark: stationary dynamo; closed light: reversals and oscillatory dynamos

metastable regimes generated by the turbulent fluctuations on observable time scales.

The exploration of the parameter space shows that in non-exact counter-rotation, the

observed relaxation oscillations bifurcate from fixed points located on the limit cycle as in

the case of an excitable system. A very simple example of excitable system is a pendulum

submitted to a constant torque. Indeed, when one apply a constant torque to a pendulum,

the classical fixed points 0 (stable) and π (unstable) are respectively shifted to θ and π− θ.
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Figure 9: Transition from fixed point to a subcritical oscillatory dynamo. Left: time signal

of the three components of the magnetic field. Right: Behavior in phase space.

When the torque is sufficiently strong, the stable and the unstable solutions collide and then

bifurcate to a limit cycle. Near the relaxation oscillation, the dynamic of the field involves

two different magnetic modes with close threshold: an axial dipole and a quadrupolar mode

when propellers rotates at different frequencies. Experimentally we notice that a shift of

the quadrupole along the rotation axis generates field reversals without variation of power.

The figure 10 shows a typical time signal of VKS experiment in the case of chaotic

reversals. The dynamics seems very similar to the Earth and exhibits also some behavior

called excursion, where the magnetic field temporarly decays but without reversing. Another

interesting similarity with the Earth is the robustness of the reversals with respect to the

turbulent fluctuations, especially the slow decay before a reversal followed by a fast recovery

with a characteristic overshoot.

4.3 Model for VKS and geomagnetic reversals

This complicated behavior of the system can be well understood in the framework of a

low-dimensional model, involving only the dipolar and quadrupolar modes [16]. The field

can be decomposed as:

B = d(t)D(r) + q(t)Q(r) (6)

where D and Q represent the spatial structure of the dipolar and quadrupolar modes and

d(t) and q(t) stand for the corresponding temporal evolution. In order to model the main

feature of the magnetic field in a simple way, the study is restricted to the time evolution

of the amplitudes d and q. The most general amplitude equations up to third order gives:

ḋ = α1d + β1q + γ30d
3γ21d

2q + γ12dq2
+ γ03q

3
(7)

q̇ = α2q + β2d + η03q
3η21d

2q + η12dq2
+ η30d

3
(8)

In exact counter-rotation, the problem presents a symmetry: a rotation of an angle π
around a line in the equatorial plane. The two modes q and d can be classified into two

different family depending on their behavior to this symmetry Rπ. In the present case:

d −→ −d (9)

q −→ q (10)
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Figure 10: Time evolution of the magnetic field during reversal dynamics.

Under this symmetry, certain coefficients in equations 7 and 8 must vanish, giving

ḋ = α1d + γ30d
3
+ γ12dq2

(11)

q̇ = α2q + η03q
3η21d

2q (12)

Using the complex notation A = d + iq = Reiθ
, we get the more compact form :

Ȧ = µA + νĀ + λ1A
3
+ λ2A

2Ā + λ3AĀ2
+ λ4Ā

3
(13)

where Ā is the complex conjugate of A. In the general case, the coefficients are complex

and depend on the experimental parameters. The system can be understood by looking at

the linear part of equation 13. The time evolution of the angle θ is given by the imaginary

part of equation 13

θ̇ = µi − νr sin 2θ (14)

We remark that when µ = 0, the equations respect the symmetry Rπ and describe the

experiment in exact counter-rotation regime. In this case, the equation for θ leads to 2 fixed

points, θ = 0 and θ = π/2, corresponding respectively to the stable axial dipole and the

damped quadrupole (figure 11a). In the non-exact counter-rotation, µ is increased and the

symmetry Rπ is broken. Therefore dipole and quadrupole can interact. The equations for

the modes become:

ḋ = (µr + νr)d − µiq (15)

q̇ = (µr − νr)q + µid (16)
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The two modes bifurcate to instability at very close thresholds when ν is sufficiently

small. Therefore µi represents the symmetry breaking and corresponds to the difference

of rotation rate between the two discs for the VKS experiment. When this symmetry is

broken, the unstable solution evolves away from the purely quadrupolar mode and evolves

an increasing amount of dipolar component. The two modes (stable dipole and unstable

quadrupole) become closer. When the system reaches µi = νc, a bifurcation occurs: each

stable solution collides with an unstable solution and disappears. This a saddle node bifur-

cation that generates a limit cycle (thus an oscillatory magnetic field). This phenomenology

is very similar to the one observed in the case of the pendulum with constant torque. How-

ever, a noteworthy difference occurs because of the additional symmetry B → −B yielding

two other branches compared to the pendulum.

When µi ≤ νc, the stable and unstable solutions are very close. When the system

undergoes turbulent fluctuations, two different behavior can arise:

• When the fluctuation is larger than νc − µi, the system jumps from the stable to the

unstable fixed points and then bifurcates to the −B stable solution. The system had

undergone a reversal associated with an overshoot (figure 11b).

• When the fluctuation is less than νc − µi, the system can deviate from the stable

solution without reaching the unstable one and comes back on the stable solution.

This is very similar to geomagnetic events called excursions (figure 11c).

stable

dipole d

unstable

quadrupole q

-d

-q

(a) (b) (c)

Figure 11: Three typical behaviors of the magnetic field. (a): Coexistence of two stationnary

solution, stable and unstable when the symmetry Rπ is respected. When Rπ is broken, the

interaction of dipolar and quadrupolar solutions can yields reversals (b) or simply excursions

(c).

Using this simple model, the reversals of the VKS are understood as a consequence of

the interaction of the axial dipole and the quadrupole. This interaction is related to the bro-

ken invariance of the flow under the rotation by π with respect to any axis in the mid-plane.

The magnetic field of the Earth also presents a competition between dipole and quadrupole.

The symmetries involved in the case of the geodynamo are however different from the ones

of the VKS experiment. In the core of the Earth, it is strongly believed that the flow

is invariant under the mirror symmetry with respect to the equatorial plane. Under this
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symmetry the dipole and the quadrupole can be classified into two different families. The

previous model can thus naturally be applied to the case of the Earth. In this perspective,

the reversals of the geomagnetic field could be caused by breaking the mirror symmetry of

core dynamics.

5 Conclusion

• The VKS dynamo is not generated by the mean flow alone.

• The VKS experiment exhibits many different regimes in a small parameter range:

stationary and oscillatory magnetic fields, reversals and excursions.

• A large scale dynamics of the field is observed: The results suggest that the system

is governed by a few modes and this low dimensional dynamics is not smeared out by

turbulent fluctuations.

• Using amplitude equation model, the reversals are understood to result from the

competition between different modes (any external triggering mechanism are needed)

and are due to a broken symmetry of the flow. A similar mechanism can be involved

for planetary or stellar time dependent dynamos.

A Small and Large Re scaling of 〈B2〉
The flows creating the magnetic field of stars and galaxies involve huge kinetic, Re, and

magnetic, Rm, Reynolds number. No laboratory experiments, nor direct numerical simu-

lations are possible in the range of Re and Rm involved in astrophysical flows. It is thus

interesting to try to guess scaling laws for the magnetic field using some simple hypotheses.

This problem was first adressed by Batchelor for turbulent dynamos and is still an open

question.

We consider here the minimum set of parameters: typical velocity V , length scale L,

viscosity ν, magnetic permeability µ0 and the fluid density ρ. We note that discarding

global rotation makes our results certainly invalid for many astrophysical objects but not

all of them. Rotation is indeed not assumed important for the galaxies which do not

display a large scale coherent magnetic field [21],[20] and [4]. With 4 fundamental units, L
(length), M (mass), T (time) and A (electric current), the problem involves 3 dimensionless

parameters: Rm = µ0σLV , Re = V L/ν and 〈B2〉/(µ0ρV 2
). Some analytical calculations

of threshold and saturation have been done for specific flow: for instance Childress and

Soward for rotating Rayleigh − Benard convection [6] or Busse with a more complicated

case [5]. However, these kind of calculations are always very difficult because the problem

is not self-adjoint.

A.1 Laminar scaling

The total velocity field V0 can be decomposed as follow:

V0 = Vc + V1 , (17)
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where Vc is the flow at the dynamo threshold and V1 is some additional flow depending on

the distance from the onset. For the laminar regime, the Stokes force ρν∆V1 balances the

Lorentz force J ×B in the saturated regime and we can easily evaluate the amplitude:

ρνV1

l2
∼ B2

µ0l
. (18)

Using Rm = µ0σlV0 and Rmc = µ0σlVc, we are left with the expression:

B2 ∼ ρν

σl2
(Rm − Rmc) , (19)

for the mean magnetic energy density in the non-linear saturated regime. This is a weak

field regime and it is not really relevant for the Earth which is very far from a laminar

regime.

A.2 Large Re scaling

When Re is very large, the Lorentz force is now balanced by the inertial term and we get:

B2

µ0l
∼ ρ

V0V1

l
. (20)

Expressing this equation in term of magnetic Reynolds number yields:

B2 ∼ ρ

µ0(σl)2
(Rm − Rmc) . (21)

One can note that the ratio between the two scalings 19 and 21 is the magnetic Prandtl

number Pm.

In Geophysics, the well known strong field regime is supposed to appear in a subcritical

bifurcation from the weak field branch. It is simple to show that taking into account the

rotation leads to this strong field regime. By balancing the Coriolis force and the Lorentz

force, the scaling becomes thus:

B2 ∼ ρΩ

σ
(Rm − Rmc) . (22)

This scaling shows why most of the direct numerical simulations (DNS) of geodynamo find

a good agreement with the satured value of magnetic field: all DNS generally manage to

have the good ratio
ρΩ
σ

despite Re or Ekman number being totally wrong.

B Turbulent Dynamos

As already stated, the problem of turbulent dynamos was proposed by Batchelor in 1950 [1].

In this paper, he looks at magnetic field generated by homogeneous isotropic turbulence

with no mean helicity. Using a questionable analogy between the induction and the vor-

ticity equations, he claimed that the dynamo threshold corresponds to Pm = 1, i.e. Rmc

proportional to Re, using our choice of dimensionless parameters. It is now often claimed
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that Batchelor’s criterion Pm > 1 for the growth of magnetic energy in turbulent flows is in-

correct. It is however of interest to determine the minimal hypothesis for which Batchelor’s

predictions for dynamo onset is obtained using dimensional arguments. To wit, assume that

the dynamo eigenmodes develop at small scales such that the threshold does not depend

on the integral scale L. Then, discarding L in our set of parameters, dimensional analysis

gives at once Pm = Pmc = constant for the dynamo threshold, i.e. Rmc proportional to Re.

Another result of Batchelor concerns the saturation of the magnetic field. According

to Batchelor’s analogy between magnetic field and vorticity, the magnetic field should be

generated mostly at the Kolmogorov scale, lK = LRe−3/4
where the velocity gradients are

the strongest. He then assumed that saturation of the magnetic field takes place for 〈B 2〉/µ0

proportional to ρv2
K

K = ρV 2/
√

Re where vK is the velocity increment at the Kolmogorov

scale, v2
K

=
√

νε. ε = V 3/L is the power per unit mass, cascading from L to lK in the

Kolmogorov description of turbulence. ε being the power per unit mass available to feed

the dynamo, it may be a wise choice to keep it, instead of V in our set of parameters, thus

becoming B, ρ, ε, L, ν, µ0 and σ. Then, if we consider dynamo modes that do not depend

on L, we obtain at once

B2

µ0
= ρ

√
νε h(Pm) =

ρV 2

√
Re

h(Pm) , (23)

for saturation, where h(Pm) is an arbitrary function of Pm. Close to dynamo threshold,

Pm ∼ Pmc , we have h(Pm) ∝ Pm − Pmc if the bifurcation is supercritical. This class

of dynamos being small scale ones, it is not surprising that the inertial range of turbulence

screens the magnetic field from the influence of integral size, thus L can be forgotten.

Some recent numerical simulations from Schekochihin [17] reported interesting behavior

of the curve Rmc = f(Re). In these simulations of turbulent dynamo, one can observe

that the threshold of the dynamo increases linearly with the Reynolds number on a large

range of Re, according to Batchelor’s theory. For sufficiently large Re, and using numerical

hyperdiffusivity, the curve seems to saturate and to fall in the regime Rmc = constant.

Others results from Bierman and Schluter [3] show results compatible with the scenario

of Scheckochihin for large Re. If Pm is small enough, the Kolmogorov and resistive scales

are so far from each other that the magnetic field cannot feel the viscous dissipation. We can

then drop ν in the analysis and we are left with Rmc = constant. In addition, discarding ν
in the limit Pm � 1 gives:

B2

µ0
= ρV 2g0(Rm) , (24)

where g0 is an arbitrary function. Close to threshold, the rms velocity V is given by

µ0σV L ∼ Rmc . In the case of a supercritical bifurcation g0(Rm) ∝ Rm − Rmc and we

obtain

B2 ∝ ρ

µ0(σL)2
(Rm − Rmc) . (25)

Far from threshold, Re � Rm � Rmc, one could assume that B no longer depends on

σ provided that the magnetic field mostly grows at scales larger than lσ. We then obtain
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equipartition between magnetic and kinetic energy densities

B2

µ0
∝ ρV 2 , (26)

as assumed by Biermann and Schluter.

C Evaluation of Ohmic dissipation

Ohmic losses due to currents generated by dynamo action give a lower bound to the power

required to feed a dynamo. In order to evaluate them, it is crucial to know at which scales

the magnetic field grows. Assuming that a dynamo is generated in the case Pm � 1,

we want to give a possible guess for the power spectrum B2
of the magnetic field as a

function of the wave number k and the parameters ρ, ε, L, ν, µ0 and σ. Far from threshold,

Re � Rm � Rmc, the dissipative lengths are such that lK � lσ � L. For k in the inertial

range i.e. klσ � 1 � kL, we may use a Kolmogorov type argument and discard L, σ and

ν. Then, only one dimensionless parameter is left and not too surprisingly, we get

|B|2 ∝ µ0ρ ε
2

3 k−

5

3 . (27)

This is only one possibility among many others proposed for MHD turbulent spectra within

the inertial range but it is the simplest. Integrating over k obviously gives the equipartition

law for the magnetic energy. It is now interesting to evaluate Ohmic dissipation. Its

dominant part comes from the current density at scale lσ. We have

j2

σ
=

1

σ

∫

|j|2dk ∝ 1

µ2
0σ

∫

k2|B|2dk ∝ ρ

µ0σ
ε

2

3 l
−

4

3

σ ∝ ρ
V 3

L
. (28)

We thus find that Ohmic dissipation is proportional to the total available power which

corresponds to some kind of optimum scaling law for Ohmic dissipation. Although, this

does not give any indication that this regime is achieved, we note that the above scaling

corresponds to the one found empirically from a set of numerical models. One can note that

when the same derivation is applied for other scalings, different results are possible. For

instance the k−1
spectrum yields a dissipation which can become greater than the input

power. Thus the calculation of ohmic dissipation can invalidate the huge quantity of scaling

present in the literature.
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Energetics of a Turbulent Ocean

Raffaele Ferrari

January 12, 2009

1 Energetics of a Turbulent Ocean

One of the earliest theoretical investigations of ocean circulation was by Count Rumford. He

proposed that the meridional overturning circulation was driven by temperature gradients.

The ocean cools at the poles and is heated in the tropics, so Rumford speculated that large

scale convection was responsible for the ocean currents. This idea was the precursor of the

thermohaline circulation, which postulates that the evaporation of water and the subsequent

increase in salinity also helps drive the circulation. These theories compare the oceans to a

heat engine whose energy is derived from solar radiation through some convective process.

In the 1800s James Croll noted that the currents in the Atlantic ocean had a tendency to

be in the same direction as the prevailing winds. For example the trade winds blow westward

across the mid-Atlantic and drive the Gulf Stream. Croll believed that the surface winds

were responsible for mechanically driving the ocean currents, in contrast to convection.

Although both Croll and Rumford used simple theories of fluid dynamics to develop their

ideas, important qualitative features of their work are present in modern theories of ocean

circulation.

Modern physical oceanography has developed a far more sophisticated picture of the

physics of ocean circulation, and modern theories include the effects of phenomena on a

wide range of length scales. Scientists are interested in understanding the forces governing

the ocean circulation, and one way to do this is to derive energy constraints on the differ-

ent processes in the ocean. The goal is to use these constraints to understand the forces

that drive ocean circulation and the forces that maintain the density stratification. Using

Sandstrom’s theorem on horizontal convection it is possible to rule out convection as an

important source of energy for the ocean circulation. Once this possibility has been ruled

out we will consider the kinetic energy budget and study the effects of winds and tides on

the ocean circulation [12].

1.1 Ocean Stratification

Figure 1 shows the density stratification in the Pacific Ocean[12]. The upper half kilometer

of the ocean is highly stratified. Below this region there are still density changes but not

to the same extent, and the density is much more uniform in the abyssal ocean. There is

a region of highly dense water near the surface in the poles. This represents cold water
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Figure 1: Potential density stratification in the Pacific Ocean. The level sets of pressure

are closely packed near the surface where the ocean is highly stratified. In the deep ocean

the pressure gradient weakens. Near south the pole the ocean is highly mixed, and there is

a tongue of dense water sinking to the bottom.

from the surface, sinking and mixing with water from the abyss. There is a corresponding

upwelling in other parts of the ocean that increases the potential energy. This upwelling

requires an energy source to drive it.

1.2 The Oceanic Energy Budget

Throughout these notes we will use the Boussinesq approximation:

Du

Dt
+ f ẑ × u = − 1

ρ0
∇p + bẑ + ν∇2u−∇ΦT ide (1)

∇ · u = 0 (2)

Dθ

Dt
= κθ∇2θ (3)

DS

Dt
= κS∇2S. (4)

Here D is the advective derivative, θ is the potential temperature, and S is the salinity, b
is the buoyancy, ν the molecular viscosity, and ΦT ide the gravitational potential due to the

tides. We assume that b is linear in θ and S:

b(θ, S) = gαθ − gβS. (5)
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We take a linear combination of equations (3) and (4) to produce an expression
Db

Dt
and

eliminate θ and S from the equations:

Db

Dt
= gα

Dθ

Dt
− gβ

DS

Dt
= κ∇2b. (6)

The quantity κ = κθ + κS . The total kinetic energy of the ocean is proportional to

1
2

∫

Ocean
u2dV . If take the dot product of the momentum equation by u and integrate

over the volume of the ocean we obtain the term by term kinetic energy budget of the

ocean:

1

2

∂

∂t
‖u‖2

= −
∫

1

2
|u2|(u−us) ·n̂dA−

∫

(
wp

ρ0
− 1

2
ν∇|u|2) ·n̂dA+〈wb〉−ε−〈u ·∇ΦT ide〉. (7)

Here 〈·〉 stands for the integral over the volume of the oceans, ε stands for 〈ν|‖∇2u‖2〉,
the viscous dissipation, and w is the velocity in the ẑ direction. If we ignore the effects of

viscous dissipation at the boundaries and evaluate the dot products explicitly we find that:

1

2

∂

∂t
‖u‖2

= − 1

ρ0

∫

(wp − τ · b)dA + 〈wb〉 − ε − 〈u · ∇Φ〉. (8)

The terms in this equation are the components of the kinetic energy budget. The 〈wb〉
represents the conversion of kinetic energy to potential energy. The dissipation ε represents

the conversion of kinetic energy to internal energy. The other terms represent the work due

to pressure, the tides, and friction stress at the boundary.

The potential energy is entirely due to gravity, and we define it to be 〈−zb〉. If we

multiply the buoyancy equation by z we can determine the local potential energy change:

∂

∂t
zb + ∇ · (uzb + zκ∇b) = wb − κ

∂b

∂z
. (9)

The terms on the right come from moving z inside the divergence. If we integrate this

equation and ignore the second term on the right we calculate the potential energy budget:

∂

∂t
PE =

∫

zFbdA − 〈wb〉 + 〈κ∂b

∂z
〉. (10)

In this expression Fb = κ∇b · n̂. We recognize the familiar 〈wb〉 from the kinetic energy

budget. There are also two other terms that represent the conversion of internal energy to

kinetic energy.

The combination of the potential energy and kinetic energy budgets gives an energy

budget for the entire ocean. Kinetic energy is generated by the winds and tides, and by

conversion of potential energy. It is dissipated through viscosity into internal energy. The

internal energy is generated by heat fluxes and dissipation and is converted into potential

energy through buoyancy [12].

1.3 Convection

By eliminating the effects of the winds and the tides we can determine if the buoyancy

fluxes are strong enough to drive the thermohaline circulation. We drop the tidal forces
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Figure 2: A numerical simulation of horizontal convection. There is a heat source on the

edges and a heat sink in the center. Periodic boundary conditions are used. The arrows

indicate the direction of the flow. The temperature is constant in most of the fluid and the

heat flux is confined to the surface. There is no significant convective flow

and the boundary pressure and stress terms. The circulation in this ocean is driven only by

convection. However the configuration of the ocean is different from standard convection

because both the heating and cooling occur at the surface of the ocean.

Johan Sandstrom studied horizontal convection in systems where the heating was above

and at the same height as the cooling[2]. This mimics the oceanic system where the heating

and cooling occur at the same altitude but with a large horizontal displacement. Sandstrom

argued that a heat engine does no work if the heating occurs at a higher or equal pressure

than the cooling. This argument translates to the ocean, where the term −
∫

zFbdA, the

work done by buoyancy, is either 0 or negative.

The application of Sandstrom’s conjecture to the ocean has been validated by other

numerical and theoretical work. If we take the limit κ 7→ 0 with the ratio
ν

κ
constant the

ocean becomes stagnant and homogeneous. The energy conversion between internal energy

and potential energy ceases, and vice versa. Lab experiments and numerical simulations by

Rossby show explicitly that the overturning stream function vanishes. Another example is

Figure 2, which is a two dimensional numerical simulation of horizontal convection. All of

the temperature gradients are confined to the surface and there is no convective flow.

There are actual numerical estimates for the strength of convection in the ocean. For

example Faller and Huang[5] have estimated the order of magnitude of energy conversion

between internal and potential energy to be:

−ρ0g
−1

∫

zF̄bdA ≈ ±.01TW (11)

ρ0g
−1 ¯〈κ∂zb〉 ≈ ±.001TW. (12)

Similarly 〈wb〉 is zero because of Sandstrom’s theorem. Therefore there is no appreciable

energy flow from potential energy to kinetic or from internal energy to potential. This

means that the circulation of the ocean is driven by the winds and tides and that this

energy is converted into internal energy through viscous dissipation. This internal energy

is returned to the atmosphere through heat fluxes.
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1.4 Kinetic Energy Sources

If the ocean is not driven by heat it must be driven mechanically. The source of these

forces are surface winds and tides. The surface work term can be decomposed into three

important components, the geostrophic flow, ageostrophic flow, and surface waves:

wwind =

∫

τ · ugdA +

∫

τ · uagdA +

∫

(τ · uw − pw)dA. (13)

The geostrophic flow comes from balancing the Coriolis force with the atmospheric pressure.

The wind is a predominantly geostrophic flow, and the geostrophic flow is directed along

the level sets of the pressure. The ageostrophic flow is the actual flow minus the geostrophic

flow. Scientists have tried to estimate the energy transfer due to each of these terms. The

geostrophic flow contributes approximately .8TW , the ageostrophic flow 3TW , and the

surface waves 60TW . The actual kinetic energy transfer to the circulation of the ocean

below the turbulent boundary layer at the surface is more difficult to determine. It is

believed that the surface waves are dissipated in the form of turbulence and that they

cannot create kinetic energy below the turbulent boundary layer. Likewise it is believed

that only .5TW of energy from the ageostrophic flow penetrates the boundary layer. It

is thought that all of the energy stress from the geostrophic flow is transferred to kinetic

energy in the surface boundary layer[1].

The other major source of mechanical energy is the tides. The overall power due to

tidal forces is roughly 3.5TW . Most of this, 2.5TW is done in shallow seas against the

continental shelves. About 1TW is done against the abyssal topography. It is believed that

only 1TW of this is converted into useful kinetic energy in the ocean. This means that

the global transfer of power from the winds and tides into ocean kinetic energy is roughly

2.3TW . Therefore we would expect the dissipation of kinetic energy into internal energy to

be 2.3TW in order to balance the inputs[3].

2 The Energy Cascade

The ocean contains energy on a wide range of length scales and frequencies. The oceanic

kinetic energy is dominated by geostrophic turbulence, i.e. the energy in the mesoscale eddie

field. Figure 3 shows two kinetic energy density spectra from moorings in the North Atlantic

and the Southern Ocean. Note that the spectra are predominantly red. On average about

90% of the kinetic energy in the ocean is in subinertial frequencies, i.e. timescales longer

than the local pendulum day 2π/f . On smaller scales
1

the kinetic energy is dominated by

internal waves in the inertial peak and the semi-diurnal lunar tide peak. Only a very small

fraction of the kinetic energy lies in the small scale 3 dimensional turbulence. However, the

latter is an important pathway to the final dissipation of kinetic energy. The bulk of the

potential energy on the other hand is in the planetary scale ocean stratification.

1We use frequencies and wave numbers somewhat interchangeable in this discussion. This can in general
not strictly be justified, though it should be acceptable for a rough qualitative discussion as given here.
Spectral energy estimates in wavenumber space are generally much harder to obtain from observational
data.
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Figure 3: (a) Kinetic energy estimate for an instrument in the western North Atlanticat

about 15
◦

N at 500m. This record was described in [6]. (b) Power densityspectral estimate

from a record at 1000m at 50.7
◦
S, 143

◦
W, south of Tasmania in theSouthern Ocean [8].

The inertial and principal lunar, semi-diurnal M2, tidal peaks are marked, along with the

percentage of kinetic energy in them lying between f and the highest frequency estimate.

Least-squares power law fits for periods between 10 and 2 hours and for periods lyingbetween

100 and 1000 hours are shown. The approximate percentage of energy of theinternal wave

band lying in the inertial peak and the M2 peak are noted.
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2.1 Pathways of Kinetic Energy: From Forcing to Dissipation

The generation of kinetic energy below the surface mixed layer acts primarily at planetary

scales. Most of the energy is generated by the large-scale wind field and by the tides.

Dissipation on the other hand occurs at scales on the order of O(1cm) or O(1s) or less.

Thus energy has to be transferred across the spectrum from the largest scales to the smallest

scales. How does this happen? It is well understood that a forward energy cascade acts in

3-dimensional isotropic turbulence. I.e. turbulent kinetic energy is transported to smaller

scales until it gets finally dissipated. However, the situation in the ocean is much more

complicated. There are (at least) two main difference. Due to the presence of stratification

and rotation larger scale turbulence in the ocean is obviously not isotropic. Moreover,

exchanges between kinetic and potential energy play an important role.

2.1.1 Conversion Between Kinetic Energy and Potential Energy

As argued before, the total conversion between kinetic and potential energy, given by the

conversion term 〈wb〉 approximately has to vanish. However, significant conversions can

occur locally or over certain spatial and temporal scales. For the following discussion we

want to decompose variables into three different scales. The buoyancy field for example is

given by

b = b̄ + be + bt .

The first term on the right hand side describes the buoyancy field associated with the mean

circulation, i.e. planetary scales. be denotes the contribution of the geostrophic eddy field

and bt describes small scale 3D turbulence. Assuming that this scale separation can strictly

be made, the PE → KE conversion term can be decomposed into

〈wb〉 = 〈wtbt〉 + 〈webe〉 + 〈w̄b̄〉 (14)

The mean PE → KE conversion 〈w̄b̄〉 is dominated by the generation of potential energy by

winds
2

and by the abyssal overturning circulation which releases potential energy. It can

be written as

〈w̄b̄〉 = 〈w̄Ekmanb̄〉 + 〈w̄ag b̄〉

= −
∫ ∫

(τwind · ū − τbottom · ū) dA + 〈w̄ag b̄〉

≈ − 0.8 ± 0.1TW + 0.1 ± 0.1TW +1.0 ± 0.5TW (15)

The first terms on the RHS describe the production of potential energy by the Ekman

pumping/suction due to the global wind field and a probably small sink of PE by Ekman

pumping/suction due to bottom friction. Note that the error estimate for the latter is on

the order of 100%. The last term describes the production of kinetic energy by subsidence

in the (ageostrophic) abyssal overturning circulation. The two contributions are of opposite

sign and similar within the error estimates.

2The large scale wind field is often regarded to produce potential energy. This happens due to Ekman
pumping which, however, is indeed a conversion from KE to PE. More accurately, the wind field produces
kinetic energy of which the major part is instantaneously converted into potential energy by geostrophic
adjustment.
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The mean currents are associated with strong buoyancy gradients and shear flows which

become unstable and generate eddies. This process releases potential energy into geostrophic

eddy kinetic energy. Since this is associated with a spindown of the large scale circulation,

the second term in (14) can be expressed as an effective eddy stress τeddy acting on the large

scale circulation:

〈webe〉 =

∫ ∫ ∫

u · ∂zτeddy dV ≈ 0.5 ± 0.1TW (16)

Finally turbulent dissipation of kinetic energy results in an increase in potential energy.

Osborn (1980) [7] argued that, in a stably stratified fluid, most of the turbulent kinetic

energy is dissipated by viscous friction, while a fraction Γ is used to vertically mix the fluid

and thus increase the potential energy.

|〈wtbt〉| = |Γ〈ν||∇u||2〉| ≤ Γε ≈ 0.5TW,

where ν is the vicosity and ε is the total dissipation of kinetic energy in the deep ocean,

which has to equal the total input of kinetic energy into the latter. The mixing efficiency Γ

in the stratified ocean was estimated to be around 20%. Estimates from direct observations

[11] suggest

〈wtbt〉 ≈ −0.4 ± 0.1TW (17)

Summing up the estimates of equations (15), (16) and (17) we find that the estimated

total conversion is about zero. While the sign of the PE → KE conversion by the large

scale circulation is not clear, the meso-scale eddy field releases PE while turbulent mixing

increases PE. The PE balance in the upper ocean (here the upper 1000-2000 meters) is

dominated by the potential energy released by eddies which is maintained by the large-

scale winds. In the abyss the release of potential energy by the deep overturning circulation

is maintained by mixing and by the large scale wind forcing.

2.1.2 The Energy Cascade and Dissipation of Kinetic Energy

In the previous section we argued that kinetic energy is produced from potential energy at

the geostrophic eddy scale while it is removed by small scale 3-dimensional turbulence. In

this section we try to address the question how the energy is transported to smaller scales

where it can finally be dissipated by turbulence.

Kinetic energy in inertial and tidal waves can be transferred to small scales through

wave-wave interactions in the internal wave field and can finally be dissipated through

breaking of internal waves. The estimated energy dissipated by internal wave breaking is

about 1.5 TW.

It can be shown that the viscous dissipation of kinetic energy ε is proportional to the

enstrophy Z ≡ 1
2 |ζ|2 =

1
2 |∇ × u|2:

∂E

∂t
+ ∇ · (up + uE − ν∇E) = −2νZ + F . (18)

In three dimensional turbulence, enstrophy can be generated by vortex stretching

∂Z

∂t
+ ∇ · (uZ + ν∇Z) = ζiSijζj − ν||∇ζ||2 , (19)
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Figure 4: Time mean, spectral kinetic energy flux vs total wavenumber in a homoge-

neousACC region (rectangles centered at 57S, 120W): black curve using sea surface height

(SSH) on a 32×32 grid, red curve using SSH on a 64×64 grid, blue curve using velocity on

a 64×64 grid.Positive slope reveals a source of energy. The larger negative lobe reveals a

net inversecascade to lower wavenumber. Error bars represent standard error. Taken from

[10]

where Sij =
1
2(∂xi

uj − ∂xj
ui). The first term on the right hand side describes the change of

enstrophy due to vortex stretching.

In two dimensional geostrophic turbulence (i.e. the mesoscale eddy field), however,

enstrophy is conserved in the limit that the viscosity goes to zero. We find

∂Z

∂t
+ ∇ · (uZ + ν∇Z) = −ν||∇ζ||2 , (20)

where ζ = ∂xv − ∂yu is now a scalar. Since enstrophy is conserved in the limit ν → 0 the

viscous energy dissipation has to vanish in geostrophic turbulence. In 3D turbulence on

the other hand enstrophy is generated through vortex stretching and thus viscous energy

dissipation remains finite as ν → 0 (since Z → ∞).

Indeed it can be shown that in 3D isotropic turbulence, energy is transported to smaller

scales until it is finally dissipated. The magnitude of the viscosity only determines the

scale at which the energy is finally dissipated. In geostrophic turbulence on the other hand

energy is transported to larger scales and is thus not dissipated. This ”inverse cascade” is

generally only limited by the planetary scale or the ”β-effect” (see [9] for details). Figure 4

shows an observational estimate of the spectral energy flux in wavenumber space in a region

in the Antarctic Circumplolar Current. We can see a weak forward cascade for wavelength

of less than about 150km and a dominating inverse cascade on larger scales. The bulk of

the ocean kinetic energy resides in the geostrophic eddy field and is thus transported to

larger horizontal scales and generally also larger vertical scales, i.e. the eddy field tends to

become barotropic. So where does the energy go from here?
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2.2 Geostrophic Kinetic Energy Dissipation

Once the Eddies become barotropic, they will lose energy through bottom boundary layer

drag, i.e. kinetic energy is dissipated in the bottom Ekman layer. The estimated energy

loss through this process is

εb =

∫ ∫

ρCd|u|3 dA ≈ 0.2 − 0.8TW . (21)

Another important mechanism for dissipation of geostrophic KE arises from geostrophic

flows over topography. Flow with velocity U impinging over topographic features with

wavenumbers between f/U and N/U can cause radiation of internal waves which tend to

interact and break within about 1 km above the topography. Observations indeed show

strongly enhanced mixing over topography which can be attributed to this process. This is

likely to be an important contributor to abyssal mixing. The estimated dissipation of KE

due to this process is

εt =

∫ ∫ ∫

ρν|∇u|2dV ≈ 0.2 − 0.4TW , (22)

where u here denotes the velocity field due to topographically generated internal waves.

In the surface boundary layer, particularly in the regions of the boundary currents, the

geostrophic velocity field can form very sharp fronts due to frontogenesis. At large Richard-

son numbers, i.e. weak stratification, these fronts can go unstable and form small scale

turbulence which is dissipated in a forward energy cascade. Since this ”loss of balance”

is confined to the surface boundary layer, the energy loss due to this pathway does not

contribute to the mixing necessary to maintain the deep overturning circulation.

2.3 The Oceanic Energy Cycle

As an attempt to summarize the pathways of energy in the ocean, we found that in the

upper ocean, the circulation is powered by the winds. Eddies are generated by baroclinic

instabilities of the large scale circulation. Eddy-eddy interaction then transfers energy into

barotropic motion following the geostrophic inverse energy cascade. Some of the energy

in the eddy field is lost by loss of balance in the surface layer, where sharp fronts can

evolve that finally become unstable. Another part is lost to bottom friction. Moreover, the

geostrophic flow impinging over topography can generate internal waves which interact and

break. This results in abyssal mixing that powers the overturning circulation.

A much more complete picture of the oceanic energy cycle is sketched in figure 5. For

further details, the reader is referred to [4] and [12].
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Ocean mixing, Internal tides and Tidal power

Chris Garrett

19 June 2008

1 Ocean mixing and Internal tides

1.1 Introduction

Mixing of the oceans ultimately occurs through molecular diffusion, though it is driven by

fluctuations in the velocity, temperature and salinity on length scales down to 1 mm that

cannot be resolved in large 3D numerical models which typically have a resolution of the

order of 10 km × 10 km × 100 m. It will be many, many, years before resolution can be

improved to resolve the small scale turbulence which causes mixing; as a result accurate

parameterisations of the small scale processes are necessary.

Sub-grid scale mixing in the ocean may be likened to the influence of clouds or ice

crystals in the atmosphere - they are unresolved in any large scale model, and yet have a

very important effect on the overall dynamics. The mixing processes in the ocean are less

obvious without injecting artificial dyes but likewise play an important role in the global

oceanic circulation.

The general framework to parameterise mixing is usually to represent the eddy flux of

a scalar C as a tensor multiplying the gradient of the mean C̄;

u′
i
C ′ = −Tij

∂C̄

∂xj

, (1)

where u′
i
and C ′

are the small scale fluctuations of the velocity components and the scalar.

The antisymmetric part of Tij has an associated ‘skew flux’ D × ∇C̄ which is parallel to

surfaces of constant C̄. The symmetric part of Tij may be diagonalised and thus represents

diffusion parallel to some principal axes. The skew flux and large isopycnal diffusivities are

likely to be a consequence of stirring by mesoscale eddies; the flux of more interest for ocean

mixing is that across isopycnals, i.e. the diapycnal flux, and this is parameterised in terms

of an eddy diffusivity Kv. Some possible causes for concern with this approach were noted;

there are an implicit assumptions that there is some local ‘mixing length’ and that there is

a spectral gap between the mean and fluctuations; in reality this distinction may be rather

blurred. Nevertheless, quantifying mixing with a diffusivity is the common method used in

numerical models; the question is, how should it vary in space and time, and what causes

these variations?

Knowledge of diapycnal mixing comes from
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Figure 1: GEOSECS section of the potential temperature and salinity in a meridional

cross section of the Pacific. The observed stratification, combined with estimates of the

circulation, can be used to infer how much mixing must occur.
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• Inference - Balancing budgets for confined regions such as deep basins, using mea-

surements of the inflow together with simple models to infer parameters;

• Measurements - for instance, injecting dye or measuring small scale variations in

temperature and velocity;

• Process Studies - modeling and quantifying the physical processes such as internal

wave formation and breaking which give rise to the mixing.

If models aim to represent realistic physics and therefore be able to predict future behaviour,

it is important that they take account of the processes rather than just using inferred or

measured values. Having the right spatially varying numbers is important, but for future

prediction we need formulae too, so that we take account of any feedbacks in the system.

1.2 Inference

Measurements of temperature and salinity through the depth of the ocean suggest that

mixing occurs at all depths, not just in the well mixed surface boundary layer. This results

in a stratified interior of the ocean where, in the absence of mixing one would expect an

almost uniform core with a much shallower boundary region near the surface where all the

mixing occurs. The essential dynamics of turbulent mixing in upwelling regions might be

expressed loosely as

w
∂C̄

∂z
=

∂

∂z

(

Kv

∂C̄

∂z

)

, (2)

from which, if we can estimate the upwelling rate w, and measure the profile C̄ (be it

temperature, density or salinity), we can infer an average value of the diffusivity Kv. This

has been done (Munk 1966, Munk and Wunsch 1998), and suggests a global average value

of Kv ' 10
−4

m
2

s
−1

, at least below the top 1 km or so of the ocean. This figure must be

a reflection of the energy input to the oceans.

More local estimates for Kv can also be made by measuring the flux and water properties

of flow into deep basins in which water properties are also known. This gives an estimate

for the rate of mixing which must occur within the basin and allows an average Kv to be

calculated. Typically this also gives values on the order of 10
−5

to 10
−4

m
2

s
−1

. It is not

clear from such integrated estimates, however, where the mixing occurs - is it in the ocean

interior or does it all occur near the boundaries?

1.3 Measurements

Direct observations of mixing come from dye tracer experiments (Ledwell et al. 1998), in

which inert dye was released at a specific depth in the ocean and the vertical spread of this

dye over time was measured. This suggests that the diffusivity in the open ocean should

be on the order of Kv ∼ 10
−5

m
2

s
−1

, rather less than the inferred global average, though

at shallower depths than those to which the global estimates apply, so that there is not a

contradiction.

The kinetic energy dissipated can be calculated from measuring the small scale (<cm)

variations in the velocities;

ε = ν|∇u|2. (3)
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In the stratified ocean, a fraction of this dissipation, often called the mixing efficiency Γ, is

used to increase the potential energy of the fluid by raising the centre of mass of the fluid.

Γ is generally taken to be around 0.2. The energy transferred to potential energy is also

related to the diffusivity by

Γε = KvN
2, N2

= −g

ρ

∂ρ

∂z
, (4)

so that if detailed measurements of the velocity on the small scale can be made, a value

for the diffusivity Kv can be inferred. However it is unclear if Γ should be a universal

constant or should depend upon conditions; in particular it may depend on the stratification

N compared with the typical frequency of the waves and also, perhaps, on a parameter

describing the strength of wave breaking.

The diffusivities inferred from measuring ε are around 10
−5

m
2

s
−1

in the open ocean,

but show large spatial variations and are more like 10
−4

m
2

s
−1

in the deep ocean over

regions of rough bottom topography. This suggests that the inferred globally averaged

abyssal diapycnal mixing of several 10
−4

m
2

s
−1

may be concentrated in localised regions

near boundaries or above rough topographies.

1.4 Biological considerations

There was a suggestion from Bill Dewar (Dewar et al. 2006) that a significant proportion of

the mixing in the ocean might be caused by the movement of marine animals, particularly

zooplankton, which are known to travel up and down depths of more than 1 km every

day to feed and escape predators. Large numbers of zooplankton, which tend to move in

clouds several hundreds of metres wide, could generate turbulence on a large scale and cause

mixing well below the surface mixed layer. It is estimated that around 63 TW is generated

by marine animals, and that around 1% of this could be transferred to mechanical energy.

Given that overall the mixing of the oceans is thought to require around 2 − 3 TW, this

may not be an insignificant contribution, though it has so far been viewed with a degree of

scepticism.

1.5 Internal waves

The greater mixing occurring over rough regions of the bed may indicate that it is the result

of internal wave interactions; the waves are generated by flow over the bed and propagate

up into the ocean core, where non-linear interactions result in overturning and turbulent

mixing.

A method developed by Henyey el al. (1986) attempts to use internal wave theory to

infer dissipation rates from measurements of shear and strain over length scales of 10 m.

This requires some assumptions on scale separation, but seems to produce the expected

results reasonably well in the open ocean. It allows ε and hence Kv to be estimated over

much larger regions, since the velocity need only be measured at 10 m rather than cm

intervals. The results are typically consistent with Kv ≈ 10
−5

m
2

s
−1

.

The general impression built up from these various inferences and measurements is that

energy for mixing is radiated to the ocean interior through internal waves generated both

at the surface (by the wind) and at the bottom (by tidal currents over rough topography;
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Figure 2: Parameter space for deep-ocean internal tide generation. ε is the ratio of bottom

slopes to the internal ray slope, and ku0/ω is the ratio of the tidal excursion to the roughness

scale. See Garrett and Kunze, 2007.

internal tides have been visualised as surface waves near Hawaii using satellite measurements

(Egbert and Ray, 2000)). Wave-wave interactions set up horizontal currents which lead to

overturning and eventually turbulent mixing. Questions arise as to how much of this energy

comes from the different sources, and how to parameterise its transfer to the mixing regions.

The energy flux from the wind into near-inertial waves which can propagate below the

surface mixed layer varies seasonally and is very dependent on latitude - most of the energy

input from this source is at mid latitudes, particularly over the Southern Ocean (Alford

2001, Park et al. 2005). The input is estimated through a combination of satellite and

drifter data and numerical models, and it is found that on the order of 1 TW is transmitted

from the wind to near-inertial motion.

The energy derived from the barotropic tides has been estimated using satellite data by

Egbert and Ray (2001). The tidal elevations can be measured and, through comparison with

model simulations, the amount of damping at the ocean floor can be inferred; this is found

to occur not just in shallow water off the coasts but also in the open ocean, particularly

in regions of rough bottom topography. The estimated power that can be transferred to

internal wave generation by this method is around 1 TW globally. It should be noted that

Egbert and Ray’s method is not accurate in shallow water and may give misleading results

in shallow coastal areas.

1.6 Generating internal waves from the tide

The generation of internal tides (that is, internal waves of tidal frequency ω) from barotropic

flow over rough topography h(x) depends on several key parameters (Garrett and Kunze,

2007); the ratio ku0/ω of the length of tidal excursions to horizontal roughness scale, the

ratio ε of bottom slopes to the internal ray slope, and the ratio of topographic height to

the ocean depth. For a deep ocean, there are several different regimes (figure 2) depending

on whether none, both or one of ε and ku0/ω are small. The easiest to analyse is when ε is

small, allowing a linear theory (Bell, 1975). When ku0/ω is small there are singularities at

critical bed slopes, where ε = 1 (Balmforth et al. 2002).

Many areas of the ocean such as the Mid-Atlantic Ridge have subcritical slopes and ε is

small, so the linear theory can be applied. Most of the energy flux into internal tides is in

low modes (St. Laurent and Garrett, 2002). With the linear theory, the vertical energy flux
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from the bottom can be relatively easily calculated, and for a sinusoidal bed h = h0 sin kx
is

F =
1

4

ρ

ω

[

(N2 − ω2
)(ω2 − f2

)
]1/2

ku2
0h

2
0. (5)

An interesting question one could pose is, supposing this energy flux is dissipated (by

internal wave breaking, causing mixing) over some vertical length scale (which could itself

depend on the energy flux and N), what happens as the stratification (measured by N 2
)

changes? Since the energy dissipation causes mixing which alters the stratification, it is

of interest whether increasing N 2
causes more mixing which reduces the stratification and

would therefore be stable, or whether it causes less mixing, which increases the stratification

and causes an unstable positive feedback.

1.7 Transfer of energy and internal wave breaking

The bulk of the energy of internal waves at the M2 tidal frequency (semi-diurnal) is in low

modes which can propagate over long distances from their generation site before breaking

up by interactions with each other or with fixed boundaries. It is estimated that up to 1 TW

of the 3.5 TW tidal power dissipated by the ocean could be ‘available’ by this method to

cause mixing in the ocean interior. The fact that the energy can be generated in one place

and transported to another place before dissipating makes it difficult to parameterise. It

will be important to understand where and how this mixing occurs; whether the energy

flux in low modes breaks down into shorter waves through wave-wave interactions or by

bouncing off rough topography, or whether it is transported to continental slopes where it

is possible that the energy could be ‘wasted’ in mixing the water in a bottom boundary

layer which is already well mixed.

The take home message is that mixing parameterisations (for large scale numerical mod-

els this essentially means eddy diffusivities) cannot be based only on purely local conditions.

There is much spatial variability which can be measured and included, but understanding

and parameterising the processes which give rise to this is important if models hope to be

truly predictive.

2 Energy from the sea?

2.1 Introduction

The oceans play a major role in global energy issues, both in terms of their current uses

and role in the carbon cycle, and in their potential to be exploited as an alternative energy

source in the future. Currently large amounts of oil and gas are recovered offshore, ocean

water is used for cooling nuclear power plants (and the oceans were once used for nuclear

waste disposal), and there is an increasing number of offshore wind farms being developed.

Wave power has been suggested as a means of extracting energy from the surface of the

ocean but, apart from small local projects, will probably not be able to produce energy on

a significant scale. Tidal power has somewhat more potential for larger scale projects and

probably offers more opportunities as a significant ‘new’ power source. Assessing how much

energy can be extracted from such projects and where they should be placed is therefore

of great interest. There may also be the possibility to use larger scale circulatory currents,
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such as the Gulf Stream, to supply useful amounts of power, and the feasibility of such

schemes poses a large range of fluid dynamical questions.

2.2 A global perspective

The tides caused by the motion of the moon and sun are estimated to supply 3.7 TW

(3.7 × 10
12

W) of power which must be dissipated by transfer to kinetic, potential and

internal energy of the earth, atmosphere and oceans (Munk and Wunsch, 1998). The vast

majority of this energy transfer, approximately 3.5 TW, occurs in the oceans, initially as

surface tides, with energy eventually being dissipated through bottom friction and internal

wave formation leading to localised turbulence and mixing. As a comparison, human power

usage is around 15 TW, a large power station generates around 1 GW, the total wind

dissipation in the atmosphere is around 1000 TW, and insolation provides nearly 10
5

TW

(advances in solar power are presumably therefore the most promising way forward).

An important first question when we consider large scale tidal power generation is how

much of this we can feasibly tap into without altering the tidal dynamics so much that we

start to reduce the available power. A simple model to assess this question was suggested;

that is to treat the Earth’s oceans as a simple harmonic oscillator with a natural resonant

frequency ω0 which is near to the frequency of tidal forcing ω:

ẍ + (λ0 + λ1)ω0ẋ + ω2
0x = F (t) ≡ cos ωt. (6)

The natural dissipation of the oceans is written as the damping force λ0ω0ẋ, and the

term λ1ω0ẋ is the extra dissipation which we might impose through tidal power generation.

F (t) is the tidal forcing at frequency ω. The average power dissipated from the system is

Ptotal = (λ0 + λ1)ω0ẋ2 = F ẋ, (7)

where the overbars denote the average over a cycle. The power generated for human use is

a fraction of this;

P1 =
λ1

λ0 + λ1
Ptotal, (8)

and the question is how does this vary as we vary λ1?

The solution of (6) is

x(t) =
(ω2

0 − ω2
) cos ωt + (λ0 + λ1)ωω0 sinωt

(ω2
0 − ω2)2 + (λ0 + λ1)

2ω2ω2
0

, (9)

giving

Ptotal =
1

2

(λ0 + λ1)ω0ω
2

(ω2
0 − ω2)2 + (λ0 + λ1)

2ω2ω2
0

, (10)

and

P1 =
1

2

λ1ω0ω
2

(ω2
0 − ω2)2 + (λ0 + λ1)

2ω2ω2
0

. (11)

As more artificial dissipation (λ1) is added at first it produces more power, but eventually

the system saturates and then as more friction is added the power output decreases. P1 has

88



Figure 3: Fraction of current tidal dissipation which could be used for human energy sources

as a function of the distance from resonance x of the tides, from (14). Dominant tidal modes

are likely to be close to resonance, so the relevant section of this graph is where x is small

and the ratio is close to 1/4.

a maximum when (ω2
0 − ω2

)
2

+ (λ0 + λ1)
2ω2ω2

0 = 2(λ0 + λ1)λ1ω
2
0ω

2
, and the power then

generated is

Pmax =
1

4λ0ω0

1

1 + (1 + x2)1/2
, (12)

where

x =
ω2

0 − ω2

λ0ω0ω
, (13)

is a parameter which describes how far the tidal forcing is from the resonant frequency.

Ocean tides are thought to be close to resonance, so that x is a small parameter. This

compares with the natural tidal dissipation Pnat (that is, (10) with λ1 = 0) by a factor

Pmax

Pnat

=
1 + x2

2[1 + (1 + x2)1/2]
, (14)

which is symmetric in x so that we have only considered positive values in figure 3.

Near resonance, x is small and the largest amount we can hope to extract is around

1/4 of the naturally dissipated energy (3.5 TW). The tides therefore offer a considerable

potential source of energy if we can find the engineering capabilities and suitable locations

to extract this energy.

2.3 Tidal power engineering

Conventional tidal power projects make use of an existing bay by building a barrage across

the bay entrance which traps the water in the bay at high tide. Once the level of the water

outside the bay has fallen the water is released through turbines, the energy coming from

the drop in potential energy of the water. The bay is thus filled and emptied during every

tidal cycle. If the tidal range is a depth 2a and the bay has a surface area As, then the
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maximum potential energy release as the water passes through the turbines is

1

2
ρwgAs(2a)

2, (15)

and since this can only occur once per tidal cycle (maybe twice if the process is repeated

on the flood tide, but we ignore this possibility) the average power produced is

ω

π
ρwgAsa

2, (16)

where ω ≈ 2π/12.4 h
−1

is the frequency of the dominant M2 tide. For a reasonably large

basin of area As = 100 km
2

and a tidal range of 2a = 4 m this gives about 240 MW. The

La Rance facility in France is an example of this type of project in operation and several

other possible sites have been mooted. Naturally the obvious place to build such projects

is in areas where the tidal range is very large such as the Bay of Fundy in Eastern Canada

and the Severn estuary in the UK. Unfortunately this property means that these locations

are also considered important ecological sites and there is much debate as to whether the

benefits of developing large schemes can justify the loss of unique habitats and ecosystems.

Another possibility, alongside or instead of using bays and estuaries, is to place turbines

in channels where there are strong tidal currents and to use the existing currents to drive the

turbines. Many such places have been suggested and the ‘rights’ to develop tidal schemes

in some such locations are being claimed (in Puget Sound for instance). Of course, these

schemes also have potential ecological problems as well as posing problems for shipping and

fishing.

2.4 Extracting power from a tidal channel

As our ability to build and position large submarine turbines increases it is important to be

able to assess where the best place to position the turbines is, and how many should be used

in order to make the most efficient use of the available energy. Just as on the global scale, if

too many turbines are used in one location the tidal currents will be reduced and the power

output will decrease. Maximising the power output from a channel means optimising the

number and position of turbines. If channels converge or diverge it is important to consider

what effect building a turbine in one location will have on the flow in other channels, and

similarly if currents are going to be utilised in conjunction with damming bays or estuaries

then the interaction between the different schemes needs to be carefully considered.

The power available from any given channel is often misleadingly estimated by measuring

the kinetic energy flux through a cross-section. If flow at velocity u occurs along a channel

of area A between two large basins then the kinetic energy flux through the cross-section is

1

2
ρwAu3. (17)

This will be a misleading value to quote as the power which could be extracted from a

particular location since it is highly dependent on where in the channel it is measured and

there is no reason to assume that, if a turbine is placed at the location with the greatest

flux, the same power will be generated by the turbine. Moreover, if more than one turbine is
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placed in the same channel one clearly cannot hope to extract the same energy flux twice or

more! Interpreting maps of potential turbine sites must therefore be done with due caution.

The problem of maximising the power output from flow down a channel can be con-

sidered most simply by looking at the effect of a ‘fence’ of turbines constructed across the

channel (whether this would be feasible for shipping etc. is questionable, but calculations

suggest that a complete fence may be the most efficient option for power generation).

For flow along a channel of cross section A(x) at velocity u(x, t), a one dimensional force

balance for the flow is
∂u

∂t
+ u

∂u

∂x
+ g

∂ζ

∂x
= −F, (18)

in which ζ is the surface elevation and F is the friction which may be written in terms of a

drag coefficient CD as

F =
CDu2

h
+ Fturb. (19)

Fturb is the additional friction introduced by the turbine, and the quantity of interest is the

power dissipated by the turbine,

P = ρwQFturb, (20)

where the overbar denotes a space-time average. Q here is the volume flux Au, and if we

assume that the channel is short compared to the wavelength of the tide (likely to be hun-

dreds of kilometres) then volume conservation requires that this volume flux is independent

of distance along the channel.

We imagine the flow in the channel is driven by the changing elevation of the basins at

either end and we write ∆ζ(t) as this head difference (note that this could vary between

positive and negative over the tidal cycle). We can think of prescribing this head difference,

e.g. ∆ζ = a cos ωt, as the tidal forcing in this model. With u(x, t) = Q(t)/A(x), we integrate

(18) over the length of the channel L to get

c
dQ

dt
= g∆ζ − αQ|Q| − Fturb, (21)

where

c =

∫

L

0

1

A
dx, α =

1

2

1

A2
L

+

∫

L

0

CD

hA2
dx, (22)

AL is the cross-sectional area at the outlet, where the flow separates, and we assume that

the flow at the inlet is simple sink flow so that there is no additional term from there.

The question of interest is what happens to the generated power P as we vary the

friction provided by the fence of turbines Fturb. In general this requires knowing how this

turbine drag depends on the flow rate (e.g. a linear or quadratic dependence), and (21)

must then be solved to find the maximum power according to (20). A simple quasi-steady

limit can be considered; if the acceleration is unimportant then the turbine-free channel has

Q(t) =

(

g∆ζ(t)

α

)1/2

. (23)

When a turbine is introduced, Q will differ from this, but how it differs will depend on the

form of Fturb. In the quasi-steady state the power can be written

P = ρwQ(g∆ζ − αQ|Q|), (24)
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and we can therefore find the maximum possible power available by finding the Q which

makes this largest. This happens when

Q(t) =

(

g∆ζ(t)

3α

)1/2

, (25)

and the power is then

P =
2

31/2
ρwg∆ζ(t)

(

g∆ζ(t)

α

)1/2

≈ 0.21ρwgaQmax, (26)

if ∆ζ = a cos ωt and Q = Qmax = (ga/α)
1/2

. In this case Q is reduced to 1/31/2 ≈ 0.58
of its natural value and 2/3 of the head drop ∆ζ is associated with the operation of the

turbines.

Including acceleration and using different forms for the turbine drag gives the general

result that

P = γρwgaQmax (27)

with the numerical factor γ somewhere between 0.19 and 0.24 (Garrett and Cummins,

2005).

This analysis suggests that if a fence of turbines is built, the location along the channel

is unimportant, provided there is only one such fence. This is in contrast to the simplistic

power estimate (17); we can compare the above result with that estimate in the case when

the drag coefficient CD is small so that from (26),

P =
2

31/2
ρwα

(

g∆ζ(t)

α

)3/2

≈ 2

31/2

1

2
ρwALuL

3, (28)

where uL is the exit velocity in the natural state (23). The predicted maximum power is a

fraction 2/31/2 ≈ 0.38 of that predicted naively from the kinetic energy flux at the channel

outlet. In general, it is likely that (17) will give an overestimate of the available power.

Detailed numerical calculations have been made to check some of these assumptions and

to assess the potential in more complex situations such as the Johnstone Strait in British

Columbia. Here the flow splits between different tidal passages and introducing a turbine

in one will cause more of the flow to be diverted into other passages, thus reducing the

maximum power available to the turbine. This emphasises the importance of assessing the

impact of tidal schemes over large areas to avoid overstating the potential of these schemes.

2.5 Extracting power from a tidal bay

A very similar analysis can be carried out for flow into and out of a bay, when turbines

can be located across the mouth of the bay and increase the friction there. In this case the

volume of water in the bay must be conserved so that the height of the water in the bay

ζ(t) will evolve separately, with a phase lag, from the forcing height ζ0(t) outside the bay.

A corresponding model might be

c
dQ

dt
= g(ζ0 − ζ) − αQ|Q| − Fturb, As

dζ

dt
= Q, (29)
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Figure 4: Steamtube passing through a turbine of cross-section A, across which the flow is

u1 and there is a pressure drop p1 − p2, so that the drag on the turbine is F = (p1 − p2)A.

The background flow is u0.

in which we attempt to maximise the power

P = ρwQFturb, (30)

by choosing the optimum amount of turbine friction.

With some assumptions about the form of the turbine drag, the maximum power is

again found to be

P = γρwgaQmax, (31)

where γ ≈ 0.24 is a factor which might vary between 0.19 and 0.26, a is the tidal amplitude,

and Qmax is the maximum flow in the undisturbed state. This gives a power 0.76 times the

reference value (16) for a conventional basin scheme in a basin with no natural friction in

the entrance. This maximum however occurs when the reduction of the tidal range in the

bay is 74% (there is also a change in the phase shift between bay and outside). A scheme

such as this therefore has substantial benefits for ecosystems since the natural semidiurnal

filling and emptying of the bay is maintained with relatively little alteration.

For both tidal channels and bays, we can conclude from these simple analyses that the

maximum power obtainable with a fence of turbines is given approximately by (31) with

γ = 0.22 in terms of the natural tidal amplitude a and maximum flow rate Qmax.

2.6 Fences vs. individual turbines

Complete barrages of turbines are probably unfeasible for a number of reasons, so it is of

interest what power is lost by using isolated turbines or an array of turbines, when energy

is dissipated in the mixing of the wake from each turbine.

The power on an isolated turbine in an infinitely wide channel can be estimated by

expressing the force on the turbine in two ways - one using the change in momentum flux

across the turbine, the other using Bernoulli’s equation for the streamtube which passes

through the turbine, as shown in figure 4. This gives

p0 +
1

2
ρwu2

0 = p1 +
1

2
ρwu2

1, p2 +
1

2
ρwu2

1 = p0 +
1

2
ρwu2

3, (32)
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whence

p1 − p2 =
1

2
ρw(u2

0 − u2
3), (33)

and the force on the turbine of area A is

F =
1

2
ρwA(u2

0 − u2
3), (34)

whilst the change in momentum flux gives

F = Au1(u0 − u3). (35)

Hence u1 = (u0+u3)/2 and the power generated by the turbine can be written as a multiple

of the kinetic energy flux through the undisturbed turbine cross-section:

P = Fu1 =
1

2
(1 + r)(1 − r2

) × 1

2
ρwAu3

0, r =
u3

u0
. (36)

This has a maximum when r = 1/3, so u1 = 2/3 u0, and the power is then 16/27 of the

undisturbed kinetic energy flux, the ‘Lanchester-Betz’ limit. A fence of turbines giving the

same head loss would generate power Fu0, so the proportion of power missed by the isolated

turbine as compared to a fence is 1−u1/u0 = 1/3. This missing power is lost to dissipation

as the slow-moving fluid in the turbine wake merges with the faster free stream.

A similar analysis can be applied to an isolated turbine in a finite width channel and

the energy loss compared to a fence increases towards a limit of 2/3.

2.7 Other forms of oceanic hydroelectricity

An interesting, although unlikely, suggestion was made concerning the damming of the Red

Sea, allowing some of the trapped water to evaporate and then using inflow across the

resulting head drop at a rate that balances the evaporation rate of about 1.7 m/yr. The

insolation over the Red Sea is around 10
5

GW, so this power would seem to be very well

worth harnessing. After 10 years of evaporation however, a head of H = 17 m could be

exploited to produce power ρwgHQ ≈ 4.1 GW. This is much less than the power causing

evaporation, a result of the large latent heat of evaporation - it takes as much energy to

evaporate water as to raise it 250 km vertically, so that dropping it a mere 17 m does not

seem to be a very effective way of harnessing the power!

In conclusion, tidal power may be a useful, though not hugely abundant, energy source.

There are many issues to consider; engineering feasibility, ecological changes, shipping,

and careful positioning of schemes are vitally important. The possibility of using tidal

currents around headlands or using giant turbines to extract the energy tied up in the

global oceanic circulation have been suggested, though not explored fully. It is not clear

what impact turbines will have on such ‘unenclosed’ currents and how effective they would

be at harnessing the available power. It is also not clear what impact the increased friction

would have upon such currents. It may be the case that less environmental impact is caused

by making use of tidal currents in other ways, for instance as an efficient means of cooling

nuclear power stations.
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Herbert Huppert: Gravity Currents & Solidification

A. Shravat and S. Barbot

January 12, 2009

This lecture discussed a number of topical problems in geological fluid mechanics. Two

particular examples are covered in details in these notes: the dynamics of the grounding

line of an ice sheet & shelf, and the fluid mechanics of carbon sequestration. Some further

mathematical and physical details are relegated to the appendices.

1 Ice Sheet Grounding Line

Figure 1: Ice Sheets and Ice Shelves.

In the present day, the last of Earth’s large ice sheets can be found in Greenland and

Antarctica. These ice sheets are continental in size and are characterized by complex dy-

namics that may be driven by climate forcing or the spactial and temporal variations at the

ice bed or internal boundaries. Ice shelves are enormous beds of floating ice as can be seen

in Figure 1 that gives a schematic view of ice sheets and shelves. Figure 2 shows photos of

floating ice sheets and icebergs in the sea.

The ice sheet/ice shelf transition zone plays an important role in controlling marine ice

sheet dynamics, as it determines the rate at which ice flows out of the grounded part of

the ice sheet. Any change in ice thickness will of course lead to migration of the grounding

line. There have been several experiments on the dynamics of the grounding line. One such

experiment can be seen in Figure 3, where wax is poured over water to create a grounding

line.
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Figure 2: Floating ice sheets and Icebergs.

Figure 3: Laboratory experiment with wax showing the formation of the shelf.

1.1 Dynamics of Grounded Ice Sheet

The Grounded Ice Sheet can be modelled as a shear flow (see Figure 4). The dynamical

balance is between the pressure gradient and the shear stress.

−ρg
∂h

∂x
≈ µ

∂2u

∂y2
. (1)97



Figure 4: Schematic of the Grounded Ice Sheet.

The horizontal length scale, obtained from dimensional analysis (see section 1 in appendix

A) is

L ∼
(

ρgq3

µ

)1/5

t4/5. (2)

where q is the precipitation rate. The horizontal length is plotted against t in Figure 5.

Figure 5: Plot of horizontal length scale, L against t for the grounded ice sheet.

1.2 Dynamics of Freely Floating Shelf

In the preceding section, the sheet has been modelled as fixed on a bedrock. The dynamics

of a freely floating shelf shall be considered now. The leading order dynamical balance is

satisfied by the pressure gradient balancing the inertia.

−ρg′
∂h

∂x
≈ 4µ

h

∂

∂x

(

h
∂u

∂x

)

, (3)
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Figure 6: Schematic showing the freely floating shelf.

where g′ =
∆ρ

ρ
g. The horizontal scale is given by

L ∼ ρg′q

µ
t2. (4)

The plot of horizontal scale, L against t is shown in Figure 7.

Figure 7: Graph of L against t for freely floating shelf.

1.3 Modelling Ice Sheet-Shelf Dynamics

The dynamics of both ice sheet and shelf together is considered in this section. A sketch of

this with various parameters is given in Figure 8. The flux in the sheet is given by

q =
gH3

3ν

(

−∂h

∂x

)

. (5)

Here H = h + b. The continuity (mass conservation) requires that

∂h

∂t
= −∂q

∂x
, (6)
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Figure 8: Schematic of the ice sheet and shelf with flux q0 due to precipitation. The

parameter b(x) defines the bottom topography.

This gives rise to the nonlinear diffusion equation,

∂h

∂t
=

∂

∂x

[

g

3ν
(h + b)3

∂h

∂x

]

. (7)

The prescribed volume flux (due to precipitation) at x = 0 is given by

q0 = − g

3ν
h3 ∂h

∂x
, (8)

The floatation condition at x = xG(t) is defined as

ρH = ρwb, (9)

The normal stress balance at x = xG(t) is

(

∆ρ

ρ

db

dx
− ∂h

∂x

)

xG =
gH2

8ν

[

4

(

∂h

∂x

)2

− ∆ρ

ρ

]

. (10)

Theory gives the following results:

xG(t) ∼ t1/2, (11)

at early times. For late times,

xG(t) → constant. (12)

The various grounding line positions are plotted against time in Figure 9. Theory predicts

the position of a steady grounding line to be

xG =
1

α

ρ

ρw

(

6νq0

g

)1/3 (

g

g′

)1/6

.

Figure 10 provides a comparison between the theoretical and experimental results. Figure 11

compares some of the theoretical steady profiles with actual ice sheets from Antartica.

To summarise, ice sheets and shelves flow as viscous gravity currents. In grounded ice

sheets, shear stresses balance the hydrostatic pressure gradient. The result is a decelerating
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Figure 9: Plot showing the grounding line position as a function of time in the case of ice

sheet-shelf dynamics.

Figure 10: A comparison between theoretical prediction and experimental results for the

position of the grounding line.

flow. The floating ice shelf, on the other hand, has extensional stress balancing the hydro-

static pressure gradient, causing the flow to accelerate. This gives rise to a hypothesis that
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Figure 11: Steady Ice sheets with Grounding Lines.

the dynamic control of grounding line is effected by balance of normal stress. Hence, leading

to a closed mathematical model. This hypothesis is being tested using laboratory experi-

ments. One application of this mathematical model is to determine the dynamical stability

of ice sheets. As mentioned earlier, grounding line is very sensitive to any change in the

climate. To this end, more work is being carried out to understand the basic mechanisms

determining its stability and position.

To summarize, ice sheets and shelves can be modelled as viscous gravity currents. In

grounded ice sheets, shear stresses balance the hydrostatic pressure gradient. The result

is a decelerating flow. The floating ice shelf, on the other hand, has extensional stress

balancing the hydrostatic pressure gradient, causing the flow to accelerate. This gives rise

to a hypothesis that the dynamic control of grounding line is effected by balance of normal

stress. Hence, leading to a closed mathematical model. This hypothesis is being tested

using laboratory experiments. One application of this mathematical model is to determine

the dynamical stability of ice sheets. As mentioned earlier, grounding line is very sensitive

to any change in the climate. To this end, work is being carried out to understand the basic

mechanisms determining its stability and position.

2 Fluid Mechanics of Carbon Dioxide Sequestration

2.1 Introduction and Motivation

The Keeling curve (Fig. 12) is a graph showing the variation in concentration of atmospheric

carbon dioxide since 1958. It is based on continuous measurements taken at the Mauna
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Loa Observatory in Hawaii under the supervision of Charles D. Keeling from the Scripps

Institution of Oceanography. His measurements show evidence of CO2 undergoing a regular

seasonal cycle, reflecting the seasonal growth and decay of land plants in the northern

hemisphere, as well as a regular long-term rise driven by the burning of fossil fuels. Before

the industrial era, atmospheric CO2 concentration was between 275 and 280 ppmv for

several thousand years. Carbon dioxide has risen continuously since then, and the average

value when Dr. Keeling started his measurements in 1958 was near 315 ppmv. By the year

2000 it has risen to about 367 ppmv. Keeling’s measurements showed the first significant

evidence of rapidly increasing carbon dioxide levels in the atmosphere.

Figure 12: Keeling Curve. Atmospheric carbon dioxide concentration (ppm) above Mauna

Loa observatory in Hawai.

Fig. 13 compares the world and the United States population and energy usage in 1906

and 2006. At the start of the industrial era, the world population was about one billion

souls. It took 120 years to double this number. Today, at the rate about 200,000 new

people per day, it takes 13 years for the world population to grow by a billion. Todays large

human population and rate of growth is not without effect on the environment. Between

1906 and 2006, the U.S. as well as the world population grew nearly four fold. The world

energy usage increased almost 13-fold. In the U.S. alone, energy usage in 2006 is 9 times

its value in 1906.

Fig. 14 shows the source contributions of world energy consumption. Fossil fuels (coal,

oil and natural gas) still account for over 85% of the primary energy consumed in the world.

Fossil fuels or mineral fuels are fossil source fuels, that is, hydrocarbons found within the

top layer of the Earth’s crust. The burning of fossil fuels produces around 21.3 billion tons

of carbon dioxide per year, but it is estimated that natural processes can only absorb about

half of that amount, so there is a net increase of 10.65 billion tons of atmospheric carbon

dioxide per year (one ton of atmospheric carbon is equivalent to 44/12 or 3.7 tons of carbon

dioxide). Carbon dioxide is one of the greenhouse gases that enhances radiative forcing and

contributes to global warming, causing the average surface temperature of the Earth to rise
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Figure 13: A hundred years evolution of the United States and the world’s population and

energy usage. Between 1906 and 2006, the U.S. as well as the world population grew nearly

four fold. The world energy usage increased almost 13-fold. In the U.S. alone, energy usage

in 2006 is 9 times its value in 1906.

in response.

In the last 400,000 years temperature was highly correlated with CO2 concentration in

the atmosphere. Inferred mean temperature anomalies (difference with present time) exhibit

a roughly 100,000 year cycle with amplitude varying from -6
◦
C to +2

◦
C. Effect of strong

increase of CO2 in the atmosphere is associated with climate change. Long records of carbon

dioxide concentration in the atmosphere indicate that CO2 content never exceeded 300 ppm

in the last 400,000 years. The amplitude of the sudden increase of CO2 concentration in

the last hundred years, associated with burning of fossil fuel, is unprecedented in recent

geological history. The effects, mechanisms and time scales of climate change are subject

to active research. Limiting the effects of human activities on the environment involves a

migration to renewable energies and the reject of fossil fuel as a primary source of energy.

One way to reverse the Keeling curve, however, to return to geologically normal atmospheric

carbon dioxide concentration, is to the re-injection of CO2 in underground reservoirs. The

so called carbon dioxide sequestration provides means to remove CO2 from the atmosphere

and restore the status quo of pre-industrial era. The problem of carbon dioxide sequestration

calls for further investigation of the behavior of gravity (buoyancy) driven flows in porous

media.

2.2 Source in Porous Medium

Flow in porous media occurs in many natural and industrial situations. Included in these

are the seepage of rainwater through permeable ground into an aquifer, the forced flow of
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Figure 14: Distribution of energy source over the last five decades. Fossil fuels still account

for over 85% of the primary energy consumed in the world.

Figure 15: Carbon dioxide levels over the last 60,000 years in volume ppm. Longer records

show that CO2 concentration did not exceed 300 ppm in the last 400,000 years. Observed

increase in CO2 content in the last hundred years is unpreeceded in recent geological history.
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Figure 16: Schematic of gravity fluid in a porous medium.

oil from sandstone reservoirs (Lake 1989; Gerritsen & Durlofsky 2005), and the dispersion

of polluted liquids through gravel pits. In some situations the fixed, solid matrix through

which the flow passes reacts with the interstitial fluid and the structure and porosity of the

matrix change with position and time (Hallworth, Huppert & Woods 2005). Examples of

such reactions include the gradual formation of dolomite (Phillips 1991) and the convective

flow due to solidification through a mushy layer, which is a region of reactive solid matrix

bathed in interstitial fluid (Worster 2000; Aussillous et al. 2006).

A gravity current occurs whenever fluid intrudes primarily horizontally into fluid of

different density. The fundamentals of flows beneath a relatively less dense homogeneous

fluid layer at either low (Huppert 1982a, b, 2000) or high Reynolds number (Benjamin

1968; Hoult 1972) are well known. In recent years additional phenomena due to the effects

of rotation (Ungarish & Huppert 1998), and flows over porous media (Acton, Huppert

& Worster 2001; Thomas, Marino & Linden 2004), into stratified ambients (Ungarish &

Huppert 2002; Maxworthy et al. 2002) and over variable topography have been investigated.

The spreading of a liquid phase in a porous medium hosting pore fluid of different

density, as sketched in Fig. 16, is a kind of gravity current. Consider the gravity current

due to horizontal pressure gradient of (unknown) free surface slope (see also Appendix A).

The dynamics of the fluid is simplified to the viscous approximation (Darcy’s flow)

0 = −∇p − ρg− µu/k (13)

where k is the porous medium permeability, µ is the dynamic viscosity of input fluid and u

is the input fluid velocity. In the horizontal direction, this becomes

∂p

∂r
= ρ g′

∂h

∂r
(14)

where

g′ = g
∆ρ

ρ
(15)

is the reduced gravity. The equation of local continuity gives

φ
∂h

∂t
+

1

r

∂

∂r
(r u h) = 0 (16)
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where φ is the porosity of the host rock. Equating the last two equalities gives

∂h

∂t
− γ

r

∂

∂r

(

r h
∂h

∂r

)

= 0 (17)

and

γ =
ρ k g′

φµ
(18)

has the dimensions of a velocity. The equation of global continuity gives

Qt = 2π

∫

rN (t)

0
r h dr (19)

The similarity variable

η = (γ Q/φ)
−1/4 r t−1/2

(20)

leads to an expression for the position of the nose

rN (t) = ηN (γ Q/φ)
1/4 t1/2

(21)

Defining y = η(r, t)/η(rN , t) with 0 < y < 1 and

h(r, t) = η2
N (Q/φγ)

1/2 f(y) (22)

one obtains the ordinary differential equation

(y f f ′
)
′
+

1

2
y2 f ′

= 0 (23)

with f(1) = 0 and

ηN =

[

2π

∫ 1

0
y f(y) dy

]−1/4

(24)

For a linear case, with Q = 0, approximation solution of the differential equation gives

f(y) ∼ 1

2
(1 − y) (25)

and

ηN ∼ (6/π)
1/4

(26)

Data from laboratory experiments are well explained by such scaling. Further experiments

on gravity currents in porous media may help us predict the fate of liquid phase carbon

dioxide injected in porous reservoirs (Fig. 17).
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Figure 17: Schematic of carbon dioxide (liquid phase) sequestration and propagation in a

porous reservoir

Figure 18: Gravity current model. The flow is driven by pressure gradient due to unknown

free surface slope and resisted by viscosity.
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Appendices

A Gravity Currents

Gravity currents are generated by the release of some volume of one homogeneous fluid into

another of slightly different density. If a viscous fluid is released vertically on a horizontal

surface it rapidly takes up a circular plan form as it spreads. This form is observed to

be stable to any small disturbances which are initiated on the front due, for example, to

irregularities in the horizontal surface or to chance perturbations (Huppert 1980, Huppert

1982a). In this note, we describe how gravity currents spread, and quantify their radius or

extent as a function of time.

We consider that the flow is driven by pressure gradient due to unknown free-surface

slope h(x, t) and resisted by viscous effects. We first examine a two-dimensional flow prop-

agating in the x-direction only, with a vertical dependence. Model geometry is illustrated

in Fig. 18. Assuming the velocity field u = ux(x, z) ex, the Navier-Stokes equation can be

written

µ
∂2

∂z2
u = − ∂

∂x
p = ρ g

∂

∂x
h (27)

where we have ignored inertial effects (Reynolds number Re � 1), µ is the dynamic viscosity

and p is pressure. Also assumed is a thin layer where uzz � uxx.

A.1 Dimensional analysis

As shown in Fig. 18, the flow is sustained by the mass flux ρQ(t). Experimental data

indicates the time dependence

H L ∼
∫

t

0
Q(t′)dt′ ∼ q tα (28)

where H, L are typical height and typical length and α is a constant. For α = 0, the volume

is constant. The case α = 1 corresponds to constant flux. Using dimension analysis, one

can write orders of magnitude of the total buoyancy force Fg

Fg =

∫∫∫

V

∂p

∂x
dx dy dz

= −ρ g

∫∫∫

V

∂h

∂x
dx dy dz

∼ ρ g H2W

∼ (ρ g q2 W/L2
) t2α

(29)

and the total viscous force Fν

Fν = µ

∫∫∫

V

∂2u

∂z2
dx dy dz

∼ µULW/H

∼ µ q−1L3Wt−α−1

(30)
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Figure 19: The continuity equation. The change in velocity flux F is balanced by the change

in unknown elevation h.

The buoyancy and viscous forces balance (Fν ∼ Fg) leading to an estimate of the total

extension of the gravity flow

L = (g q3/ν)
1/5t(3α+1)/5

(31)

A.2 Lubrication theory analysis

We use the approximations of lubrication theory, where we neglect both surface tension and

contact line effects (Hocking 1981). Both can be neglected if the Bond number

B = ρ g l2/T � 1 (32)

where ρ is the density of the fluid, l is a representative length scale of the current, and T
is the surface tension. Using the x-momentum equation, and the thin layer approximation

uxx = 0, one obtains

∂2

∂z2
u =

ρ g

µ

∂

∂x
h (33)

We consider the boundary conditions

u = 0, at z = 0

uz = 0, at z = h
(34)

The solution velocity is

u(x, z, t) = − g

2 ν

∂h

∂x
z(2h − z) (35)

where ν = µ/ρ is the kinematic viscosity. The velocity flux is

F =

∫

h

0
u dz = −1

3

g

ν
h3 ∂h

∂x
(36)

The velocity flux has the dimensions of F ∼ L2 T−1
. Another constraint of the problem is

the conservation of mass. The local continuity requires that the difference in velocity flux

between to neighboring columns is balanced by the change of height

∂h∂x + ∂F∂t = 0 (37)
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or
∂F
∂x

+
∂h

∂t
= 0 (38)

Using equation (36), one obtains

∂h

∂t
− β

∂

∂x

(

h3 ∂h

∂x

)

= 0 (39)

where β = g/3ν. Equation (39) corresponds to the nonlinear diffusion equation. The global

continuity equation can be written

∫

xN (t)

0
h(x, t) dx = q tα (40)

where q tα corresponds to the cumulative (with time) influx of material volume. The method

used by H2
to determine a similarity solution is to write down the governing equation in

terms of dimension. Equation (39) can leads to

h

t
∼ β h4

x2
or h3 ∼ x2

βt
(41)

now assuming no influx of mass (α = 0), and a conserved area A, one has hxN ∼ A. So

one gets

x5

β A3 t
∼ 1 (42)

which suggests the following dimensionless quantity

η = (β A3
)
1/5 x t−1/5

(43)

to be suitable for similarity variable. One obtains the estimate

xN ∼ (β A3
)
1/5 t1/5

(44)

Introducing ηN , the value of η at the nose (x = xN ) of the current, and using

h ∼ A

xN

∼
(

A2

β

)1/5

t−1/5
(45)

we use the change of variable

h(x, t) = η
2/3
N

(A2/β)
1/5t−1/5 φ(η/ηN ) (46)

and we further define y ≡ η/ηN with 0 < y < 1. The partial derivatives become

∂t = dt −
1

5

y

t
dy

∂x =
y

x
dy

(47)
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For example, one has

ht = η
2/3
N

(A2/β)
1/5

{

1

5
t−4/5φ + yt−4/5φ′

}

(48)

The partial differential equation governing the height of the gravity current becomes the

ordinary differential equation

(φ3 φ′
)
′
+

1

5
φ′

+
1

5
φ = 0 (49)

with the boundary conditions φ = 0 and regular at y = 1. Integrating twice, we find

φ(y) =

(

3

10

)1/3

(1 − y2
)
1/3

(50)

and ηN = 1.411. We find that the problem is not solvable analytically for α 6= 0. In general

however, one has

xN = ηN

(

β q3
)1/5

t(3α+1)/5
(51)

Above theory agrees with experiments.

B Solidification

Solidification is the growth of a solid from a liquid phase. It is an important processing

route for metals and alloys and has a number of important geological problems associated

with it. In most geological problems, it is assumed that the magma has a well-defined

melt temperature at which the phase change from liquid to solid occurs. The problem of

solidification can be defined by Stefan’s condition. The Stefan condition for heat flux q and

velocity of solidification Vn is given by

ρsLVn = [n, q]. (52)

where L is the latent heat per unit mass, ρs is the density of the solid and n is the normal to

the surface. Operator [a, b] implies the difference between a · b on either side of the solid-

liquid interface, where a discontinuity in temperature gradient occurs. The location of the

phase change boundary or the interface between the solid and liquid is determined as part

of the solution. A complication, however, is the changing of this boundary as solidification

proceeds. Another difficulty is to keep track of the latent heat of fusion, which is located

at the solid-liquid interface as solidification takes place.

B.1 Planar 1-component solidification

Sometimes the solidification occurs in organised planar way. An example of such solidifica-

tion is that of a horizontal layer of magma that solidifies from its upper surface downwards

as a result of being cooled from above. In this case, the overall flow thickness is unimportant

in describing the solidification process as long as a molten region is present. The planar

1-component solidification is given by the equation (53), where T is the temperature.
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Figure 20: Schematic showing the interface between Solid and Liquid with the boundaries

at x = 0 and x = s(t). For simplicity material properties are assumed equal.

Tt = κTxx (53)

where κ is thermal diffusivity. The boundary conditions are:

T = TB at x = 0,

T = TS at x = s(t),

T → ∞ as x → ∞.

The Stefan’s condition, (52) in this case is given by

ρsLs′ = k(Tx|s− − Tx|s+
). (54)

where k is the thermal conductivity and s′ is the first derivative of s with respect to t. This

has similarity solution of the form

s(t) = 2λ(κt)1/2. (55)

This can be represented using erf(x) and λ, which is an eigenvalue of this system defined as

a function of S and R. The form of the solution is given by the following expression, where

λ1 is defined as sm/2
√

κt. sm gives the solidification interface.

λ = f [S, R] , (56)

where

S =
L

c(TS − TB)
(57)

is the Stefan number relating latent heat to heat capacity and

R =
T∞ − TS

TS − TB

(58)

is the nondimensional thermal forcing. The constant λ1 is determined by requiring that the

latent heat liberated at the solidification boundary be conducted vertically upward, away

from the interface.
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B.2 Binary alloys

Binary alloys are formed when 2 or more components melt. Sinking of salty water in

polar seas or the mixing or iron and impurities in liquid outer core of the Earth are both

examples of binary alloys. Figure 21 shows the Phase Diagram for Binary alloys. This

representation is often correct in equilibrium but can be very different in many cases. It

is worth noting that the freezing temperature (liquidus) is function of composition TL(C).

The solid that freezes has a very different composition (given by solidus) than the liquid.

Typically, aqueous solutions have vertical solidus.
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Figure 21: An equilibrium Phase Diagram for Binary Alloys.

B.2.1 Stefan Problem for an alloy

This problem is similar to the Planar 1-component solidification. The equilibrium liquidus

can be written as

Ti = TL(Ci). (59)

The Stefan condition is

ρsLs′ = −[kTx]
l

s. (60)

The solute conservation is given by

(Ci − Cs)s
′
= −DCx|s+

. (61)

The governing differential can be written in terms of Tt and Ct.

Tt = κTxx, (62)

Ct = DCxx. (63)
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where D is the diffusion coefficient of C, typically D � κ. Similarity solution can be found

of the form

s(t) = 2µ(Dt)n.

The solidification rate is controlled by the concentration diffusion. This is morphologically

unstable leading to ’Mushy Layers’, which are small scale reactive matrix bathed in intersti-

tial liquid. An example of mushy layer is sea ice. Seeking averaged description of local mean

temperature (T (x, t)), mean composition of interstitial liquid (C(x, t)) and solid fraction

(φ(x, t)) leads to the equations for the Mushy layer.

ρ̄c(Tt + u.∇T ) = ∇.(k̄∇T ) + ρsLφt, (64)

(1 − φ)(Ct + u.∇C) = ∇.(D̄∇C) + (C − Cs)φt. (65)

At equilibrium,

T = TL(C).

It is safe to say that multicomponent melts solidify into mushy layers, which are often

accompanied by strong compositional convection. In many circumstances, it is possible

quantitatively to predict structure and rate of growth of mushy layers. An example of

solidification is the almost pure iron inner core that has been slowly solidifying for about

1.8× 10
9

years (just under half the age of the Earth). During all this time strong composi-

tional convection has maintained the geodynamo protecting us from cosmic radiation.
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1 Introduction

This set of notes is about numerical efforts using the MITgcm software package to study

the climate on the time scale of thousands of years. Specifically we are interested in three

related problems: what sets the pole equator temperature gradient; what determines the

total meridional energy transport and its partition between the atmosphere and the oceans;

and what determines the extent of the polar ice caps. These are analyzed using numerical

calculations on water covered globes which we call aqua planets with a number of barriers

to sea flow. The models are simpler than other large scale calculations but retain the

essence of the processes that they simulate. The simulations are able to recover various

qualitative features of the climate that exist in the real world, including realistic solutions

to the aforementioned problems. Furthermore the models are flexible enough to be used

to make predictions about certains features of the climate in the distant past or the near

future.

2 Meridional Energy Transport From Observations

The temperature of the Earth decreases poleward. The Earth absorbs more energy at the

equator than at the poles, and this energy is circulated to the poles where it is radiated

away. This processes is known as meridional energy transport. The heat flux through

the atmosphere into space has been observed in detail by satellites, and this data can be

used to determine the meridional heat flux. Because the flux is so great it must be driven

by bulk transport of cold or warm air and water. There is an overall circulating current

in the atmosphere and a corresponding one in the ocean with a net transport of warm

air polewards and cool air equatorward [3]. Suppose that at a given latitude the mass

flux of these currents are ΨA and ΨO, for the atmosphere and oceans respectively. Then

suppose the temperature difference between the currents at each latitude is BA and BO.

The meridional heat transport at a given latitude would then be:

H = HA + HO = ΨABA + ΨOBO. (1)
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Similarly it is interesting to determine the ratio of the atmospheric and oceanic heat trans-

ports:

HA

H0
=

ΨABA

ΨOBO

. (2)

The partition between atmospheric and oceanic heat transport is known on Earth. These

fluxes can be calculated directly by measuring the speed and temperature of currents.

Figure 1 is from Trenbeth and Caron [2] and gives the meridional heat transport as a

function of latitude. We see that it has a maximum at 35
◦

degrees where it is 6 Petawatts.

The total atmospheric heat flux is roughly four times larger than the oceanic flux.

Figure 1: Meridional Heat Transport

The two cases can be analyzed individually, beginning with the oceanic case. The top

of the ocean absorbs most of the solar radiation, and as a result is warm. It also has

higher salinity due to evaporation. This warm salty layer is driven by the winds. This

zone is typically confined to the upper kilometer of the ocean. Underneath it is an abyssal

layer which is cold and has lower salinity. The Abyss is vented by convection at the poles,

and upwells in the mid and lower lattitudes. At its maximum the meridional overturning

circulation transports 1.2 Petawatts of heat. The mass flux of this current is on the order

of 40 sverdrups.

As is indicated by figure 1 the meridional heat flux is not uniform as a function of

latitude. There are also significant variations in the energy contrast and mass flux with

latitude. The thermocline is at its most intense in the tropics and the energy contrast is

greatest here. In the polar regions the surface temperatures are lower and the ocean is more

well mixed.

The meridional circulation of the atmosphere is coupled to that of the ocean. Evapo-

ration of water in the tropics is carried towards the poles. The atmosphere carries moist

static energy as a result of its water content. The formula for moist static energy is:

BA = CAT + gz + Lq. (3)
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Here CA is the specific heat of water, g is gravity, z is the altitude, L is the latent heat,

and q is the mixing ratio. The moist static energy is the energy that will be released as

heat during rainfall. Most of this moisture falls in the midlatitudes. Overall this process

accounts for one half of the mass transport of the atmosphere. The differential heating of

the atmosphere at the equator and the poles drives this circulation [3].

The atmospheric energy contrast is extremely low in the tropics, so the energy flux must

also be low here. On the other hand the energy contrast is quite large in the midlatitudes

due to the moist static energy. Figure 2 shows the moisture distribution in the atmosphere

as a function of latitude and pressure. The atmosphere is very well mixed in the tropics

and this is where most of the convection occurs.

Figure 2: Moisture Distribution in the Atmosphere and Ocean

The qualitative nature of energy transport in the atmosphere and the oceans is quite

different. The ocean convects at the poles while the atmosphere convects at the equator.

As a result the energy transport is stronger in the ocean in the equatorial regions. The

opposite is true everywhere else. On average the atmospheric mass transport is four times

greater than that of the ocean, while the energy contrast is the same. These facts are known

from observational studies. If we redefine one Sverdrup as 10
9

kilograms per second of any

substance then the atmosphere is a one hundred twenty Sverdrup flow while the ocean is

only a thirty Sverdrup flow. Figure 3 shows this graphically. The energy contrast and mass

transport in the atmosphere are calculated using satellite observations of the mass flux

between adjacent moist static energy surfaces. Given these observations it is interesting to

wonder what properties of the Earth and its climate cause this partition, and to determine

how the partition has been different in the past and how it might change in the future.
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Figure 3: Mass Transport in the Atmosphere and Ocean

3 Modeling Hierarchies and MITgcm

The physics of the oceans and the atmosphere are extremely complex. In many cases the

most interesting thing is the large scale behavoir. Models of the atmosphere and oceans

can range from simple to complex. In the first extreme are box models which divide the

ocean and atmosphere into a small number of homogeneous boxes. In the other extreme

are large scale general circulation models which discretize the Earth and use numerical

methods to approximate the evolution of the atmospheres and oceans. The disadvantage

of such complex models is the number of free parameters that can be tuned to cause the

model to reproduce observations. Instead of being simulations of the physics these can

become simulations of the phenomena. This can obscure the true physical causes for a

certain phenomenon and thus make the future predictions of the model unreliable.

Given that scientists have adopted the full range of models for global oceanic and atmo-

spheric circulation it is worthwhile to think about the philosophy of modeling in general.

This work shuns the overemphasis on complexity and seeks to use models that correspond

to actual physics. The idea is to study a given phenomenon by using a hierarchy of mod-

els. One begins with the simplest reasonable model and slowly increases its resolution and

features. Here our modeling hierarchy will begin with the aqua planet, which is a planet

whose surface is entirely covered with water. To simulate the effect of continents, ridges

that block ocean circulation are added to the model, but no additional parameters are in-

troduced. After inserting a ridge we can further increase the analogy by putting a gap in

the ridge to represent the Drake Passage. The final step in this study is to consider the

double drake, which has two ridges with gaps near the south pole. This hierarchy uses a

reasonable model of the physics and should produce interesting results because it captures

much of the essence of the geography.

The model that will be used to generate experimental results is MITgcm, which is a

general circulation model developed at MIT. It sets itself apart from other models because
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of its relative simplicity. It is a realistic physical simulation capable of capturing certain

physical process[1].

4 Climate of Aqua Planets

We are interested in qualitative studies of the climate and the ocean circulation using large

scale GCM models. The starting point for these studies is the so-called aqua planet. It is a

landless rotating planet with a five kilometer deep ocean that is dimensionally modeled after

the Earth. Using the data from the simulations we will be able to calculate the partition of

energy transport between the atmosphere and the oceans and to compare the qualitative

features of this transport. Later when more geography is added to the model it will be

possible to create a more nuanced understanding of the global energy circulation. The time

scale of each simulation is on the order of a couple of thousand years, and this take one or

two weeks of computer time.

Figure 4 shows the sea ice present in the model after it has equillibrated. Ice caps form

at each pole and are quite large. The ice reaches a maximum depth of seventeen meters at

the actual poles. In the absence of topography the oceans are dominated by circumpolar

currents at every latitude. The figure 5 shows the strength of the currents in the atmosphere

and ocean at each latitude, depth, pressure, and potential temperature. The currents are

quite strong at the equator and then reverse direction at the midlatitudes. The strength

drops close to the poles. Combined with figure 6, which shows the humidity and salinity

we see that the surface of the ocean in the lower latitudes is warm and salty, whereas the

abyss is cooler and fresh. This is very similar to Earth. Similarly in the atmosphere the

warm air near the tropics is very moist and the cold air near the poles is quite dry.

Figure 4: Sea Ice and Water Temperatures in the Aqua Planet

The atmospheric circulation has some qualitative features that exist in the Earth’s

atmosphere. The beta effect is quite important in driving these. For example figure 7a

shows the vertical circulation in both the atmosphere and ocean. There are two clearly

defined ’Hadley’ cells over the tropics.

One remarkable property of this relatively simple model is that the meriodonal energy

transport is very similar to that of the Earth. Consider the four figures demonstrating

the mass transport and energy transport in aqua planet and on Earth, i.e. figure 3 and

figures 7b, c, and d. The mass transport in the two cases are very close and so is the
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Figure 5: Current Strength and Potential Temperature in the Aqua Planet

Figure 6: Salinity and Humidity in the Aqua Planet

meridional energy transport. The fact that the shapes of the curves are so similar is aston-

ishing given that the aqua planet has no land. This in many ways represents a victory of

the philosophy of modelling hierachy discussed in the previous section. Although not every

feature is captured by this model many of the large scale ones are.
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Figure 7: Results from the Aqua Planet: stream function in the ocean and in the atmosphere

(a), mass transport (b) and meridional heat transport in Aqua Planet (c) and in Earth (d)
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We can use the meridional energy transport data to understand the sea ice caps that are

present on the aqua planet. The heat transport drops significantly at the poles. This drop

is primarily due to a decline in the mass transport at the poles. In particular the ocean

energy transport goes to zero.

5 Role of Geometrical Constraints on Ocean Energy Trans-

port

The coasts are an important constraint for the global circulation in the ocean. The aim of

this section is to introduce the impact of the topographic constraints on the flow.

Three variations of the aquaplanet model are discussed (figure 8):

• The ridge model: a ridge going from North pole to South pole blocks the zonal flow

in the ocean.

• The drake model: similar to the ridge model but with a passageway representing

Drake Passage.

• The double drake model: the ocean is shared into a small and a big basin which can

communicate by passageways at the south pole.

In these models, the atmosphere is not blocked by a barrier.

Figure 8: Models with different geometrical constraints: aquaplanet (a), ridge model (b),

drake model (c) and double drake model (d).

5.1 Phenomenology

In the ridge model (figure 9a), the oceanic circulation is divided into gyres and a counter

current is present along the equator. Moreover, there is no ice cap over the pole.

The passageway in the drake model (figure 9b) allows the presence of a circumpolar current.

In this case, unlike the ridge model, an ice cap covers the South pole.

Unlike the aquaplanet, there is no subtropical cell driven by the balance between winds

and pressure gradients in the ridge model (figure 10b). A deep convection is present at the

two poles. In the drake model (figure 10c), convection is active in the warm hemisphere i.e.

the northern one where there is no ice. This yields a strong overturning circulation in the

northern hemisphere whereas it is tiny in the southern one and then ice can be sustained

over the south pole. The salinity is sharply asymmetric in the drake model (figure 11c):
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Figure 9: Sea surface temperature computed with the ridge model (a) and the drake model

(b).

the salt water is pushed towards the north pole and fresh water towards the south pole. In

all models with an oceanic barriers, the atmosphere contains more moisture over the pole

than in the aquaplanet model.

Figure 10: Overturning circulation expressed in sverdrup here redefined as 1Sv= 10
9

kg.

s
−1

in the aquaplanet model (a), the ridge model (b) and the drake model (c). The red

area represents the intensity of the convection.
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Figure 11: Specific humidity of the atmosphere (top) and salinity of the ocean (bottom)

computed in the aquaplanet (a), the ridge (b) and the drake (c) models.

5.2 Heat Transport and its Partition

The ridge enhances the heat transport in ocean towards the poles (figure 12) explaining the

absence of ice. In the drake model, there is less heat transport in the southern hemisphere

and consequently an ice cap can be sustained over this pole. In the case of a ridge with an

equatorial passageway, the heat transport is enhanced leading to warmer poles (figure 13).

Indeed, due to less pressure gradients at the equator, winds are balanced by ageostrophic

poleward flow.

Figure 12: Atmospheric (left) and oceanic (right) heat transport computed with the different

models. The results of the ridge model with an equatorial passageway (blue curve) are also

shown.

In this section, theoretical considerations of a 2-box model will be presented. A box is

shared between two parts: the first part represents the equatorial zone and the second one

is the polar area (figure 14). A meridional energy flux f is transfered from the equatorial
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Figure 13: Surface air temperature (dashed line) for the aquaplanet (a), the ridge (b), the

ridge with an equatorial passageway (c) and the drake (d) models.

box to the polar box. Each box undergoes an incoming solar radiation s and an outgoing

longwave radiation i.

Figure 14: The 2-box model.

The energy balance in the two box is

aese − ie − f = 0 , (4)

apsp − ip + f = 0 (5)

with a the co-albedo.

Each quantity (s, i or a) can be decomposed as

(.)e = (̄.) +
1

2
∆(.) , (6)

(.)i = (̄.) − 1

2
∆(.) (7)

where (̄.) is for the global average of (.) and ∆(.) = (.)e − (.)i.

Using equations 4 and 5, f can be expressed as

f =
1

2

(

∆sā + s̄∆a +
1

2
∆a∆s − ∆i

)

. (8)

Stone [4] argued that s̄∆a is balanced by ∆i and that
1
2∆a∆s is negligeable (see figure 15).

Therefore ∆sā is the predominant term in the meridional energy flux

f ' 1

2
∆sā . (9)
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It is a reasonable gross estimate but in error by order 20%. This means that the total heat

transport only depends on planetary albedo, solar constant and radius of planet. However

if ice caps cover the poles, the excess of albedo ∆a is important and the ∆sā effects can

not be ignored.

Figure 15: Estimates of the different terms of the calculation of the meridional energy flux

f for the different models.

5.3 Double Drake Model

In the double drake model, the ocean is divided into a small and a large basin which can

communicate in the southern hemisphere (figure 8d).

The small basin is warmer and more salty than the large one (figure 16). The water

is reduced in the small basin by evaporation and precipitates in the large basin. The salt

water in the small basin convects and thus a self-sustained overturning circulation is present

in the small basin (figure 17). The convection takes place preferentially in the small basin.

Figure 16: Results of the double drake model: sea surface temperature (a), sea surface

salinity (b) and sea surface density (c).

The agreement in heat transport by atmosphere and ocean between today’s climate and

the double drake model is good despite the straightforward geometrical constraints of the

model (figure 18). In particular, the asymmetry in the ocean heat transport between the

two hemisphere is well reproduced.
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Figure 17: Left: Overturning circulation in the small basin (a) and in the large basin (b)

for the double drake model. Right: Ocean heat transport in the two basins (c).

Figure 18: Left: Heat transport in the Earth’s current climate. Right: Heat transport in

the double drake model.

6 Conclusion

Some points deserve to be emphasized:

• Energy flux partition can be rationalized by

HA

HO

=
ΨA

ΨO

× ∆BA

∆BO

.

The dominance of HA over HO is a consequence of ΨA � Ψ0.
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• Although HO is small, it plays a crucial role e.g. in controlling sea ice extent. The

climates of the different models introduced above are very different to one-another

especially due to the presence/absence of ice at the poles.

• Oceanic energy transport is primarily achieved by wind-driven currents (not buoyancy-

driven flow).

• f ' 1
2∆sā is a good predictor of total energy transport in warm climate. However

∆sā effects are large in cold climates and can not be ignored.

• Opening of drake passage has a profound effect on global circulation: it is a major

source of inter-hemispheric asymmetry.

Some challenges of this work are:

• Multiple equilibria: indeed, stable solutions without ice can be found for the aqua-

planet.

• Overlaying biogeochemical cycles in these models.

• Connecting to paleo climate: the different geometrical constraints can be seen as the

geological evolution (figure 19).

• Further collaborations : include land.
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1 Introduction

The Earth’s atmosphere is a comparatively thin layer of a gaseous mixture which is dis-

tributed almost uniformly over the surface of the Earth. In the vertical direction, more than

99% of the mass of the atmosphere is found below an altitude of 30km. In contrast, the hori-

zontal scale of the atmosphere is of order 20, 000km. The atmosphere is composed of several

layers which differ in composition, temperature, stability and energetics. Starting from the

surface, the main layers are the troposphere, stratosphere, mesosphere, and thermosphere,

separated by conceptual partitions called pauses (e.g., tropopause). The concentrations of

nitrogen, oxygen and some inert gases are practically uniform in the atmosphere up to the

mesopause. This region constitutes the homosphere. However, above about 100km, the

density of gas begins to fall off exponentially with increasing altitude with a rate depending

on the molecular mass. Larger mass constituents, such as oxygen and nitrogen, fall off more

quickly than lighter ones such as helium and hydrogen. This layer, in which the composition

of the atmosphere varies with altitude, is called the heterosphere.

In the following, we introduce atmospheric escape. Due to thermal mechanisms, a lighter

molecule is more likely to escape from the atmosphere because of its higher average speed

at a given temperature. For example, hydrogen escapes more easily than carbon dioxide.

This has numerous applications in astrophysical and planetary science.

1.1 Loss of water from Venus

The atmosphere of Venus contains only 0.1−1% H2O, a fact revealed by the recent Mariner

5 and Venera 4 missions. The total abundance of H2O is 20− 200gm cm
−2

in the Venusian

atmosphere compared with 320, 000gm cm
−2

in the Earth’s atmosphere. The origin of

the present atmosphere of Venus is assumed to be the same as that of the Earth, given

the similarity in size and mass of the two planets. However, a large amount of H
2
O has

been lost during Venus’ history. In the atmosphere of Venus, water vapor was able to

become a major constituent at a high altitude where the atmospheric cold trap (places

where the major constituents of the atmosphere condense) was located, and could be steadily

photodissociated. The hydrogen atoms freed as a result of this process then flowed outward
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from the planet due in part to hydrodynamic escape. This process could account for the

large loss of water from Venus. See [2, 4] for a much more thorough description.

1.2 Hydrogen content of the early Earth atmosphere

Research has shown that hydrogen was one of the major constituents in the ancient at-

mosphere. In addition, from a biological view, the existence and efficient production of

prebiotic organic compounds on early Earth was necessary for the origin of life. H2, along

with O2 and CO2, can absorb extreme ultraviolet (EUV) radiation, but only H2 can carry

energy back to space by hydrodynamic escape. When hydrogen became the major gas in

the heterosphere and the major absorber of EUV, the escape rate of hydrogen could have

been controlled by the solar EUV flux available to drive the flow. One could consider that

a balance then formed between volcanic hydrogen outgassing and the hydrodynamic escape

of hydrogen from the atmosphere, helping to maintain the high hydrogen mixing ratio on

early Earth. A discussion is given in [6], some of the details of which are given in §3 of

these notes.

1.3 Loss of hydrogen from Titan

Methane gas is abundant in Titan’s atmosphere, but it can be broken apart by ultraviolet

light via the following process

CH4 + hν −→ CH3 + H, (1)

subsequently reforming to create ethane (C2H6). This reaction is common in the atmo-

spheres of giant planets, where the hydrogen remains in the atmosphere due to the high

gravitational energy that must be overcome in order for it to escape. However, on Titan,

where the gravitational attraction is much lower, hydrogen can escape, causing the observed

carbon to hydrogen ratio, which is higher than for pure methane.

1.4 Stellar wind

The phenomenon of atmospheric escape is not confined merely to planetary masses. Indeed,

the stellar wind is an escape process that occurs at the outer limits of the Sun’s atmosphere.

Light elements, particularly hydrogen, gain sufficient energy to escape the Sun’s gravity, and

are radiated outwards. So great is the magnitude of this release that it can be measured

from Earth. The process, while essentially hydrodynamical, is complicated by the influence

of the solar magnetic field, and the fact that the high solar atmosphere is a plasma. We

shall not discuss the solar wind further in this document, but direct the reader to [5] for a

detailed discussion of the subject.

2 Transcritical flows

It is believed that atmospheric flows must be supersonic in order to escape the planet’s

gravitational field. This viewpoint is justified, somewhat dubiously, by the assertion that

the steady-state outflow of subsonic fluid has an infinite density everywhere, whereas the
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Figure 1: A sketch of shallow-water flow over a gentle bump.

outflow of supersonic fluid can support a more reasonable steady density distribution. Given

the unfathomable size of the Universe, however, it seems unlikely that a steady state can be

reached, making this argument rather spurious. Much more reasonable is a state in which

material gradually radiates away from the planet. However, this transient state cannot

be used to draw conclusions about the velocity of escape. Nevertheless, we shall proceed

with the belief that flows involved in atmospheric escape must transition between subsonic

atmospheric flows and supersonic exospheric flows - that is, they must be transcritical.

Transcritical flows, characterised by a singularity in the differential equations governing the

fluid, are abundant in both modern and classical fluid mechanical literature. In this section,

we shall introduce the notion of a transcritical flow via some familiar examples.

2.1 Shallow-water flow over a bump

The flow of a shallow layer of water over a gentle bump is one of the simplest examples of

a physical system exhibiting transcritical behaviour, and is often covered in introductory

courses in fluid mechanics. The situation is illustrated by Figure 1, with fluid contained

between a free surface z = h(x) and a rigid base z = b(x). We denote the fluid velocity

(assumed uniform in depth) by u(x). The fluid is incompressible, with constant density ρ.

The equations of mass and momentum conservation applied to the flow, assuming a

steady-state solution, are

∂x ((h − b)u) = ∂xΦ = 0 (2)

u∂xu = −g∂xh. (3)

By differentiating (2) and substituting for ∂xh in (3), we arrive at the equation

u
(

1 − Fr
−2
)

∂xu = −g∂xb, (4)

where the Froude number is given by the ratio of the local velocity to the local wave speed,

thus

Fr =
u

√

g(h − b)
. (5)

If we assume that the basal height b(x) is given, then (4) is an ordinary differential equation

for u(x), with forcing −g∂xb. We note, however, that this equation is singular for u = 0

and Fr = 1. The former case is simply the degenerate case of no flow, but the latter is much

more important. If at any point the flow conditions are such that Fr = 1, (4) may only have
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Figure 2: A sketch of the relationship between Froude number and energy, as given by (10)

a smooth solution if the forcing also vanishes at that point - i.e. ∂xb = 0 where Fr(x) = 1.

Crucially, this means that the flow may only transition smoothly between a region where

Fr < 1 (a subcritical region) and a region where Fr > 1 (a supercritical region) at a point

where ∂xb = 0.

One can think of this transcriticality in the context of energy. If we simply rearrange

(3) into the conservative form

0 =
∂

∂x

(

1

2
u2

+ gh

)

(6)

=
∂

∂x

(

1

2
u2

+ g(h − b) + gb

)

(7)

=
∂

∂x

[

(h − b)

(

1

2
Fr

2
+ 1 +

b

h − b

)]

(8)

=
∂

∂x

[

(

gΦ

Fr

)2/3 (
1

2
Fr + 1 +

b

h − b

)

]

. (9)

If we define the x-independent quantity here to be a specific energy E, then (9) relates E
and Fr via

E − gh =

(

gΦ

Fr

)2/3 (
1

2
Fr

2
+ 1

)

. (10)

This relationship is shown in Figure 2. Evaluating E by using the upstream boundary

conditions, we find that either zero, one, or two solutions for Fr exist at any location x,
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Figure 3: Sketches of the shallow-water flow over a bump for (a) subcritical flow, (b)

transcritical flow, and (c) supercritical flow.

given the local bed height b(x). A smooth solution for Fr(x) must remain on the curve

shown in Figure 2, and take the local value of E−gb. It should be noted that the minimum

energy occurs when Fr = 1, i.e. at the transcritical point. This agrees with our earlier

conclusion that, in order to pass smoothly from subcritical to supercritical flow, one must

pass through a region where h is extremal. If the geometry and upstream conditions are

such that the transcritical regime can be reached, there are three possibilities for the flow,

given an initial upstream energy E. These are illustrated in Figure 3.

If the bed elevation b(x) should become sufficiently large so as to forbid any solution of

(10), then we can expect no steady solution to exist. In practice, a phenomenon known as

‘choking’ occurs. Fluid builds up behind the bump, creating a disturbance whose upstream

extent increases in time until it has sufficiently modified the upstream boundary conditions,

allowing a steady flow to form.

2.2 Compressible flow in a duct

Another important example of transcritical behaviour originates as a problem in supersonic

propulsion. Consider the duct illustrated in Figure 4. In a simple, one-dimensional model,

the compressible fluid contained in the duct has local density ρ(x), and velocity u(x). The

cross-sectional area of the duct is denoted by A(x). Once again, we can write down equations

describing the conservation of mass and momentum

∂x (ρAu) = ∂xΦ = 0, (11)

u∂xu = −1

ρ
∂xp, (12)

but in this case we must supplement these equations with an equation of state. Here, it

suffices to use the general form for an adiabatic gas

p = p(ρ), with sound speed c2
s =

dp

dρ
. (13)
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Figure 4: Diagram and notation for compressible duct flow

We can now use (13) to substitute ρ for p in (12), before using conservation of mass to

eliminate ∂xρ, as we did in §2.1. This quickly leads to the ordinary differential equation

1

u

(

M2 − 1
)

∂xu =
∂xA

A
, (14)

where M = u/cs is the Mach number. Once again, for a given geometry defined by A(x),

the steady-state velocity obeys a singular ordinary differential equation. Importantly, the

singular point occurs when M = 1, separating subsonic (subcritical) flow from supersonic

(supercritical) flow. In order to have a transsonic flow, passing smoothly through M = 1

(known as the Mach point) we require that the forcing in (14) must vanish. That is, the

area A(x) must be extremal at the Mach point. This is known in aerodynamics as the

minimum area rule for transsonic flow.

Framing this problem in terms of energy requires use of the thermodynamical relation

can proceed by finding a conservative form in much the same way as in §2.1

0 =
∂

∂x

[

1

2
u2

+

∫

ρ c2
s(ρ

′
)

ρ′
dρ′
]

(15)

=
∂

∂x

[

c2
s

(

1

2
M2

+
1

c2
s

∫

ρ c2
s(ρ

′
)

ρ′
dρ′
)]

. (16)

One would now like to define a specific energy E(M) to be equal to this conserved quantity,

but the dependence of cs on ρ means that this is as far as a general adiabatic theory can

take us. If we consider specifically an ideal gas, where p = p0(ρ/ρ0)
1/β

, then we may write

(16) in the form

0 =
∂

∂x

[(

p0ρ
−1+1/β

βρ
1/β

0

)

(

1

2
M2

+
β

1 − β

)

]

. (17)

We can then use conservation of mass (11) to substitute for ρ and arrive at the equation

0 =
∂E

∂x
=

∂

∂x

[

c2
s0

(M0A0

MA

)2 1−β

1+β

(

1

2
M2

+
β

1 − β

)

]

, (18)

where the reference values (cs0,M0, A0) are evaluated using the upstream boundary condi-

tions. Note now that the specific energy E is written only as a function of the local Mach

number M, given the variation of cross-sectional area A with x. This relationship, for a

representative value of β, is illustrated in Figure 5
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Figure 5: A plot of the relationship between energy and Mach number, as given by (18),

with β = 2/3.

Many similaritites exist between this and the flow over a bump discussed in §2.1. The

principal difference is that the varying geometry, specified by A(x), appears as a multiplica-

tive modification to the energy E, rather than as an additive modification in the shallow

bump problem. This changes the behaviour surprisingly little. At a given point, there are

still zero, one, or two solutions, with one sub- and one super-critical in the latter case. If

the cross-sectional area decreases sufficiently, it can be that no steady solution exists, in

which case the ‘choking’ effect causes an upstream disturbance that modifies the upstream

boundary conditions.

2.3 Other examples

There are many other examples of transcritical behaviour occuring in many areas of fluid

mechanics and physics in general. For example, calculations regarding the stellar wind

result in a singular differential equation, forcing flow to pass through a critical point - the

Alfvén point of magnetohydrodynamics.

An important geophysical example is the flow of a stratified fluid over an mountain.

If the atmosphere could be assumed to have a rigid lid, then a weakly nonlinear analysis

would proceed analogously to the shallow water flow discussed in §2.1. The same is not true

in an unbounded region, but the phenomenology is similar, as shown by Pierrehumbert and

Wyman [3]. Figure 6 illustrates their computational solutions, which show that the flow is

subcritical upwind of a mountain, but supercritical on the lee-side in a typical geophysically-
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Figure 6: Streamlines of pertubation to uniform left-to-right flow past an idealized moun-

tain, from [3].

reasonable region of parameter space. In their work, Pierrehumbert and Wyman [3] found

that the dimensionless Froude number controlling the flow is given by

Fr =
U

NHm

, (19)

where U is the local velocity scale, N the buoyancy frequency, and Hm a vertical length-

scale comparable to the height of the mountain. For small values of this parameter, a

‘blocking’ phenomenon occurs. Similar to the ‘choking’ behaviour described in the earlier

examples, blocking generates an upstream-propagating columnar mode, which has the effect

of modifying the upstream boundary conditions by creating a layer of stagnant fluid near

the ground, effectively reducing the height of the mountain and allowing a steady flow to

be reached.

3 Atmospheric escape

We have previously alluded to the fact that atmospheric escape flows are complicated by

a number of factors. Solar radiation, gravitational potential and non-adiabatic effects all

come into play, among many other effects. A brief discussion of the control of hydrogen

in the early Earth atmosphere (see [6]) makes mention of several complications. In this

section, we shall consider a simple, spherically-symmetric model for atmospheric escape,

before mentioning some possible refinements and future directions for interesting research.

3.1 A spherically-symmetric model

In order to formulate a spherically-symmetric model for atmospheric escape, we follow a

very similar approach to the compressible flow problem described in §2.2. In this case,

conservation of mass may be expressed in the form

Φ = 4πr2ρ(r)u(r) = const.. (20)
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Note that, in this case, there is no extremal ‘cross-sectional area’, equivalent to A(x) in the

case of the duct. We must therefore rely on a different mechanism to lead to transcritical

behaviour. When considering the conservation of momentum, we must therefore include

the gravitational potential χ = −GM/r, where M is the mass of the planet, and G is the

gravitational constant. Assuming an adiabatic gas, as in §2.2, we can arrive at the following

form of the momentum equation

1

u

(

M2 − 1
) ∂u

∂r
=

1

(csr)2
(2rc2

s − GM). (21)

For this formulation, is the clear that a singular point exists when M = 1. At this point,

one may only transition smoothly from a subsonic flow to a supersonic flow provided that

cs(Rs) =

√

GM

2Rs

, (22)

where Rs is the sonic radius, also referred to as the sonic point. In this case, it is the

gravitational potential term that plays the role of the bump in §2.1 or the constriction of

the duct in §2.2.
Arranging the momentum equation into conservative form yields the equation

0 =
∂E

∂r
=

∂

∂r

[

1

2
u2

+

∫

ρ c2
s(ρ

′
)

ρ′
dρ′ − GM

r

]

, (23)

which allows us to define a specific energy E. For an ideal gas, as described in §2.2, it is

possible to write

E = c2
s0

(M0A0

MA

)2 1−β

1+β

(

1

2
M2

+
β

1 − β

)

− g0R0

(

R0

r

)

, (24)

where the terms represent specific kinetic, internal and potential energy, respectively. In

the case of atmospheric escape, the temperatures are not usually large enough for internal

heat to be a significant component of energy, so the principal balance is between kinetic and

potential energies. This leads, as every good schoolchild knows, to the notion of an escape

velocity ue = 2g0R0, at which a particle has enough kinetic energy to escape the potential

well of the planet. This balance is sufficient, in order-of-magnitude, to drive an outflow

like the hydrogen-rich solar wind. However, for typical conditions in the oxygen-rich high

terrestrial atmosphere, escape requires an additional input of energy.

3.2 Extensions and generalisations

In real planetary situations, such as that of the Earth, there is little reason to believe that

any escape flow will be spherically-symmetric. Indeed, given the difference in solar radiation

absorbed on the day- and night-sides of a planet, an entirely symmetric flow would be very

surprising. It is possible that the heating the sunward side of the atmosphere by EUV

radiation drives a flow to the dark side of the planet, where is then able to escape. The idea

is that the radiatively-driven circulation forces the exospheric material into a jet directed

away from the Sun. Calculations based on this notion have yet to be carried out.
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Furthermore, our assumption that the gas is adiabatic is not valid for the case of atmo-

spheric escape from Earth’s atmosphere. This is clear from the calculations, such as that

of §3.1, which show that there is insufficient energy for atmospheric escape of oxygen. It is

therefore necessary to include some non-adiabatic effects, such as local heating by EUV ra-

diation, in order to arrive at correct scalings for terrestrial atmospheric escape. It should be

noted, however, that simple theories of adiabatic hydrodynamic escape perform admirably

when applied to the solar wind.

An interesting model through which to consider non-adiabatic effects in hydrodynamical

escape might be to return to transsonic flow in a duct, but to supply heat, uniformly or

otherwise, to the gas in the duct. This heating should weaken the conditions leading to

the minimum area rule, perhaps displacing the sonic point, or allowing for multiple sonic

points. When generalised to atmospheric collapse, this could result in enough energy being

supplied to allow material to escape.

It should be noted that hydrodynamical escape is not the only mechanism allowing ma-

terial to leave Earth’s atmosphere. The article by Catling [1] argues that hydrodynamic

escape may not even be the dominant mechanism for hydrogen removal, and that so-called

‘non-thermal’ escape mechanisms are more significant. One hopes that a better understand-

ing of the details of the various mechanisms may lead to a resolution of the argument, and

a clearer picture of how planetary atmospheres can evolve.

References

[1] D. C. Catling, Comment on “a hydrogen-rich early earth atmosphere”, Science, 311

(2005), p. 38a.

[2] J. F. Kasting and J. B. Pollack, Loss of water from venus. i. hydrodynamic escape

of hydrogen, Icarus, 53 (1983), pp. 479–508.

[3] R. T. Pierrehumbert and B. Wyman, Upstream effects of mesoscale mountains, J.

Atmos. Sci., 42 (1985), pp. 977–1003.

[4] S. I. Rasool, Loss of water from venus, J. Atmos. Sci., 25 (1968), pp. 663–664.

[5] M. J. Thompson, An introduction to astrophysical fluid dynamics, Imperial College

Press, 2006.

[6] F. Tian, O. Toon, A. A. Pavlov, and H. de Sterck, A hydrogen-rich early earth

atmosphere, Science, 308 (2005), p. 1014.

142



Double-Diffusive Convection

Lecturer: Timour Radko
Notes written by: Christophe Gissinger & Toby Wood

Woods Hole Geophysical Fluid Dynamics Program 2008

27 June 2008

1 Introduction

Even in systems with a negative vertical density gradient, instability is possible if the density

is controlled by two components (e.g. temperature T and salinity S) that diffuse at different

rates [24]. In the oceans, temperature diffuses approximately 100 times faster than salt,

and so many regions of the ocean are potential candidates for so-called “double-diffusive

instability”.

Doubly-diffusive effects were observed by several authors before Stern [24] explained

the physical mechanism responsible. Jevons [4] and Ekman [1] had previously observed

instability at the interface between temperature stratified water and an overlying layer

of denser fluid, but neither recognised the significance of double-diffusion. Later, Stommel

et al. [28] showed that a “perpetual salt fountain” can arise when a tube is inserted vertically

through the interface between a layer of warm, salty water overlying cold, fresh water. The

fountain persists until the system becomes well mixed. This experiment has recently been

realised on an industrial scale [29].

There are two forms of double-diffusive instability, referred to as “salt fingers” and

“diffusive convection”.

1.1 Salt fingers

Suppose a fluid system contains positive vertical gradients of both temperature T and

salinity S, such that the total density gradient is negative (i.e. stably stratified). We describe

this configuration as “warm salty over cold fresh” (see Figure 1). In the absence of diffusive

effects, a parcel of fluid displaced vertically downwards would find itself more buoyant than

its surroundings, and therefore rise. However, if temperature diffusion is sufficiently strong,

and salt diffusion sufficiently weak, then the parcel can come into thermal equilibrium with

its surroundings before it rises, whilst still remaining salty. It therefore becomes less buoyant

than its surroundings, and continues to fall under gravity. This process leads to “salt fingers”

propagating down through the medium and, conversely, fresh fingers propagating upward

(see Figure 2).
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Figure 1: Schematic of the salt finger mechanism.

Figure 2: Salt fingers in a laboratory experiment [3].

1.2 Diffusive convection

Suppose we have negative vertical gradients of both T and S such that the total density

gradient remains stably stratified, i.e. “cold fresh over warm salty”(see Figure 3). A par-

cel of fluid displaced vertically downwards now quickly absorbs heat by diffusion from its

surroundings, and so “overshoots” when rising back through the medium. This leads to an

oscillation of growing amplitude, i.e. an oscillatory instability.

Both kinds of double-diffusive instability are thought to play a role in small-scale mixing

of the world’s oceans. However, since the conditions necessary for salt fingers are more

common, we focus here primarily on this instability.
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Figure 3: Schematic of the diffusive convection mechanism.

2 Mathematical formulation

2.1 The linear instability

We begin with the Boussinesq equations, which are valid over height scales less than the

pressure and density scale heights, provided the flow speed remains much less than the

sound speed.

0 = ∇ · u, (1)

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p − g

ρ

ρ0
k̂ + ν∇2u, (2)

∂T

∂t
+ u · ∇T = kT∇2T, (3)

∂S

∂t
+ u · ∇S = kS∇2S, (4)

ρ − ρ0

ρ0
= β(S − S0) − α(T − T0). (5)

Here, kT and kS represent diffusivity of heat and salt, ν is the kinematic viscosity and

(ρ0, p0, T0, S0) denote the (constant) reference values of density, pressure, temperature and

salinity.

We consider linear perturbations to a background state with u = 0, T z ≡ dT (z)

dz
=

const > 0, Sz ≡ dS(z)

dz
= const > 0 and

∂p

∂z
= −gρ. (Overbars are used to denote unper-

turbed quantities, and primes will be used for their linear perturbations.) The background

is stably stratified provided that density is decreasing with height, i.e.

1

ρ0
ρz = βSz − αT z < 0. (6)
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The perturbations then obey the equations

0 = ∇ · u′, (7)

∂u

∂t
= − 1

ρ0
∇p′ − g

ρ′

ρ0
k̂ + ν∇2u′, (8)

∂T ′

∂t
+ w′T z = kT∇2T ′, (9)

∂S′

∂t
+ w′Sz = kS∇2S′, (10)

ρ′

ρ0
= βS′ − αT ′. (11)

Salt fingers typically exhibit much longer vertical scales than horizontal scales, so we seek

solutions that are proportional to exp(λt) sin(k1x) sin(k2y). We then obtain three algebraic

equations relating λ to κ2 ≡ k2
1 + k2

2:

λw′
= −g(βS′ − αT ′

) − νκ2w′, (12)

λT ′
+ w′ T z = −kT κ2T ′, (13)

λS′
+ w′ Sz = −kSκ2S′. (14)

(15)

For given κ, there are three solutions for λ, one real and two complex conjugate. The

complex solutions represent slowly decaying internal waves. The real solution represents

double-diffusive instability if λ > 0. To determine the instability criterion, we analyse the

marginal stability condition, λ = 0; we then find

g

(

βSz

kS

− αT z

kT

)

= νκ4. (16)

This equation has solutions with κ ∈ R provided that the LHS is positive. The necessary

condition for instability is therefore

Rρ ≡ αT z

βSz

<
kT

kS

. (17)

The quantity Rρ is called the density ratio. In the ocean, the diffusivities of temperature

and salt are, respectively, 1.4 × 10
−7

m
2
s
−1

and 1.1 × 10
−9

m
2
s
−1

, so instability requires

Rρ . 100. We also require Rρ > 1 so that the background state is stably stratified (see

equation (6)). The growth rate of the salt finger instability is greatest when Rρ ≈ 1.

2.2 Instability scales

We assume Rρ is of order unity, in which case equation (16) implies

g
βSz

kS

∼ g
αT z

kT

∼ νκ4. (18)
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The typical horizontal scale of the salt fingers is then d, where

d ∼ 2π

κ
∼ 2π

(

kT ν

gαT z

)1/4

(19)

For typical parameter values (α ∼ 10
−4

K
−1

, g ∼ 10m s
−2

, T z ∼ 0.01K m
−1

, ν ∼ 10
−6

m
2
s
−1

)

we find d ∼ 0.06m. The characteristic timescale and velocity for temperature diffusion are

then t ∼ d2/kT ∼ 10
4
s and v ∼ kT /d ∼ 10

−5
ms

−1
.

3 The role of salt fingers in the oceans

The necessary conditions for double-diffusive instability are common within the world’s

oceans (see Figure 4). In particular, 90% of the main Atlantic thermocline has density

Figure 4: Regions of the ocean potentially susceptible to (a) salt fingers; (b) diffusive

convection [35].

ratio Rρ < 2.3, and is therefore strongly unstable to salt fingering. Shadowgraph imaging

of the North Atlantic reveals finger-like structures with the centimetre horizontal scale

characteristic of salt finger instability (see Figure 5).

Both salt fingers and diffusive convection are readily observed in laboratory experiments

and numerical simulations. Importantly, salt fingers are found to be robust to interactions

with internal gravity waves at Richardson numbers > 0.5. At smaller Richardson numbers,

horizontal shear interrupts the vertical flux of heat and salt [27].

The main interest in salt fingers within the oceanographic community arises from their

implications for vertical mixing [9, 22]. However, they may also explain the temperature–

salinity patterns within the oceans (see Figure 6), and in particular the observed “ther-

mohaline staircases” [26, 21]. Finally, salt fingers have been used to explain the lateral
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Figure 5: Shadowgraph images of the North Atlantic at 300m depth. The observed filaments

are believed to be salt fingers, tilted by shear [9].

intrusions that are regularly observed in the ocean’s temperature and salinity profiles [25].

4 The layered and smooth-gradient regimes of double-diffusive

instability

Depending on the density ratio Rρ, there are two different regimes of salt fingering. For

larger values of Rρ, both T and S have approximately linear vertical gradients, with small

perturbations on the scale of the salt fingers. For smaller values of Rρ, thermohaline stair-

cases develop, with horizontal layers of approximately uniform temperature and salinity

separated by thin interfaces (see Figure 7). The vertical scale of these layers is typically

much larger than the scale of the fingers themselves, e.g. tens of metres in the ocean, and

the transition between these two regimes occurs at around Rρ = 1.9 [21].

Layers also form in numerical and laboratory experiments of oscillatory diffusive convec-

tion (see Figure 8). The layers merge until, perhaps, reaching a maximum size. Regarding

the interfaces between layers as approximately laminar and steady, the (upward) fluxes of

temperature and salt across an interface of thickness h are

FT ∼ kT

∆T

h
and FS ∼ kS

∆S

h
, (20)

where ∆T and ∆S represent the total variations of temperature and salinity across the

interface. The interface is stable provided that the total (upward) density flux, Fρ, is

negative, where Fρ = ρ0(βFS − αFT ). We must therefore have

β∆S

α∆T
<

kT

kS

. (21)

We would like to know what determines the vertical flux of T and S through the system

and, in particular, how this depends on the density ratio Rρ. We analyse the staircase and

smooth-gradient regimes separately, seeking flux laws in either case.
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Figure 6: Temperature and salinity profiles in the West Atlantic near Venezuela.

4.1 The interfacial flux laws

We suppose that the fluxes of temperature and salt are determined by conditions within the

interfaces, and independent of the height of the layers. By dimensional analysis, we conclude

that the dimensionless temperature flux
FT /(∆T )

4/3

(gαkT )1/3
can depend only on the dimensionless

quantities
α∆T

β∆S
,

ν

kT

and
kT

kS

. This leads to Turner’s 4/3 flux law [30]:

FT , FS ∝ (α∆T )
4/3. (22)

Laboratory experiments typically exhibit an exponent slightly less than 4/3, though it is

unclear to what extent these experiments can be extrapolated to describe the ocean [20,

10, 6, 7]. The hypothesis that temperature and salinity fluxes in the ocean are independent

of layer thickness has been tested by Wilson [34]; if the ocean’s thermohaline staircases

are in a steady state, then the fluxes, and hence the temperature variations, should be

the same across each interface. Figure 9 shows the variation of α∆T and β∆S with layer

thickness for a typical Ice-Tethered Profiler (ITP) observation in the Arctic. The observation

supports Turner’s key assumption that temperature and salt fluxes are not correlated with

the thickness of the layers.

4.2 The gradient flux laws

In the smooth-gradient regime, we are concerned with perturbations to a background state

that has linear profiles of T and S. After non-dimensionalising with respect to the scales
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Figure 7: The gradient and staircase regimes of salt fingers [7].

Figure 8: The formation of layers in diffusive convection [12]. The colour shows the depar-

ture of temperature from a uniform gradient.

obtained for the linear perturbations, we are left with the equations

0 = ∇ · u, (23)

1

Pr

[

∂u

∂t
+ u · ∇u

]

= −∇p + (T − S)k̂ + ∇2u, (24)

∂T

∂t
+ u · ∇T + w = ∇2T, (25)

∂S

∂t
+ u · ∇S +

w

Rρ

= τ∇2S, (26)

where τ = kS/kT is the Lewis number and Pr = ν/kT is the Prandtl number. From these

equations, we conclude that the dimensionless temperature and salt fluxes can depend only
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Figure 9: Temperature and salinity changes across interfaces between layers of thickness H.

on the dimensionless numbers Rρ, τ and Pr. In particular, we can write

−FT

kT T z

= Nu(Rρ, τ,Pr), (27)

where Nu is the Nusselt number. Regarding the diffusivities as fixed, we would like to

determine the variation of the Nusselt number with the density ratio Rρ. Stern [26] noted

that salt fingers can excite gravity waves and conjectured that this would lead to a collective

instability of the salt finger regime when the Stern number A =
βFS − αFT

ν(αT z − βSz)
becomes

order unity, in which case the nonlinear regime would be characterised by A ≈ 1. However,

the results of laboratory experiments suggest that the Stern number varies with Prandtl

number. Observations of heat–salt fingers typically yield A = O(1), Pr ≈ 7 and τ ≈ 0.01,
whereas sugar–salt fingers have A ∼ 0.001 − 0.1, Pr ≈ 1000 and τ ≈ 1/3 [23, 8, 2, 7].
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5 Asymptotic analysis of the fingering regime

5.1 Sugar–Salt fingers

Within the high-Prandtl number regime relevant to sugar–salt fingers we can justify ne-

glecting the inertial terms in equation (24). The problem is also simplified by the narrow

range of unstable density ratios (1 < Rρ < τ−1 ≈ 3). Several authors [31, 32, 13, 5, 14, 18]

have undertaken a weakly nonlinear analysis of the marginally unstable modes. The follow-

ing model is based on an expansion in which ε =

(

1

τRρ

− 1

)

is small [19]. The space and

time scales arise from the linear theory, and so we define x = ε−1/4x0 and t = ε−3/2t0. The

remaining quantities scale as

u ∼ x/t ∼ ε5/4

∇2T ∼ ∇2S ∼ w ∼ ε5/4

⇒ (T, S) ∼ ε3/4

∇p ∼ ∇2u

⇒ p ∼ ε3/2

After expanding the equations in powers of ε, the leading order balances are

T0 = S0 (28)

w0 = ∇2
0T0 = ∇2

0S0 (29)

and the second order balances are

∇0p0 = (T1 − S1)k̂ + ∇2
0u0 (30)

∂T0

∂t0
+ ∇0 · (u0T0) + w1 =

(
(

(
(

((

2∇0 · ∇1T0 + ∇2
0T1 (31)

1

τ

[

∂S0

∂t0
+ ∇0 · (u0S0)

]

+ w0 + w1 =
(

(
(

(
((

2∇0 · ∇1S0 + ∇2
0S1 (32)

(33)

After eliminating all second order terms, we are left with a closed system of asymptotic

equations:

(
1

τ
− 1)

[

∂T0

∂t0
+ ∇0 · (u0T0)

]

= (∇4
0 − 1)∇2

0T0 −
∂

∂z0
∇2

0p0 (34)

(

∂2

∂x2
0

+
∂2

∂y2
0

)

p0 = − ∂

∂z0
∇4

0T0 (35)

∇2
0u0 =

∂p0

∂x0
(36)

∇2
0v0 =

∂p0

∂y0
(37)

The power law scaling for the heat flux is therefore 〈wT 〉 ∼ w0T0 ∼ ε2
. Similarly, the thermal

variance and density flux are found to scale as
〈

T 2
〉

∼ ε3/2
and 〈wρ〉 ∼ ε5/2

respectively.
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In this weakly nonlinear framework, the saturation of the double-diffusive instability can

be explained in terms of triad interactions between the various normal modes. Numerical

simulations of the 2D equations roughly reproduce the asymptotic prediction; the scaling

laws within the numerical results are estimated to be

〈wT 〉 ∼ ε1.73
〈

T 2
〉

∼ ε1.43 〈wρ〉 ∼ ε2.71. (38)

5.2 Heat–Salt fingers

For Heat–salt fingers, the Prandtl number is ≈ 7, so we cannot neglect inertial effects.

Also, the density ratio in the oceans is typically close to unity, so weakly nonlinear models

are unlikely to be of much relevance. Instead, Radko [17] examined the strongly nonlinear

regime, with δ =

√

1 − R−1
ρ � 1. Two dimensional numerical simulations of this regime

show “modons”, small coherent vortex pairs that seem to be largely responsible for the

transport of heat and salt (see Figure 10). In the limit δ → 0, an explicit solution for a

Figure 10: Stongly nonlinear heat–salt fingers in 2D, and properties of a single “modon”.

circular, rectilinearly propagating modon can be found, in polar coordinates, by expanding

in powers of δ. The solutions have w ∼ δ−3/4
and T, S ∼ δ−1/4

, so that FT , FS ∼ 1/δ, as-

suming that the modons dominate transport. Again, 2D numerical simulations are roughly

in agreement with the asymptotic theory.

6 Thermohaline Staircases

One of the most intriguing aspects of double diffusive convection is its ability to transform

smooth vertical gradients into a stepped structure consisting of mixed layers separated by

thin stratified interfaces. These layers have great significance for small-scale mixing in the

oceans; tracer release experiments in the North Atlantic central thermocline suggest that

the presence of layers increases the effective diffusivity by salt fingers from 0.1cm
2
s
−1

to

1cm
2
s
−1

[22, 33, 27, 9]. Staircases are routinely observed in regions where the density ratio

is Rρ < 1.9 [21], but their origin is still poorly understood. Several questions can be raised:
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• What is the origin of thermohaline staircases?

• What are the conditions for staircase formation?

• What sets the vertical scale of the layers?

6.1 Explanation of layer formation

Several hypotheses have been put forward to explain the origin of thermohaline staircases,

e.g. [26, 11]. Here, we look at the suggestion by Radko [15] that layers formation arises

from an instability of the flux gradient laws. A secondary instability then allows layers to

merge, until the staircase achieves a stable vertical scale. This mechanism can be tested

against numerical simulations of staircase formation (see Figures 11 and 12).

Figure 11: Formation and evolution of layers in a numerical experiment. The temperature

field is shown at t = 50, t = 400 and t = 800.

Figure 12: Total x-averaged density for the same simulation as in Figure 11 at t = 100, 400,

500, 600, 700, 800.

154



6.2 Instability of a uniform gradient

After averaging over small-scale variations of T and S, we have (1D) conservsation equations

∂T

∂t
= − ∂

∂z
FT (39)

∂S

∂t
= − ∂

∂z
FS (40)

We suppose that the Nusselt number Nu and flux ratio γ depend only on the local density

ratio Rρ:

FT

−kT Tz

= Nu(Rρ) (41)

αFT

βFS

= γ(Rρ) (42)

We now consider small (linear) perturbations (T1, S1, R1) to a background state (T0, S0, R0)

with uniform gradient in T and S. The qualitative form of γ(Rρ) is indicated schematically

in Figure 13. In the weakly unstable regime as Rρ → 1/τ , the flux ratio must become

Figure 13: Dependence of the flux ratio γ on the density ratio R

unity. In the strongly unstable regime as Rρ → 1 we expect “eddy mixing” to render both

temperature and salt fluxes equal. Experiments at intermediate values of Rρ suggest that

γ may obtain a minimum < 1 for some Rρ = Rmin [20].

A normal mode analysis for perturbations of the form (T1, S1) ∝ sin(kz) exp(λt) yields

an eigenvalue equation for the growth rate λ:

λ2
+ λ

(

D2 + Nu(R0) − D1Nu(R0)R0 −
R0D2

γ(R0)

)

k2 − D1Nu
2
(R0)k

4/R0 = 0 (43)

where

D1 =
∂(1/γ)

∂R

∣

∣

∣

∣

Rρ=R0

R0 (44)
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and

D2 =
∂(Nu)

∂R

∣

∣

∣

∣

Rρ=R0

R0. (45)

So the basic uniform gradient is linearly unstable if D1 > 0, i.e. if γ decreases with increasing

Rρ. If the dependence of γ on Rρ is of the form shown in Figure 13 then instability is present

for any Rρ < Rmin. The physical mechanism responsible for this instability is sketched in

Figure 14. With Rρ and γ as shown, there is a convergence of heat flux in the lower

domain, amplifying the perturbation to the background linear temperature gradient. In the

nonlinear regime, this instability produces well-defined layers and interfaces.

Figure 14: The physical mechanism behind the γ-instability. A decrease in γ with R results

in the growth of the perturbation to a uniform T–S gradient.

To test whether variations of γ are essential for the formation of layers, we turn to

the results of numerical simulations. If we define ρf as the horizontal average of the full

(nonlinear) perturbation of density to the uniform background gradient, then we can write

∫

ρf

∂ρf

∂t
dz =

∫

ρf

∂

∂z
(FT − FS) dz (46)

⇒ d

dt

∫

ρ2
f

2
dz =

∫

ρf (1 − FS

FT

)
∂

∂z
FT dz +

∫

ρfFT

∂

∂z
(−FS

FT

) dz (47)

≡ INu + Iγ (48)

where the integrals INu and Iγ respectively quantify the effects of variation in heat flux

and flux ratio. The values of INu and Iγ were continuously recorded in the course of a

numerical simulation and the results are shown in Figure 15. We see that INu typically

makes a negative contribution to the density variance, so a positive contribution from Iγ is

essential for the formation of layers.

6.3 Merger of thin layers

Numerical simulations suggest that the layers formed by the γ-instability are not steady.

The second process in the creation of staircases is the merger of thin layers, increasing the

T and S variations across each interface. To explain the observed layer interaction, we
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Figure 15: Balance of terms in the density variance equation (48). (a) The time evolution

of Iγ and INu, indicated by solid and dashed lines. (b) Time integrals of Iγ and INu over

the period of layer formation.

now consider the stability of a series of salt finger interfaces. As illustrated by Figure 16,

we perturb the temperature profile, making alternate interfaces weaker and stronger. The

Figure 16: Temperature profiles of an infinite series of interfaces, taken from [16]. (a)

Unperturbed state with equal steps (b) Perturbed state in which the T–S jumps at the even

interfaces are decreased, and the jumps at odd interfaces are increased.

temperatures of the layers then evolve according to

H
∂

∂t
T12 = FT2 − FT1 (49)

H
∂

∂t
T23 = FT3 − FT2 (50)

We calculate the temperature fluxes across each interface using Turner’s 3/4 flux law:

FT = C(Rρ)(∆T )
4/3

(see §4.1). Assuming that (∆T1−∆T2) � ∆T and (∆S1−∆S2) � ∆S
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we perform a normal mode analysis, which results in an eigenvalue problem for the growth

rate λ:

λ2
+ λ(...) − ∂(γ−1

)

∂Rρ

∣

∣

∣

∣

Rρ=R0

64T
2/3
0z

3H4/3
C2

(R0)k
4

= 0 (51)

As before, there exists a positive root of this equation if
d(1/γ)

dRρ

> 0, so the equally stepped

state is unstable if γ is a decreasing function of Rρ.

6.4 Equilibration of thermohaline staircases

We have yet to explain the mechanism that halts the merging of the layers, and thus sets

the scale of the observed steady staircases. To do this, we augment the analysis of §6.3 with

convective dynamics, parameterised by the convective flux law NuL = CLRa
0.2
ρ [7]. This

situation is illustrated by Figure 17. We now find that layers become stable above a certain

Figure 17: Temperature profiles of an infinite series of interfaces [16], including convective

fluxes across each layer (c.f. Figure 16).

critical height, Hcr, given by

Hcr =

(

CL

C

)15/8

(

Rmin

R0
− 1

)9/4 (

Rmin

γmin

− 1

)1/4

(

Rmin

γmin
− Rmin

R0

)5/2

(

1

γmin
− 1

)3/8 (

kT Nu

gαT0z

)1/4

. (52)

Numerical simulations of the parameterised (1D) equations [16] demonstrate both the initial

instability of the uniform gradient and the secondary merging instability (see Figure 18).

The merging events halt when the layers become larger than the predicted critical height

Hcr.

7 Future challenges

Although progress has been made in quantifying the effect of double diffusion on tempera-

ture flux, we are still lacking a unified theory for the whole parameter space. Little is known
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Figure 18: Results of a 1D simulation including parameterisations for both salt fingers and

convection (taken from [16]).

regarding the dependence of the Nusselt number on the Lewis number or Prandtl number.

The large-scale consequences of double diffusion have also not been fully studied, such as its

role in controlling the T–S relation, diapycnal velocity and lateral mixing. Further analysis

is required to predict and explain the magnitude and dynamics of thermohaline intrusions.

Finally, there are unanswered questions regarding the modification of double-diffusive in-

stability in the presence of shear, waves and turbulence, and the nature of the salt finger

anisotropy.
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Abstract

We explore the possibility of flow instability through an elastic channel to explain seismic

observations of tremors in such varied environments as volcanoes and icebergs. We consider

the flow to be constricted in a narrow conduit and subjected to perturbations due to the

propagation of compressional waves in the larger conduit. The pressure wave in the fluid

are generated at the outlet of the channel by the oscillation of the walls. The growth of

these self-excited perturbations may be a source of nonlinear oscillations of the wall in the

channel. We explore the linear stability of various models driven by pressure gradients in the

channel. We find that no linear instability persists without inertial effects in the channel.

For finite yet small Reynolds number, we find growing oscillatory modes corresponding

to pressure variations in the fluid flowing through the channel. Without inertial effects,

the decaying oscillations in the channel have frequencies close to the natural notes of the

conduit, corresponding to sound waves bouncing back and forth in the conduit. With inertial

effects, however, the apparent frequencies of growing oscillatory modes are smaller than the

corresponding harmonic frequencies of the conduit. The smaller apparent frequency of

growing modes compared to the normal modes of a magma chamber (or reservoir, for water

systems) relaxes the constraints on the linear dimension of the inferred finite bodies that host

the tremor source. The proposed self-excited model may be a relevant candidate to explain

observations of tremors in various geologic contexts, including at deep and shallow depths

in volcanic plumbing systems and in complex water circulation in icebergs. Inertial effects

in fluid flow may be responsible for the observed frequency drift which is a characteristic of

tremors.

1 Introduction

Volcanoes and, as recently observed icebergs [15], are generating long period seismic activity

that can persist for several minutes up to a few months. The so-called harmonic tremors are

characterized by their low frequency content with a peaked spectra between 0.15 and 10 Hz.

Within volcanoes, where they are generally observed, tremors often occur in connection

with eruptions [2, 3] and their source originates from the shallow depth to about 50 km.
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Volcanic tremors have attracted considerable attention because of their potential to con-

strain physical processes occurring inside volcanoes plumbing system. Tremors have been

observed in numerous volcanoes including Mount Kilauea in Hawaii [16, 2], Mt. Etna [9]

and Mt. St. Helens [10]. For a recent review of the observational evidence, we refer to [14].

The driving mechanism behind tremor activity is believed to involve a complex interaction

between magmatic flow and surrounding bedrock in the volcano pipe system [1, 11, 3] as op-

posed to the brittle failure of rock that characterizes tectonic earthquakes. Tremors appear

to be primarily composed of P waves [2].

Early theoretical models of tremors considered the vibration of compressible fluid-filled

cracks in a layered elastic crust [7]. Aki et al. [1, 2] modeled the source of tremors to be the

vibration of a crack filled with magma driven by the excess magmatic pressure. Such a jerky

extension of the crack sets up a vibration, with a predominant period proportional to the

linear dimension of the crack, and the amplitude proportional to the excess pressure and to

the area of extension. Chouet [8] explored this assumption further with a model consisting

of three elements, namely a triggering mechanism -an explosive point-source overpressure-,

a resonator, and a radiator. The low frequency of tremors can be explained by normal

mode oscillation in a volcanic magma chamber. For instance, the extremely long-period

volcanic tremor, with periods up to 7s, observed at Mount Aso may be generated by a

fluid-filled crack of modest size, a magma body 0.5 m thick and 0.5 km long [11]. The

large linear dimension of required magma body to explain low frequency signals might be

found in certain volcanic contexts, but may not be found systematically at shallow depths.

Julian [13] showed that certain aspects of volcanic tremors such as periodic and chaotic

oscillations, correlation between tremor activity and surface eruption, changes in amplitude,

or frequency drifting can be explained by the flow of an incompressible viscous fluid through

a channel with movable elastic walls, noting further that the obtained nonlinear process finds

analogies with the excitation mechanism of musical wind instruments [4, 5]. Balmforth et

al. [6] explored the stability of an incompressible flow through elastic conduits buried in

a Hookean solid. They found that a critical Reynolds number is required for growing

instability, and that Instabilities analogous to roll waves occur in this system.

In this study, we look for a mechanism for self-excitation of oscillations. We start with

the model of Balmforth et al. [6] consisting of fluid flow through an elastically deformable

channel but we couple the flow to sound waves in a larger conduit. The compressional waves

in the conduit modulate the pressure at the outlet of the channel. We explore the possibility

of such system to generate growing instabilities. The advantage of the proposed mechanism

compared to previous models is that no outside perturbation, such as jerky over-pressure,

a nearby earthquake or sudden crack opening is required to start the oscillations. In a first

section, we develop the equations relevant to incompressible fluid flow in a narrow conduit

with deformable walls. We obtain equations similar to lubrication theory but with inertia

terms conserved. We consider the linear stability of simple models when inertial effects are

ignored. In a next section, we consider the linear stability of dynamic model and look for a

critical Reynolds number for onset of growing oscillations. In order to simplify an analytic

treatment of the stability analysis, we consider the case of an open-funnel geometry. In an

appendix, we derive the governing equations for the case of a compressible fluid.
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2 Model and Governing Equations

We consider the two-dimensional flow of a Newtonian fluid in conduit of width W being

constricted into a channel of height H and length L (see Fig. 1) such as H � L and

H � W . In the channel, where 0 < x < 1, the fluid velocity v = (u êx + v êy) satisfies the

Navier-Strokes equation

vt + v · ∇v = −1

ρ
∇p + ν∇2v (1)

subjected to the equation of mass conservation for incompressible material

∇ · v = 0 (2)

and where p is the fluid pressure, ρ is the fluid density and ν is the kinematic viscosity. We

consider the boundary conditions

u(x, h, t) = 0

v(x, 0, t) = uy(x, 0, t) = 0

h(0, t) = H

(3)

where h(x, t) is the unknown height of the channel walls. The second condition in eq. (3)

is due to the symmetry about the x-axis. In the larger conduit, L < x < L + l, we assume

that the flow is steady and only perturbed by a pressure wave, satisfying

ptt − c2∇2p = 0 (4)

where c is the sound speed in the fluid. The higher fluid velocity in the channel generates

pressure fluctuations at the exit of the constricted conduit. The pressure variations are

then propagated as elastic waves in the larger conduit. The wave bounces back to the

channel and perturbs the mean flow, generating potential instabilities. Let us define the

dimensionless parameters

x̃ = Lx, ỹ = H y,

ũ = U u, ṽ =
U H

L
v,

p̃ = ρ ν
U L

H2
p, t̃ =

L

U
t

c̃ = C l̃ = L l

ρ̃ = ρ0 ρ W̃ = H W

(5)

where the (soon-abandoned) tilde-decorated variables have physical dimensions. Using the

Reynolds number

R =
H2U

Lν
(6)

and the dimensionless relative velocity (sound wave speed compared to flow speed) for the

conduit

α =
C

U
(7)
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Figure 1: Geometry of the constricted flow. Fast fluid in the constricted channel generates a

pressure wave in the conduit. The pressure wave bounces back to the channel and perturbs

the mean flow, generating potential instability.

The dimensionless governing equations in the conduit are the wave equation

ptt − α2pxx = 0 (8)

and the equation of mass conservation

R ut + px = 0 (9)

Assuming H/L � 1, the two-dimensional Navier-Stokes equation in the channel simplifies

to

R (ut + uux + v uy) = −px + uyy

py = 0
(10)

so one writes p = p(x, t). The boundary conditions are now

u(x, h, t) = v(x, 0, t) = uy(x, 0, t) = 0

h(0, t) = 1
(11)

For steady-state condition, one simply have uyy − px = 0. Integrating twice and using

boundary conditions of eq. (11), one obtains

u(x, t) =
1

2
px(y

2 − h2
) (12)

The average across-slot velocity

ū(x, t) =
1

h

∫

h

0
u dy (13)

166



is given by integration of eq. (12)

ū(x, t) =
px

2h

∫

h

0
(y2 − h2

) dy

=
px

2h

[

1

3
y3 − h2y

]h

0

= −px

3
h2

(14)

The mean horizontal velocity is directly related to the pressure gradient and the wall height.

Integrating the divergence-free condition on the velocity field, one finds

∫

h

0
∇ · v =

∫

h

0
ux + vy dy =

∫

h

0
ux dy +

∫

h

0
vy dy

=

∫

h

0
ux dy + [v]

h

0

(15)

Defining v(h) = ht, one gets

ht +

∫

h

0
ux dy =

∂

∂x

∫

h

0
u dy − u(h)hx + ht = 0 (16)

but the no-shear boundary condition u(h) = 0 (eq. 11) leads to

ht +
∂

∂x

∫

h

0
u dy = 0 (17)

or, using the mean velocity formulation of eq. (13), one gets the expression for the conser-

vation of mass in terms of mean horizontal flow ū and height h of the channel walls

ht + (hū)
x

= 0 (18)

or in terms of pressure using eq. (14)

ht =
1

3

(

h3px

)

x
(19)

Assuming that a linear relationship exists between pressure and the wall height in the

channel, eq. (19) corresponds to a nonlinear diffusion equation, which also appears in shallow

water approximations [12].

2.1 Simple Models

For the sake of simplicity, we assume that the elastic wall height is uniform at equilibrium (no

flow assumption). We consider that the elastic walls exert a force on the fluid proportional

to the change of height (i.e., a mattress of springs approximation)

p = Γ(h − 1) (20)

where h = 1 is considered the dimensionless height of the wall at equilibrium (uniform

height approximation). Variable Γ is dimensionless is the corresponding physical quantity

is

Γ̃ = ρ ν
U L

H3
Γ (21)
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Using eqs. (20), (14) and (18), one obtains a nonlinear diffusion equation for the wall height

ht =
Γ

3

(

h3hx

)

x
(22)

We consider now the perturbation of the system by a sound wave propagating in the

larger cavity from x = 1 to x = l. We adopt a one-dimensional approximation for the wave

propagation. Using the dimensionless equation of state

p = α2R ρ , (23)

the conservation of mass

ρt + ux = 0 (24)

and the conservation of momentum

R ut + px = 0 , (25)

one obtains the pressure wave equation

ptt − α2pxx = 0 (26)

subjected to the boundary condition u(x = l, t) = 0 or, equivalently, to px(x = l, t) = 0.

2.1.1 Dispersion Equation

We write the perturbation as

h = 1 + h′eλt+mx, 0 ≤ x ≤ 1

p = eλtP (x), 1 ≤ x ≤ l + 1

(27)

where m and λ are complex and h′ � 1. We further require that the pressure is continuous

at the exit of the channel. Plugging eq. (27) into the nonlinear diffusion equation of eq. (22),

and one obtains after linearization

λ =
1

3
Γm2

(28)

The wall height can be written

h = 1 + h′
1 e+x

√
3λ/Γ+λt

+ h′
2 e−x

√
3λ/Γ+λt

(29)

but boundary condition at the origin x = 0 (see eq. (11)) gives h′
1 = −h′

2 so we write the

wall height perturbation as follows

h = 1 + 2h′ eλt
sinh

√

3λ

Γ
x (30)

In the larger cavity, the pressure perturbation must satisfy the wave equation. Using

eqs. (26) and (27), and the separation of variables p = eλtP (x), one gets

λ2P = α2Pxx (31)
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solution for pressure perturbation is

p(x, t) = eλt

(

a cosh
λ

α
(l+1 − x) + b sinh

λ

α
(l+1 − x)

)

(32)

with a and b real coefficient. The boundary condition px(x = l, t) = 0 demands b = 0.

Writing the continuity of pressure at x = 1, one obtains

2Γh′
sinh

√

3λ

Γ
= a cosh

λl

α
(33)

Finally, we require the conservation of fluid flux F between the two domains. The flux in

the channel is given by

Ḟ−
= (ū h)t = −

(px

3
h3

)

t

= −
(

Γ

3
h3hx

)

t

= −λ

√

λΓ

3
2h′ eλt

cosh

√

3λ

Γ
x + O(h′2

)

(34)

where the last step is obtained by linearization of walls height perturbation. In the conduit,

the rate of flux is

Ḟ+
= W ut = −W

R
px

=
λ

α

W

R
eλta sinh

λ

α
(l+1 − x)

(35)

Equating (34) and (35), one obtains the flux continuity condition

√

λΓ

3
2h′

cosh

√

3λ

Γ
+

W

αR
a sinh

λ l

α
= 0 (36)

Equation (36) together with eq. (33) leads to the dispersion equation

√

λ

3Γ
+

W

αR
tanh

λ l

α
tanh

√

3λ

Γ
= 0 (37)

We can see by simple inspection that no real positive part of λ can satisfy eq. (37). The

simple formulation of the problem leads to a stable solution.

2.1.2 A Stability Theorem

Considering the conservation of momentum and conservation of mass equations, one can

write










u(ut +
1

R
px) = 0

1

Rα2
p(pt + ux) = 0

(38)

After integrating eq. (38), one obtains

1

2

d

dt

∫

l+1

1
R u2

+ ρ p dx = − [up]
l+1
1

=
1

ρ1
(up)x=1

(39)
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Conservation of flux at x = 1 (F+
= Wu and F−

= −h3px/3) and pressure eq. (20)

provides us with

u = − Γ

3W
h3hx (40)

or

up = − Γ
2

3W
h3hx(h − 1) (41)

As conduit wall height obeys the nonlinear diffusion equation, one gets

∫ 1

0
ht(h − 1) dx =

Γ

3

∫ 1

0
(h3hx)x(h − 1) dx (42)

or

1

2

d

dt

∫ 1

0
(h − 1)

2 dx =
Γ

3

[

h3hx(h − 1)
]1

0
− Γ

3

∫ 1

0
h2

xh3 dx (43)

Collecting terms, and using ρ1 = 1, one obtains

1

2

d

dt

{

Γ

W

∫ 1

0
(h − 1)

2 dx+

∫

l+1

1
R u2

+ ρ p dx

}

= − 2Γ
2

15W

∫ 1

0
(h5/2

)
2
x dx

(44)

As the right-hand-size term is negative definite, the rate of change of the total energy is

negative. There is only dissipation in the system and there are no growing terms possible

after perturbation.

2.2 Advection From a Pressure Gradient

We abandon the assumptions made in section 2.1 and consider in this section that fluid flow

is driven by a pressure gradient γ in the channel. (We note that this model corresponds

to the case of an open-funnel geometry, as developed in a later section, with the limit of

neglected inertia terms.) The pressure is therefore given by

p(x, t) = Γ(h − 1) + γ x (45)

where h = 1 is the wall height at equilibrium. The equation of continuity in the channel

now reads

ht =
Γ

3

(

h3
(

hx +
γ

Γ

))

x

(46)

the pressure gradient introducing an effective advection term. After linearization of the

perturbation solution, one obtains

λ =
Γ

3
m

(

m +
3γ

Γ

)

(47)

We write m1 and m2 the two solutions

m1 = −3γ −
√

9γ2 + 12λΓ

2Γ

m2 = −3γ +

√

9γ2 + 12λΓ

2Γ

(48)
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and the walls height in the channel can be written

h = 1 + 2h′
exp

(

−3γ

2Γ
x + λt

)

sinh

√

9γ2 + 12λΓ

2Γ
x (49)

In the conduit, we write the pressure perturbation such as

p(x, t) = γ + eλtP (x), 1 ≤ x ≤ l + 1 (50)

Solving the wave equation subjected to Neumann boundary condition at x = l leads to the

pressure field

p(x, t) = γ + eλta cosh
λ

α
(l+1 − x), 1 ≤ x ≤ l + 1 (51)

Writing the equation of continuity at x = 1, one gets

2 Γh′ e−3γ/2Γ
sinh

√

9γ2 + 12λΓ

2Γ
= a cosh

λl

α
(52)

We require the conservation of fluid flux F between the two domains. The flux rate in

the channel is given by

Ḟ−
= (ū h)t = −

(px

3
h3

)

t

= −Γ

3

(

h3
(

hx +
γ

Γ

))

t

(53)

To find the flux rate about x = 1, we note first that

px = Γhx + γ

hx = 2h′eλt−3γ/2Γ

(

√

9γ2 + 12λΓ

2Γ
cosh

√

9γ2 + 12λΓ

2Γ

− 3γ

2Γ
sinh

√

9γ2 + 12λΓ

2Γ

)

h3
= 1 + 6h′eλt−3γ/2Γ

sinh

√

9γ2 + 12λΓ

2Γ
+ O(h′2

)

(54)

after some algebra, one obtains

Ḟ−
= −2Γ

3
λh′

[

√

9γ2 + 12λΓ

2Γ
cosh

√

9γ2 + 12λΓ

2Γ

+
3γ

2Γ
sinh

√

9γ2 + 12λΓ

2Γ

]

eλt−3γ/2Γ

(55)

The flux rate in the conduit does not differ from eq. (35). Equating (35) and (55), one

obtains the dispersion relation

(

W

αR
tanh

λl

α
+

γ

2Γ

)

tanh

√

9γ2 + 12λΓ

2Γ

+

√

9γ2 + 12λΓ

6Γ
= 0

(56)
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The leftmost quantity in parenthesis must be negative in order to a real positive solution

for λ to exist. Also notice that eq. (56) simplifies to eq. (37) in the case γ = 0. Fig. 2 shows

the norm of dispersion relation of eq. (56) on the complex plane with W/ρ1c = 1/2, Γ = 1

and γ = −2. The black circles in Fig. 2 correspond to the natural pulsation of the sound

waves in the conduit. The zeroes of the dispersion equation -corresponding to blue circles

in the contour plot- are close to the frequency corresponding to waves bouncing back and

forth in the conduit. The associated eigenvalues are located on the real negative axis and

correspond to decaying oscillation modes.

2.2.1 Stability Condition

Integrating the governing equations in the two domains and applying conservation of flux

at x = 1, one finds

d

dt

{

Γ

W

1

2

∫ 1

0
(h − H +

γ

Γ
)
2 dx +

1

2

∫

l+1

1
R u2

+ ρ p dx

}

= − Γ

W

∫ 1

0
h3hx(hx +

γ

Γ
) dx

= − Γ

W

(

2

5

∫ 1

0
(h5/2

)
2
x dx +

γ

4Γ

[

h4
]1

0

)

(57)

For negative pressure gradient (γ < 0), any perturbation remains stable for h(1) < h(0).

3 Fluid Flow and Sound-Wave Resonator

We now adopt a more realistic formulation of the problem where the constrained pressure

gradient in the channel driving the fluid flow is compatible with the elastic deformation

of the channel walls. At static equilibrium, the channel closes itself to accommodate the

pressure difference between inlet and outlet. By writing the relation between pressure and

wall height in the channel as follows

p(x, t) = Γh (58)

and using eqs. (19) and (58), the wall height satisfies the nonlinear diffusion equation

ht =
Γ

3

(

h3hx

)

x
(59)

subjected to the boundary conditions p(0, t) = p0 and p(1, t) = p1 ≡ p0 + γ at equilibrium,

where γ is an effective pressure gradient. The walls height solving eqs. (19) and (58) at

equilibrium (ht = 0) with above-mentioned boundary conditions is

h(x) ≡ H(x) =
1

Γ

((

p4
1 − p4

0

)

x + p4
0

)1/4
(60)

where we defined H(x) to refer to the equilibrium, non-perturbed, solution. We now perform

linearization about equilibrium as follows

h(x, t) = H(x) + eλth′
(x), 0 ≤ x ≤ 1

p(x, t) = p1 + eλtP (x), 1 ≤ x ≤ l + 1

(61)
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Figure 2: Contour plot on the complex plane of the dispersion relation of eq. (56) with

W/ρ1c = 1/2, Γ = 1 and γ = −2. Black circles correspond to the natural notes of the

conduit. There are no growing oscillatory modes.
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where h′
(x) is small and unknown. We first note the few following results

h3
= H3

+ 3H2eλth′
+ O(h′2

)

h3hx = H3Hx +
(

H3h′
x + 3HxH2h′

)

eλt
+ O(h′2

)

(h3hx)x =
(

H3 h′
xx + 6HxH2 h′

x − 3H2
xH h′

)

eλth′
+ O(h′2

)

(62)

where we used the fact that H satisfies, by definition,

(H3Hx)x = 3H2
xH2

+ H3Hxx = 0 (63)

Expanding the perturbed solution in the nonlinear diffusion equation one obtains an ordi-

nary differential for h′
(x),

3

Γ
λh′

= H3 h′
xx + 6HxH

2 h′
x − 3H2

xH h′
(64)

or simply stated,

L[h′
] = λh′

(65)

where the relevant boundary conditions for the eigenvalue problem are h′
(0, t) = 0 and

continuity of pressure and mass flux at x = 1. The flux rate at x = 1
+
, in the larger cavity

is

Ḟ+
= utW = − 1

R
pxW = aλ

W

αR
eλt

sinh
λl

c
(66)

In the constriction, at x = 1
−
, the flux rate is given by

Ḟ−
= (ūh)t = −1

3

(

h3px

)

t
= −Γ

3

(

h3hx

)

t

= −Γ

3
λ eλt

[

H3h′
x + 3HxH2h′

]

+ O(h′2
)

(67)

Continuity of flux at x = 1 gives at the first order

a
W

αR
sinh

λl

α
+

Γ

3

(

H3h′
x + 3HxH2h′

)

= 0 (68)

We insist on constraining continuity of pressure at x = 1. We have

p(1
+, t) = p1 + a eλt

cosh
λl

c
(69)

and

p(1
−, t) = Γh = p1 + Γ eλth′

(70)

so continuity of pressure at x = 1 gives us

Γh′
= a cosh

λl

c
(71)

Combining the two constraints at x = 1, one obtains

h′ W

αR
tanh

λl

α
+

1

3

(

H3h′
x + 3HxH2h′

)

= 0 (72)

Numerical inspection of solutions of the dispersion equation of eq. (64) subjected to eq. (72)

at x = 1 reveals only solutions with negative real parts, such as the one shown in Fig. 3.
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Figure 3: An eigenfunction of the dispersion function of eq. (64). Solutions correspond to

decaying modes only, with negative real part eigenvalues.

3.1 Inertia Terms

We now consider the case where inertia terms in Navier-Stokes equation are small but not

negligible. The governing equations adequate for lubrication theory become

R (ut + uux + v uy) = −px + uyy

py = 0
(73)

subjected to the boundary conditions u(x, h, t) = uy(x, 0, t) = 0. At leading order, when

derivatives in the x-direction and acceleration can be neglected, the solution can be written

u(y, t) =
3

2
U

h2 − y2

h2
(74)

where h = h(x, t) and by definition,

U =
1

h

∫

h

0
u dy . (75)

We assume that small inertia terms only perturb the above steady solution so that solution

of eq. (73) can be of the form

u(x, y, t) =
3

2
U(x, t)

h2 − y2

h2
(76)

However, the eq. (76) does not provide an accurate way to evaluate uyy so, when integrating

eq. (73), we look for a certain projection f that allows us to avoid terms of the form uyy

∫

h

0
f(y)uyy dy = [f(y)uy]

h

0 −
∫

h

0
f ′

(y)uy dy

= [f(y)uy]
h

0 −
[

f ′
(y)u

]h

0
+

∫

h

0
f ′′

(y)u dy

(77)
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Setting f ′′
(y) = cste and f(h) = f ′

(0) = 0, one gets

f(x, y, t) = 1 − y2/h2

∫

h

0
fuyy dy = − 2

h2

∫

h

0
u dy = −2U/h

(78)

Notice that the projection kernel f(y) is of the form of the steady solution of eq. (74).

Projecting the lubrication approximation of the Navier-Stokes equations on f(x, y, t), we

look for a solution for h(x, t) and U(x, t). We first notice, using ux + vy = 0 and v(0) = 0

that one can write

v(x, y, t) = −3

2
Uxy

(

1 − y2

3h2

)

− Uhx

y3

h3
(79)

The projected terms are

∫

h

0
fut dy =

4

5
Uth +

2

5
htU

∫

h

0
fuxx dy =

2

5

[

2Uxxh + 2Uxhx + U(hxx − 3h2
x/h)

]

∫

h

0
fuyy dy = −2U/h

∫

h

0
fuux dy =

36

35
UxUh +

12

35
U2hx

∫

h

0
fvuy dy =

6

35
U [3Uxh + Uhx]

∫

h

0
−f

px

ρ
dy = −2

3
h

px

ρ

(80)

Defining the flux,

q =

∫

h

0
u dy = hU (81)

the conservation of mass can be written

ht + qx = 0 (82)

and collecting terms, one gets the coupled equations











R

(

qt +
17

7

qxq

h
− 9

7

q2hx

h2

)

= −5

6
pxh − 5q

2h2

ht + qx = 0

(83)

Using the stress-strain relation

p(x, t) = Γh(x, t) (84)

one obtains the governing coupled equations











R

(

qth
2 − 17

7
htqh − 9

7
q2hx

)

= −5

6
Γhxh3 − 5q

2

ht + qx = 0

(85)
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3.1.1 Steady-State Solution

We look for a steady solution for the wall height H(x) and flux Q. Dropping time derivatives

in eq. (85) and using the fact that at steady state Ht = Qx = 0 and that Q is constant, one

has

Hx

(

5

6
ΓH3 − 9

7
R Q2

)

+
5

2
Q = 0 (86)

Integrating, we have

1

12
Γ(H4 − H4

0 ) − 18

35
R Q2

(H − H0) + Qx = 0 (87)

If R � 1, and the flow is constrained by the pressure p0 at x = 0 and p1 at x = 1, one has

Q =
p4
0 − p4

1

12Γ3

H =
1

Γ

(

(p4
1 − p4

0)x + p4
0

)1/4
(88)

which correspond to solution of eq. (60), obtained for low Reynolds number. For finite

Reynolds number, the steady-state flux is

Q =
35 −

√

1225 + 210Γ(H4
1 − H4

0 )(H1 − H0)

36R (H1 − H0)
(89)

3.1.2 Linear Stability Analysis

We consider perturbations of the wall height, flux and pressure of the form

h(x, t) = H(x) + eλth′
(x)

q = Q + eλtq′(x)

p = p1 + a eλt
cosh

λ

c
(l + 1 − x)

(90)

where perturbations h′
(x) and q′(x) are supposed small. Inserting eq. (90) into eq. (85) and

neglecting powers of h′
and q′, one obtains

R

(

λq′H2 − 17

7
λh′HQ − 9

7
(h′

xQ2
+ 2q′Hx)

)

= −5

6
Γ

(

H3h′
x + 3H2Hxh′

)

− 5

2
q′

(91)

The relevant boundary conditions are h′
(0, t) = q′(0, t) = 0, continuity of pressure and flux

at x = 1. The continuity of pressure gives

Γh′
= a cosh

λl

c
(92)

Flux perturbation on the 1
+

side is

Ḟ+
= W ut = −W

ρ1
px

= aλ
W

ρ1c
eλt

sinh
λl

c

(93)
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On the other side, the flux perturbation is simply

Ḟ−
= λ eλtq′ (94)

Equating the fluxes on both sides, we get the boundary condition

q′ − h′ ΓW

ρ1c
tanh

λl

c
= 0 (95)

We explore the solutions of the corresponding eigenvalue problem numerically. We find a set

a growing oscillatory modes associated with complex eigenvalues with positive real parts.

The corresponding eigenfunctions are shown in Fig. 4.

3.2 Open-Funnel Walls

We consider now the case where the wall in the channel opens in the absence of pressure.

Before fluids flow in the channel, the wall height has the equilibrium value H e
(x) (see

Fig. 5). And the stress-strain relation becomes

p(x, t) = Γ (h(x, t) − He
(x)) (96)

Using eq. (83) at equilibrium, where h = H(x) and q = Q, we have







R
9

7
Q2Hx =

5

6
Γ (Hx − He

x) H3
+

5

2
Q

Ht = Qx = 0

(97)

For a general form of He
(x), the latter has no trivial solutions. We consider a special case

where He
x is such that Hx(x) = 0. Under this assumption, one has H = Q = 1 and

He

x =
3

Γ
(98)

Without inertia (R = 0), the governing equation (83) becomes

ht = −Γ

3

(

h3
(hx − He

x)
)

x
(99)

which is similar to the formulation of section 2.2 if we write

γ = −ΓHe

x (100)

The physical grounds of the somewhat artificial pressure γ introduced in section 2.2 are

the presence of opening walls in the conduit in the absence of pressure. Inspection of the

dispersion relation in this case did not reveal real-positive eigenvalues so we proceed with

inertia terms.
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Figure 4: The first three growing eigenmodes of the system with associated eigenvalues. Top

panel show the height eigenfunction h′
(x;λ) and bottom panel shows the flux eigenfunctions

q′(x;λ) in the channel.
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Figure 5: In the absence of fluid flow, the walls have the height H e
(x). The latter is chosen

such as the height of the walls is uniform when at equilibrium with steady fluid flow.

3.2.1 Stability Analysis

We write the perturbation as follows

h(x, t) = 1 + h′
(x) eλt

q(x, t) = 1 + q′(x) eλt

p(x, t) = Γ (1 − He
(1)) + p′ eλt

(101)

Introducing the latter decomposition into eq. (83), one finds the system of coupled equations











R

(

λq′ +
17

7
q′x − 9

7
h′

x

)

= −5

6
Γh′

x − 5

2
q′ +

15

2
h′

λh′
+ q′x = 0

(102)

This result is similar to previous dispersion relations except for the newly appearing forcing

term in h′
on the right-hand side, so we expect to find emergent solutions, if any, for

high enough Reynolds number R. The pressure continuity condition provides us with the

condition

Γh′
= a cosh

λl

α
(103)

The continuity of flux at x = 1 leads to the second constraint

q′ = a
W

αR
sinh

λl

α
(104)

Combining the two, we obtain the boundary condition at x = 1

λq′ + Γ q′x
W

αR
tanh

λl

α
= 0 (105)
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other relevant conditions are simply h′
(0) = q′x(0) = 0. The flux perturbation obeys the

second-order homogeneous ordinary differential equation

(

9

7
R − 5

6
Γ

)

q′xx +

(

17

7
λR +

15

2

)

q′x

+ λ

(

λR +
5

2

)

q′ = 0

(106)

The determinant of the characteristic polynomial is

∆ =

(

17

7
λR +

15

2

)2

− 4λ

(

9

7
R − 5

6
Γ

)(

λR +
5

2

)

(107)

Using the boundary condition q′x(0) = 0, the solution flux perturbation can be written

q′(x) = eA x
(A sinh(B x) − B cosh(B x)) (108)

where A and B are

A = −1

2

(

17

7
λR +

15

2

)/(

9

7
R − 5

6
Γ

)

B =

√
∆

/(

18

7
R − 10

6
Γ

)

C =
(

A2 − B2
) /

λ =

(

λR +
5

2

)/(

9

7
R − 5

6
Γ

)

(109)

Using boundary condition of eq. (105) at x = 1, one obtains the dispersion relation

(

A +
ΓW

αR
C tanh

λl

α

)

tanhB − B = 0 (110)

Fig. 6 shows a view of the dispersion equation as a function of λ on the complex plane for

the parameters Γ = 1, R = 1, l/α = 1 and W/α = 2.

4 Conclusions

We investigated the potential of flow of an incompressible fluid in a channel with elastic

walls coupled to a sound wave resonator to generate self-generated growing instabilities. We

derived a simplified version of the Navier-Stokes equations valid for the small aspect ratio

of the thin channel. We obtain equations similar to the lubrication theory, but with the

inertia terms conserved. We found that simple models without flow (zero Reynolds number)

did not generate instabilities. The frequency of corresponding decaying oscillation modes

are close to the normal modes of sound waves in the conduit. We found linear instability

corresponding to growing oscillatory modes for finite yet small Reynolds number. The small

Reynolds number required for flow instability favors the occurrence of tremors in various

environments, as constraints on minimum flow speed or fluid viscosity (quantities linearly

related to the Reynolds number) are relaxed. The growing modes corresponding to low
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Figure 6: Map of the dispersion function as a function of eigenvalue λ on the complex plane.

The zeroes indicate the position of the eigenvalues. The arrow indicate the migration of

the zeroes from their position at zero Reynolds number, close to the natural notes of the

conduit.
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Reynolds number are associated to long time scales, giving possibly rise to long period

events. The frequency of growing oscillations are smaller than the normal modes of the

conduit. The smaller period of growing oscillations compare to the natural harmonics of

sound wave in the conduit relaxes constraints on the linear inferred dimension of the body

hosting the tremor source (water reservoir or magma chamber) and may explain the source

of frequency drift observed in tremors. The proposed mechanism consisting of pressure

perturbation of the fluid flow by pressure (sound) waves may be responsible for the sustained

activity of volcanic tremors. The role of compressibility might affect the apparent frequency

of growing modes in the channel. Implications of flow of a compressible fluid need to be

investigated further as the presence of compressible fluids are relevant to the occurrence of

tremors at shallow depth in volcanic plumbing systems. Our suggested mechanism may be

relevant to long-period or tremor events in both magmatic and aquifer environment.

Appendix - Compressible Fluid Flow

Governing Equations

Under the assumptions adequate for lubrication theory, the Navier-Stokes equation for

compressible flow reduces to

R(ρ ut + ρ uux + ρ vuy) = −px + η uyy

py = ρy = 0
(111)

where η is the kinematic viscosity and ρ is the fluid density. The momentum equation is

accompanied by the mass conservation equation

ρt + ∇ · (ρ v) = 0 (112)

where the density ρ is related to the pressure by the (non-dimensionalized) equation of state

p = ργ
(113)

Approximations of the Navier-Stokes equations in section 2 are still valid for compressible

flow and we have py = ρy = 0. Defining the volume flux

q =

∫

h

0
u dy (114)

the conservation of mass can be written

(ρh)t + (ρq)x = 0 (115)

At small Reynolds number, one has

q = −1

3
px h3

(116)

and using the relationship between wall height and pressure p = Γh, one obtains the non-

linear diffusion equation
(

h
γ+1

γ

)

t

=
Γ

3

(

hxh
3γ+1

γ

)

x

(117)
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At equilibrium, when ht = 0, one has

p =
[(

ρ1 p4
1 − ρ0 p4

0

)

x + ρ0 p4
0

]

γ

4γ+1 (118)

where H0, H1 and p0, p1 are the wall height and pressure respectively, at x = 0 and x = 1,

respectively.

Small Reynolds Number

We evaluate the linear stability of the problem sketched in Fig. 1, with compressible flow

and small Reynolds number. We write the perturbation as

h = H(x) + eλth′
(x), 0 ≤ x ≤ 1

p = p1 + eλtp′(x), 1 ≤ x ≤ l + 1

(119)

subjected to the boundary conditions h′
(0) = px(l + 1) = 0 and conservation of pressure

and flux at x = 1. The same fluid flow in the larger channel, and there the pressure p varies

about the level p1 at the exit of the contrition, so we have

p = p1 + c2ρ (120)

where

c2 ≡ γp
γ−1

γ

1 (121)

In the larger channel, the pressure obeys the wave equation subjected to px(l + 1) = 0 and

the solution is

p(x, t) = p1 + eλt a cosh
λ

c
(l+1 − x) (122)

Expanding the decomposition of eq. (119) into the nonlinear diffusion equation of eq. (117)

and keeping the linear terms in h′
, one finds

3

Γ
λ

γ + 1

γ
h′

=
3γ + 1

γ

[

2HxH2h′
x − H2

xH h′
]

+ H3h′
xx (123)

Notice that the latter reduces to eq. (64) for the limiting case γ → ∞, i.e., incompressible

flow. The conservation of flux at x = 1 is [ρ q]1
+

1− = 0. The mass flux rates are

Ḟ+
= (ρ1Wut) = aλ

W

c
eλt

sinh
λl

c
(124)

and

Ḟ−
= (ρ q)

t
= −1

3

[

ρpxh3
]

t
= −1

3
Γ

γ+1

γ

[

hxh
3γ+1

γ

]

t

= −λ
1

3
Γ

γ+1

γ

[

3γ + 1

γ
HxH

2γ+1

γ h′
+ H

3γ+1

γ h′
x

]

eλt

(125)

The conservation of pressure at x = 1 gives

Γh′
= a cosh

λl

c
(126)
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Using ρ1 = Γ
1

γ H
1

γ at x = 1, we obtain the boundary condition

h′ W

ρ1c
tanh

λl

c
+

1

3

[

3γ + 1

γ
HxH

2h′
+ H3h′

x

]

= 0 (127)

Examination of numerical solutions of the eigenvalue problem does not reveal any eigenvalue

with positive real parts.

Finite Inertial Terms

We consider the case where fluid acceleration is non-negligible. In the context of lubrication

theory, the governing equations are

R(ut + uux + vuy) = −px + uyy

py = ρy = −0

ρt + (ρu)x + (ρv)y = 0

(128)

We write the solution u as follows

u(x, y, t) =
3

2
U(x, t)

(

1 − y2

h2

)

(129)

Integration of the conservation-of-mass equation gives

ρ v = −ρty − 3

2
(ρU)

x
y

(

1 − y2

3h2

)

− ρUhx

y3

h3
(130)

We now project the governing equation on f = 1 − y2/h2
, in particular

∫

h

0
fρ v uy dy =

6

35
U

[

3 ρUxh + ρUhx + 3ρxUh +
7

3
hρt

]

= − 6

35

q

h

[

3(ρh)t + 2ρq
hx

h
− 7

3
hρt

] (131)

where the last line was obtained using conservation of mass. Other terms of the governing

equation are otherwise identical to those in eq. (80). After some algebra, we obtain the

system of coupled equations











R

(

(ρ q)
t
+

17

7

q

h
(ρ q)

x
− 9

7

q2

h2
(ρ h)

x

)

= −5

6
pxh − 5

2

q

h2

(ρ h)
t
+ (ρ q)

x
= 0

(132)

Using the dimension-less equation of state p = ργ
and the continuity condition p = Γh, we

obtain the set of coupled equations



























R

(

(

h
1

γ q
)

t

h2
+

17

7
qh

(

h
1

γ q
)

x

− 9

7
q2

(

h
γ+1

γ

)

x

)

= − 5

6
Γhxh3 − 5

2
q

(

h
γ+1

γ

)

t

+

(

h
1

γ q
)

x

= 0

(133)

The set of equations reduces to eq. (83) in the limit γ → ∞.
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Steady-State Solution

The expression for the wall height at steady state H(x) can be obtained by noticing that
(

H
1

γ q
)

x

= 0. We obtain the following

1

12
Γ

(

H4 − H4
0

)

− 18

35
Q2R

(

H
γ+1

γ − H
γ+1

γ

0

)

− Qx = 0 (134)

The flux Q compatible with boundary conditions on H at x = 0 and x = 1 is given by

Q =

−35 +

(

1225 + 210RΓ
(

H4
1 − H4

0

)

(

H
γ+1

γ

1 − H
γ+1

γ

0

))1/2

36R

(

H
γ+1

γ

1 − H
γ+1

γ

0

) (135)
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First contact in a viscous fluid

Chris Cawthorn

January 12, 2009

1 Introduction

Lubrication theory has been successfully applied to many problems in fluid dynamics. For

cases where two objects slide past each other, with a thin film of fluid filling the intervening

gap, it performs admirably, and its application has formed the basis for many important

advancements in engineering. Furthermore, it appears in most undergraduate courses in

fluid mechanics (see [1], for example). However, when used to model the coming together

of two solid objects separated by a viscous fluid, the predictions of lubrication theory are

decidedly unphysical.

Consider the simple example of a rigid cylinder settling under gravity towards a rigid,

horizontal plane, as illustrated by Figure 1. The thickness of the gap between the cylinder

and the plane is denoted by h(x), where x is a horizontal coordinate measured relative

to an origin situated at the intersection of the horizontal plane and the axis of symmetry.

Under the approximation key to lubrication theory (the so-called ‘lubrication approxima-

tion’, which is valid provided that εRe � 1), we ignore horizontal variations relative to the

much faster vertical variations when calculating the horizontal velocity, and assume that

the pressure only varies in the horizontal coordinate x. We find that the horizontal velocity

has a parabolic profile

u(x, z) = − 1

2µ

∂p

∂x
z[h(x) − z],

which gives rise to a horizontal volume flux

Q(x) = − h3

12µ

∂p

∂x
.

Balancing this against the volume that must be squeezed out due to the settling of the

cylinder, we find the so-called Reynolds equation for the pressure gradient

∂

∂x

[

− h3

12µ

∂p

∂x
+ xRε̇

]

= 0 (1)

The dominant contribution to the upward resistive force on the cylinder comes from the

pressure force

Fz =

∫

pdx ∝ µRε̇

ε3/2
.
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Figure 1: A simple application of lubrication theory. A rigid cylinder settles toward a rigid,

horizontal plane under gravity.

The integration of the Reynolds equation (1) is straightforward, and can be well approxi-

mated analytically by extending the range of integration to −∞ < x <∞, and approximat-

ing the gap thickness h(x) by a parabola. The important result of this analysis is the scaling

of the vertical force. Balancing this resistive force against the cylinder’s weight (neglecting

inertia, consistent with the lubrication approximation), we find that

Mg ∝ ε̇ε3/2
(2)

⇒ ε(t) ∝ (t− tc)
−2. (3)

So, according to lubrication theory, the cylinder (or indeed any object with a locally

parabolic shape) takes an infinite length of time to make contact with the plate
1
. Such

a result is clearly unphysical. It is the purpose of this report to address some possibilities

for resolving this inconsistency.

Many physical effects could be introduced in order to attempt to capture finite-time

contact. Perhaps small asperities on the solid surfaces will provide sharper, more stream-

lined points of contact between the two objects. Perhaps elasticity in the solid objects or

compressibility in the fluid will provide a mechanism by which the large lubrication pres-

sures can be mitigated. If these continuum scale effects are insufficient, then perhaps an

explanation in terms of long range (e.g. Van der Waals) forces can be sought. In this report,

we investigate the effects of roughness, elasticity and compressibility on settling problems,

and see if contact in finite time can be achieved.

2 Roughness

Real surfaces are seldom perfectly smooth, as shown by Figure 2. When considering the

effect of surface roughness on settling problems, we should first point out that the lubrication

approximation itself is not the sole cause of the unphysical infinite contact time. A theorem

of Gérard-Varet & Hillairet [2] states that, for a sufficiently smooth object settling toward

1For particularly flat shapes with zero local curvature, a similar analysis can be performed – see [5]
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Figure 2: Atomic force micrograph of a roughness on a machined surface. Note rough

asperities on the scale of microns. Picture copied from [3].

Figure 3: Diagram and notation for falling wedge

a sufficiently smooth plane under a constant body force, even the full, two-dimensional,

Navier-Stokes equations require that contact will not occur in finite time. In order to resolve

the problem without adding new physical processes (such as elasticity or compressibility,

as discussed in §§3-4), we much insist that the settling objects contain sharp regions. By

sharp, we mean regions where the first derivative of the surface function is discontinuous.

In this section, we first consider the dynamics of a single sharp wedge settling in isolation,

then move on to consider whether sharp roughness superimposed on a cylinder can change

the settling dynamics as it rolls down an inclined plane.

2.1 Settling of a sharp wedge

In order to investigate the effect of a sharp asperity on contact, we consider the model

problem of a falling wedge, as illustrated in Figure 3. The wedge is symmetric about x = 0,

has width 2L and is pitched at angle α to the horizontal. We denote the closest approach of

the wedge by εL. Assuming that the resulting flow has sufficiently small Reynolds number,

we aim to solve the problem in a quasi-static manner, scaling out the settling velocity ε̇, and

using the Stokes equations to find the resulting dimensionless hydrodynamical force FZ as
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a function of ε. We then use instantaneous force balance to equate the effective weight Mg ′

of the wedge with this hydrodynamic resistance. In this section, we detail two approximate

analytic solutions for the Stokes velocity field, and present an exact numerical solution for

comparison. Throughout this section, we shall nondimensionalise lengths with L, velocities

with ε̇L, time with ε̇−1
, and pressure with µε̇.

2.1.1 Lubrication solution

We begin by considering the flow obtained by applying the lubrication approximation to

the flow beneath the falling wedge. The local thickness of the fluid layer is given by,

H(X) = ε+ |X| tanα. (4)

Away from the sharp vertex at X = 0, we can expect the lubrication approximation to be

reasonable provided that tanα� 1. For now, we shall not worry about the rapid horizontal

variations in the vicinity of the vertex, except to note that the lubrication approximation

should not be expected to perform well in this region.

After obtaining the Poisseuille velocity profile typical of lubrication flows

U(X,Z) = −1

2

∂P

∂X
Z [H(X) − Z] , (5)

we can integrate across the narrow gap to find the volume flux

Q(X) =

∫

H(X)

0
U(X,Z) dX = − 1

12

∂P

∂X
H3

and use the local continuity relation to determine the Reynolds equation

∂

∂X

[

X − 1

12

∂P

∂X
H3

]

= 0. (6)

By choosing the reference pressure so that we may take P (X = ±1) = 0, we can integrate

equation (6) in order to determine the pressure gradient

∂P

∂X
=

12X

H3
. (7)

We may now use (7) to calculate the upward resistive force

FZ =

∫ 1

−1
P dX = −

∫ 1

−1
X
∂P

∂X
dX = − 24

tan3 α

[

log ε− 3

2
+ O(ε)

]

, (8)

and balance this against the weight of the wedge to determine the equation governing its

vertical motion. Restoring dimensions, we have

µε̇L

[

log ε− 3

2
+ O(ε)

]

= −Mg′ tan3 α

24
. (9)

Integrating (9), we find that the minimum separation ε is governed by

ε log ε ∼ Mg′ tan3 α

24µL
(t1 − t), (10)
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Figure 4: Diagram and notation for flow in a corner. The dashed line illustrates the outline

of the wedge in Figure 3, and the symmetry axis X = 0.

as ε→ 0. This suggests that the wedge will make contact with the horizontal surface at the

finite time t = t1 (here a constant dependent upon the initial conditions), suggesting that

sharp edges might be a way to achieve contact in finite time. However, since the lubrication

approximation can not be expected to hold near the vertex X = 0, we aim to verify this

conclusion by constructing a more reasonable approximation to the Stokes equations.

2.1.2 Outer Stokes solution

We now aim to determine an approximation to the Stokes flow beneath the wedge by

considering the similar problem of flow in a corner, as illustrated by Figure 4. We aim to

find the Stokes flow in a corner of angle α, with velocity boundary conditions corresponding

to those in the falling wedge problem. In polar coordinates (R, θ) with the origin indicated,

we define a streamfunction ψ(R, θ) such that uR = R−1∂θψ and uθ = −∂Rψ, write the

Stokes equations and boundary conditions in the form

∇4ψ = 0 in 0 < θ < α (11)

ψ(R, 0) =
∂ψ

∂θ
(R, 0) = 0 (12)

∂ψ

∂R
(R,α) = − cosα (13)

∂ψ

∂θ
(R,α) = R sinα. (14)

The boundary conditions (12-14) simply represent the no-slip conditions u = 0 on θ = 0

and u = ε̇ẑ on θ = α in dimensionless variables. As stated, this biharmonic problem does

not have a unique solution. If we insist that the velocity be bounded as R → ∞ then we

could expect to find a solution of the form

ψ(R, θ) = f(θ) +Rg(θ). (15)

The R-independent term in (15) will correspond to a line source or sink located at the

origin. This term is not necessary when aiming to find a solution to the equations (11-14),
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but has been included as a means of matching up the volume fluxes in this corner flow

problem with those expected in the falling wedge problem. By symmetry, we expect that

there will be no horizontal volume flux through X = 0 in the falling wedge. In this problem

we recreate this boundary condition by selecting the strength Q of the sink at the origin so

that there is no flux through R = ε/ sinα. In other words, we add the additional boundary

condition

ψ
( ε

sinα
, θ
)

= 0 (16)

to the equations (11-14). The equations can then be solved easily to yield the solutions

f(θ) = ε cotα [(cos 2α − 1)(cos 2θ − 1) + sin 2α(sin 2θ − 2θ)] , (17)

g(θ) =
(α+ sinα cosα)(θ cos θ − sin θ) + θ sin

2 α sin θ

sin
2 α− α2

. (18)

It should be noted that this solution is not an exact solution for flow beneath the

falling wedge discussed earlier. In particular, it does not allow for the streamfunction to

be antisymmetric about the vertex of the falling wedge. However, it obeys all of the same

boundary conditions away from the vertex of the wedge, so should be an outer solution,

valid further than an O(ε) distance from the vertex. It is essentially the leading-order

contribution to the streamfunction in the limit ε→ 0. Note also that this approximation is

valid for arbitrary inclination α, unlike the lubrication approximation discussed in §2.1.1.
Indeed, as α → π/2, this solution will exactly recreate the asymmetry needed at X = 0 in

the falling wedge problem.

Having obtained this solution, we could consider the resistive force that the associated

fluid flow should exert on the boundary (R > ε/ sinα, θ = α), corresponding to half of

the wedge in Figure 3. As we expect the horizontal component of this force to vanish by

symmetry, we consider only the vertical force on the whole wedge, namely

FZ = 2

∫ 1/ cos α+ε sinα

ε/ sinα

ẑ · σ · ndR, (19)

= 2
[

(g + g′′) sinα+ (g′ + g′′′) cosα
]

log

( ε

sinα

)

+ 2
[

f ′′ sinα+ (f ′ + f ′′′) cosα
]

+ O(ε),

(20)

where the various derivatives of f and g are evaluated at r = α. Substituting for these

using the expression (17-18), we find that the vertical force is given by

FZ = 2

(

2α+ sin 2α

α2 − sin
2 α

)

log

( ε

sinα

)

− 8 cosα(1 + cos
2 α) + O(ε). (21)

Considering only the leading-order term, we can set this equal to the weight of the wedge

and restore dimensions to find that, according to this solution

ε log ε ∼ Mg′(sin2 α− α2
)

2µL(2α + sin 2α)
(t2 − t), (22)

as ε→ 0. Once again, the wedge will make contact with the horizontal plane in finite time,

at t = t2. It is very interesting to note that we obtain the same functional form as in (10),
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which was obtained by lubrication theory. Furthermore, the prefactors in equations (10)

and (22) have the same leading-order behaviour for α� 1. This seems to be an encouraging

sign that finite-time contact may be possible even with the full Stokes equations, but we

must note that this outer solution does not correctly describe the flow in the vicinity of

the sharp point. In order to fully demonstrate that finite-time contact is possible with this

sharp wedge we must resort to a full, numerical solution of the Stokes equations.

2.1.3 Full Stokes solution

In this section, we obtain a numerical solution for the streamfunction ψ(x, z) describing the

Stokes flow beneath the falling wedge of Figure 3. For conditions on the vertical boundaries,

we use the antisymmetry of ψ at X = 0, and match to the outer solution (15,17,18) at the

edge of the wedge. We therefore solve the biharmonic problem

∇4ψ = 0 in − 1 < X < 1, 0 < Z < H(X) (23)

ψ(X, 0) =
∂ψ

∂Z
(X, 0) =

∂ψ

∂X
(X,H(X)) = 0, (24)

∂ψ

∂X
(X,H(X)) = −1, (25)

ψ(X,Z) = −ψ(−X,Z), (26)

ψ(1, Z) = ψouter(1, Z), (27)

where ψouter(X,Z) is the outer solution given by (15,17,18), using the coordinate transfor-

mation

R =

√

(X + ε cotα)2 + Z2, θ = tan
−1

(

Z

X + ε cotα

)

. (28)

The asymmetry constraint (26) both allows us to consider only the region 0 < X < 1, and

provides boundary conditions on the streamfunction at X = 0

Our numerical solution of equations (23-28) was performed by first mapping the region

onto the unit square, via the transformation

ξ = X, ζ =
Z

H(X)
, (29)

and transforming the equations and boundary conditions accordingly. It is then a simple

matter to discretise the equations on a uniform (ξ, ζ) grid by using a second-order finite

difference scheme. The numerical solution then becomes a simple linear system, which can

be inverted either exactly via LU factorization, or approximately by an iterative method

that takes advantage of the sparsity of the matrix defining the problem.

After testing the code by using several exact solutions of the biharmonic equation, and

confirming that the error decreases as O(∆X2
), we were able to calculate the streamfunction

(and hence the velocity field) for a variety of angles α. Two examples are shown in Figure 5.

Observe that, for smaller angles (α = π/12 in Figure 5), the horizontal velocity field exhibits

the parabolic shape (5), as obtained under the lubrication approximation, throughout most

of the domain. For a sharper wedge (α = π/3 in Figure 5), the horizontal velocity is

concentrated more towards the horizontal surface, more like the outer solution described
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α = π/12 α = π/3

Figure 5: Plot of the streamfunction ψ and horizontal velocity U = ∂Zψ beneath the falling

wedge for α = π/12 and α = π/3. Note that ε = 0.1 in both cases.

in §2.1.2. Both examples shown here indicate, therefore, that the approximate solutions

considered previously can reasonably represent the main features of the flow for large and

small α, respectively.

Given the streamfunction and velocity field, we can calculate the pressure and stress

fields, allowing us to compute the vertical force acting on the wedge

FZ =

∫

ẑ · σ · ndS (30)

=

∫

L

−L

[

cosα

(

P − ∂U

∂X

)

+
1

2
sinα

(

∂U

∂Z
+
∂V

∂X

)]

Z=H(X)

dX (31)

= 2

∫

L

0

[

− cosα

(

X
∂P

∂X
+
∂U

∂X

)

+
1

2
sinα

(

∂U

∂Z
+
∂V

∂X

)]

Z=H(X)

dX, (32)

after integrating by parts, using the pressure boundary condition P (±L) = 0, and observing

that all of the quantities in the integrand are even functions of X. Plots of the vertical force

as a function of ε are shown in Figure 6. We observe that, in both the case of a relatively

bluff wedge (α = π/12) and a relatively sharp wedge (α = π/3), the small ε behaviour of

the force is a linear function of log ε, as predicted by our analytical results. Furthermore,

the slope of this linear function agrees well with that predicted by the outer solution in

both cases. However, in the small-α case, the lubrication solution (8) provides a better

prediction of the constant term that forms the first correction. In the high-α example, the

force predicted by the outer solution matches the numerical force extremely closely, but
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α = π/12 α = π/3

Figure 6: Plots of the vertical force FZ , as determined by lubrication theory (8), the outer

Stokes solution (21), and the numerical solution, via (32). First-order (constant) corrections

have been included in the asymptotic results. Two wedge angles (α = π/12 and α = π/3)
are shown.

it should be noted that the agreement between numerical and analytical results degrades

as ε becomes very small. We believe that this represents a problem with the numerical

resolution of our numerical scheme when the separation ε is very small. In this limit, the

transformation (29) is near-singular in the vicinity of X = 0, so we should expect to need

to use a higher spatial resolution in this region. This remains as potential future work.

To conclude our discussion of this problem, we make two important assertions. Firstly,

both our analytical and numerical results support the hypothesis that objects with sharp

asperities can make contact with a smooth surface in finite time. This suggests that rough-

ness may indeed be an important consideration in determining settling dynamics at small

lengthscales. However, one could argue that no physical surface is perfectly rough, and

must be rounded on some lengthscale. Some preliminary numerical experiments with a

rounded wedge were carried out, and the behaviour of the vertical force examined. For

relatively large separations, the effect of rounding the corner is negligible, and the force

remains proportional to log ε for moderate ε. However, for very small lengthscales (on the

order of the amount by which the corner was rounded), we observe that the force scales

algebraically with ε. In other words, the pressure force from beneath the smoothed corner

is large enough to dominate the logarithmic behaviour that arises due to the straight-edged

wedge.

The second statement that we make is that, in this case at least, lubrication theory

predicts the correct functional dependence of the vertical force on the minimum separation

ε, though it is quantitatively incorrect for larger angles, as we should expect. This seems

to suggest that any corrections made to the flow field due to considering the full Stokes

equations are mere details that do not qualitatively affect the settling dynamics of sharp

objects. For the remainder of this document, we shall use this result to justify the use of

only lubrication theory in the following calculations.

196



Figure 7: Diagram and (dimensionless) notation for the rough cylinder problem.

2.2 Motion of a rough cylinder

We now turn our attention to a different problem involving the effect of roughness on

settling. We aim to investigate the effect of asperities on an object that is able to rotate as

it settles. Should an object fall preferentially with its sharp edges pointing downwards, or

will it orientate itself in such a was as to make the roughness less significant? In order to

attempt to answer this question, we consider the model problem of a rough, solid cylinder

settling on an inclined plane under the influence of gravity in a viscous fluid, as shown in

Figure 7.

In our set-up of the problem, the cylinder has a radius

r(θ) = R0R(θ) = R0 [1 + η(θ)] (33)

where θ is the polar angle measured relative to the normal to the inclined plane, as shown.

The centre of the unperturbed cylinder is located at (x0(t), z0(t)), measured in Cartesian

coordinates parallel and perpendicular to the plane, respectively. The rigid body motion of

the cylinder can therefore be described by a translational velocity (ẋ0, ż0) and an angular

velocity ω measured about this centre point. The plane itself is inclined at angle α to the

horizontal, and the cylinder has effective mass M ′g. We also define Cartesian coordinates

(x, z) to be locally parallel and perpendicular to the inclined plane, with the line x = 0

passing through the centre of the undisturbed cylinder.

2.2.1 Governing equations

In order to describe the motion of the rough cylinder, we aim to calculate the hydrodynamic

force and torque acting on the cylinder, each as a function of the rigid-body motion of the

cylinder. We assume that the Reynolds number of the flow is sufficiently small to allow us

to apply the Stokes equations. Linearity will then imply that we can express these functions

as a linear system of the form

(FX , FZ , G)
T

= M(ẋ0, ż0, ω)
T
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where F = (FX , FZ) is the force, and G the torque exerted on the cylinder by the fluid.

M is a resistance matrix expressing the effect of geometry on the linear system. We aim

to construct M by assuming that the dominant contributions to both the force and torque

come from the thin gap between the cylinder and the plane, and applying the lubrication

approximation in this gap. Even for ‘sharp’ roughness, the results of §2.1 suggest that this

approximation will not qualitatively change the dynamics of the cylinder when compared

with a full Stokes solution under the cylinder. By then making a quasi-stationary approxi-

mation, reflecting the instantaneity of Stokes flow, we equate the hydrodynamic force and

torque to those exerted by gravity, and solve for the velocity and angular velocity of the

current configuration by inverting the resistance matrix M. Before proceeding with the

derivation of M, we nondimensionalise the physical variables by writing

(x, z, x0, z0) = R0(X,Z,X0, Z0), (u, Ẋ0, Ż0) =
M ′g

µ
(U, Ẋ0, Ż0), (ω, t−1

) =
M ′g

µR0
(Ω, T−1

).

In order to use the lubrication solution in the Cartesian coordinates (X,Z), we must

first express the thickness H = h/R0 of the gap beneath the cylinder as a function of the

downslope coordinate X. A simple geometrical calculation leads to the relationship

X = [1 + η(θ − φ)] sin θ, (34)

where φ =
∫

ΩdT describes the current orientation of the cylinder. The gap thickness can

then be expressed as

H(X) = Z0 − (1 + η(θ − φ) cos θ) = Z0 −
√

(1 + η(θ − φ))2 −X2 (35)

Assuming that the roughness η � 1, we approximate the relationship (34) by taking θ =

sin
−1X in (35).

As is usual for lubrication flows, the horizontal velocity profile will be parabolic, and of

the form

U(X,Z) = V
Z

H(X)
− 1

2

∂P

∂X
Z (H(X) − Z) , (36)

where V is the horizontal velocity at Z = H(X), given by

V = Ẋ0 + Ω [1 + η(θ − φ)] cos θ,

= Ẋ0 + Ω

√

(1 + η(θ − φ))2 −X2,

= Ẋ0 + (Z0 −H)Ω (37)

By integrating the continuity equation in Z, we find that

∂

∂X

(

∫

H(X)

0
U dZ

)

− ∂H

∂X
V +W = 0, (38)

where W is the vertical velocity at Z = H(X), namely

W = Ż0 + Ω [1 + η(θ − φ)] sin θ,

= Ż0 +XΩ (39)
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By combining equations (36-39), we arrive at the Reynolds equation

∂

∂X

[

−H
3

12

∂P

∂X
− 1

2
HẊ0 +XŻ0 +

1

2

(

X2 − Z0H
)

Ω

]

= 0. (40)

After taking a first integral of (40), we use the boundary condition P (±1) =
∫ 1
−1 ∂XP dX =

0, to determine the constant of integration and express the pressure gradient in the form

∂P

∂X
=

6

H3I03

[

Ẋ0 (I02 −HI03) + 2Ż0 (XI03 − I13) + Ω
(

X2I03 − I23 + Z0I02 − Z0HI03
)

]

,

(41)

where the constants Imn are defined by the integrals

Imn =

∫ 1

−1

Xm

H(X)n
dX. (42)

Having obtained expressions for the velocity field (36) and pressure gradient (41), we

can proceed to find the force and torque on the rough cylinder. The force is given by

F

M ′g
=

(FX , FZ)

M ′g
=

∫

σ · ndS

=

∫ 1

−1

({

−P +
∂U

∂X

}

∂H

∂X
− 1

2

∂U

∂Z
, P

)

dX + O
(

[

∂H

∂X

]2
)

=

∫ 1

−1

(

3H

4

∂P

∂X
− Z0

2H
Ẋ0 +

Ω

2
,−X ∂P

∂X

)

dX + O
(

[

∂H

∂X

]2
)

. (43)

We neglect the higher order terms in accordance with the lubrication approximation. Sub-

stituting for the pressure gradient using (41), we can express the force on the cylinder

as
F

6M ′g
= (M11Ẋ0 +M12Ż0 +M13Ω,M21Ẋ0 +M22Ż0 +M23Ω), (44)

where

M11 =
3
4

(

I2
02 − 2

3I01I03
)

/I03, (45)

M12 =
3
2 (I03I12 − I13I02) /I03, (46)

M13 =
[

1
6I03 +

3
4(I03I22 − I23I02) +

3
4Z0(I

2
02 − 8

9I01I03)
]

/I03, (47)

M21 = (I02I13 − I03I12)/I03, (48)

M22 = 2(I03I23 − I2
13)/I03, (49)

M33 = [I03I33 − I13I23 − Z0(I03I12 − I02I13)] /I03. (50)

The torque about the centre of the unperturbed cylinder is given by

G

M ′gR
=

∫

(1 + η)t · σ · n dS,

=

∫ 1

−1

1 + η(θ − φ)

2

∂U

∂Z
dX,

=
1

4

∫ 1

−1

√

X2 + (Z0 −H)2

{

H
∂P

∂X
+ 2

Ẋ0

H
+

2(Z0 −H)Ω

H

}

dX. (51)
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In obtaining (51), we have used the expression for H (35) to remove the explicit dependence

on the roughness η. After substituting for the pressure gradient using (41) and evaluating

the integrals, we find the the torque can be written in the form

G

M ′gR
= M31Ẋ0 +M32Ż0 +M33Ω, (52)

where

M31 = (
3
2I02J02 − I03J01)/I03, (53)

M32 = 3(I03J12 − I13J02)/I03, (54)

M33 =
[

−1
2I03J00 +

3
2(I03J22 − I23J02) − Z0(I03J01 − 3

2I02J02)
]

/I03. (55)

Here, the coefficients Jmn are defined by

Jmn =

∫ 1

−1

√

X2 + (H − Z0)
2
Xm

Hn
dX. (56)

This completes our derivation of the resistance matrix M, which is defined by its components

(45-50) and (53-55). Given the force and torque acting on the cylinder, we can invert M to

find the velocity and angular velocity, provided that M is nonsingular.

2.2.2 Free cylinder

For the physically important problem of settling along an inclined plane under gravity, we

assume that the roughness is sufficiently small that we may neglect any gravitational torque.

We therefore set G = 0, FX = M ′g sinα, and FZ = M ′g cosα to find that

Ẋ0 =
M ′g

det(M)
[sinα(M22M33 −M12M21) + cosα(M13M32 −M12M23)] , (57)

Ż0 =
M ′g

det(M)
[sinα(M23M31 −M21M33) + cosα(M11M13 −M31M13)] , (58)

Ω =
M ′g

det(M)
[sinα(M21M32 −M31M22) + cosα(M13M21 −M11M23)] . (59)

It should be noted that all of the coefficients Mij depend upon two parameters, namely the

current height Z0 and the current orientation φ. The equations (57-59) therefore define an

autonomous ordinary differential equation for the position and orientation of the cylinder

as a function of time. Note also that the evolution of the downslope position is slaved to

the height and orientation.

In order to investigate the behaviour of the system (57-59), we consider a sample rough-

ness function in the form of a sawtooth with m teeth – i.e. a periodic function

η(θ) = η

(

θ +
2nπ

m

)

= Aθ, − π

m
< θ <

π

m
, n = ±0,±1, ...,±(m − 1). (60)

The results presented here are for m = 10, but we shall discuss other values of m at the

end of this subsection.
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Figure 8: Trajectory of the centre of mass (X0, Z0) of a rough cylinder falling freely down

a plane inclined at angle α = π/6. Positive and negative roughness corresponds to the

sawtooth roughness function (60) with m = 10 and A = ±0.01 respectively.

Figure 8 shows the trajectories described by the centre of the cylinder (X0, Z0) in typical

numerical simulations. For comparison, we also show the trajectory of a smooth cylinder

under the same conditions. We see that the paths of the rough and smooth cylinders are

largely similar. When far from the inclined plane, the path of the rough cylinder oscillates

about the path of the smooth cylinder. For ‘positive’ roughness, periods of gradual ascent

are interspersed by shorter periods of relatively rapid descent. For ‘negative’ roughness,

we observe short periods of ascent interrupting longer periods of gradual descent. In both

cases, however, there is a net decrease in height over these two intervals.

Given the absence of such oscillations in the case of a smooth cylinder, the only cause

can be the addition of the symmetry-breaking roughness to the cylinder. In fact, the longer

periods of gradual ascent or enhanced descent can be explained by the sawteeth acting as

Reynolds bearings as illustrated in Figure 9. In each case, gravity forces the cylinder to

move downslope. For negative roughness, the local geometry of a tooth moving past the

inclined plane resembles that of a Reynolds bearing (Figure 9a), where hydrodynamical

forces in the converging channel generate a net lift force on the cylinder. For positive

roughness, the situation is reversed (Figure 9b), and the net hydrodynamical force on the

cylinder is directed towards the plane. When added to the resistive pressure force that

comes from squeezing out fluid from beneath the cylinder, this bearing effect can either

oppose or enhance the settling of the cylinder due to gravity.

However, gravity also exerts a torque on the cylinder, forcing to it to rotate so that

the Reynolds bearing/antibearing geometry changes to one in which a sharp tooth is near

the base of the cylinder. This gives rise to the shorter periods of motion in the opposite

direction. In the case of positive roughness, the passing of the tooth abruptly increases the

thickness of the gap between the cylinder and the plane, reducing the resistive forces and

allowing for an increased settling velocity. For negative roughness, the sharp decrease in the
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(a) (b)

Figure 9: Cartoon of Reynolds bearings. (a) If the fluid moves towards a narrowing gap, a

lift force is generated. (b) If fluid moves towards an expanding gap, a suction force arises.

gap thickness results in a short-lived upward force, and allows the cylinder to rise slightly

before settling once again into the falling part of the cycle.

Whether the roughness is in the form of a positive or negative sawtooth, the end result is

essentially the same. When the cylinder comes close enough to the plane, the gravitational

torque is insufficient to keep the cylinder rolling downslope, and it gets stuck with a sharp

point near its base. The numerical results seem to suggest that contact in finite time then

follows (though it is difficult to distinguish finite-time contact from a finite-time approach

predicted by a numerical scheme with too large a timestep). However, we could believe,

given the results of §2.1, that the sharp corner does allow finite-time contact.

The above discussion applied for m = 10. If we change m, the number of teeth on

the rough cylinder, the results remain qualitatively unchanged. In each case, it seems that

the the cylinder will reach contact in finite time, and its trajectory oscillates around that

of a smooth cylinder until it comes sufficiently close to the inclined plane, at which point

rotation is arrested and the sharp corner can begin to effect finite-time settling.

After the preparation of an early form of this report, a paper by Zhao et al.[6] was

brought to our attention. In this paper, the authors investigate experimentally the rolling

of a smooth sphere down an inclined plane of carefully-controlled roughness. They look

in detail at the dynamics of the sphere as it passes over an asperity, and use a similar

lubrication model to describe them. We direct the interested reader to [6] for a much more

detailed and polished version of the above analysis.

2.2.3 Driven cylinder

As a brief aside, we draw attention to the dynamics of a roughened cylinder forced to rotate

at constant (dimensionless) angular velocity Ω0, but that is otherwise free to move. In

order to allow for comparison with the case of a free cylinder, we use the same definitions

of positive and negative roughness (i.e. the sawtooth roughness of (60) with m = 10 and

A = ±0.1). We present here results for zero inclination angle α = 0, but will mention the

effect of varying α at the end of this subsection. The restriction of the free cylinder problem

to a driven problem can be achieved under the previous resistance matrix framework by
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Figure 10: Trajectories of a driven cylinder falling down an inclined plane. Positive and

negative roughness correspond to the sawtooth roughness (60) with m = 10 and amplitude

A = ±0.1. The plane beneath the cylinder is horizontal – α = 0. The trajectory of a

smooth cylinder is shown for comparison. The second graph shows a magnification of the

initial region 0 < X0 < 200, showing detail of the ratchet-like motion.

setting M31 = M32 = 0, M33 = 1, and G = Ω0. Figure 10 shows the trajectories followed

by the centre of mass of the cylinder in the cases of positive and negative roughness, where

the cylinder is driven in a clockwise sense.

In the case of positive roughness, we see that the cylinder rapidly descends towards

the horizontal plane, and appears (numerically) to make contact in finite time. This can

be explained in a similar manner to the apparent finite-time contact observed for the free

cylinder. In this case, however, the settling is greatly accelerated by the rotation of the

cylinder, which generates a strong suction force via Reynolds anti-bearing action (Figure

9b).

In the case of negative roughness, however, we observe that, following an initial period

where the cylinder settles at a (time-averaged) rate similar to that of a smooth cylinder,

the vertical position of the centre of mass, Z0 tends to a stable periodic oscillation about

the value Z0 ≈ 1.05. In other words, the cylinder will remain suspended above the plane

indefinitely, as long as it continues to be driven to rotate. The existence of this suspended

state is quite robust to variation of the rotation rate and roughness parameters, though the

limiting mean value of Z0 decreases as the rotation rate, roughness amplitude, and number

of teeth decrease.

In both of the above cases, looking more closely at the trajectories reveals a ratchet-like

behaviour, similar to the case of a free rough cylinder, where longer periods of gradual rise or

fall are interspersed with short periods of motion in the opposite direction. However, in this

case, it is the act of driving the cylinder that produces horizontal motion, rather than gravity.

If the cylinder rotates fast enough in the appropriate direction for the roughness, then it can

provide sufficient lift (during those intervals when we have a Reynold bearing geometry) for

the net change in height during the passing of one tooth to be zero at some critical height.

This gives rise to the periodic oscillation observed here for negative roughness.

Varying the inclination angle does little to change the qualitative dynamics of the driven

system. A fairly coarse search of the parameter space indicates that the suspended state
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Figure 11: Diagram and notation for elastic lubrication problem

still exists for any angle, provided that the sense of the rotation is correct. For a large

enough angle, it may be the case that the downslope component of force can balance the

upslope component of the viscous drag due to rotation, and one could find a system in

which both X0 and Z0 exhibit periodic oscillations. The search for such a state did not,

however, form a part of the work carried out during the GFD Program.

3 Elasticity

The infinite contact time predicted by a simple lubrication model requires the appearance of

very large fluid pressures when the gap between the falling object and the substrate are very

small. It is quite possible that these large pressures could cause some small deformation

of the solid surfaces, which were previously assumed to be rigid. It is not immediately

obvious whether elastic effects should aid or oppose settling. In this section, we develop

ideas proposed by Skotheim & Mahadevan [4] about lubrication films between elastic layers,

and attempt to apply them to settling problems.

3.1 Lubrication with elastic layers

We consider a situation such as that shown in Figure 11. A smooth cylinder of radius R
is settling under gravity towards an smooth plane, inclined at angle α to the horizontal,

that is coated with a thin layer of thickness Hl of an elastic material. We define a local

Cartesian coordinate system (x, z) to be aligned with the inclined plane, and take x = 0 to

pass through the centre of the cylinder.

We assume that the elastic material has a linear, isotropic stress-strain relationship,

with stress tensor

σe = G(∇u + (∇u)
T
) + λ(∇ · u)I, (61)

where u is the local displacement vector, I is the identity tensor, and G and λ are Lamé

coefficients describing the elasticity of the medium. The elastic problem to be solved,

204



assuming a quasi-steady state, is

∇ · σe = 0 (62)

u(X,−Hl) = 0 (63)

σe · n = −pn at z = uz(x, 0) (64)

which corresponds to a local force balance, with no displacement allowed on the lower

boundary, and continuity of stress on the surface in contact with the fluid. If we assume

that the layer is thin compared to the horizontal extent of the lubrication film, then we can

proceed in the same manner as fluid lubrication, by neglecting horizontal variations when

determining the displacement field. We therefore approximate (62) by

(2G+ λ)
∂2uz

∂z2
= 0,

giving us the approximate solution

uz(x, z) ≈ − p(x)

2G+ λ
(z +Hl). (65)

The size of the fluid-filled gap between the settling object and the elastic layer where the

local pressure is p(x) is given by

h(x) = h0(x) +
Hl

2G+ λ
p(x),

where h0(x) is the undeformed gap thickness. For the case of a settling cylinder, we ap-

proximate this by a parabola, leading to

h(x) = εR+
x2

2R
+

Hl

2G+ λ
p(x), (66)

where εR is the minimum separation between the cylinder and the line z = 0.

The equations governing the fluid flow can be determined exactly as for a rigid cylinder

approaching a rigid substrate. For a cylinder translating with velocity (ẋ0, ż0), we find the

Reynolds equation

∂

∂x

[

− h3

12µ

∂p

∂x
− h

2
ẋ0 + xż0

]

= 0. (67)

The novel feature in this elastic problem is the feedback between pressure and gap thickness,

as established by (66). Some consequences of this are discussed in the next few sections.

3.2 Pure shearing

The first use of the preceding theory was made by Skotheim & Mahadevan [4], who con-

sidered the case of a cylinder travelling at a fixed height past an elastic-coated plane with

speed V , as illustrated by Figure 12a. In the absence of an elastic layer, the symmetry of

the translating cylinder gives rise to a perfectly symmetric pressure gradient (Figure 12b),

which cannot generate lift. However, the elastic layer can be deformed by the relative pres-

sures, and is squeezed down ahead of and beneath the cylinder, as shown in Figure 12c.
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Figure 12: Illustration of how the presence of an elastic layer can generate lift. (a) A rigid

object translates parallel to an elastic layer. (b) The symmetric pressure distribution that

arises without elasticity. (c) Deformation of the elastic layer due to high and low relative

pressures. (d) The resulting asymmetric pressure distribution. Figure copied from Skotheim

& Mahadevan (2004) [4].

This in turn makes the pressure gradient asymmetric (Figure 12d), and can generate a net

upward force. The mathematical details of this problem are given in full in [4], wherein

the authors also consider how the lift force scales with the separation of the object from

the elastic material for a range of different physical situations, including either solid object

being entirely elastic and the cylinder being an elastic shell. In the context of this report,

we note merely the existence of a mechanism by which the presence of elasticity in the solid

bodies can generate lift, and therefore oppose the settling of an object, provided that there

is some force driving the object horizontally.

3.3 Pure settling

In the absence of any horizontal forcing (α = 0 in Figure 11), we find a situation like that

shown in Figure 13. In this case, we expect that the pressure is an even function of x, and

the Reynolds equation (67) can be integrated once to find that

∂p

∂x
=

12µRxε̇

h3(x)
, (68)

the constant of integration having been eliminated by integrating over −∞ < x < ∞ and

applying the boundary conditions p(±∞) = 0. At this point, we nondimensionalise the

problem by scaling all lengths with R, time with µR/M ′g, and pressure with M ′g/R, where

M’g is the effective weight per unit length of the cylinder. Substituting for the approximate

gap width (66), and balancing the vertical resistive force with the effective weight of the
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Figure 13: Diagram and notation for a vertically-settling cylinder onto an elastic layer.

cylinder, we find the the dimensionless pressure P must be a solution to the following

problem

dP

dX
=

12ε̇X

(ε+
1
2X

2 + γP )3
, (69)

P (±∞) = 0, (70)
∫

∞

−∞

P dX = 1, (71)

where

γ =
M ′gHl

(2G+ λ)R2
. (72)

In order to solve this problem, we define the new variables ψ and ξ by

ξ = ε−1/2X, and
dψ

dX
=
γP

ε
.

With an appropriate choice of the arbitrary constant allowed by our choice of φ, we trans-

form the problem (69-71) into the second-order boundary value problem

ψ′′
=

Nξ

(1 +
1
2ξ

2 + ψ′)3
, (73)

ψ′
(±∞) = 0, (74)

ψ(±∞) = ± γ

2ε3/2
. (75)

Here N(= 12γε̇/ε3) may be thought of as an eigenvalue for the ordinary differential equation

(73) with boundary conditions (74,75). This problem can be easily solved numerically for

all values of the parameter δ, resulting in the relationship between the settling speed ε̇ and

the separation ε shown in Figure 14 Importantly, this seems to indicated that the settling

velocity tends to a nonzero limit as ε → 0, suggesting that the cylinder will settle in finite

time. A physical explanation for this is as follows. Deformation of the elastic film increases

the mean fluid-filled gap thickness, which in turn has the result of reducing the pressure

gradient (recall that the pressure gradient is proportional to h−3
). This results in a net
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Figure 14: Graph showing the settling velocity ε̇ as a function of separation ε for vertical

settling on to an elastic layer. Note that ε̇ tends to a finite nonzero limit as ε→ 0.

decrease in the upward resistive force, so that FZ = ord(1) as ε → 0. We can understand

this asymptotic behaviour analytically by defining scaled variables (φ, ζ) such that

ψ(ξ) =
γ

2ε3/2
φ(ζ) and ξ =

(

2ε3/2

γ

)1/3

ζ.

The equations (73-75) may then be expressed as

d
2φ

dζ2
= N

(

2ε3/2

γ

)2
ζ

(
1
2ζ

2 +
dφ

dζ
+ O(ε))3

, (76)

dφ

dζ
(±∞) = 0, (77)

φ(±∞) = ±1.. (78)

In the limit ε→ 0, this boundary value problem can only admit solutions if the right-hand

side of (73) is of order unity. That is

Nε3 = ord(1) ⇒ ε̇ = ord(1),

as observed in the results of the numerical calculation described above.

This scaling for the settling velocity suggests that the addition of elasticity should allow

contact in finite time, because ε ∝ (t − t0) for small ε. However, one must remember that

ε is the height of the cylinder above the undeformed elastic layer. After passing through

ε = 0, the layer will simply continue to deform at a rate that maintains the ord(1) scaling

for ε̇. There will come a point, of course, when the elastic layer can deform no longer, either

due to nonlinear elastic effects, or the fact that deformation predicted by this simple model

will exceed the thickness of the layer. At this point, we should probably expect to see the

familiar ε ∝ t−2
scaling for the approach of two rigid objects reappear. Our conclusion is

therefore that elasticity can accelerate contact at first, but should not be able to create

bona fide contact between the objects in finite time.
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3.4 Arbitrary inclined plane

We now return to the situation depicted in Figure 11, where a rigid cylinder settles down

an inclined plane coated with an elastic layer. In this case, the downslope component of

gravity acts to drag the cylinder downhill, giving rise to a lift force as described in §3.2.
Meanwhile, the perpendicular component acts to force the cylinder to settle. It is not

immediately obvious which of these two effects will dominate the dynamics of the cylinder,

so we shall investigate the system numerically in this section.

For simplicity, we assume that the cylinder does not rotate, and just translates with

velocity (ẋ0, ż0). Using the same scalings for pressure, length, time and velocity as in §3.3,
the Reynolds equation (67) for the pressure gradient beneath the cylinder becomes

∂

∂X

[

−H
3

12

∂P

∂X
− H

2
Ẋ0 +XŻ0

]

= 0 (79)

Vertical force balance, taken up to second order in ∂H/∂X, once again requires that we

equate the pressure force with the plane-perpendicular component of the weight,
∫

∞

−∞

P dX = cosα (80)

whilst the downslope force balance becomes, after a little algebra

∫

∞

−∞

{

Ẋ0

2H
+

3H

4

∂P

∂X

}

dX = − sinα. (81)

Along with the boundary conditions P (±∞) = 0, equations (79-81) define a boundary value

problem with two eigenvalues, namely Ẋ0 and Ż0. This problem can be solved numerically

by defining new dependent variables Ψ, Φ, and independent variable ξ by

∂P

∂X
=
ε1/2

γ
Ψ

′
(ξ), Φ

′
(ξ) = H̃Ψ

′′
+

V

9H̃
, x = ε1/2ξ,

so chosen to turn the integral constraints (80) and (81) into boundary conditions on Ψ and

Φ, respectively. The scaled height H̃ is given by

H̃ = 1 +
1

2
ξ2 + γP.

and

V =
6γẊ0

ε5/2
.

With this transformation, we must solve the third-order boundary value problem

Ψ
′′

=
A+Nξ

H̃3
− V

H̃2
, (82)

Φ
′
= H̃Ψ

′′
+

V

9H̃
, (83)

Ψ(±∞) = Ψ
′
(−∞) = Φ(−∞) = 0, (84)

Ψ(+∞) =
γ cosα

ε3/2
, (85)

Φ(+∞) = −4γ sinα

3

(γ cosα

ε3/2

)4/3
. (86)
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Figure 15: Log-log plot of numerical results for the eigenvalues N (in blue, compensated

by ε3) and V (in red, compensated by ε3/2
), as a function of the separation ε for a cylinder

falling down an elastic-coated inclined plane. Note the change in sign of N (hence Ż0) in

the vicinity of ε = 1.

In equation (82), A is the constant of integration introduced when taking a first integral

of the Reynolds equation (79). This must also be determined as an eigenvalue of the

third-order problem, along with the quantities N and V , which relate to the settling and

downslope velocities, respectively. In this problem, N = 12γŻ0/ε
3
, as in §3.3.

Solving equations (82-86) numerically, one typically finds results like those shown in

Figure 15. The very important feature to note is that the eigenvalue N changes sign

somewhere near ε = 1. This suggests the existence of a (stable) steady state, where the

cylinder falls down the plane at a constant velocity and constant separation from the plane.

In this situation, the settling force exactly balances the lift force due to the downslope

motion. Note that, unlike the driven cylinder of §2.2.3, this ’gliding’ stable state exists

without the need for any external forcing beyond gravity. We have also noted the apparent

power-law scalings of N and V for large separations ε, but have not yet made an attempt

to explain them physically or mathematically.

4 Compressibility

A final factor that may play a role in settling dynamics is the compressibility of the fluid

film. One might expect that the high lubrication pressures could be somewhat alleviated by

allowing the density of the fluid to change. With this in mind, we consider once again the

problem of a settling cylinder, as illustrated in Figure 1, but this time allow for compressible

effects in the fluid film.

The lubrication approximation to the equations of conservation of mass and momentum
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(based on the Stokes equations) are

−∂p
∂x

+ µ
∂2u

∂x2
= 0, (87)

∂p

∂z
= 0, (88)

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂z
(ρz) = 0. (89)

These equations must be supplemented by an equation of state. In the case of an adiabatic

gas, pressure and density are related by

p = Kργ . (90)

We also suppose that the kinematic viscosity varies with the local pressure (hence density)

according to

ν = Lpm. (91)

As in the case of an incompressible fluid, we can integrate the momentum equations (87,88)

to obtain a parabolic velocity profile

u = −∂xp

2µ
z(h− z) (92)

and integrate the mass conservation equation (89) in the vertical direction to find the

compressible Reynolds equation

∂

∂t
(ρh) +

∂

∂x

(

− h3

12ν

∂p

∂x

)

= 0. (93)

This equation, together with the relations (90,91) can be solved for the pressure p, subject

to boundary conditions p(±∞) = 0. Finally, we use instantaneous force balance

∫

pdx = Mg′ (94)

to determine the settling velocity as a function of the current shape and size of the fluid-filled

gap, as in the previous sections.

Though the Reynolds equation (93) may be integrated numerically, we shall only note the

existence of a late-time similarity solution. We nondimensionalise the problem by writing

x = RX, h = RH, p =
Mg′

R
P, t = 12L

(

Mg′

R

)1−m−1/γ

.

After substituting for the density and kinematic viscosity, we arrive at the partial differential

equation

∂

∂T

(

HP 1/γ

)

− ∂

∂X

(

H3

Pm

∂P

∂X

)

= 0, (95)

P (±∞) = 0, (96)
∫

P dX = 1 (97)
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Noting that we may approximate the gap thickness by a parabola

H(X,T ) ≈ ε(T ) +
1

2
X2

= ε(T )

[

1 +
1

2

(

X√
ε

)2
]

=: εH̃(ξ), (98)

we aim to find a large-T similarity solution in terms of the similarity variable ξ = X/
√
ε.

By seeking a solution of the form

P (X,T ) = T λf(ξ),

we can transform the problem (95-97) into an ordinary differential equation for in ξ only

provided that

ε̇

ε2
∝ T λ(1−m−1γ)

and

tλ
√
ε ∝ 1.

By combining these two relationships, we find that the long-time scaling of the minimum

gap width is given by

ε ∝ T−2/(1+m+1/γ). (99)

In the case of a fluid with constant dynamic viscosity, we requite that m = −1/γ, so we

recover the ε ∝ T−2
scaling obtained in the incompressible case, regardless of the value of

γ. If instead we assume that the kinematic viscosity remains constant, then m = 0, and

the exponent in (99) is strictly greater than −2 for all (positive) values of γ. In this latter

case, the settling velocity is decreased due to the increase in dynamic viscosity that arises

when the fluid is compressed. The similarity scaling (99) has been verified against a direct

integration of the partial differential equation (95) in the case of both constant dynamic

viscosity and constant kinematic viscosity.

In summary, compressibility does not appear to provide a means by which a contact can

be made in finite time. Indeed, it is difficult to improve on the ε ∼ T −2
approach obtained

in the incompressible problem described in §1. Whilst compressing the fluid can alleviate

some of the pressure beneath the settling object, there is an associated increase in dynamic

viscosity that provides a greater resistance to flow. This, in turn, increases the pressure

beneath the object, slowing its approach.

5 Conclusions and future work

At the outset, the intention of this project was to consider whether simple hydrodynami-

cal effects could resolve the problem of infinite contact time for two solid objects coming

together in a viscous fluid. We chose to avoid a discussion of short-ranged effects such as

Van der Waals forces, in favour of the effects of the shape and elasticity of the objects, and

compressibiliy of the fluid. Of these three effects, it seems that only shape, in the form of

sharp aperities, can resolve this long-standing problem.

We have shown that an object with discontinuous first derivative will settle towards

a flat surface in finite time by considering the model problem of a sedimenting triangular
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wedge. However, we considered a constrained problem, in which the wedge was not allowed

to change its orientation relative to the ground. Given that the wedge would be unstable

to toppling in one direction or the other, it would be interesting to examine the motion of

the wedge in the unconstrained problem, where the wedge is entirely free to move. Would

contact still occur in finite time, or would the wedge orient itself so that one of its edges

becomes parallel to the ground, thus leading to an infinite contact time? Many of the

methods discussed in §2.1 could be used to model the falling wedge, including both the

outer Stokes approximation and the numerical scheme presented therein. This remains as

a strong candidate for future work.

During the GFD Prgoram, we expended some time and effort on modelling the rolling of

a rough cylinder next to a horizontal surface. We found that the presence of roughness can,

in certain cases, either result in contact in finite time or no contact at all. While a more

thorough investigation of how asymmetric roughness must be in order to cause these effects

would be an interesting avenue for future study, our key results were essentially pre-empted

by Zhao et al. [6]. Once again, we direct the reader to this paper for a more developed

version of the results of §2.2.
The effects of material elasticity and fluid compressibility were investigated briefly, but

it was found that neither could provide a mechanism by which contact could be achieved in

finite time. However, our analysis of the problem with elastic boundaries suggested that it

is possible to avoid contact entirely, provided that there is a sufficiently large force acting

perpendicular to the line of closest approach of the two objects. The physics behind this

effect is well described by the work of Skotheim & Mahadevan [4].

In summary, it appears that only surface roughness can predict finite time contact

without resorting to non-hydrodynamical effects. Even then asperities must be perfectly

sharp in order to make contact. For real surfaces, of course, no such sharp corners exits on

(and above) the molecular scale, so it is the opinion of the author that one will be drawn

inevitably towards the consideration of long range forces, and the dewetting of the by then

very thin film between the two objects. This problem remains as a challenge to future

researchers.
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Energy and dissipation in MHD systems

C. Gissinger

January 12, 2009

1 Introduction

In this work, Hartmann flow is studied in the framework of imcompressible magnetohydro-

dynamics. In the first sections, we present simple examples of magnetic problem showing the

role of the vaccum or an insulator on the energy and on the dissipation rate of a conductor.

Then, we derive exact laminar solution and explicit expression for the energy stability of

the Hartmann flow in contact with an insulator. We show that taking into account realistic

boundary conditions for the magnetic field yields technical difficulties in the derivation of

exact bounds on the dissipation rate using the background method.

2 Dissipation in a cylindrical conductor-1

In this section we study a simple situation of free decay of a magnetic field. We consider

a wire of metal with conductivity σ and permeability µ. The wire is a cylinder infinite in

the axial direction z and have a finite radius a. The cylinder is surrounded by vaccum( see

figure ??). We suppose that there is a current J only at t = 0 and we study the evolution

of the magnetic field created by the initial current.

In this first simple problem, the intial current is a toroidal current depending only on

the radial direction:

J(r) = Jθ(r)eθ (1)

By symmetry and use of Ampere’s law, we know that the corresponding initial magnetic

field created is Bz(t, r)ez inside the wire and is zero outside (for r > a). Thus, the governing

equation are:

∂B

∂t
= η∆B (2)

which is in cylindrical corrdinates for the magnetic field inside the conducting domain is :

∂Bz

∂t
= η[−∂2Bz

∂r2
− 1

r

∂Bz

∂r
] (3)

where we have introduced the magnetic diffusivity η = 1/(σµ). The magnetic field is simply

∇×B = 0 for r > a. In this diffusive situation, the magnetic field can only decay and we

suppose that Bz(t, r) = b(r)e−αt
. The equation (3) then reduce to :
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∂2b

∂r2
+

1

r

∂b

∂r
+

α

η
b = 0 (4)

Using the change of variables ρ = r
√

α/η, we obtain:

∂2b(ρ)

∂ρ2
+

1

ρ

∂b(ρ)

∂ρ
+ b(ρ) = 0 (5)

We recognize the bessel equation for m = 0. A solution of the equation is thus:

b = J0(

√

α

η
r) (6)

The boundary conditions for the magnetic field leads to an expression for the zeros of

the bessel function:

Bz(a) = 0 =⇒ J0(

√

α

η
a) = 0 (7)

The nth
zero of the bessel function J0(ρ) is given by λn =

√

αn

η
a . We see that the boundary

conditions yields here a discretization of the possible decay rates for the magnetic field. This

is not surprising since these boundary conditions result in a confinement of the field in a

finite domain. We can then expand the fields in Fourier-Bessel series for r < a:

b(r, t) =

∞
∑

n=0

AnJ0(λnr/a)e−tηλ2
n
/a2

(8)

And simply b(r, t) = 0 for r > a. Because Bessel’s equation is Hermitian, the solutions must

satisfy the following orthogonality relationship :

∫ 1

0
Jν(xλν

m)Jν(xλν

n)xdx =
δmn

2
[Jν+1(λ

ν

n)]
2

(9)

In order to express the coefficient of the magnetic field we evaluate the integral :

I =

∫ 1

0
rdrJ0(λnr)Bo

(r) (10)

Where Bo
(r) represent the magnetic field at t = 0. Expansion of Bo

(r) gives:

I =

∫ 1

0
rdrJ0(λnr)

∞
∑

m=1

AmJ0(λmr) (11)

I =

∞
∑

m=1

Am

∫ 1

0
rdrJ0(λnr)J0(λmr) (12)

I =

∞
∑

m=1

Am

2
δmn[J1(λm)]

2
(13)
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I =
An

2
[J1(λn)]

2
(14)

We then get an expression for the coefficient of the magnetic field:

An =
2

[J1(λm)]2

∫ 1

0
rdrJ0(λnr)Bo

(r) (15)

The decomposition of the magnetic field on the basis of Bessel functions with well defined

coefficients provide a natural way for evaluating the magnetic energy in the volume. Indeed

the Parseval theorem applied to Bessel-Fourier series gives:

ε =

∫

dV [B(r, t)]2 =

∞
∑

n=0

|Ane−tηλ
2
n
/a

2 |2 =

∞
∑

n=0

|An|2e−2tηλ
2
n
/a

2

(16)

This yields to a negative time variation of the energy:

ε̇ = −2η
∞
∑

n=0

λ2
n|An|2e−2tηλ

2
n
/a

2

(17)

Finally, we use the fact that all the zeros of J0 are greater or equal to the first zero λ1 of

the Bessel function:

ε̇ = −2ηλ2
1/a

2
∞
∑

n=0

λ2
n

λ2
1

|An|2e−2tηλ2
n

/a2 ≤ −2ηλ2
1ε (18)

The gronwall inequality leads finally to a minimal rate of variation for the energy:

ε(t) ≤ ε(0)e
2ηλ

2
0

a
2

t
(19)

3 Dissipation in a cylindrical conductor-2

In the previous problem, the initial current lead to very simple boundary conditions pre-

venting the magnetic field to come out from the cylinder. It is thus interesting to study a

similar problem but with different boundary conditions.

In this section, we consider a problem with the same geometrical configuration than in

the previous section but with a different initial current. At t = 0 (and t = 0 only), we

impose an axial current depending only on r:

J(r) = Jz(r)ez (20)

Obviously, the magnetic field created by this current will be of the form Bθ(t, r)eθ.

Outside the conductor, the magnetic field is now non-zero and satisfy the equation ∇×B =

0, yielding an harmonic field going to zero at infinity. Inside the conductor the field obey

the diffusion equation:

∂Bθ

∂t
= η[−∂2Bθ

∂r2
− 1

r

∂Bθ

∂r
+

Bθ

r2
] (21)
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As before, the decaying magnetic field is Bθ(t, r) = b(r)e−αt
. By using the change of

variable ρ = r
√

α/η, the equation (21) become:

∂2b(ρ)

∂ρ2
+

1

ρ

∂b(ρ)

∂ρ
+ b(ρ).(1 − 1

ρ2
) = 0 (22)

This is the bessel equation for degree m = 1. A solution of the equation is thus:

b = J1(

√

α

η
r) (23)

In this case, the boundary conditions do not provide sufficient constraint on the magnetic

field and thus do not lead to vanishing conditions for Bessel functions. This means that

the system can not be represented by a Fourier-Bessel serie. In particular, the decay rates

α can not be discretized, which seems to be in agreement with the fact that the energy is

infinite outside the cylinder.

Using Hankel transform, we can however expand the inner magnetic field as follow :

bi(r, t) =

∫

∞

0
dαc(α)J1(

√

α

η
r)e−αt

(24)

Using the transform β =

√

α/η, the equation (24) becomes:

bi(r, t) = 2η

∫

∞

0
βdβC(β)J1(βr)e−ηβ

2
t

(25)

defined only for r < a. Outside the conductor, the magnetic field is simply harmonic

and thus have the form bo(r, t) = A(t)/r. The continuity of the tangential component of

H = B/µ across the boundary yields an expression for the outer field:

bo(r, t) = 2η
µ0a

µr

∫

∞

0
βdβC(β)J1(βa)e−ηβ2t

(26)

We will now suppose that it is possible to find some magnetic field bT defined on all the

domain(0 < r < ∞) and represented on the basis of Bessel function:

bT (r, t) = 2η

∫

∞

0
βdβA(β)J1(βr)e−ηβ

2
t

(27)

In order to find an expression for the coefficent A(β), we will evaluate the integral:

Y =

∫

∞

0
rdrJ1(βr)bT (r, 0) (28)

There is two way to evaluate Y . By considering the expansion of BT :

Y =

∫

∞

0
rdrJ1(βr)2η

∫

∞

0
β′dβ′A(β′

)J1(β
′r)e−ηβ

′2
t

(29)

Using the orthogonality condition :

∫

∞

0
rdrJ1(βr)J1(β

′r) =
δ(β − β′

)

β
(30)
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the equation (29) become:

Y = 2ηA(β) (31)

We can also evaluate Y by separating the domain of integration:

Y =

∫

a

0
rdrJ1(βr)bi(r, 0) +

∫

∞

a

rdrJ1(βr)bo(r, 0) (32)

bo(r, 0) is related to bi(r, 0) and we get:

Y =

∫

a

0
rdrJ1(βr)bi(r, 0) + bi(a, 0)

µ0a

µ

∫

∞

a

drJ1(βr) (33)

By grouping equations (31) and (33) we finally get an expression for the coefficient A(β) of

the magnetic field:

A(β) =
1

2η

∫

a

0
rdrJ1(βr)bi(r, 0) + bi(a, 0)

µ0a

2ηµ

∫

∞

a

drJ1(βr) (34)

By comparison with the first problem where decay modes were quantified, it can be

interesting to investigate the evolution of the energy of the system.The energy in the infinite

volume is given by:

ε =

∫

∞

0
rdrb2

T =

∫

∞

0
βdβ|A(β)e−ηβ2 t|2 (35)

We separate this integral in two parts,using a small parameter w:

ε =

∫

w

0
βdβ|A(β)e−ηβ2 t|2 +

∫

∞

w

βdβ|A(β)e−ηβ2 t|2 (36)

In the first part of the integral, A(β) can be expressed by its Taylor expansion A(β) = Kβ
since A(0) = 0. In the second part, the asymptotic limit of long time t allow us to neglect

this term to zero. The energy is then given by:

ε ∼
∫

∞

0
β3dβe−2ηβ

2
t

(37)

By integration by parts we get ε ∼ t−3/2
. We can easily derive this equation and we finally

get the result :

ε̇

ε
∼ µ

t
(38)

In the previous problem, the magnetic field was restricted to a finite radius, yielding

a quantification of the decay modes. As a consequence, the energy was bounded by the

exponential decay of the less damped mode. In this new problem, the magnetic field is no

longer restricted to a finite volume but goes to infinity. Moreover, the total energy is infinite

outside the conductor. We see here that it is thus impossible to get some exponential decay

for the magnetic energy. In this situation, the system is damping the energy with a much

slower rate. This is probably reminiscent from the infinite amount of energy to dissipate

coming from outside and collapsing on the conductor.
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4 Decay problem in spherical geometry

We have seen how the magnetic field is decaying in a cylindrical conductor under the ac-

tion of ohmic diffusion. In some case, it is impossible to observe exponential bound of the

magnetic energy. In this section we study the problem of free decay modes in a spherical

configuration.

Let’s consider a spherical conductor of permeability µ and conductivity σ surrounded

by infinite vaccum. In such a geometry, it is in general useful to decompose the soleloidal

fields into poloidal part P and toroidal part T . The magnetic field is given by :

B = ∇×∇× (rP ) + ∇× (rT ) (39)

The governing equations for the toroidal part are:

∂T

∂t
= η∆T r < a (40)

T = 0 r > a (41)

Similarly we get two equations for the poloidal part:

∂P

∂t
= η∆P r < a (42)

∆P = 0 r > a (43)

This decomposition in toroidal and poloidal part is interesting because P and T may always

be decomposed on the basis of the spherical harmonics, which are the eigenfunction of

the angular part of the spherical laplace operator.The problem for T and P are totally

independant and can be sutdied separatly. I will present all the work as axisymmetric

problem for simplicity but the results are totally similar for non-axisymmetic problem.

4.1 Toroidal decay problem

The scalar T can be decomposed as follow:

T =

∑

l

T̂ lYl(θ, φ) (44)

Using this decomposition the equation (40) become:

∂T̂ l

∂t
= η

(

1

r2

∂

∂r

(

r2 ∂T̂ l

∂r

)

− l(l + 1)

r2
T̂ l

)

(45)

We know that it is a decaying problem so we can suppose T̂ l
(r, t) = T l

(r)e−αt
. We then

get the equation:

∂2T l

∂r2
+

2

r

∂T l

∂r
+

(

α

η
+

l(l + 1)

r2

)

T l
= 0 (46)
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This equation is the spherical bessel equation and a solution to this equation is :

T l

α = r−1/2J
l+ 1

2

(
√

α

η
r

)

(47)

Boundary conditions for toroidal magnetic field are:

T l
(a) = 0 =⇒ J

l+ 1

2

(
√

αn

η
a

)

= 0 (48)

As for the problem 1, the vanishing of T at the boundary yield a determination of the zeros

λn =

√

αn

η
a of the Bessel function. We can then expand T l

as a Fourier-Bessel serie:

T l
=

∞
∑

n=0

Anr−1/2e−tηλ
2
n
/a

2

J
l+ 1

2

(λnr) (49)

The total representation of the toroidal magnetic field inside the conductor is thus:

Ti(r, t) =

∑

l

Yl(θ, φ)

∞
∑

n=0

Al

nr−1/2e−tη(λl

n
)2/a2

J
l+ 1

2

(λl

nr) (50)

The field is now expanded in term of Bessel function but also of spherical harmonics. In

addition of the orthogonality for bessel function (9) we have to consider the orthogonality

of spherical harmonic:
∫

dΩY m

l (θ, φ)Y m′

l′ (θ, φ) = δll′δmm′ (51)

We can now use boundary conditions to compute the coefficient Al
n. Because the toroidal

field is vanishing on the boundary, it leads to consider integral restricted to the conducting

domain. We evaluate thus the integral :

I =

∫

dΩ

∫ 1

0
r2drTi(r, 0)r

−1/2J
l+ 1

2

(λl

nr)Yl(θ, φ) (52)

We expanding Ti(r, 0) and using orthogonality, I becomes:

I =

∫

dΩ

∫ 1

0
r2dr

∑

l′

∑

n′

Al′

n′(r−1/2
)
2J

l+ 1

2

(λl

nr)J
l′+ 1

2

(λl′

n′r)Yl(θ, φ)Yl(θ
′, φ) (53)

I =

∑

l′

∫

dΩYl(θ, φ)Yl(θ
′, φ)

∑

n′

Al
′

n′

∫ 1

0
rdrJ

l+ 1

2

(λl

nr)J
l′+ 1

2

(λl
′

n′r) (54)

I = Al

n[J
l+ 3

2

(λl

n)]
2

(55)

By changing bounds of the integral over r, we finally obtain an expression for Al
n :

Al

n =

√
aη

a3[J
l+ 3

2

(λl
n)]2

∫

dVcondr
−1/2J

l+ 1

2

(λl

nr/a) (56)
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We see here that the boundary conditions for the toroidal field lead to quantification

of the modes and, as in the section 2, we expect that the energy will be dominated by the

decay rate of the modes. Using orthogonality of Bessel fuction and spherical harmonic we

get an expression for the evolution of the energy:

εT =

∑

l

∑

n

|Al
n|2
2

e−2η(λl

n
)2t/a2

[J
l+ 3

2

(λl

n)]
2

(57)

By derivating this energy with respect to t and using Gronwall inequality like in section 2,

we get an exponential bounds for the energy related to the less damped mode:

εT ≤ εT (0)e−2tη(λ1

1
)2/a

2

(58)

4.2 Poloidal decay problem

Let’s do the same thing for the poloidal part of the magnetic field. The SPherical harmonic

decompostion is still possible:

P =

∑

l

P̂ lYl(θ, φ) (59)

Inside the conductor, the equation is the same than for the toroidal part and we get the

solution:

P l

γ = r−1/2J
l+ 1

2

(

√

γ

η
r) (60)

Where γ denotes now the decay rate of poloidal component P l
γ . The boundary conditions

are however different in the case of the poloidal field. According to the equation (43) the

scalar P is harmonic outside the conductor and P l
(r, t) = c(t)r−(l+1)

.The radial derivative

of this field at the outer boundary is then related to P by:

∂P l
γ

∂r
+

(l + 1)

a
P = 0 (61)

By plugging expression (60) into equation (61) and using recurrence relation for the Bessel

functions, we obtain:

J
l−

1

2

(

√

γ

η
a) = 0 (62)

We see here that the boundary conditions discretize the possible decay rate of the field as

for toroidal part but involve now zero of J
l−

1

2

. This is easy to relate it to the zeros λl
n of

J
l−

1

2

and the decay rates of the modes are given by:

γl

n = η
(λl−1

n )
2

a2
(63)

We thus have the following expansion for P inside the conductor:

Pi(r, t) =

∑

l

Yl(θ, φ)

∞
∑

n=0

Bl

nr−1/2e−tη(λl−1
n )2/a

2

J
l+ 1

2

(λl−1
n r) (64)
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Outside the conductor, the field is expanding only on the spherical harmonics, and is totally

determined by the value of the internal field at the boundary:

Po(r, t) =

∑

l

cl
(t)Yl(θ, φ)r−(l+1)

(65)

Where we use the boundary conditions to calculate the coefficent cl
(t) :

cl
(t) =

∞
∑

n=0

Bl

nal+1/2e−tη(λl−1
n )2/a2

J
l+ 1

2

(λl−1
n a) (66)

The determination of the coefficient is identical as for the toroidal field and give:

Bl

n =

√
aη

a3[J
l+ 3

2

(λl−1
n )]2

∫

dVcondr
−1/2J

l+ 1

2

(λl−1
n r/a) (67)

Here again, the rate of decay of the magnetic energy will be governed by the decay rate

of the less damped mode. However, because of the shift in the index l, the first eigenvalue

is now given by λ0
1 = pi and we get the following bounds for the rate of decay of the energy:

εP ≤ εP (0)e−
2ηπ

2

a
2

t
(68)

Although the poloidal magnetic field is not constrained to a finite volume like the toroidal

one, we see that it can also be represented as a discrete sum of magnetic modes, with

quantification of the possible decay rate, yielding an exponential bound for the energy. We

note however that the amount of energy outside is finite, in opposition with the problem of

the section 3 where an exponential decay could not be reached.

By comparing equations (58) and (68), we note that the poloidal energy is decaying much

slowly than the toroidal field. This can easily be explained: P is not vanishing outside and

create a large amount of energy. In the vaccum, there is no mechanisms to dissipate the

energy and this energy is forced to collapse on the conductor by use of the Poynting flux.

In consequence it is more difficult for the system to dissipate this energy. In the limit of an

infinite energy, we have seen in section 3 that the system lost its ability to exponentially

damp the energy and we get a power law.

The conclusions presented here simply a conjecture of the different case explored here and

can not be taken as rigourous assumption.We will next use a more simple model trying to

capture the essential arguments presented here.

5 Simple model

The geometries and the calculations involved in the previous cases are relatively compli-

cated. In this section we will study a very idealized mathematical model, in the perspective

of a better comprehension of the different behavior of the energy depending on the situation

outside the conductor.
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Let us consider a one dimensional problem involving a scalar φ(x, t) depending only on

the x direction. The domain is divided in two part: the inside part for r < a and the outside

part from a to infinity. Inside, φ obey the equation:

φ̇ = Dφ′′
(69)

Where the dot means time derivative and the prime means x derivative. D is a coefficient

of diffusion. Outside the conducting region, we suppose an equation of the type:

φ(x)
′′ − m2φ = 0 (70)

Where m is a parameter representing the spatial damping of the field outside. Indeed

solution outside is of the form φ ∼ e−m(x−a)
. By supposing exponential decay for the time

dependance of φ we get the equation :

φ(x)
′′

+
α

D
φ = 0 (71)

α is the decay rate of the mode. The boundary condition for the field at the origin is

φ′
(0) = 0 A solution of this equation satisfaying φ non-zero at x = 0 is φ(x) = cos(kx) with

k =

√

α/D. We can now use the boundary conditions for this problem. We suppose here

that φ and its derivative in x are continuous at the interface, leading to the same kind of

relation than in the case of the poloidal field:

φ′
+ mφ = 0 (72)

By plugging the expression for φ in this equation, we get:

tan(kna) =
m

kn

(73)

This yield a quantification of the decay rate αn = k2
nD. We can now expand our field on

the Fourier-cosine series:

φ(x, t) =

∑

n

φncos(knx)e−k
2
n
Dt

(74)

By using of the classical orthogonality relationship for cosine, the coefficients are obviously

given by:

φn =

∫

∞

O

dxcos(knx)φ(x, 0) (75)

As in the previous section, the energy is bounded by the less damped mode and we have:

εφ ≤ εφ(0)e−2Dk2

1
t

(76)

This model show clearly how the decay rate of the energy of a field is related to the extension

of this field in the space. Here, m represent the damping of the field outside the conductor.

For large m, the field is strongly damped near the boundary and tend to a constant value

of (
π

2a
)
2

when m is increased. This is the situation for the diffusion of toroidal field seen

before, where the field is confined to the inside region. When m is decrease, this correspond

to an increase of the extension of the field outside the conductive region. The slowest decay
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rate is then reducing and the corresponding energy is less and less damped. In the limit

of m very small, the decay rate of the energy tends to zero. However, one can note that

when m = 0, the only solution satisfying the boundary conditions is φ = 0. This behavior

illustrate all the case studied before and show clearly the relationship between the external

energy and the internal diffusion.

Using these simple examples, we have seen how the energy outside a conductor can

play an essential role in the dissipation of the energy inside the conductor. In particular, a

large amount of energy outside the conductor will in general collapse on the conductor and

reduce the damping of the total energy by forcing the system to dissipate more energy. This

means that surrounding a conductor with vaccum can help the system to keep its energy.

In experimental situation, for instance in dynamo experiment, the conducting fluid is in

general separated from the insulating region by the container, which can be a metal with

different magnetic properties. In the next section we will study the decay problem for this

more complicated situation.

6 Effect of ferromagnetic materials

We consider the same situation than for the decay problem in spherical geometry. In

addition, we suppose now that there is two concentric sphere with region of different per-

meability. We consider only the decay problem for a poloidal magnetic field. The equation

in the inner sphere of radius r = r1 is given by:

∂P

∂t
= η1∆P (77)

For the external shell (r1 < r < r2) we have the equation :

∂P

∂t
= η1∆P r < a (78)

For r > r2, the field is harmonic in a medium of permeability µ0 By using spherical harmonic

expansion and solving the radial equation we find that the solution to this problem, for a

given decay rate α, is given by:

P l
(r) = Cr−1/2J

l+ 1

2

(
√

α

η1
r

)

(79)

for the field in the inner sphere. In the shell we have now:

P (r) = Ar−1/2J
l+ 1

2

(
√

α

η2
r

)

+ Br−1/2N
l+ 1

2

(
√

α

η2
r

)

(80)

where Nl(r) is the neumann function which appears because we can not invoke singularity

at the center for eliminating it. Note that the decay rate is assumed to be identical in the

two region of the problem. The boundary conditions at the external sphere is the same

than before, but we suppose now that the permability of the two regions are not identical:

∂P

∂r
+

µ2

µ0

(l + 1)

r2
P = 0 (81)
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Using Bessel expansion it gives us the relation:

kr2Jl−
1

2

(kr2)+(l+1)(
µ2

µ0
−1)J

l+ 1

2

(kr2) = −B

A

[

kr2Nl−
1

2

(kr2) + (l + 1)(
µ2

µ0
− 1)N

l+ 1

2

(kr2)

]

(82)

with k =

√

α

η2
The second boundary condition, acting on the inner core, consists on the

following system:

[B] = 0 (83)

[

∂B

∂r

]

=
µ1

µ2
(84)

leading to the equation :

B

A
=

√

µ2σ1

µ1σ2
jl(ρ2)j

′
l
(ρ1) − j′

l
(ρ2)jl(ρ1)

−
√

µ2σ1

µ1σ2
yl(ρ2)j′l(ρ1) − j′

l
(ρ2)jl(ρ1)

(85)

The decay rates are then quantized and given by solving the system of equations (82)

and (85).THis can be done numerically for any value of the permabilties. However, by

considering the limit of high permeability for the shell, asymptotic calculation leads to the

following expression for the decay rates of the system:

αn

l = (l + n)
2 π2σ1µ1

(r1 + r2)
2σ2µ2

(86)

We see here that the limit of high permeability leads to a decrease of the damping rate of

the energy of the system. This effect is stronger for a thin shell. This result suggest inter-

esting modification for dynamo experiment in spherical geometry currently ongoing. For

example, in the Madison experiment, surrounding the experiment with a shell of ferromag-

netic materials (soft iron for instance) will probably yield a more excitable system and may

cause a decreasing in the threshold of the dynamo instability( see figure ??). Increasing the

permeability of the inner sphere instead of the external ones leads to similar decrease of the

decay rate and using ferromagnetic core would be a modification for dynamos experiment

like DTS experiment in Grenoble in France or in Maryland experiment where two concentric

sphere are used (see figure ??).

In more realistic MHD situation, the conductor is a fluid, the system have now more

complex way to dissipate the energy. It is thus of primary interest to consider the MHD

case and see how the system dissipate the energy.

7 MHD bounds and background method

In this section we would like to study shear flow of a conducting fluid across a magnetic

field. This situation occurs in many physical situation in astrophysical object or industrial

application. In general, this imply the existence of Hartmann layers near the boundaries

of the system. In particular we want to study such an Hartmann layer when one consider
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Figure 1: decay rate of the energy inside the sphere when the permeability of the shell is

increased, for different aspet ratio. In the limit of ferromagnetic shell, the energy of the

system do not decay.

Figure 2: decay rate of the energy inside the sphere when the permeability of the core is

increased, for different aspect ratio. In the limit of ferromagnetic core, the energy of the

system do not decay.
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Figure 3: Setup of the Hartmann problem

realistic boundary conditions for the magnetic field, for instance when the conducting region

is in contact with insulator walls or vaccum.The main quantities of interest are the energy

stability and the rate of dissipation of this system.

The problem consist of a layer of conducting fluid of kinematic viscosity ν and magnetic

resistivity η confined between two horizontal plates of size L in x and z directions. The

plates are located between y = −d/2 and y = +d/2. There is a force F creating some flow

in the x direction and an imposed constant magnetic field B0 in the vertical direction. We

assume periodic boundary conditions in the horizontal directions x and z for all the fields.

In the vertical direction y there is no slip boundary conditions for the velocity field and the

magnetic field match a potential field due to insulating region outside (see figure ??).

The solenoidal velocity fields v and B satisify the MHD equations:

∂v

∂t
+ (v · ∇)v = −∇π + ν∆v + F +

1

µρ
(B · ∇)B, (87)

∂B

∂t
= ∇× (v ×B) + η ∆B. (88)

In the above equations, ρ is the density, µ is the magnetic permeability and σ is the con-

ductivity of the fluid.

A laminar solution for Hartmann flow is given by:

UH =
Fd

2B0

√

η

ν





cosh(
B0d

2
√

νη
) − cosh(

B0y
√

νη
)

sinh(
B0d

2
√

νη
)



 (89)

for the velocity field and :

BH =
Fd

2B0





sinh(
B0y
√

νη
)

sinh(
B0d

2
√

νη
)
− 2y

d



 (90)

For the magnetic field.

We will use different dimensionless number in this section. The Hartmann number:

Ha =
B0d√

νη
(91)

The grashoff number:

Gr =
Fd3

ν2
(92)
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Figure 4: Laminar solution for the Hartmann problem

and the magnetic grashoff number:

Gm =
Fd3

νη
(93)

We define the dissipation associated with this laminar state as:

D = ν〈|∇UH|2〉 + η〈|∇BH|2〉 (94)

where brackets indicate space averaging. We can then evaluate the laminar dissipation:

D =
Ha1/2

2
√

2Ha

[

coth(Ha) − 1

Ha

]

(95)

We note here that the magnetic field tends to zero when the applied field vanish and the

velocity reduce to Poiseuille flow.

7.1 Background decomposition

In order to do the energy stability and estimate bounds on the dissipation, an useful method

is to decompose the fields into two parts. A stationnary background profile depending only

on y and a perturbation part:

v = iUb(y) + u (96)

B = iBb(y) + jBo + b (97)

The background profile and the perturbations can be any fields given the conditions that

the total field have to be divergence-free and satisfy the boundary conditions. We can then

use this decomposition in the equations (87) and (88). By adding the two equations, this

gives the expression for the energy of the perturbation defined by E = u2/2 + b2/2:

∂E

∂t
= 〈uxB0B

′
b〉 + 〈bxB0U

′
b〉 + 〈(bxby − uxuy)U

′
b〉

+ 〈(uxby − uybx)B′
b〉 + η〈∆b.b〉 − ν〈|∇u|2〉

+ ν〈uxU ′′
b 〉 + η〈bxB′′

b 〉 + 〈uxF 〉 (98)

7.2 Poincare inequality

Before doing the energy stability, we need to obtain an inequality for the term 〈∆b.b〉 ine

the energy equation above. Indeed, the classical Poincare inequality which we use for the
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velocity field can not apply for the magnetic field due to the boundary conditions.

Let’s derive the magnetic field in Fourier space:

bi =

∑

k

bk

i (y)φk (99)

i.e.

bi =

∞
∑

k=0

bk

i (y)ei(kxx+kzz)
(100)

where subscipt i stands for x,y or z and φk are the eigenfunction of the horizontal

laplacian with eigenvalue λk = k2
x + k2

z = k2
h
, satisfying the equation:

(∂xx + ∂zz)φk = λkφk (101)

We see that the fourier coefficient depend on y since b is different from zero at the boundaries

and Fourier decomposition is impossible in this direction. However, the field is harmonic

outside the conductor and the Fourier modes satisfy :

(∂yy − k2
h)bk

i (y) = 0 (102)

which give us :

bk

i (y) = e−k
h
(y−d/2)

(103)

bk

i (y) = ek
h
(y+d/2)

(104)

In the same manner that for the poloidal field in the sphere, the continuity of the field

and its derivative imply :

∂yb
k

i (
d

2
) + khbk

i (
d

2
) = 0 (105)

∂yb
k

i (−
d

2
) − khbk

i (−
d

2
) = 0 (106)

We remark here that the magnetic field satisfy mode by mode exactly the same conditions

than the toy model. Suppose now that the vetical dependance of the field can be described

by the following expansion for the coefficents bk

i
(y):

bk

i (y) = Acos(qky) + Bsin(qky) (107)

The boundary conditions becomes:

tan

(

qkd

2

)

= ±
(

kh

qk

)±1

(108)

This equation yield an expression for the wavenumber qk Using this expansion, it is straight-

forward to derive an expression for ∆B.B :

− 〈∆B.B〉 = −
∫ + d

2

−
d

2

dy
∑

k

bk
(∂yy − k2

h)bk

=

∫ + d

2

−
d

2

dy
∑

k

(q2
k + k2

h)|bk|2) ≥ (q2
1 + k2

1)〈B2〉 (109)
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Where we use the first wavenumber to bound the expression. Eliminate the k = 0 terms,

(there is no horizontally averaged magnetic field) we get the Poincare inequality :

−η〈∆B.B〉 ≥ η(
π2

L2
+ q2

1)〈B2〉 (110)

7.3 Energy stability

The stability of the Hartmann layer is an important characteristic of the system. A complete

determination of the problem would imply to solve the full variationnal problem involving

the resolution of the Euler-Lagrange equation. We will instead derive rigourous energy sta-

bility by considering appropriate bounds on the energy. Note that this method generally

capture the main behavior of the system and the full resolution only improve the results by

some factor.

The background kinetic and magnetic fields are now taken to be the laminar solutions

of the problem. The energy equation (98) simplify in :

∂E

∂t
= −F [u,b] (111)

where the funtional F is given by:

F [u,b] = 〈(bxby − uxuy)U
′
H〉 + 〈(uxby − uybx)B′

H〉
− η〈∆b.b〉 + ν〈|∇u|2〉

(112)

Using Holster and Young inequality, we can bound the two first term of the above

quaratic form as follow:

〈(bxby − uxuy)U
′
H〉 ≤ max(|U ′

H
|)

2
〈b2

+ u2〉 (113)

〈(uxby − uybx)B′
H〉 ≤ max(|B′

H
|)

2
〈b2

+ u2〉 (114)

The two last term can be controlled by Poincare inequalities

ν〈|∇u|2〉 ≥ ν
π2

d2
〈u2〉 (115)

−η〈∆b.b〉 ≥ η(
π2

L2
+ q2

0)〈b2〉 (116)

The above inequality yield conditions for non-negativity of the quadratic form (112) which

can be formulated as:

G2
m [Ha coth(Ha) − 1]

2 ≤ Ha2
(

2π2 − Gr

)

(

2

(

d2π2

L2
+ q2

0d
2

)

− Gm

)

(117)
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Figure 5: Energy stability of the Hartmnn flow for different Hartmann number.

Figure 6: Evolution of the stability with the aspect ratio of the problem.

In the limit where Gm tends to zero, we find the energy stability of the Poiseuille flow.

Figure (??) show the energy stability in the plane Gr −Gm for different Hartmann number.

We see here that the results depend now on the aspect ratio r = L/d and the figure (??)

illustrate the destabilisation of the Hartmann flow when the lenght perpendicular to the

magnetic field is increased.

7.4 Bound on dissipation rate

Using the procedure followed in the previous section, we are now interesting in the total

dissipation of the system, defined by:

D = ν〈|∇v|2〉 + η〈|∇B|2〉 (118)

To determined bounds on the dissipation, we now choose arbitrary backgrounds, which

are not the laminar solutions but which will be determined in order to get the best possible

estimation of the bound.

Taking the equation (98) and adding to the energy half of the total dissipation we obtain:
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∂E

∂t
+

D

2
= 〈uxB0B

′
b
〉 + 〈bxB0U

′
b
〉 + 〈(bxby − uxuy)U

′
b
〉

+ 〈(uxby − uybx)B′
b〉 −

η

2
〈∆b.b〉 − ν

2
〈|∇u|2〉

+
ν

2
〈U ′2

b 〉 +
η

2
〈B′2

b 〉 + 〈uxF 〉 (119)

In order to eliminate the linear term in the previous expression, we perform the following

change of variable:

u = w − iVb(y) (120)

b = h − iHb(y) (121)

with:

νV ′′
b = B0B

′
h (122)

and:

ηH ′′
b

= B0U
′
h

(123)

We end up with the final expression for the dissipation rate of the Hartmann layer:

D = 2F 〈Ub〉 − Db + Qb (124)

where the functional Q is given by

Qb = ν〈|∇w|2〉 − η〈∆h.h〉 − 2〈(hxhy − wxwy)U
′
b + (wxhy − wyhx)B′

b〉 (125)

We see that if we can find background fields such that the quadratic form Qb is non-negative,

the dissipation will be bounded by an expression depending only on the backgroun profiles.

Using the same inequalities than for the estimation of the energy stability, we can obtain

conditions for positivity of the quadratic form Qb leading to a lower bound for the dissipation

. This bound is valid only in the region of parameter space defined by

Rm ≤ 4

(

π2d2

L2
+ d2q2

0

)

1

Re
(126)

One can note that this prediction on the dissipation rate of the system is very weak. Indeed,

the bound on the dissipation is restricted to a laminar region and do not apply for turbulent

behavior. This problem come from the fact that the estimation of the bounds is done without

taking into account the presence of the boundary layers which would occur in any physical

situation.

Focusing on the boundary of the system, we can use the fundamental theorem of calculus,

Schwartz and Young inequalities in order to get:

〈(wxwy)U
′
b〉 ≤ U∗δ|∇w|2〉 (127)

The derivation of this equation come from the fact that the conditions of vanishing per-

turbation w on the boundary give a control on the magnitude of the gradient of the field
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inside the conductor. The same derivation is not possible for the magnetic field, where the

matching with an external potential field do not offer any control on the value of h at the

boundary. In fact, these boundary conditions specify only a relation between the field and

its gradient at the boundary, which is not sufficient to conclude something about the gradi-

ent inside the conductor. In consequence, it is not possible to characterize the behavior of

the magnetic field in the boundary layers, leading to the impossibility of obtaining a bound

on the dissipation rate.

8 Conclusion

We have seen in the first sections that the vaccum can play an important role in the

dissipation of a conductor or MHD system. It is thus of primary interest to see how

stability or dissipation rate are changed when one take into account realistic boundary

conditions. Using the background we studied the Hartmann flow problem in order to derive

energy stability and lower bound on the dissipation rate. We have seen that the insulating

boundary conditions do not allow sufficient control on the magnetic field in the boundary

layer to get a bound on the dissipation rate. This suggest to use a different approach,

involving a modification of the classical background method.
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MHD Toy Model of the Solar Radiative Zone

Céline Guervilly
advised by Pascale Garaud

January 12, 2009

1 Introduction

The Sun can be roughly divided into three different regions:

• The nuclear core, located in the inner part until 20% of the solar radius
1

where heat

is produced by nuclear fusion of hydrogen.

• Between 0.2r� and 0.7r� the temperature is not high enough for nuclear reactions

to proceed. The energy produced in the core is transported through this region

by radiation which gives its name to this layer: the radiative zone. This layer is

characterised by strong thermal stratification.

• In the outer region heat is transported primarily by convective motions. This leads

to a well-mixed layer called the convective zone.

An important feature of the solar interior is its rotation profile. In this report, we describe

a toy model of the solar radiative zone that can be used to investigate the interior rotation

rate. During the last few decades, technological advances in helioseismology have provided

accurate observations of the solar interior. The axisymmetric angular velocity profile de-

duced from observations is shown in figure 1. Differential rotation is observed within the

convective zone: the equatorial region rotates about 30% faster than the polar regions.

There, the rotation profile at a fixed radius can be fairly accurately expressed as

Ωcz(θ) = Ωeq(1 − a cos
2 θ − b cos

4 θ), (1)

where Ωeq is the rotation rate at the equator and θ is the colatitude. The numbers a and b
are determined by the observations. Near the lower region of the convective zone a = 0.17
and b = 0.08 (Schou et al. [4]). Meanwhile the radiative zone is near-uniformly rotating

at a rate Ωrz ' 0.93Ωeq where Ωeq is the angular velocity at the equator at the bottom of

the convective zone. The transition between the convective zone and the radiative zone is

called the tachocline and has an important dynamical role.

An obvious question which comes to mind is why is the radiative zone rotating uniformly.

1Hereafter the solar radius is denoted r�.
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Figure 1: Angular velocity profile from solar observations in a meridional plane zonally

and temporaly averaged. The outer layer is the convective zone and the inner layer is the

radiative zone. The dashed line represents the base of the convection zone. Observations

of the inner most regions are not available by helioseismology. Source: SOHO/MDI

A standard explanation for this feature assumes the presence of a primoridial magnetic field

B confined within the radiative zone. Ferraro’s isorotation law (1937), which is valid in the

limit of negligible magnetic dissipation, states that

B · ∇Ω = 0, (2)

for an axisymmetric rotating fluid in the steady state. Consequently the angular velocity

is constant along magnetic field lines. If the field within the radiative zone has an “open”

configuration, the magnetic field lines connected with the convective zone would transfer

the differential rotation into the radiative zone; we shall call this a differentially rotating

Ferraro state. On the otherhand, a close field configuration allows an uniformly rotating

radiative zone. Gough and McIntyre [2] proposed a theoretical model (figure 2) that insured

the uniform rotation of the radiative zone with:

• a differential rotation imposed by the convective zone,

• a primordial dipolar magnetic field in the radiative zone,

• down-welling meridional flows at the top of the radiative zone that confine the mag-

netic field, which itself prevents the flow from penetrating deeper into the radiative

zone.

Numerical simulations based on this model have been carried out by Garaud & Garaud [1].

Their code is steady-state, axisymmetric, fully non-linear and models the bulk of the ra-

diative zone as an anelastic conducting fluid. A radial velocity profile is imposed at the
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Figure 2: Picture of the model of Gough and McIntyre in a quadrant of the meridional

plane. The red lines in the radiative zone (blue layer) represent the confined magnetic field,

the black lines represent the meridional circulation which stays trapped in the top of the

radiative zone. The yellow top layer is the convective zone.

top of the radiative zone and a no-slip condition is taken at the interface with the nuclear

core. Both boundaries are assumed to be conducting with the same conductivity as the

fluid. For low enough diffusivities they find that the rotation rate of the uniformly rotating

region converges to about 86% of the imposed boundary rotation rate at the equator. The

meridional circulation remains confined near the top of the radiative zone and deforms the

poloidal magnetic field, which is almost confined within the radiative zone. When the inner

core is assumed to be an electric insulator the equatorial region of the radiative zone rotates

at 93% of the boundary rotation rate of the equator (figure 3, private communication).

Following the work of Garaud & Garaud we will investigate the following questions:

• What is the effect of the convective zone dynamics on the radiative zone? How does

the rotational shear propagate into the radiative zone?

• Can we build a simple analytical magnetohydrodynamic model of the radiative zone

to predict the rotation rate of the interior?

• How does the rotation rate vary when we impose different magnetic boundary condi-

tions?

2 Governing equations

A sketch of our toy model is presented in figure 4. The region we are interested in mimics

the solar radiative zone: a conducting fluid fills the shell between a uniformly rotating inner

sphere and a differentially rotating outer sphere. An axial dipolar magnetic field is imposed;

we present here the case of an open magnetic field. We make the following assumptions:

• The system has reached a steady state.

• The fluid is incompressible, and density is constant in the whole volume.
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Figure 3: Results of a numerical simulation carried out with the code of Garaud & Garaud

assuming an insulating inner core and a conducting outer boundary.

• In the solar radiative zone, the meridional circulation is slowed down by the strong

stratification profile. Consequently, the angular momentum transported by the merid-

ional flow is weak and will be neglected in this model. The non-linear terms are

neglected.

• The imposed poloidal magnetic field is Bp = ∇×
(

A

r sin θ
êφ

)

with A the poloidal field

potential A(r, θ) = B0r
3
in

sin2
θ

r
where B0 is the imposed radial field at the poles on the

inner sphere.

The magnetic field B and the velocity field u can therefore be decomposed in spherical

coordinates as

B =

(

1

r2 sin θ

∂A

∂θ
,− 1

r sin θ

∂A

∂r
,Bφ

)

, (3)

u = (0, 0, r sin θΩ) . (4)
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Ωc

Ωout(θ)

Ωin

rin rout

Figure 4: Diagram of our model.

The unknowns in our problem are the rotation rate Ω and the toroidal component of the

magnetic field Bφ. The forms of Ω and Bφ are given by solving the azimuthal component

of the Navier-Stokes equation and the magnetic induction equation respectively:

2ρΩc × u = −∇p +

(

1

µ0
∇× B

)

× B + ρν∇2
u, (5)

0 = ∇× (u × B) − η∇×∇× B, (6)

where ρ is the density, Ωc the (constant) global rotation of the system, µ0 the magnetic

permeability, ν and η the viscous and the magnetic diffusivities respectively.

Rigid rotation is assumed at the interface with the inner sphere. Therefore, the angular

velocity at the inner boundary is

Ω(rin, θ) = Ωin. (7)

At the outer boundary we use the angular velocity profile of the solar convective zone

Ω(rout, θ) = Ωout(θ) = Ωeq(1 − a cos
2 θ − b cos

4 θ). (8)

For the toroidal magnetic field we will test different boundary conditions in order to evaluate

their influence on the rotation profile. If we assume that the region exterior to the fluid is

an electric insulator then the toroidal magnetic field has to be zero at the boundaries:

Bφ(rin, θ) = 0, (9)

Bφ(rout, θ) = 0. (10)
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If we assume that the fluid is surrounded by a conductor with the same permeability and

conductivity as the fluid in the shell, then the radial and tangential components of the

magnetic field and its derivatives must be continuous, and the induction equation in a

steady state provides us the following boundary condition:

[∇2
B]φ = 0 for r < rin and r > rout. (11)

A difficult question is to decide which boundary condition is more relevant for the solar

interior. This work will shed some light on the problem.

Finally the angular momentum must be conserved since the system is in a steady-state.

Therefore the total torque applied in a spherical shell in the fluid is equal to zero:

∫

π/2

0

(

ρνr2
sin

2 θ
∂Ω

∂r
+ r sin θ

BrBφ

µ0

)

sin θdθ = 0. (12)

The first term is the viscous torque whereas the second term is the magnetic torque. This

equation determines uniquely Ωin.

3 Insulating boundary conditions

We consider first the magnetic boundary conditions (9) and (10).

3.1 Solution in the bulk

In the bulk of the fluid, we will assume that we are in the limit of small magnetic and viscous

diffusivities. This assumption is roughly valid in the Sun since the magnetic and viscous

Ekman numbers E�
η and E�

ν which measure the ratio of magnetic and viscous diffusivities

(resp.) over the Coriolis force are assumed to be about 3× 10
−14

and 2× 10
−15

(resp.). We

will therefore neglect both the viscous and magnetic diffusivities. Given our assumptions,

the equilibria that govern the system are

2ρΩc × u = −∇p +

(

1

µ0
∇× B

)

× B, (13)

0 = ∇× (u × B) . (14)

Combining the φ-component of equation (14) and equation (4) and the fact that u and B

are divergence-free, we obtain

[∇× (u × B)]
φ

= r sin θBp · ∇Ω = 0. (15)

Therefore in the bulk, the fluid is in a Ferraro iso-rotation state:

Bp · ∇Ω = 0, (16)

or in other words Ω is constant along the poloidal magnetic field lines in a meridional plane.

Using the φ-component of equation (13), we find

[(

1

µ0
∇× B

)

× B

]

φ

=
1

r sin θ
Bp · ∇(r sin θBφ) = 0, (17)
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so the quantity S ≡ r sin θBφ is also constant along poloidal magnetic field lines.

Moreover, we can show that Bp ·∇A = 0. Since A(r, θ) ∝ sin2
θ

r
then

sin2
θ

r
remains constant

along a magnetic field line. This determines the relationship between θin (the colatitude of

emergence of a field line out of the core) and θout the colatitude where the same field line

connects with the convection zone (figure 5):

sin
2 θin

rin

=
sin

2 θout

rout

. (18)

The relationship between θout and θin can be written as θout = Θ(θin) where

θin

θout

θmax

C

Figure 5: Picture of the dipolar magnetic field lines in the bulk of the fluid. The blue layers

represent the boundary layers.

Θ(θ) = sin
−1

(

(rout/rin)
1/2

sin θ
)

. (19)

The magnetic field line which connects to the equatorial plane at rout, which we call C,

crosses the inner sphere at the colatitude

θmax = sin
−1

(

rin

rout

)1/2

= Θ

(π

2

)

. (20)

The poloidal magnetic field lines which have a colatitude at the inner sphere between θmax

and π/2 connect to the inner sphere in the southern hemisphere without crossing the outer

sphere. Because of isorotation we will assume that the equatorial region included between

the equatorial plane and the line C is rotating uniformly. Consequently the integration of

the total torque in rin can be reduced to the region above the magnetic field line C:

∫

π/2

0
−→

∫

θmax

0
. (21)

This approximation allows us to avoid the equatorial region where the boundary layer

approach presented in the next section is not valid.
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3.2 Solution in the boundary layers

Equations (5) and (6) in the azimuthal direction can be written in spherical coordinates as

(Rüdiger & Kitchatinov, [3])

η

[

∂

∂θ

(

1

sin θ

∂(Bφ sin θ)

∂θ

)

+ r
∂2

(Bφr)

∂r2

]

= r

(

∂Ω

∂θ

∂A

∂r
− ∂Ω

∂r

∂A

∂θ

)

, (22)

ρν

[

1

sin
3 θ

∂

∂θ

(

sin
3 θ

∂Ω

∂θ

)

+
1

r2

∂

∂r

(

r4 ∂Ω

∂r

)]

=

1

µ0r2 sin
3 θ

(

r
∂A

∂r

∂(Bφ sin θ)

∂θ
− sin θ

∂A

∂θ

∂(Bφr)

∂r

)

. (23)

First we will consider the inner boundary layer. In order to simplify these equations we

will use a stretched variable in the boundary layer:

ζ =
r − rin

δin

. (24)

We assume that variations with θ are very small compared to those in the ζ-direction. We

will therefore neglect the θ-derivative in the equations. Note that this hypothesis happens

to fail near the equator where the boundary layer thickness diverges (see below). Equa-

tions (22) and (23) become

η
rin

δin

∂2Bφ

∂ζ2
= −∂Ω

∂ζ

∂A

∂θ
, (25)

ρνµ0
r3
in

sin
2 θ

δin

∂2
Ω

∂2ζ
= −∂A

∂θ

∂Bφ

∂ζ
. (26)

Combining these equations, we find

∂3Bφ

∂ζ3
=

∂Bφ

∂ζ
, (27)

∂3
Ω

∂ζ3
=

∂Ω

∂ζ
, (28)

provided

δin =
(µ0ρνη)

1/2

2 cos θB0
. (29)

This boundary layer is an Hartmann layer. Its thickness is proportional to the geometric

mean of the magnetic and viscous diffusivities. Moreover the layer becomes thinner if we

increase the strength of the imposed magnetic field. The layer is singular near the equator

where cos θ → 0.

The solutions of (27) and (28) are

Bφ(ζ, θ) = bin

0 (θ) + bin

1 (θ)eζ
+ bin

2 (θ)e−ζ , (30)

Ω(ζ, θ) = Ω
in

0 (θ) + Ω
in

1 (θ)eζ
+ Ω

in

2 (θ)e−ζ . (31)
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When ζ → ∞, Ω and Bφ have to remain bounded, and so Ω
in
1 = bin

1 = 0. Applying the

boundary conditions and the matching conditions, we find

Ω(ζ → 0, θ) = Ωin = Ω
in

0 (θ) + Ω
in

2 (θ) , (32)

Ω(ζ → ∞, θ) = Ω
in

0 (θ) , (33)

Bφ(ζ → 0, θ) = 0 = bin

0 (θ) + bin

2 (θ) , (34)

Bφ(ζ → ∞, θ) = bin

0 (θ) . (35)

Ω
in
0 (θ) and bin

0 (θ) are the solutions in the bulk of the fluid where we neglect viscous and

magnetic diffusivities. We will then call them Ω0(r, θ) and b0(r, θ). Finally the solutions are

Bφ(ζ, θ) = b0(rin, θ)(1 − e−ζ
), (36)

Ω(ζ, θ) = Ω0(rin, θ)(1 − e−ζ
) + Ωine−ζ . (37)

Using either (25) or (26), we find the relation between b0 and Ω0:

b0(θ, rin) =
δin

ηrin

∂A

∂θ
(Ω0(rin, θ) − Ωin) =

(

µ0ρν

η

)1/2

rin sin θ (Ω0(rin, θ) − Ωin) . (38)

Since the boundary condition on the inner core imposed that Bφ(rin, θ) = 0, and ρν is

assumed to be constant in the boundary layer, (12) becomes

∫

θmax

0
sin

3 θ
∂Ω

∂r
dθ = 0, (39)

which can be written as

∫

θmax

0

sin
3 θ

δin

∂Ω

∂ζ
dθ = 0. (40)

Using (37), we have

∂Ω

∂ζ
= (Ω0(rin, θ) − Ωin) e−ζ

=⇒ ∂Ω

∂ζ

∣

∣

∣

∣

ζ=0

= Ω0(rin, θ) − Ωin. (41)

Moreover

δin ∝ 1

cos θ
. (42)

Therefore (40) becomes

∫

θmax

0
sin

3 θ cos θ (Ω0(rin, θ) − Ωin) dθ = 0. (43)

Condition (12) should be valid everywhere in the fluid. In the bulk of the fluid, the kinematic

viscosity is neglected, so the torque applied to a spherical shell at radius rin + ε, where

ε > δin, is only the magnetic torque and (12) becomes

∫

π/2

0
(rin + ε) sin

2 θ
BrBφ(rin + ε, θ)

µ0
dθ = 0. (44)
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Using the value of Bφ in the bulk given by (38) and since Br ∝ cos θ we find the condition

∫

π/2

0
sin

3 θ cos θ (Ω0(rin + ε, θ) − Ωin) dθ = 0, (45)

which is the same condition as previously. The viscous torque acts only on the boundary

layer whereas the magnetic torque acts in the bulk, but together they maintain the previous

condition everywhere in the fluid.

We have to determine the value of Ω0(rin, θ) in order to calculate a value for Ωin. To

match Ω0(rin, θ) to its value at the outer boundary we have to find the solution in the outer

boundary.

We use the stretched variable in the outer boundary layer:

ξ =
rout − r

δout

. (46)

Proceeding as for the inner boundary layer, we find

Bφ(ξ, θ) = b0(rout, θ)(1 − e−ξ
), (47)

Ω(ξ, θ) = Ω0(rout, θ)(1 − e−ξ
) + Ωout(θ)e−ξ, (48)

with

b0(rout, θ) =

(

ρνµ0

η

)1/2

rout sin θ (Ωout(θ) − Ω0(rout, θ)) , (49)

and

δout =
(µ0ρνη)

1/2

2 cos θB0

(

rout

rin

)3

= δin

(

rout

rin

)3

. (50)

The thickness of the outer boundary layer δout is larger than that of the inner boundary

because the imposed magnetic field is proportional to 1/r3
, and therefore weaker at the

outer boundary.

Since S = Bφr sin θ is constant along a poloidal magnetic field line, we have

b0(rin, θin)rin sin θin = b0(rout, θout)rout sin θout. (51)

Using (38) and (49), we find

(rin sin θ)
2
(Ω0(rin, θ) − Ωin) = (rout sinΘ(θ))

2
(Ωout(Θ(θ)) − Ω0(rout,Θ(θ))) . (52)

Since the bulk of the fluid is in a state of iso-rotation, we expect that Ω0(rin, θ) =

Ω0(rout,Θ(θ)). Consequently,

Ω0(rin, θ) =
1

1 +
(rin sin θ)2

(rout sinΘ(θ))2

Ωout(Θ(θ)) +
1

1 +
(rout sin Θ(θ))2

(rin sin θ)2

Ωin, (53)

Ω0(rin, θ) =
1

1 +
r3

in

r3

out

Ωout(Θ(θ)) +
1

1 +
r3

out

r3

in

Ωin. (54)
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The condition (43) becomes

∫

θmax

0
sin

3 θ cos θ





1

1 +
r3

in

r3
out

Ωout(θout) + Ωin



−1 +
1

1 +
r3
out

r3

in







 dθ = 0, (55)

with

Ωout(Θ(θ)) = Ωeq

[

1 − a

(

1 − rin

rout

sin
2 θ

)

− b

(

1 − rin

rout

sin
2 θ

)2
]

. (56)

We find

Ωin

Ωeq

=

∫

θmax

0

(

1 − a(1 − rin

rout

sin
2 θ) − b(1 − rin

rout

sin
2 θ)

2
)

sin
3 θ cos θdθ

∫

θmax

0 sin
3 θ cos θdθ

, (57)

Ωin

Ωeq

= 1 − a

3
− b

6
. (58)

Using the values provided by the observations of the Sun, a = 0.17 and b = 0.08, we find

Ωin/Ωeq = 0.93. The remarks that we can draw from this result are:

• The result does not depend on the gap between the two spheres.

• It is the same value as that observed in the Sun. Therefore we can wonder if this value

has a physical explanation. It is hard to answer this question but it is possible that

our simple model catches an essential feature of the dynamics of the solar radiative

zone.

3.3 No inner boundary

We wonder what happens if there is no inner boundary layer. Indeed the interface between

the nuclear core and the radiative zone is not a physical barrier submitted to no-slip con-

ditions. The nuclear core is defined simply as the place where the temperature is large

enough to trigger nuclear reactions. Therefore the interface between the inner core and the

radiative zone is merely an isotherm, and not a physical boundary.

The total torque applied on the outer sphere is

∫

π/2

0
ρνr2

out sin
3 θ

∂Ω

∂r

∣

∣

∣

∣

rout

dθ = 0, (59)

∂Ω

∂r

∣

∣

∣

∣

rout

= − 1

δout

∂Ω

∂ξ

∣

∣

∣

∣

ξ→0

= − 1

δout

(Ω0(rout, θ) − Ωout(θ)). (60)

We will match the solution in the bulk at rout with Ωin the angular velocity at rin. Under

these assumption the whole radiative zone is rotating uniformly at the angular velocity Ωin

(see figure 6). Consequently we have

∫

π/2

0
sin

3 θ cos θ(Ωout(θ) − Ωin)dθ = 0, (61)
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Ωin

Ω0(rout,θ)

Figure 6: Diagram of the model when considering no inner boundary. The radiative zone

is uniformly rotating and the outer boudary layer undergoes a strong shear.

where

Ωout(θ) = Ωeq

(

1 − a cos
2 θ − b cos

4 θ
)

. (62)

The whole interior is rotating at the angular velocity

Ωin

Ωeq

=

∫

π/2
0 sin

3 θ cos θ(1 − a cos
2 θ − b cos

4 θ)dθ
∫

π/2
0 sin

3 θ cos θdθ
, (63)

Ωin

Ωeq

= 1 − a

3
− b

6
. (64)

We find the same expression as previously. If a mechanism is able to impose an uniform

rotation to the radiative zone interior, then the presence of the outer boundary alone pre-

vents the transfer of the angular velocity from the convective zone to the deep radiative

zone along open magnetic field lines. In the outer boundary layer the zonal shear is very

strong, as in the solar tachocline.

3.4 Characteristic features of this toy model of the solar radiative zone

Our boundary layer analysis provided a solution valid from the poles to the magnetic field

line C. The solution in the equatorial zone can be deduced from geometrical considerations:

• The solutions are either symmetric or antisymmetric with respect to the equatorial

plane due to the symmetry of the imposed poloidal magnetic field. The angular

velocity, for example, is symmetric.

• The toroidal field on the other hand is antisymmetric with respect to the equatorial

plane; therefore S is also antisymmetric. An important consequence of this fact is that

since S has to be constant along the magnetic field lines, S and so the toroidal field

must be equal to zero in the equatorial region where field lines connect the northern

and southern hemispheres.
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• Another consequence is that the equatorial region, defined as the region between the

equatorial plane and the magnetic field line C, rotates at the constant angular velocity

Ωin = 0.93Ωeq.

• The presence of a rapidly rotating layer around the equatorial region is due to the

fact that a magnetic field line that connects just above the equator in the outer sphere

transfers the fast angular velocity of the convective zone at the equator until the inner

sphere.

• This rapidly rotating layer shears the poloidal magnetic field lines and creates a strong

toroidal magnetic field (the Ω-effect).

• Towards the poles the angular velocity transfered from the convective zone is lower.

Therefore the angular velocity in the bulk decreases at high latitudes.

An outline of the geometry of our asymptotic model of the solar radiative zone is presented

figure 7.

Ωin Ωeq
Βφ=0

Figure 7: Asymptotic model of the conducting fluid flow between two rotating spheres (no

viscosity, no magnetic diffusivity)

3.5 Comparison with numerical results

The code used to compare the analytical results with numerical simulations is a stripped

version of the code of Garaud & Garaud [1] modified to solve equations (22) and (23) only.

The same assumptions as in our analytical model are made except that the kinematic and
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magnetic diffusivities are not neglected in the main body of the fluid. The same boundary

conditions are adopted. Numerical simulations are limited by the fact that assuming very

low diffusivities means that the boundary layers are very thin and can not be resolved

numerically. To overcome this problem, diffusivities are enhanced by multiplying them by

a factor f . f = 1 means that the values adopted in the simulations are the solar values.

Figure 8 show the convergence of the numerical value of the ratio Ωin/Ωeq towards the

analytical value of 0.93 when decreasing the factor f . The results of a numerical simulation

are presented in figure 9. The structure of the angular velocity and the toroidal magnetic

field are similar to the ones predicted by our model in section 3.4. The rapidly rotating

layer is visible.

1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11

f

0.92

0.93

0.94

0.95

Ωin/Ωeq

Figure 8: Ratio of the angular velocity at the inner sphere and at the equator of the

convective zone in function of the factor f . The dots represent the results of the numerical

simulations and the dashed line the analytical value. Note theat f = 10
10

corresponds to

Eν = 2 · 10−5
and Eη = 3 · 10−4

.

The total torque (12) computed numerically as a function of the colatitude (figure 10)

is equal to zero if θ > θmax. This remark validates our assumption of neglecting the

contribution of the equatorial region (section 3.1).

4 Conducting boundary conditions

We now consider applying boundary condition (11) to the toroidal magnetic field. In the

convective zone and inner core the media are assumed to have the same electic conductivity

and permeability as the fluid in the shell. Therefore the tangential components of the

magnetic field are continuous. Outside the fluid domain Bφ satisfies the induction equation
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Figure 9: Results of the numerical simulations computed at f = 10
8
. Left: angular velocity

in a quadrant of the meridional plane (top) and at a fixed radius just above the inner

boundary layer (bottom). Right: function S = r sin θBφ similarly plotted.
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Figure 10: Total torque at rin in function of the colatitude.
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in the steady-state:

[

∇2
B

]

φ
= 0 (65)

⇒ ∇2Bφ − Bφ

r2 sin
2 θ

= 0. (66)

The solution of this equation on both sides of the cavity are

Bφ(r ≤ rin, θ) =

∞
∑

n=0

ain

n rn
d

dθ
[Pn(cos θ)] , (67)

Bφ(r ≥ rout, θ) =

∞
∑

n=0

aout

n r−(n+1) d

dθ
[Pn(cos θ)] , (68)

where Pn is the n-th Legendre polynomial. The continuity of Bφ and its r-derivative has to

be verified across the interface. Applying these conditions to the solutions in the boundary

layers (30), we find

∞
∑

n=0

ain

n rn

in

d

dθ
[Pn(cos θ)] = b0(rin, θ) + bin

2 (θ), (69)

∞
∑

n=0

ain

n nrn−1
in

d

dθ
[Pn(cos θ)] = − 1

δin

bin

2 (θ), (70)

∞
∑

n=0

aout

n r
−(n+1)
out

d

dθ
[Pn(cos θ)] = b0(rout, θ) + bout

2 (θ), (71)

∞
∑

n=0

−aout

n (n + 1)r
−(n+2)
out

d

dθ
[Pn(cos θ)] =

1

δout

bout

2 (θ). (72)

The system of equations arising from this choice of boundary conditions is too complex to

solve in spherical coordinates. For simplicity, we adopt a local cartesian box model for the

boundary layers.

4.1 The Cartesian box

The model is illustrated in figure 11. We make the same assumptions as previously and in-

troduce periodicity in the y-direction (equivalent to the θ-direction in spherical coordinates).

The system is invariant in the x-direction, which corresponds to the φ-direction in the orig-

inal spherical coordinates. A magnetic field is imposed in the z-direction, and depends only

on y. The magnetic field and the velocity are decomposed in cartesian coordinates as

B = (b, 0, B0), (73)

u = (u, 0, 0). (74)

We solve the system for the unknown b and u. The Navier-Stokes and the induction equa-

tions in the x-direction become under our assumptions

B0(y)
∂b

∂z
= −ρνµ0∇2u, (75)

B0(y)
∂u

∂z
= −η∇2b. (76)
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Figure 11: Diagram of the cartesian box.

4.2 Boundary layers

As in the spherical case, we use a stretched variable in the boundary layers. For the inner

boundary, we use

ζ =
z

δin

, (77)

and for the outer boundary

ξ =
1 − z

δout

. (78)

In our boundary layer approximation, the y-derivative will be neglected. The previous

equations become in the inner boundary

B0(y)
∂b

∂ζ
= −ρνµ0

δin

∂2u

∂ζ2
, (79)

B0(y)
∂u

∂ζ
= − η

δin

∂2u

∂ζ2
. (80)

In the outer boundary layer the equations are similar apart from the sign. Combining the

above equations in each boundary layer, we find

∂3b

∂ζ3
=

∂b

∂ζ
, (81)

∂3u

∂ζ3
=

∂u

∂ζ
, (82)

with

δin = δout =
(ρνηµ0)

1/2

B0(y)
= δ. (83)
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As previously, these boundary layers are Hartmann layers. The solutions of these equations

are, in the inner boundary,

u(ζ, y) = u0(z = 0, y) + uin

2 (y)e−ζ , (84)

b(ζ, y) = b0(z = 0, y) + bin

2 (y)e−ζ , (85)

bin

2 (y) =
ρνη

δB0(y)
uin

2 (y). (86)

The solutions in the outer boundary are analogous, apart from sign changes. Angular

momentum conservation gives us the condition

∫ 2π

0

[

ρν
∂u

∂z
+

1

µ0
B0b

]

dy = 0. (87)

Moreover, continuity of the velocity in the bulk along the magnetic field lines
2

of B0 provides

another condition

u0(z = 1, y) = u0(z = 0, y), (88)

b0(z = 1, y) = b0(z = 0, y). (89)

The boundary conditions on the velocity are

u(z = 0, y) = uin, (90)

u(z = 1, y) = uout(y). (91)

In order to find an analogy with the previous case, we will first study the case where b = 0

outside on both sides.

4.3 Insulating boundaries

In this case, the boundary conditions for the tangential magnetic field are

b(z = 0, y) = b0(z = 0, y) + bin

2 (y) = 0, (92)

b(z = 1, y) = b0(z = 1, y) + bout

2 (y) = 0. (93)

Using (86), we find

2b0(z, y) = −bin

2 − bout

2 =
ρνη

δB0(y)

(

uout

2 (y) − uin

2 (y)
)

. (94)

When ζ → 0 and ξ → 0,

u0(z = 0, y) + uin

2 (y) = uin, (95)

u0(z = 0, y) + uout

2 (y) = uout(y), (96)

and using the continuity of u0 in the bulk along the y-lines

uin

2 (y) − uout

2 (y) = uin − uout(y). (97)

Plugging this equation into (87) we find

∫ 2π

0
B0(y)(uout(y) − uin)dy = 0. (98)

This equation is analogous to (43) by geometrical transformation.

2lines of constant y.
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4.4 Conducting boudaries

When conducting boundaries are applied, the tangential component of the field is continuous

across the interface. Outside of the fluid, the tangential magnetic field satisfies

∂2b

∂y2
+

∂2b

∂z2
= 0. (99)

For z /∈ [0, 1] the field can be written as

b(z ≤ 0, y) = βin

0 +

∞
∑

n=1

βin

n (z)einy, (100)

b(z ≥ 1, y) = βout

0 +

∞
∑

n=1

βout

n (z)einy , (101)

where the functions βn satisfies

−n2βn +
∂2βn

∂z2
= 0. (102)

The solution of this equation is

βn(z) = αne±nz, (103)

which has to remain bounded

if z > 1 : βout

n (z) = αout

n e−nz, (104)

if z < 0 : βin

n (z) = αin

n enz. (105)

The field is continuous at the interface so

bin

0 (y) + bin

2 (y) = βin

0 +

∑

βin

n (z = 0)einy, (106)

bout

0 (y) + bout

2 (y) = βout

0 +

∑

βout

n (z = 1)einy. (107)

The z-derivative of b also has to be continous across the interface which yields the two

additional equations

−1

δ
bin

2 (y) =

∞
∑

n=1

nβin

n (z = 0)einy , (108)

1

δ
bout

2 (y) =

∞
∑

n=1

−nβout

n (z = 1)einy. (109)

Adding the previous equations yields

1

δ

(

bin

2 (y) + bout

2 (y)
)

= −
∞
∑

n=1

n
(

βin

n (z = 0) + βout

n (z = 1)
)

einy. (110)
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Combining the relation between b2 and u2 in both boundary layers (86), we find

bin

2 (y) + bout

2 (y) =
ρην

B0(y)

1

δ
(uin

2 − uout

2 ), (111)

bin

2 (y) + bout

2 (y) =
ρην

B0(y)

1

δ
(uin − uout(y)). (112)

The results of the previous equations gives us

ρην

B0(y)

1

δ2
(uin − uout(y)) = −

∞
∑

n=1

n
(

βin

n (z = 0) + βout

n (z = 1)
)

einy
(113)

⇒
∫ 2π

0

ρην

B0(y)

1

δ2
(uin − uout(y))dy =

−
∫ 2π

0

∞
∑

n=1

n
(

βin

n (z = 0) + βout

n (z = 1)
)

einydy. (114)

Since the box is 2π periodic in the y-direction and β in
n (z = 0) and βout

n (z = 1) are constant,

the right-hand side is equal to zero. Since δ ∝ 1/B0 we have

∫ 2π

0
B0(y)(uout(y) − uin)dy = 0. (115)

This condition is similar to the case where b = 0 outside. Therefore we expect to find the

same rotation rate in the radiative zone with this kind of boundary condition. This means

that the boundary conditions imposed on the tangential field should a priori not influence

the rotation rate of the fluid.

4.5 Numerical results

Figure 12: Numerical results with conducting boundary conditions.

The results of a simulation where
[

∇2B
]

φ
= 0 is imposed on both sides is presented

in figure 12. We find that the inner core rotates with angular velocity Ωin = 0.86Ωeq,

contradicting the results of our analytic model of section 4.4. This value is lower than
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the case with insulating boundaries because we notice that the fast angular velocity of the

bottom of the equatorial convective zone is not propagated until the inner region of the

radiative zone. We observe that the toroidal field Bφ is about ten times stronger than in

the case where Bφ = 0 was imposed on both boundaries. We also observe, in figure 12, that

the Ferraro state is broken in the bulk of the fluid:

Bp · ∇Ω = η∇2Bφ 6= 0. (116)

It therefore appears that magnetic diffusivity plays a role in the bulk of the fluid which

explains why our analytical model fails to reproduce the numerical results.

5 Conclusions

This work allows us to draw several conclusions and perspectives:

• Our toy model with an open magnetic field and vaccum magnetic boundary conditions

provides a prediction of the interior rotation rate of the radiative zone in good agree-

ment with both solar observations and full numerical simulations (including meridional

circulations and all the non-linear terms (figure 3)). We find the solar value whereas

the structure is not uniformly rotating. Moreover it allows us to understand the force

balance of the system. The interior rotation rate of our simple model can provide

insight into the physical processes that occur in the solar radiative zone.

• The boundary conditions chosen for the toroidal field have important consequences

for the rotation of the fluid. However, the more relevant conditions for the Sun are

difficult to determine.

• The confined field case needs to be investigated because of its believed relevance to

the Sun.
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1 Introduction

In the past fifteen years the background method of Constantin, Doering, and Hopf has

been used to derive rigorous bounds on transport in fluid mechanics equations. The back-

ground method is based on the decomposition of the velocity or temperature field into a

background field and a fluctuation field. The background field is specified so that the fluc-

tuation field satisfies a partial differential equation with homogeneous boundary conditions.

Many bounding problems have a variational formulation under the background method.

The background method has been used to prove bounds on the mechanical dissipation rate

in various driven turbulent flows. This work was started by Constantin and Doering [4].

They studied the mechanical dissipation in shear flows at high Reynolds number. Since

then there has been a large number of papers about dissipation in turbulent shear flow with

different boundary conditions and geometries.

We extend this technique to flows driven by stress at the boundary, namely Marangoni

convection and surface shear stress driven flow. In the case of surface shear stress driven

flow we study the energy stability of the laminar flow solution as a function of the Grashoff

number and prove an upper bound on the friction coefficient for high Reynolds number.

Tang, Caulfield, and Young [6] first used the background method to prove bounds for this

type of problem and we compare our results to theirs.

The problem of Marangoni convection is related to that of stress driven shear flow. In the

Marangoni case the surface stress is due to surface tension gradients. Pearson [5] developed

the linear theory for Marangoni convection in 1958, and Davis [3] used variational methods

to study the nonlinear stability problem in 1969. In the case of infinite Prandtl number we

use nonvariational methods to improve the estimate of the critical Marangoni number for

nonlinear stability of the conduction solution. We also use the background method to prove

an upper bound on the Nusselt number in Marangoni convection.

2 Surface Stress Driven Flow

We consider the problem of flow in the two dimensional domain in Figure 2 subject to

periodic boundary conditions in the horizontal x direction, no slip conditions at z = 0, and
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Figure 1: Domain for the surface stress driven flow.

a fixed shear stress at z = h. The full system of equations is:

∂u

∂t
+ u · ∇u + ∇p = ν∆u (1)

∇ · u = 0 (2)

u|z=0 = 0 (3)

uz|z=h = 0 (4)

ν
∂ux

∂z
= τ (5)

We take periodic boundary conditions in x, with a domain length L.

2.1 Energy Stability Analysis in Two Dimensions

The laminar flow solution of these equations is ux =
τz

ν
. We perform the energy stability

analysis of this solution by making the substitution u = U +
τz

ν
x̂. The resulting system of

equations is:

∂U

∂t
+ U · ∇U +

τz

ν

∂U

∂x
+ Uz

τ

ν
x̂ + ∇p = ν∆U (6)

∇ · U = 0 (7)

Ux|z=0 = 0 (8)

∂Ux

∂z
|z=h = 0 (9)

Uz|z=0,1 = 0 (10)
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Take the dot product of the momentum equation with U and integrate over the domain to

derive the energy expression:

1

2

d‖U‖2

dt
+

∫

τ

ν
UxUzdxdz = −ν‖∇U‖2

(11)

If
d‖U‖2

dt
< 0 for all U satisfying the perturbation’s boundary conditions then the base

solution is stable. This derivative is given by a quadratic form −Q in U :

Q = ν‖∇U‖2
+

∫

τ

ν
UxUzdxdz (12)

We use variational methods to minimize Q, subject to the constraints ∇ · U = 0 and

‖U‖2
= 1. The resulting Euler-Lagrange equations are:

λUx = −ν∆Ux +
∂q

∂x
+

τ

2ν
Uz (13)

λUz = −ν∆Uz +
∂q

∂z
+

τ

2ν
Ux (14)

∇ · U = 0 (15)

‖U‖2
= 1 (16)

Here q is the Lagrange multiplier associated with incompressibility and λ is the Lagrange

multiplier associated with the normalization condition. We non-dimensionalize the equa-

tions by making the substitutions x′
=

x

h
and z′ =

z

h
. Define the Grashoff number Gr =

τh
2

ν2 .

Then if U ′
(x′, z′) = U(x, z) we have the following equations:

λUx = −∆Ux +
Gr

2
Uz +

∂q

∂x
(17)

λUz = −∆Uz +
Gr

2
Ux +

∂q

∂z
(18)

(19)

If the smallest eigenvalue λmin > 0 then Q is positive definite and the base solution

is stable. Since the system is two dimensional we introduce the stream function Ψ, which

satisfies
∂Ψ
∂x

= Uz and
∂Ψ
∂z

= −Ux. Take linear combinations of the x and z derivatives of

the resulting equations to eliminate the pressure. The Euler Lagrange equations become a

fourth order equation:

λ∆Ψ = −∆
2
Ψ − Gr

∂2
Ψ

∂x∂z
(20)

∂Ψ

∂x
|z=0,1 = 0 (21)

∂Ψ

∂z
|z=0 = 0 (22)

∂2
Ψ

∂z2
|z=1 = 0 (23)

(24)
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The system is periodic in x so we write Ψ in terms of its Fourier series. Let k = πj/L
be the wavenumber. We write Ψ =

∑

k
Ψ̂ke

ıkx
. Then the equations become:

λ

(

∂2
Ψ̂

∂z2
− k2

Ψ̂

)

= −
(

∂4
Ψ̂

∂z4
− 2k2 ∂2

Ψ̂

∂z2
+ k4

Ψ̂

)

− ıGrk
∂Ψ̂

∂z
(25)

Ψ̂|z=0,1 = 0 (26)

∂Ψ̂

∂z
|z=0 = 0 (27)

∂2
Ψ̂

∂z2
|z=1 = 0 (28)

We have supressed the k dependence of Ψ̂k. We search for the critical Grashoff number below

which all of the eigenvalues λ are positive. This can be done with numerical methods. Each

Fourier mode Ψ̂ satisfies a fourth order ODE in z. We used finite differences to calculate the

smallest eigenvalue corresponding to each k and determined the critical Grashoff number

from this. After discretizing in z the differential equation becomes a generalized eigenvalue

problem. We find that the critical Grashoff number is Gr = 140, at a value of k = 3.1.

2.2 Energy Stability for a Three Dimensional Stress Driven Flow

Consider the following non-dimensionalized equations for a three dimensional stress driven

flow:

∂u

∂t
+ u · ∇u + ∇p = ∆u (29)

∇ · u = 0 (30)

uz|z=0,1 = 0 (31)

ux|z=0 = 0 (32)

uy|z=0 = 0 (33)

∂ux

∂z
|z=1 = Gr (34)

∂uy

∂z
|z=1 = 0 (35)

The domain is periodic in x and y. A steady solution to this equation is ux = Grz. If

we make the substitution U = u + îGrz we can perform the same analysis as in the two

dimensional case. The variational formulation is different and so is the set of Euler-Lagrange

equations:

λUx = −∆Ux +
Gr

2
Uz +

∂q

∂x
(36)

λUy = −∆Uy +
∂q

∂y
(37)

λUz = −∆Uz +
Gr

2
Ux +

∂q

∂z
(38)
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If we assume that the eigenfuction for the lowest eigenvalue is not a function of x, we

can introduce the stream function Ψ defined by
∂Ψ
∂y

= Uz and
∂Ψ
∂z

= −Uy. The lowest

frequency eigenmodes of shear driven flows tend to be Langmuir circulation flows that are

independent of the streamwise direction. Our use of this assumption is justified by empirical

observations within this field [6]. The Euler Lagrange equations become:

λUx =
Gr

2

∂Ψ

∂y
− ∆Ux (39)

−λ
∂Ψ

∂z
=

∂q

∂y
+ ∆

∂Ψ

∂z
(40)

λ
∂Ψ

∂y
=

∂q

∂z
− ∆

∂Ψ

∂y
+

Gr

2
Ux (41)

Taking the z derivative with respect to the second expression and the y derivative with

respect to the first and third we can subtract the last two to eliminate the pressure:

λ
∂Ux

∂y
=

Gr

2

∂2
Ψ

∂y2
− ∆

∂Ux

∂y
(42)

λ∆Ψ = −∆
2
Ψ +

Gr

2

∂Ux

∂y
(43)

We can write an ODE for the fourier modes of Ψ:

λıkUx = −Gr

2
k2

Ψ̂ − ık

(

∂2Ux

∂z2
− k2Ux

)

(44)

λ

(

∂2
Ψ̂

∂z2
− k2

Ψ̂

)

= −
(

∂4
Ψ̂

∂z4
− 2k2 ∂2

Ψ̂

∂z2
+ k4

Ψ̂

)

+
Gr

2
ıkUx (45)

Ψ̂|z=0,1 = 0 (46)

∂Ψ̂

∂z
|z=0 = 0 (47)

∂2
Ψ̂

∂z2
|z=1 = 0 (48)

Ux|z=0 = 0 (49)

∂Ux

∂z
|z=1 = 0 (50)

This is an ODE and we can discretize it and convert it into a generalized eigenproblem.

We look for the critical Grashoff number Gr where the system first has a negative eigenvalue

for some k. We find that Grc = 51.7 at k = 2.1. This is in agreement with work done by

Tang, Caulfield, and Young [6].

2.3 Bounds on the Energy Dissipation in Two Dimensions

Define 〈·〉 to be the space time average and ·̄ to be the horizontal and time average. Begin

by taking the dot product of the momentum equation with u. After averaging we find that:

ν
〈

|∇u|2
〉

=
τ

h
ūx(h) (51)
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Define the dissipation ε = 〈ν|∇u|2〉, Reynolds number of the flow to be Re =
ūx(h)h

ν
, and the

friction coefficient to be Cf =
εh

ūx(h)3
. For the steady state solution Cf (Re) =

1
Re

. We want

to determine a limit on how Cf might scale with the Reynolds number by proving bounds on

the mean horizontal velocity at the z = h. Introduce a background field horizontal velocity

U(z) such that U satisfies the same boundary conditions as u. Consider the decomposition

u = îU + ũ. The following are the dimensionless equations for ũ:

∂ũ

∂t
+ ũ · ∇ũ + ∇p + U

∂ũ

∂x
+ îũz

dU

dz
= ∆ũ + î

d2U

dz2
(52)

ũ|z=0 = 0 (53)

ũz|z=h = 0 (54)

∂ũx

∂z
|z=h = 0 (55)

Take the dot product with ũ and compute the space time average:

0 = −
〈

|∇ũ|2
〉

−
〈

dU

dz
ũxũz

〉

+

〈

ũx

d2U

dz2

〉

(56)

The time derivative term vanishes because ‖ũ‖2
is bounded. If we integrate the last term

by parts in the z direction the previous expression becomes:

0 = −
〈

|∇ũ|2
〉

−
〈

dU

dz
ũxũz

〉

+ Gr ¯̃ux(1) −
〈

∂ũx

∂z

dU

dz

〉

(57)

= −
〈

|∇ũ|2
〉

−
〈

dU

dz
ũxũz

〉

+ Gr(ūx(1) − U(1)) −
〈

∂ũx

∂z

dU

dz

〉

(58)

Substitute îU(z) + ¯̃u(z) = ū(z) into
〈

|∇u|2
〉

:

1

2

〈

|∇u|2
〉

=
1

2

〈

|∇ũ|2
〉

+
1

2

〈

dU

dz

2〉

+

〈

∂ũx

∂z

dU

dz

〉

(59)

We take a linear combination of these expressions so as to eliminate the
〈

∂ũx

∂z

dU

dz

〉

term:

1

2

〈

|∇u|2
〉

= −
〈

1

2
|∇ũ|2 +

dU

dz
ũxũz

〉

+ Gr(ūx(1) − U(1)) +
1

2

〈

dU

dz

2〉

(60)

Now we define the quadratic form QU (ũ):

QU (Ũ) =

〈

1

2
|∇ũ|2 +

dU

dz
ũxũz

〉

(61)

Finally we combine this definition with the identity
〈

|∇u|2
〉

= Grūx(1) to produce:

ūx(1) = 2U(1) − 1

Gr

〈

dU

dz

2〉

+
2

Gr
Q (62)

If we choose U so that Q is positive definite we arrive at the following bound for ūx(1):

ūx(1) ≥ 2U(1) − 1

Gr

〈

dU

dz

2〉

(63)
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Define the background horizontal velocity profile to be linear in z in horizontal boundary

layers near the top and bottom boundary and constant elsewhere:

U(z) = Grz 0 < z < δ1 (64)

= Grδ1 δ1 < z < 1 − δ2 (65)

= Gr(δ1 + δ2 + z − 1) 1 − δ2 < z < 1 (66)

Then U(1) = Gr(δ1+δ2) and ūx(1) ≥ Gr(δ1+δ2). We need to choose δ1 and δ2 to maximize

the sum while keeping Q positive definite. We drop the accents and refer to the fluctuations

away from the background as u.

Q =
1

2
‖∇u‖2

+ Gr

∫

δ1

0
uxuzdzdx + Gr

∫ 1

1−δ2

uxuzdxdz (67)

We start with the second term on the right hand side:

∫ ∫

δ1

0
uxuzdzdx =

∫ ∫

δ1

0

∫

z

0

(

∂ux

∂z′
uz + ux

∂u′
z

∂z′

)

dz′dxdz (68)

Now we use incompressibility to eliminate the ux

∂u′
z

∂z′
= −ux

∂ux

∂x
= −∂‖ux‖

2

∂x
term. Then we

find:

∣

∣

∣

∣

∫ ∫

δ1

0
uxuzdzdx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

δ1

0

∫

z

0

(

∂ux

∂z′

∫

z′

0

∂u′′
z

∂z′′
dz′′

)

dz′dxdz

∣

∣

∣

∣

∣

(69)

≤
∫ ∫

δ1

0

∫

z

0

∣

∣

∣

∣

∂ux

∂z′

∣

∣

∣

∣

√
z′‖∂uz

∂z
‖δ1,zdz′dxdz (70)

≤
∫ ∫

δ1

0

z√
2
‖∂ux

∂z
‖δ1,z‖

∂uz

∂z
‖δ1 ,zdxdz (71)

≤ δ2
1

4
√

2

(

1

C
‖∂ux

∂z
‖2

δ1
+

C

2
‖∂ux

∂x
‖2

δ1
+

C

2
‖∂uz

∂z
‖2

δ1

)

(72)
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Here ‖ · ‖δ1
=

(

∫ ∫

δ1

0 ·2dxdz
)1/2

and ‖ · ‖1−δ2
=

(

∫ ∫ 1
1−δ2

·2dxdz
)1/2

. Similarly define

‖ · ‖δ1,z =

(

∫

δ1

0 (·)2dz
)1/2

. If we choose C =
1√
2

we find

∣

∣

∣

∫ ∫

δ1

0 uxuzdzdx
∣

∣

∣
≤ δ

2

1

16‖∇u‖2
. We

can perform an identical analysis at the top boundary layer, and set δ1 = δ2 to prove that

Q ≥ 1

2
‖∇u‖2 − Gr

δ2
1

8
‖∇u‖2

δ1
− Gr

δ2
1

8
‖∇u‖2

1−δ2
(73)

≥
(

1

2
− Gr

δ2
1

8

)

‖∇u‖2
(74)

This is positive if δ1 ≤ 2Gr−1/2
. This means that ūx(1) ≥ 4Gr1/2

. In terms of units

ūx(h) = ūx(1)
ν

h
≥ 4τ1/2

. The friction coefficient Cf =
τ

ū(h)2 ≤ 1
16 .

2.4 Bounds in Three Dimensions

We can use much of the same algebra to derive bounds for the three dimensional case.

The equations are the same except that there is a y component in the velocity field. As a

result we have the same ū(h) ≥ 2U(1) − 1
Gr

〈

(

dU

dz

)2
〉

as long as Q ≥ 0. We pick the same

background profile as in the two dimensional case, linear near each boundary and constant

in the bulk.

We begin with the second term in Q and find that:

˛

˛

˛

˛

Z Z Z

δ1

0

uxuzdxdydz

˛

˛

˛

˛

≤

Z Z Z

δ1

0

z‖
∂ux

∂z
‖

δ1,z
‖

∂uz

∂z
‖

δ1,z
dxdydz (75)

≤
δ
2

1

2

„

1

2C

Z

dx

Z

dy‖
∂ux

∂z
‖
2

δ1,z
+

C

2
(1 − a)

Z

dx

Z

dy‖
∂uz

∂z
‖
2

δ1,z
+

C

2
a

Z

dx

Z

dy‖
∂ux

∂x
+

∂uy

∂y
‖
2

δ1,y

«

(76)

=
δ2

1

4

„

1

C
‖

∂ux

∂z
‖
2

δ1
+ C(1 − a)‖

∂uz

∂z
‖
2

δ1
+ Ca‖

∂ux

∂x
‖
2

δ1
+ Ca‖

∂uy

∂y
‖
2

δ1
+ Ca‖

∂ux

∂y
‖
2

δ1
+ Ca‖

∂uy

∂x
‖
2

δ1

«

(77)

Choose a =
1
2 and C =

√
2 to find that

∣

∣

∣
Gr
∫ ∫ ∫

δ1

0 uxuzdxdydz
∣

∣

∣
≤ δ2

1

4
√

2
‖∇u‖2

δ1
. We make

the transformation z 7→ 1 − z to study the upper boundary layer:

∣

∣

∣

∣

∫

dx

∫

dy

∫

δ2

0
uxuzdz

∣

∣

∣

∣

≤
∫

dx

∫

dy

∫

δ2

0
dz

2

π

(
∫ 1

δ2

(
∂ux

∂z
)
2dz′

)1/2 √
z‖∂uz

∂z
‖1−δ2,z (78)

≤ 3δ
3/2
2

2π

(

1

C
‖∂ux

∂z
‖2

+
C

2
‖∂uz

∂z
‖2

δ2
+

C

2
‖∂ux

∂x
‖2

δ2
+

C

2
‖∂uy

∂y
‖2

δ2

)

(79)

Combining these two terms we find that:

|Q − 1

2
‖∇u‖2| ≤ Gr

δ2
1

4
√

2
‖∇u‖2

δ1
+ Gr

3δ
3/2
2

2π

(

1

C
‖∂ux

∂z
‖2

+
C

2
‖∇u‖2

δ2

)

(80)

≤ Gr

([

δ2
1

4
√

2
+

3δ
3/2
2

2π

1

C

]

‖∂ux

∂z
‖2

+
δ2
1

4
√

2
‖∇u‖2

)

(81)

= Gr

([

δ2
1

4
√

2
+

3
√

2δ3
2

2π2δ1

]

‖∂ux

∂z
‖2

+
δ2
1

4
√

2
‖∇u‖2

)

(82)
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Figure 2: Stanton Diagram of the TCY bounds and the bounds proven here on Cf

In the last line we made the choice C =
πδ

2

1

3
√

2δ
3/2

2

. This shows that the ratio of the

boundary layers
δ2

δ1
. Gr−1/6

. In order to produce a prefactor for the scaling of ū(1) we

take δ2 = 0. Then δ1 =

√

2
√

2Gr−1/2
and ū(h) ≥

√

2
√

2τ1/2
. The corresponding friction

coefficient is Cf ≤ 1
2
√

2
= .354. The bound proved by Tang, Caulfield, and Young[6] is

Cf < .0237, which is stronger than this bound.

3 Infinite Prandtl Number Marangoni Convection

Consider the equations describing infinite prandtl number Marangoni convection:

∇p = ∆u (83)

∂T

∂t
+ u · ∇T = ∆T (84)

u|z=0 = 0 (85)

T |z=0 = 0 (86)

uz|z=1 = 0 (87)

∂T

∂z
|z=1 = −1 (88)

∂ux

∂z
|z=1 = −Ma

∂T

∂x
|z=1 (89)
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Take the divergence of the momentum equation:

∆p = ∇ · ∆u (90)

= ∆∇ · u (91)

= 0 (92)

If we take the Laplacian of the momentum equation we will find that u solves the biharmonic

equation:

∆
2u = ∆∇p (93)

= ∇∆p (94)

= 0 (95)

We will be interested in the z component of the velocity for the background method. If we

take the Fourier transform in the z direction it satisfies an ordinary differential equation:

d4uz

dz4
− 2k2 d2ux

dz2
+ k4ux = 0 (96)

uz|z=0 = 0 (97)

duz

dz
|z=0 = 0 (98)

uz|z=1 = 0 (99)

d2uz

dz2
|z=1 = k2Maθ(1) (100)

This has an exact solution:

u
k

= −Maθ
k
(1)

2 sinh(k)
2 sinh(k) cosh(k)

k
− 2

(sinh(kz) − kz cosh(kz) + (k coth(k) − 1) z sinh(kz)) (101)

Define fk(z) =
u

k

Maθ
k
(1) .

We have plotted the modes in Figure 3. For large value of k the functions are concen-

trated near z = 1. For very large values of k the maximum value of fk goes to zero. For

small values of k the maximum of fk is extremely small and the function is concentrated

over the entire unit interval. For values of k near 3 and 4 the maximum is large and the

concentration is also over a significant portion of the unit interval.

Set up the background method by making the substitution T = τ(z)+θ, where τ(0) = 0

and
dτ

dz
(1) = −1. Then the field θ satisfies the equation:

∂θ

∂t
+ uz

dτ

dz
+ u · ∇θ = ∆θ +

d2τ

dz2
(102)

θ(z = 0) = 0 (103)

∂θ

∂z
(1) = 0 (104)

If we multiply the θ evolution equation by θ and integrate over space we get the expres-

sion:

1

2

∂‖θ‖2

∂t
= −

∫

dx

∫

dz
(

θuzτ
′ − θτ ′′

)

− ‖∇θ‖2
(105)
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Figure 3: Plots of the functions fk.

3.1 Energy Stability

Make the substitution τ = −z in the previous equation. The solution τ = −z will be stable

when the quadratic form Q = ‖∇θ‖2 −
∫

uzθdA is positive definite. Allow uk to stand for

the kth Fourier coefficient of uz. Substitute the expression for the Fourier series of θ and

uz into Q:

Q =

∑

k

∫ 1

0
dz

(

−2<(θkuk) + (
dθk

dz
)
2
+ k2θ2

k

)

dz (106)

Then use the Cauchy-Schwarz inequality:

|
∫ 1

0
dz2<(θkuk)| ≤ Maθk(1)‖fk‖‖θk‖ (107)

≤ Ma‖dθk

dz
‖‖θk‖‖fk‖ (108)

≤ Ma

2
‖fk‖

(

k‖dθk

dz
‖2

+
1

k
‖θk‖2

)

(109)

If for each k the quantity
Ma

2k
‖fk‖ is less than 1 the form Q will be positive definite. Since

we know the fk we can write this condition explicitly:

0

@

Z

1

0

dz

"

2 sinh(k)
2 sinh(k) cosh(k)

k
− 2

(sinh(kz) − kz cosh(kz) + (k coth(k) − 1) z sinh(kz))

#

2
1

A

1/2

≤
2k

Ma
(110)

This allows us to calculate the critical Marangoni number to be Mac > 58.3. The maxi-

mum occurs at k = 2.4. This estimate is slightly better than the estimate published Davis in
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1969. Davis used variational methods and his bound is valid for all Prandtl numbers. The

variational problem that he set up used natural boundary conditions to eliminate the terms

that come from integrating by parts along the boundary. This weakening of the boundary

condition is what makes it possible to improve the scaling using nonvariational methods.

3.2 Upper Bounds on the Nusselt Number

We define the Nusselt number to be the ratio of heat transport to heat transport due to

conduction, so that it measures the strength of convection. Conduction requires a temper-

ature gradient, so one would expect that when convection is strong the fixed heat flux is

maintained with a minimal temperature gradient. The result is that the temperature at the

top becomes low. Therefore we define the Nusselt number as − 1
T (z=1) . If we multiply the

time evolution equation for T by T and average we find that:

1

Nu
= ‖∇T‖2

(111)

Take the energy evolution equation for ‖θ‖2
and time average it:

0 = −
∫

dx

∫

dz(θuzτ
′ − θτ ′′

) − ‖∇θ‖2
(112)

Now use the expression ‖∇θ‖2
= ‖∇T‖2 − ‖τ ′‖2 − 2

∫

dxdzτ ′ ∂θ

∂z
to write:

0 = −2

∫

dx

∫

dz(θuzτ
′ − θτ ′′

) − ‖∇θ‖2 − ‖∇T‖2
+ 2

∫

dxdzτ ′ ∂θ

∂z
+ ‖τ ′‖2

(113)

0 = −2

∫

dx

∫

dz(θuzτ
′
) − ‖∇T‖2 − 2θ̄(1) − ‖∇θ‖2

+ ‖τ ′‖2
(114)

0 = −2

∫

dx

∫

dz(θuz) − 2T̄ (1) + 2τ̄ (1) − ‖∇θ‖2
+ ‖τ ′‖2

+ ‖∇T‖2
(115)

− 1

Nu
= −2

∫

dx

∫

dz(θuzτ
′
) − ‖∇θ‖2

+ 2τ̄ (1) + ‖τ ′‖2
(116)

If the functional Q = 2
∫

dx
∫

dz(θuzτ
′
) + ‖∇θ‖2

is always positive we can prove an upper

bound on the Nusselt number:

1

Nu
≥ −2τ̄(1) −

∫

dzτ ′2
(117)

We choose the derivative of the background profile τ to be equal to −1 in a layer of

width δ1 near the bottom and δ2 near the top. We choose τ ′
to be constant in the bulk:

τ(z) = −z 0 < z < δ1 (118)

= −δ1 δ1 < z < 1 − δ2 (119)

= −δ1 − z + 1 − δ2 1 − δ2 < z < 1 (120)

Then
1

Nu
≥ δ1 + δ2 as long as

∫

dx
∫

dz(2θuz) + ‖∇θ‖2
is positive. Write this in terms

of the Fourier decomposition of θ and uz:

0 ≤
∑

k

[

2

∫

δ1

0
dz<(θkuk) + 2

∫ 1

1−δ2

dz<(θkuk) + ‖dθk

dz
‖2

+ k2‖θk‖2

]

(121)
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Figure 4: Background profile for Marangoni convection.

If for all k the quantity 2
∫

δ1

0 dz<(θkuk) + 2
∫ 1
1−δ2

dz<(θkuk) + ‖dθ
k

dz
‖2

+ k2‖θk‖2 > 0 the

form Q will be positive definite.

We begin the analysis with the lower boundary layer. We start by replacing uk with

Maθk(1)fk. Then we use the fundamental theorem of calculus:

|
∫

δ1

0
fkθk(1)θkdz| ≤

∫

δ1

0
|fkθk|dz‖dθk

dz
‖ (122)

≤
∫

δ1

0

√
z|fk|‖

dθk

dz
‖2

(123)

Let F (z) = supkf(z). Then we need to evaluate
∫

δ1

0

√
zF (z)dz to determine the scaling.

As z goes to zero each fk scales as ckz
2

so there is reason to believe that F might have the

same behavoir. We verified numerically that for extremely small z the value of k at which

the maximum over fk is realized has a lower bound, implying that there is some c such that

F (z) < cz2
. We show this in Figure 3.2. This means we can choose δ

7/2
1 = O(Ma−1

), or

that Nu < O(Ma2/7
). We can calculate the prefactor numerically. We set δ2 = 0. We find

that Nu < .84Ma2/7
.

Boeck and Thess have used numerical methods to find solutions of the infinite Prandtl

number Marangoni problem. They analyzed the scaling of the Nusselt number of their nu-

merical solutions with respect to the Marangoni number and found that Nu = .446Ma .238
.

They also theorized that Nu ∼ Ma2/9
[1]. We compare their data to our bound in Figure

3.2.

3.3 Heat Transport with finite Prandtl Number

We consider the problem of Marangoni Convection in a system with finite Prandt number.

The system is described by the equations:
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Figure 5: Scaling of the functions fk for different values of k near z = 0.

Figure 6: Plot of Nusselt and Marangoni number of numerical data compared to the rigorous

upper bound and the critical Marangoni number
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P−1
(
∂u

∂t
+ u · ∇u) = −∇p + ∆u (124)

∇ · u = 0 (125)

∂T

∂t
+ u · ∇T = ∆T (126)

u(z = 0) = ~0 (127)

T (z = 0) = 1 (128)

u3(z = 1) = 0 (129)

∂T

∂z
(z = 1) = −1 (130)

∂u1

∂z
= −Ma

∂T

∂x
(z = 1) (131)

∂θ

∂z
(z = 1) = 0 (132)

The Nusselt number of this flow is defined as Nu = − 1
T̄ (1)

. Multiply the equation for

the temperature by T and average it over the volume. All the terms on the left hand side

vanish, the first term because the norm of temperature is bounded and the advection term

because there is no flux across the upper and lower boundaries. Therefore we find that:

0 =

∫

V

T∆TdV (133)

= −‖∇T‖2
+

∫

ΓV

T
∂T

∂z
dA (134)

= −
∫

z=1
TdA − ‖∇T‖2

(135)

This means that Nu =
1

‖∇T‖2 . Introduce a background profile τ(z). We choose τ to satisfy

a homogeneous Dirichlet condition at z = 0 and the Neumann condition
∂τ

∂z
= −1 at z = 1.

Then we can decompose the temperature T = τ(z) + θ(x, z, t) where θ = 0 at z = 0 and

∂θ

∂z
= 0 at z = 1. For each τ there is an equation for θ:

∂θ

∂t
+ u · ∇θ + uz

∂τ

∂z
= ∆θ +

∂2τ

∂z2
(136)

Multiply this equation by θ and take the average over space and time. Again the first two

terms on the left hand side vanish:

0 = −‖∇θ‖2 − θ̄(1) − 〈θuzτ
′〉 − 〈∂θ

∂z
〉 (137)

Now substitute τ and θ for T into ‖∇T‖2
=

1
Nu

:

1

Nu
= ‖∇θ‖2

+ ‖∇τ‖2
+ 2

∫

∇θ · ∇τdV (138)

= −‖∇θ‖2 − 2θ̄(1) − 2〈θuzτ
′〉 +

∫

τ ′2dv (139)
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In the last line we added two times the identity in the previous equation. In order to

incorporate the Marangoni condition we need the momentum equation. We take the dot

product of the momentum equation with u and calculate the space time average:

0 = −‖∇u‖2
+

∫

z=1
ux

∂ux

∂z
dA (140)

= −‖∇u‖2 − Ma

∫

z=1
ux

∂θ

∂x
dA (141)

= −‖∇u‖2 − Ma

∫

V

∂

∂z
(ux

∂θ

∂x
)dV (142)

Consider linear combinations of this expression and the equation for the Nusselt number:

1

Nu
= −‖∇θ‖

2
− 2θ̄(1) − 2〈θuzτ

′
〉 +

Z

V

τ
′2

dv + C(‖∇u‖
2 + Ma

Z

V

∂

∂z
(ux

∂θ

∂x
)dV ) (143)

= −‖∇θ‖
2
− 2(T̄ (1) − τ̄(1)) − 2〈θuzτ

′
〉 +

Z

V

τ
′2

dv + C(‖∇u‖
2 + Ma

Z

V

∂

∂z
(ux

∂θ

∂x
)dV ) (144)

= −2τ̄(1) − 〈τ
′2
〉 + Q(θ, τ, u) (145)

In the second to last line we used the fact that θ = T − τ . In the last line we used the fact

that Nu = − 1
T̄ (1)

and defined the quadratic form Q:

Q(θ, τ, u) = ‖∇θ‖2
+ 2〈θuzτ

′〉 + C(‖∇u‖2
+ Ma

∫

∂

∂z
(ux

∂θ

∂x
)) (146)

Suppose that Q > 0 for all u, θ, for some given choice of τ . Then
1

Nu
< −2τ̄(1) − 〈τ ′2〉.

The bound on the Nusselt number will only depend on the choice of τ . Therefore the task

will be to choose a τ that maximizes the bound on
1

Nu
subject to the constraint that Q is

positive. The background τ only affects Q through the term 〈θuzτ〉, which can be negative.

Therefore it would make sense to make this term as small as possible. Define τ such that

τ ′
is zero everywhere except near the upper and lower boundaries.

τ = −z z < δ1 (147)

τ = −δ1 δ1 < z < 1 − δ2 (148)

τ = −δ1 − δ2 + 1 − z 1 − δ2 < z < 1 (149)

With this choice of τ the expression 〈θuzτ
′〉 reduces to the inner product of uz and θ

over regions of width δ1 and δ2 near the boundaries. The τ also satisfies the boundary

conditions. We treat the top and bottom layer separately, starting with the bottom layer:

∫

δ1

0
θuzdV ≤

∫

δ1

0

(
∫

z

0
| ∂

∂z′
θdz′|

)(
∫

z

0
| ∂

∂z′′
uzdz′′|

)

dxdz (150)

≤
∫

δ1

0
z‖∂θ

∂z
‖‖∂uz

∂z
‖dxdz (151)

=
δ2
1

2
‖∂θ

∂z
‖‖∂uz

∂z
‖ (152)
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It is more difficult to deal with the upper layer because θ is not zero on the upper boundary.

As a result we have to use the Poincare inequality instead of the method we just used on

the lower layer. We can choose δ2 = 0 and not effect the scaling.

The term involving the Marangoni number must also be controlled by the norms of the

derivatives of u and θ.

Ma

∫

∂

∂z

(

ux

∂θ

∂x

)

= Ma

∫
(

∂ux

∂z

∂θ

∂x
− ∂ux

∂x

∂θ

∂z

)

(153)

≤ ‖∂ux

∂z
‖‖∂θ

∂x
‖ + ‖∂uz

∂z
‖‖∂θ

∂z
‖ (154)

Here we have used the fact that u is incompressible. Now we have bound on Q in terms

of first derivatives of u and θ. We are only interested in the scaling and do not make an

effort here to derive an optimal bound. If we take C = 1 we find that Q is positive when

the following equation for λ has no negative solutions:

(1 − λ)
4 − (

δ4

4
+

Maδ2

2
)(1 − λ)

2
= 0 (155)

This is satisfied as long as
δ
4

4 +
Maδ

2

2 < 1. This suggests that for large Ma δ . Ma−1/2
.

This suggests that Nu . Ma1/2
.

The scaling Nu . Ma1/2
is considerably weaker than the infinite Prandtl number case.

On the other hand, simulations by Boeck and Thess do not indicate that the actual scaling

is weaker for the finite Prandtl number case. The reason that this scaling is so much worse is

because we were unable to take advantage of the relationship between the temperature and

velocity fields. It was possible to achieve the 2/7th bound because we knew what the Fourier

modes of the velocity field were. However the relationship is much more complicated in the

finite Prandtl number case and we were unable to use it. In general, improvements of the

bounds produced by the background method in Raleigh-Benard convection were achieved

by using the relationship [2], so it seems reasonable to expect that this bound could be

improved by such considerations.

4 Conclusion

We presented rigorous upper bounds for the friction coefficient in stress driven shear flow

and also derived the critical Grashoff number for the stability of the laminar flow solution.

Tang, Caulfield, and Young first used the background method to analyze this problem.

We were able to prove an analytic bound on the friction coefficient using the full stress

boundary condition. We improved the lower bound on the critical Marangoni number for

nonlinear stability in infinite dimensional Prandtl number Marangoni convection. We also

proved that Nu < .84Ma2/7
for the same problem. In finite Prandtl number Marangoni

convection we were unable to do any better than Nu ∼ Ma1/2
.
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Continual skipping - getting a kick from water

Ian Hewitt

1 Introduction

Attempting to ‘skip’ stones at the beach is familiar to many - throwing the stone into the

water surface in such a way that it bounces several times before eventually sinking. This

project investigates whether, by towing an object along at a sustained horizontal velocity,

it can continually skip along the surface, and looks at the fluid dynamics which might cause

this to happen.

We conduct experiments in which we tow an inclined plane (which we refer to here as a

paddle) through the water at different speeds and observe whether it glides steadily through

the water or whether it oscillates and skips clear of the surface. We then attempt to explain

the observations with some simple models for the height of the paddle.

We find that a light paddle will continually skip provided the water speed is large enough,

and the size of the bounces increases with the water speed above this threshhold. We can

study how this depends on the mass of the paddle, and also its width.

The steady planing state, at least when treated as two dimensional, is a classical problem

[4, 16] and also bears some similarity to steady flow beneath a sluice gate [18, 1] or a

surfboard [17]. However the stability of this state has not received much attention and

allowing for time dependence significantly alters the problem.

A related body of research looks at ‘water entry’ of an object, the majority of which has

military applications; particularly the impact of torpedoes and bombs on the surface and

the forces on a seaplane’s floats during landing [19, 20, 8]. The main questions in this case

are whether the force exerted by the water on the entering object is large enough to cause

it to ricochet off the surface (usually not desired for torpedoes, but famously put to effect

by Barnes Willis’s ‘bouncing bomb’), or whether the seaplane will maintain its stability as

a result of the force experienced on the floats.

Mathematical models of the response of both shallow and deep water due to an impacting

object have been developed [9, 20, 7], looking at the wetted region of the object, the high

speed jets which are ejected and the force on the object; taking into account all the details

of the water flow makes the results reasonably complicated. A simpler description of the

force on the object was used recently to describe experiments on skipping stones [3, 13],

and we use this as a starting point for a description of our experiments. It will be seen that

this model is too simplistic and we must add some extra physics - namely the ‘splash-up’

of water ahead of the object - to explain the observed skipping.
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Figure 1: Experimental setup. A counterbalanced wooden arm of length 2a is pivoted at

a fixed point, with a paddle attached to one end and a laser attached to the other. The

paddle side is weighed down by a mass m. The paddle is usually 7 cm wide, although some

experiments used a wider 10 cm paddle. The laser shines a beam at an angle β onto a

screen where its position is captured by a video camera at 30 frames per second.

2 Experiments

The setup for the experiments is shown in figure 1. We performed most of the experiments

in a large (2 m diameter) rotating tank with the paddle held by an arm onto a fixed pivot.

By changing the angular velocity of the rotating tank we could adjust the water speed

beneath the paddle and arm, which were aligned parallel to the water flow near the edge of

the tank.

The arm holding the paddle was counterbalanced on the other side so that the weight of

the paddle pulling it down could be made small. By adding additional masses on top of the

paddle we could then increase its weight. Attached to the arm was a laser pointer which

shined its beam upwards onto a screen (see figure 1). The screen could be recorded with a

video camera, and the position of the laser obtained from analysing the images. We used

a standard 30 frames per second analog recorder, so could extract the position of the laser

every 1/30 of a second. The position of the laser can then be converted into the vertical

position of the paddle so that we obtain the trajectory of the paddle sampled at 30 Hz.

The water flowing beneath the paddle was about 6 cm deep, but one of the drawbacks

of using a rotating tank was that this depth depended on the flow speed. The surface of

the water is not flat - it is parabolic in shape - and becomes more and more inclined as

the angular velocity of the tank increases. In order to ensure that the paddle bottom was

as near as possible to parallel to the surface (since the surface is parabolic and the paddle

straight, this is not possible exactly) the arm holding the pivot had to be angled differently

for different water speeds.

The tank could be rotated at up to 2 rad s
−1

, and the paddle was positioned about

20 cm from the edge of the tank so that the highest possible water speed was 1.76 m s
−1

.
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Figure 2: 10 s segments of time series for increasing water speed U and mass m = 3.4 g.

This is the vertical displacement of the paddle, but the origin in each case is arbitrarily

chosen to be the minimum position, and is therefore not quite the same for each speed. The

height of the undisturbed water surface is not known exactly but will be between 0− 5 mm

above the minimum. At lower speeds the paddle sits in a steady planing state without

oscillating.

This speed is high enough to cause a light paddle to continually skip along the surface -

indeed there seemed to be no steady planing state in this case and independently of how

the paddle was dropped or placed into the water it would evolve into a bouncing trajectory

which had a characteristic amplitude and frequency. Whilst each bounce was somewhat

irregular - they were not all the same amplitude - the amplitude of the bouncing mode

over a long enough time series was quite well defined. The trajectory was recorded in 45

second time series which were begun long after the paddle was placed in the water - these

trajectories are therefore indicative of the ‘steady’ bouncing behaviour. Examples of the

trajectories obtained are shown in figures 2 and 3. The origin for each of these trajectories

is not the same - due to the experimental setup it was not possible to accurately determine

where on the screen corresponds to the undisturbed water surface, so the displacements

measured can only be regarded as relative displacements. It is also not easy to determine

when the paddle leaves the water surface - we were only able to assess this visually. It

appears that small oscillations are possible with the paddle never leaving the surface - for

instance below speed U = 1.1 m s
−1

in figure 2 and above mass m = 17.3 g in figure 3.

At high water speeds the rotation period of the tank is only just over 3 seconds, which

does not give long for the waves created in the wake of the paddle to be carried round into

its path. We would like the water ahead of the paddle to be as smooth as possible, since

we are looking for natural oscillations rather than setting up a wave pattern around the

tank (unlike [15], for example), so ideally we would like to remove the wake entirely. This
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Figure 3: 10 s segments of time series for 5 different masses, with water speed U = 1.5 m s
−1

.

This is the vertical displacement of the paddle, but the origin in each case is arbitrarily

chosen to be the minimum position, and is therefore not quite the same for each mass. The

height of the undisturbed water surface is not known exactly but will be around 5 mm

above the minimum.

is another drawback of the rotating tank setup, and we attempted to minimise the wave

activity ahead of the paddle by padding the sides of the tank with netting, to damp the

waves which reflect off the walls. At large water speeds the center of the tank was also dry

so we similarly padded the inner ‘shoreline’ where the waves would otherwise break and

reflect. This had some effect in smoothing out the water, though we cannot claim to have

removed the waves entirely. However, we do not believe that the presence of waves ahead

of the paddle is what causes the oscillations - although it may lead to a more noisy signal

than we could expect if the water surface were really smooth. By dropping the paddle into

smooth water it was observed that the regular amplitude of bounces was set up before the

first wake had travelled round the tank, suggesting that excitation by the waves is not the

driving mechanism.

The main parameters we varied were the speed of the water U and the mass on the

paddle m, as shown in figures 2 and 3. The power spectrum of these trajectories has a

peak at frequencies close to the evident natural frequency of oscillations, but it is not very

well defined, and the amplitude of the peak is not a good measure of the amplitude of

oscillations. This might be expected since when the paddle leaves the water it ought to

follow a parabolic ballistic trajectory, whereas in the water it may be more sinusoidal; the

combination cannot be expected to decompose clearly in Fourier coefficients.

Instead we analyse the data by isolating individual bounces or oscillations and calculat-

ing their amplitude and period. Each 45 second time series contains over 100 bounces so

we can look at the mean and standard deviation; these are shown in figures 4 and 5. The

standard deviation gives a measure of how variable the amplitude and period are and there-
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Figure 4: Period and amplitude for a paddle of mass 3.4 g (crosses) and mass 17.3 g (circles),

with different water speeds U . These are average periods and amplitudes of oscillations over

a 45 s time interval. The error bars are one standard deviation either side of the mean, and

therefore give an indication of the variability rather than the error.
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Figure 5: Period and amplitude for water speed U = 1.5 m s
−1

, with different paddle masses

m. This shows the average period of oscillation and amplitude, with the error bars showing

one standard deviation either side of the mean. These are taken from the amplitudes and

periods of bounces within a 45 s time interval.

fore how well defined the bouncing mode is. At slow speeds, the trajectories are seen to be

considerably more noisy and irregular and this is evident in the larger standard deviation

for the period.

To summarise what these data show, for a given paddle mass there seems to be a

threshold water speed above which oscillations start to occur (figure 4), and above this, the

amplitude of the oscillations increases, apparently linearly, with the water speed. This is

suggestive of some sort of bifurcation, and we also see that the threshold seems to be higher

for a heavier paddle. When the bounces have large amplitude, there is a simultaneous

increase in the period, as we might expect for ballistic trajectories.

For a constant water speed (figure 3), it appears that the lighter mass undergoes larger

oscillations with a longer period and as the mass is increased the amplitude and period

decrease, with the period levelling off towards a roughly constant 0.2 s.

These are some of the trends which we hope to be able to explain, at least qualitatively,

with a simple model.

We also conducted some experiments with a wider paddle of width 10 cm to examine

the effect of the paddle’s width. For the same mass, the wider paddle undergoes larger

amplitude bounces and appears to require a lower threshold water speed to start oscillating

(figures 6 and 7). This dependence on the width of the paddle is another feature which we
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Figure 6: Period and amplitude for water speed 3.5 m s
−1

, for 5 different masses with 7 cm

and 10 cm wide paddles and with a cylinder shaped paddle. These are average periods

and amplitudes of oscillations over a 45 s time interval. The error bars are one standard

deviation either side of the mean.
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Figure 7: Period and amplitude for a paddle of mass 3.4 g for different water speeds with

7 cm and 10 cm wide paddles and with a cylinder shaped paddle. These are average periods

and amplitudes of oscillations over a 45 s time interval. The error bars are one standard

deviation either side of the mean.

hope the model will capture.

Though we will not discuss them further we also did some tests with a cylindrical paddle

(lengthways across the stream). This oscillated very regularly and with large amplitude and

the threshold to begin oscillating was at a considerably lower water speed. The data are

shown in figures 6 and 7 for completeness.

3 Modeling preliminaries

The vertical position of the paddle is governed by the angle θ between the arm and the

horizontal, so the equation of motion is really conservation of angular momentum about the

pivot. The equation is

I θ̈ = −mga cos θ + Fa cos θ − µa2θ̇, (1)

in which I is the moment of inertia, a is the length of the arm, m is the excess weight on

the paddle side, g is the gravitational acceleration, and F is the vertical force of the water

on the paddle. µ is a friction coefficient which describes the damping by friction in the

hinge and air resistance. The vertical displacement of the paddle is z = a sin θ and since θ
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Figure 8: (a) Forces on a paddle inclined at an angle α to the horizontal water surface, in a

stream moving at speed U . z, measured vertically upwards, is the position of the paddle tip

above the undisturbed surface. (b) Geometry of paddle in the frame of the moving water.

The wetted length lw shown here is the length of the paddle beneath the undisturbed free

surface.

is small we can approximate the equation as

(M + m)z̈ = −mg + F − µż, (2)

in which we define the effective mass M by I = (M + m)a2
.

The Reynolds number based on the depth of the water is large, and is still large even if

the length scale is taken as the depth of the paddle (∼ 5 mm),

Re =
UH

ν
∼ 10

4 − 10
5. (3)

The relevance of surface tension is seen from the Weber number

We =
ρU2z

σ
∼ 100, (4)

in which we take z to be a typical depth of the paddle. Since this is large, inertia is much

more important than surface tension forces which we will henceforth discount.

The remaining forces from the water might be separately described as buoyancy (hy-

drostatic pressure), hydrodynamic pressure and hydraulic drag. The buoyancy is simply

the weight of the water displaced by the wedge shape of the paddle ρgWz2/2 tan α, which

we will see is negligible in comparison with the hydrodynamic force ρU 2Wz at the speeds

(U ∼ 1 m s
−1

) of interest. The Froude number U 2/zg is large, and this is indicative of the

fact that buoyancy is not the principal force from the water; for simplicity, we will therefore

neglect any effects of gravity on the water.

The vertical force of the water on the paddle can therefore be written as

F = Fn cos α − Ft sinα (5)

where Fn is the force acting in the normal direction on the paddle and Ft is the force acting

in the downwards tangential direction. We expect the normal force here to be due to the

hydrodynamic pressure and the tangential force to be due to hydraulic drag, and for the

purposes of the current experiment we expect the normal force producing hydrodynamic lift

to be the most important.
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We begin by following the approach used with some success to model skipping stones

[2, 3, 13], in which the force depends on the relative velocity of the stone or paddle, and its

depth in the water. At high Reynolds number, such a force takes the form

F =
1

2
Cρ|U|2A, (6)

in which U = −U i + żk is the relative velocity, A is the cross sectional area of the object,

and C is a coefficient.

For the context of an object entering the water we expect that the relevant area should

be the cross sectional area in the direction of motion. For an object traveling at an angle

β = − tan
−1

(ż/U) to the horizontal (relative to stationary water) we can therefore expect

(figure 8),

Fn =
1

2
ρ|U|2A =

1

2
ρ|U|2Wlw sin(α + β), (7)

where lw = −z/ sin α is the ‘wetted length’ of the paddle, and W is the width of the paddle.

Note that the wetted length here is taken as being the length of the paddle beneath the

undisturbed water surface: this definition will need to be refined later. This expression

for the force was deduced from experiments conducted by Rosellini et al. [13], but can be

understood in terms of the geometry of figure 8. The coefficient C in (6) is therefore 1 in

this case, provided we choose the correct definition of the area A.

(7) can be written as

Fn = −1

2
ρW (U2

+ ż2
)
1/2z(U − cot α ż), (8)

and when ż is much smaller than U (an approximation which is appropriate for our exper-

iment) this force becomes linear in z and we have, ignoring friction for the moment,

(M + m)z̈ = −mg − 1

2
ρW cos α U 2z, (9)

This is a linear spring equation which oscillates about the steady position

z0 = − 2mg

ρW cos α U 2
, (10)

with frequency

ω =

[

ρW cos α U 2

2(M + m)

]1/2

rad s
−1. (11)

However this assumes that the paddle is always in the water, whereas of course if it goes

above the surface it no longer feels the effect of the water at all. So we can write the

equation of motion as

z̈ = ω2z0 − ω2zH(−z), (12)

where H(−z) is the Heaviside function (0 for z > 0 and 1 for z < 0). If the oscillations

have large enough amplitude they will go above the surface and have projectile motion in

the air,

z̈ = ω2z0. (13)
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Figure 9: Average period and amplitude of oscillations over a 45 s time interval, for water

speed U = 1.5 m s
−1

, with 5 different masses. The error bars show one standard deviation

either side of the mean (crosses), and the circles show the theoretical prediction for the

period (17) if the amplitude is fitted to the observed average for each mass.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

U (m s−1)

P
er

io
d 

(s
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

U (m s−1)

A
m

pl
itu

de
 (m

m
)

Figure 10: Average period and amplitude of oscillations over a 45 s time interval, for paddle

mass m = 3.4 g, with different water speeds. The error bars show one standard deviation

either side of the mean (crosses), and the circles show the theoretical prediction for the

period (17) if the amplitude is fitted to the observed average for each speed.

The velocity is zero at the maximum height H, and the path is parabolic,

z = H +
1

2
ω2z0t

2, (14)

entering the water at time tc = (−2H/ω2z0)
1/2

with velocity v = −(−2Hω2z0)
1/2

. After

this the motion is sinusoidal

z = z0 − z0 cos ω(t − tc) − (−2Hz0)
1/2

sinω(t − tc), (15)

and will exit the water again at a time

t = tc +
2

ω

[

π − tan
−1

(

−2H

z0

)1/2
]

. (16)

The period of the whole oscillation (for H > 0) is therefore

2

ω

[

π − tan
−1

(

−2H

z0

)1/2

+

(

−2H

z0

)1/2
]

. (17)
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Unlike a simple harmonic oscillator the frequency now depends on the amplitude of the

motion, which is seen from the solutions to be

H − z0 + (z2
0 − 2Hz0)

1/2. (18)

Thus, if we know the amplitude of oscillations we should be able to predict the period

or frequency. By taking the observed amplitudes of the oscillations in the experiment we

can estimate what the periods should be, and the results of such calculations are shown in

figures 9 and 10.

However, there is nothing in (12) which sets the amplitude of oscillations - they are

purely determined by the initial conditions. Moreover, if we introduce the frictional term

−µż any initial conditions will eventually decay towards the steady state. The same will

be true for any force F (z), since the change in energy over a collision starting with z = 0

at t = tIN and ending at z = 0 at t = tOUT is

[

1

2
(M + m)ż2

]tOUT

tIN

=

∫

tOUT

tIN

−mg ż dt +

∫

tOUT

tIN

Fn(z) cos α ż dt −
∫

tOUT

tIN

µż2
dz (19)

= −
∫

tOUT

tIN

µż2
dz < 0. (20)

Thus any force which is a function only of z will result in damped oscillations. In the

experiments we observe that there are oscillations which continue indefinitely, and their

amplitude naturally selects itself. Thus in the equation of motion (2) there must be some

destabilzing process which drives oscillations and it is then the balance between this and

the stabilizing effects of friction which determines their amplitude.

We see that approximating the force in (8) by the linear force in (9) cannot explain

the observed oscillations. By including the full force (8) we also find that the additional

nonlinear terms have a dissipative effect; figure 11 shows the solution to the equation of

motion with F taken as the vertical component of (8):

(M + m)z̈ = −mg − 1

2
ρW cos α(U 2

+ ż2
)
1/2z(U − cot α ż). (21)

For comparison the solution is compared with the solution when the horizontal velocity

U = ẋ is also allowed to vary due to the horizontal component of (8),

(M + m)ẍ = −1

2
ρW sinα(U 2

+ ż2
)
1/2z(U − cot α ż), (22)

as is appropriate for the usual case of a skipping stone.

It seems that the force in (8) is inadequate to describe our observations because it does

not contain any destabilizing effect. This is more evident in the experiments if we look at

the vertical velocity of the paddle while it is continually skipping. Figure 12 shows this

velocity alongside the displacement of the paddle, and it is seen that the vertical velocity is

on average larger when it leaves the water than when it enters the water. Plotting the exit

velocity against entry velocity for each collision (figure 13) we find that the collisions are

super-elastic, meaning the coefficient of normal restitution e = VOUT /VIN is larger than 1,

and this effect grows as the speed of the water is increased.
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Figure 11: (a) Trajectory of a light stone skipping using Rosellini et al.’s [13] parameter-

isation of the hydrodynamic force on the stone, with the horizontal velocity imposed as

U = 1.5 m s
−1

(21). In this case the distance x is equivalent to time t. The dashed line

shows the undisturbed water level. The vertical force on the particle varies through the

collision, causing the bounces to decay. (b) The same but with the horizontal velocity

unconstrained, so that the position x(t) is determined from (22). The horizontal velocity

starts at 1.5 m s
−1

and decreases to zero due to the force of the water.
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Figure 12: Vertical displacement (solid, left axis) and vertical velocity (dashed, right axis),

for the 10 cm wide paddle with mass 3.4 g and water speed U = 1.76 m s
−1

.
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Figure 13: Maximum downward velocity (VIN ) plotted against the immediately following

maximum upward velocity (VOUT ) for each oscillation in a 45 second time interval, for

the 10 cm wide paddle with mass 3.4 g and different water speeds U as shown. VIN and

VOUT presumably occur somewhere close to where the paddle enters the water when it is

bouncing. The values given for the effective coefficient of restitution e are the average of

VOUT /VIN .

So the paddle gains kinetic energy during collisions, and this kinetic energy gain must

be balanced by the loss due to friction during the air-borne motion. In the next section we

discuss what aspects of the hydrodynamic force that can cause this are missing from (8).

3.1 The rise of water ahead of the paddle

The discussion of the previous section leads us to believe that the force from the water

cannot be simply a function of the depth beneath the undisturbed surface level, but varies

in a more complicated way throughout the course of the collision. The reason for this is due

to the water ahead of the paddle piling up there, so that the effective depth, and therefore

the wetted length lw are not just dependent on z (figure 14). This fact was realised by

Wagner [20] who noted that the water around an impacting object rises up to meet it, so

that the area of the water wetting the object is like an expanding plate. Thus the region over

which the water pressure is appreciable is not simply the region beneath the undisturbed

surface, but a larger region. It is necessary to determine what this region is and how it

varies during the course of the collision in order to calculate the force on the object.

A similar mechanism has been used to explain anomalous (larger than 1) values of the

coefficient of normal restitution in oblique elastic collisions - the surface deforms asymmet-

rically so that the effective normal for the collision is tilted [11, 10].

We can still think of the force as in (7), but we need to take more care in determining

lw. There have been some experimental studies of the water rise ahead of a planing hull

[12] which attempt to determine the wetted length as a function of the hull’s width and

trim angle (α). However we expect the variation of this wetted length to be important and

in particular we need to consider how lw varies during the course of the collision. It is not

entirely clear how to do this in a simple way, so we begin by considering a two-dimensional

shallow water model.
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Figure 14: Snapshots of paddle and free surface over the course of a collision showing the

evolution of the splash-up region ahead of the paddle.

Figure 15: Shallow water model setup with the definition of the water depths H, HL and

HT , and the position of the shock x = L(t). The upstream conditions H, U are prescribed

constants, but the other variables are changing over the course of the collision.

4 Shallow water model

The situation we consider is shown in figure 15; it is similar to the steady case modeled by

Tuck & Dixon [17, 14] for the shallow flow beneath a surfboard. The difference between

their model and ours is that we allow the height of the paddle to change and we treat the jet

which is ejected ahead of the paddle as producing a leading ‘wedge’ of water. We treat this

splash-up region ahead of the paddle as a shock, similar to a tidal bore on a river estuary.

The shallow water equations that apply beneath the paddle are, neglecting gravity,

ht − (uh)x = 0, (23)

ρ̄(ut − uux) = px, (24)

in which h is the water depth, u is the velocity in the negative x direction, p is the pressure

and ρ̄ = ρW is the two-dimensional density.

The upstream values H and U are steady, and the values at the trailing edge are labeled

h = HT and u = UT (these will vary in time). At the shock x = L(t) we label h =

HL and u = UL; the differential equations (23) and (24) don’t apply here since there

is a discontinuity, but mass and momentum must still be conserved so we require jump
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conditions,

−(ρ̄HL − ρ̄H)L̇ = (ρ̄HLUL − ρ̄HU), (25)

−(ρ̄HLUL − ρ̄HU)L̇ = (ρ̄HLU2
L + pLHL − ρ̄HU2

). (26)

Note that the pressure on the upstream face of the shock is zero (atmospheric), since we

are neglecting gravity.

If we know the position of the trailing edge of the paddle z above the undisturbed surface

then HT = H + z and the depth of water beneath the paddle (for 0 < x < L(t)) is

h(x, t) = HT + sx, (27)

where s = tanα is the slope of the paddle.

The velocity u(x, t) under the paddle is therefore related to the velocity at the trailing

edge by mass conservation (23),

u(x, t) =
uT HT + żx

HT + sx
= U +

(H + z)∆U − (sU − ż)x

H + sx + z
, (28)

in which we define ∆U = UT −U as the change in water speed from upstream to downstream

of the paddle. The pressure is obtained from integrating the momentum equation (24), also

in terms of ∆U ;

p(x, t)

ρ̄
=

(sU + s∆U − ż)
2x

s(H + sx + z)
− (sU + s∆U − ż)

2x2

2(H + sx + z)2
+

z̈x

s

+
(H + z)(s∆U̇ − z̈) + ż(sU + s∆U − ż)

s2
log

(

1 +
sx

H + z

)

, (29)

the dots all denoting time derivatives.

Combining the jump conditions (25) and (26) gives

pL(HL − H) = ρ̄H(U − UL)
2, (30)

in which we know

HL = H + z + sL. (31)

(25) and (30), with HL, uL and pL coming from (31), (28) and (29), give two equations

for the unknowns L and ∆U which also involve z and its time derivatives, and must therefore

be coupled with the equation of motion for the paddle

(M + m)z̈ = −mg + Fn cos α − µż, (32)

with Fn now given by

Fn(t)

ρ̄
=

∫

L(t)

0

p(x, t)

ρ̄
dx =

(sU + s∆U − ż)
2L2

2s(H + sL + z)
+

z̈L2

2s

+
(

(H + z)(s∆U̇ − z̈) + ż(sU + s∆U − ż)
)

{

H + sL + z

s3
log

(

1 +
sL

H + z

)

− L

s2

}

, (33)
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The combination (25), (30), (31), (28), (29), (32) and (33) provides 3 ordinary differential

equations for the unknowns z, L and ∆U . The initial conditions for the start of a collision

are

z = 0, ż = VIN , L = 0, ∆U = 0, at t = 0. (34)

(29) provides an expression for pL, and from (30) we also have

pL

ρ̄
=

H
(

(H + z)∆U − (sU − ż)L
)2

(H + sL + z)2(sL + z)
. (35)

Combining these we get an expression for ∆U̇ ,

∆U̇
H + z

s
log

(

1 +
sL

H + z

)

=
H
(

(H + z)∆U − (sU − ż)L
)2

(H + sL + z)2(sL + z)
− (sU + s∆U − ż)

2L

s(H + sL + z)
+

(sU + s∆U − ż)
2L2

2(H + sL + z)2

− ż(sU + s∆U − ż)

s2
log

(

1 +
sL

H + z

)

− z̈

s2

(

sL − (H + z) log

(

1 +
sL

H + z

))

, (36)

which can be substituted into the force (33) in the equation of motion to find z̈. After

rearrangement we obtain

z̈





M + m

ρW cos α
− L2

2s
+

(H + sL + z)L log

(

1 +
sL

H+z

)

− sL2

s2 log

(

1 +
sL

H+z

)





= − mg

ρW cos α
− µ

ρW cos α
ż +

(sU + s∆U − ż)
2L2

2s(H + sL + z)
+

(H + sL + z) log

(

1 +
sL

H+z

)

− sL

s log

(

1 +
sL

H+z

)

×
[

H
(

(H + z)∆U − (sU − ż)L
)2

(H + sL + z)2(sL + z)
− (sU + s∆U − ż)

2L

s(H + sL + z)
+

(sU + s∆U − ż)
2L2

2(H + sL + z)2

]

. (37)

We are left with the substantially shorter equation for L̇,

(sL + z)L̇ = −H∆U − (U + ∆U)z − żL. (38)

These equations apply only when the paddle is in the water; that is, L > 0. When

L < 0, the paddle follows a ballistic trajectory given by

(M + m)z̈ = −mg − µż. (39)

The equations (36), (37) and (38) must be solved numerically, and a typcial solution

is shown in figure 16. Potential singularities in the equations are avoided by switching to

equation (39) whenever L is smaller than some small threshold.

It is found that the long term behaviour is independent of the initial condition - at very

low water speeds there is a steady state which is stable, but at higher water speeds there is

a natural amplitude oscillatory mode, towards which any initial condition will evolve.
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Figure 16: Solution to the shallow water model, (36), (37) and (38) with no friction or mass

loss terms, showing the vertical position z, velocity v = ż, position of shock L and vertical

force F . The depth is 6 cm, the water speed is 1.5 m s
−1

, and the paddle mass is 3.4 g.

The initial condition is to start from rest on the undisturbed surface z = 0. On the right is

an enlarged view of one of the collisions.

4.1 Flow around the sides of the paddle

It is evident from figure 16 that these oscillations are considerably larger than those observed

in the experiment, with a consistently longer period. One reason for this is undoubtedly

the fact that the current model is two dimensional and the water is forced to flow under the

paddle, whereas what actually happens is that a substantial fraction of the water passes

around the paddle to the sides.

One way of including this mass loss into the two dimensional model is to treat it as

occurring at the shock front, so that instead of conserving mass the shock actually allows

a certain amount to be lost. If the position of the shock is x = L, then the area of the

triangular wedge which has built up ahead of the paddle is sL2/2. We might expect on

dimensional grounds that the rate at which mass is lost to the sides is proportional to this

area and the speed of the water, so that the mass loss is

−λρsL2U. (40)

Then the modified jump condition (25) becomes

−ρW (HL − H)L̇ = ρW (HLUL − HU) + ρsL2U. (41)

With this modification the expression for the pressure (35) acquires an extra term

pL

ρ̄
=

H
(

(H + z)∆U − (sU − ż)L
)2

(H + sL + z)2(sL + z)
+ λ

sL2U
(

H∆U + (U + ∆U)z + żL
)

W (H + sL + z)(sL + z)
, (42)
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Figure 17: Bifurcation diagram for shallow water model showing oscillation amplitudes as a

function of water speed. On the right is an enlarged view of the transition. The steady state

becomes linearly unstable at around 0.578 and the upper (bouncing) branch loses stability

at around 0.571. m = 3.4 g, µ = 0.2 kg s
−1

and λ = 1.
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Figure 18: Amplitude and period of oscillations for the shallow water model with constant

water speed U = 1.5 m s
−1

, and varying mass m. µ = 0.2 kg s
−1

and λ = 1.

which also therefore appears in (36) and (37). (38) becomes

(sL + z)L̇ = −H∆U − (U + ∆U)z − żL − λ
sL2U

W
. (43)

Including this effect reduces the size of the leading wedge of water and results in a

smaller impulse from the water, so that the height of bounces is not as large. Whereas

(36), (37) and (38) without the mass loss terms only have a steady state in which z is

positive (the trailing edge of the paddle is above the undisturbed surface), including mass

loss allows it to have a steady planing state which is (perhaps more reasonably) beneath the

undisturbed surface. This steady state is stable at low water speeds, but becomes unstable

above a threshold value, and any initial oscillations then grow until the paddle leaves the

water surface. Again, the eventual oscillatory mode is independent of the initial conditions.

This allows us to examine how the amplitude and period of oscillations behave as the water

speed or mass vary; figure 17 shows the amplitude as the water speed is increased, and

figure 18 shows how the amplitude and period vary with mass for a given speed. These

should be compared qualitatively with figures 9 and 10.

The steady branch of the bifurcation diagram in figure 17 becomes linearly unstable at
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Figure 19: Bifurcation diagram for shallow water model showing oscillation amplitudes as

a function of water speed for two different masses; 3.4 g (solid) and 20 g (dashed). The

threshold speed for oscillations is higher for the larger mass. µ = 0.2 kg s
−1

and λ = 1.

a slightly larger water speed than where the oscillatory branch ceases to exist; this suggests

the bifurcation is subcritical and there may be an unstable branch between the two. The

oscillations of the upper branch are always leaving the water surface - there appear to be no

steady oscillations which remain in the water. Above the threshold the amplitude increases

with water speed; this is what the experiments show, except that there is no detectable

jump in amplitude at which the oscillations start. The model suggests however that just

below the threshold any initial oscillations will decay very slowly, so that with a small

amount of noisy forcing (such as the effect of the wake in the tank), any oscillations below

the threshold would be hard to get rid of. It is possible that the unavoidable roughness in

the water surface might act to smooth out a sharp bifurcation in the measurements.

Figure 19 compares the bifurcation diagram for two different masses; for a larger mass

the threshold velocity at which the steady state loses stability is larger, as the experiments

(figure 4) suggest ought to be the case. However, it also seems that if the water speed is

large enough the heavier paddle can oscillate more, thus reversing the trend seen in the

experiments. It is not clear whether this is an artifact of the model or if the experiments

did not reach large enough speeds to detect it.

When the paddle is really skipping and spending the majority of its time in the air, the

time in the water can be viewed as a bounce, just like the bounce of an elastic ball. One

way of thinking about the amplitude of the skips in this case is to consider the change in

velocity (or kinetic energy) effected by each discrete bounce. Just like an elastic bounce

with coefficient of normal restitution e will return an incident velocity VIN at velocity

VOUT = eVIN , each collision with the water will return an incident velocity VIN at a

different velocity which we can calculate from our model. The equilibrium amplitude which

is reached is when this increase in velocity or energy is matched by the decrease due to

friction during the airborne part of the motion, which we can similarly treat as providing

a particular incident velocity VIN (for the next collision) for any given VOUT . If we plot

VOUT as a function of VIN for the bounce and VIN as a function of VOUT for the ballistic

motion, the steady state will be where these two curves intersect (if they do not intersect

there is no steady oscillation). Provided there is one intersection, for any initial velocity we

can trace a ‘staircase’ trajectory between the curves so that any initial condition will grow
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Figure 20: Exit velocity VOUT as a function of entry velocity VIN (solid lines) for collisions

in the shallow water model, with µ = 0.1 kg s
−1

and λ = 1, α = 20
◦
, and (a) m = 3.4 g,

(b) m = 10 g; The different curves correspond to different water speeds U at intervals of

0.1 m s
−1

The dashed line shows the entry velocity as a function of exit velocity for ballistic

motion with friction µ, and the dotted line is VOUT = VIN .

or decay towards the equilibrium.

Two sets of such curves are shown in figure 20 for two different masses. The collisional

curves are different for different water speeds whereas the airborne curves are naturally in-

dependent of the water. For small enough U there is no intersection and therefore no steady

bouncing state. As U is increased the point of intersection has larger VOUT , corresponding

to a larger amplitude. Unfortunately the shape of the curves depends on both U and m,

and each curve has to be computed separately; there is no simple scaling which determines

the intersection for different U or m.

5 A simplified shallow water model

Whilst the shallow water model presented above does a reasonable job of recreating some

of the experimental trends it is not quite obvious from (36), (37) and (38) what is going on

in the collision, nor how to generalise the model to deep water. If the displacement of the

water surface is small, then we can attempt to extract from the equations a simpler model

which includes fewer of the terms. We expect z, L and ∆U and their time derivatives all

to be small in this case.

Assuming that all these terms are equally small, we find the jump conditions both

become steady at leading order, and can only be satisfied if z = 0. We therefore expect

z to be smaller than L, and the mass jump condition suggests L2 ∼ z. We thus look for

the leading order terms in the equations when L is small and z and ∆U are quadratically

small (that is, in comparison to H and U respectively; formally we treat L/H = O(ε),
z/H = O(ε2

) and ∆U/U = O(ε2
)). The equations (36), (43) and (42) become

−2U∆U − s2L2U2

2H2
− U2z

H
= O(ε3

), (44)
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sLL̇ = −H∆U − Uz − λ
sL2U

W
+ O(ε3

), (45)

(M + m)z̈ = −mg − µż +
sL2U2

2H
+ O(ε3

), (46)

the first two of which simplify to

sLL̇ = −Uz

2
+

s2L2U

4H
− λ

sL2U

W
+ O(ε3

). (47)

It is worth considering what this approximation means in terms of the physical conser-

vation laws on which the model is based. The leading order momentum jump condition is

steady, so force balance occurs across the shock;

pL

ρ̄
HL = HU2 − HLU2

L. (48)

Moreover the ut term in the momentum equation is smaller than the uux term, so that the

first order pressure is determined by the steady Bernoulli equation

pL

ρ̄
=

1

2
U2

T − 1

2
U2

L. (49)

The ht term in the mass conservation equation beneath the paddle is also small, so that

at leading order the mass flux beneath the paddle is uniform, HLUL = HTUT . The only

balance which is not steady is therefore the mass balance across the shock at x = L (43),

(HL − H)L̇ = HU − HLUL − λ
sL2U

W
. (50)

The mass flux HLUL comes from combining the two momentum balances to give, up to

quadratically small terms,

HLUL = U

(

2HHLH2
T

H2
T

+ H2
L

)1/2

, (51)

but perhaps a better way of writing (50) is (correct to quadratic terms),

sLL̇ = −zU − H∆U − λ
sL2U

W
, (52)

in which ∆U follows from the global force balance

sFn

ρ̄
= HU2 − HTU2

T , (53)

= −zU2 − 2HU∆U. (54)

The leading order force follows from integrating Bernoulli’s equation for the pressure,

Fn

ρ̄
=

sL2U2

2H
, (55)

so that combining (52) and (53), and the equation of motion, we recover (46) and (47).

The equation (52) (or (47)) for L can be thought of as mass conservation for the tri-

angular wedge of water ahead of the paddle - the three terms on the right can be viewed

respectively as the rate of mass flow into the cross sectional area of the paddle facing the

fluid, the effect of the force of the paddle acting to slow down the whole water column, and

the mass lost to the sides of the paddle.
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5.1 Linear Stability

The simplified model (43) and (47) is in fact linear if we use the area of the water wedge

A = sL2/2 as a variable,

(M + m)z̈ = −mg + ρW cos α
AU2

H
− µż, (56)

Ȧ = −zU

2
+

sAU

2H
− λ

AU

W
. (57)

(56) is the same as our original linear equation of motion (9), except that the force now

depends on the area of the leading wedge A/H rather than directly on the depth z. So we

have essentially the same model, but now with a separate evolution equation for the ‘wetted

length’ A/H.

There is a steady (planing) state

A0 =
mgH

ρW cosα U 2
, z0 = −

(

2λ

W
− s

H

)

mgH

ρW cosα U 2
, (58)

and we can examine its stability by writing the equations in the matrix form





Ȧ
ż
z̈



 =





b −a 0

0 0 1

c 0 −d









A − A0

z − z0

ż



 , (59)

where

a =
U

2
, b =

sU

2H
− λU

W
, c =

ρW cos α

M + m

U2

H
, d =

µ

M + m
. (60)

Solutions of the form eλt
exist provided λ satisfies

λ3 − (b − d)λ2 − bdλ + ac = 0. (61)

Since a and c are positive this clearly has one negative real root λ0 and two other roots

which could be real (in which case they are positive) or complex, but whose real part is of

interest. If we write the complex roots as β ± iα then

0 = (λ−λ0)(λ−β−iα)(λ−β+iα) = λ3−(λ0+2β)λ2
+(β2

+α2
+2βλ0)λ−(β2

+α2
)λ0, (62)

from which we require

λ0 + 2β = b − d, β2
+ α2

+ 2βλ0 = −bd, (β2
+ α2

)λ0 = −ac. (63)

If b is positive, the coefficient of λ2
implies β must be positive (so the steady state is

unstable), but if b is sufficiently negative we could have negative β (and therefore stability).

The threshold for stability is (setting β = 0)

d >
b

2
+

(

b2

4
− ac

b

)1/2

, (64)
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Figure 21: Time series of vertical position of paddle z (solid, left axis, larger values of −z
are deeper in the water), and wetted length of the paddle l (dashed, right axis). These are

from measurements every 1/30 of a second.

or in terms of the parameters

µ

M + m
>

U

2

(

s

2H
− λ

W

)

+
U

2

(

(

s

2H
− λ

W

)2

− 2ρW cos α

(M + m)H
(

s

2H
− λ

W

)

)1/2

. (65)

Thus there is a critical level of friction needed in order to stabilise the system in the

planing state, and the critical value increases linearly with the speed of the water U . If

there is not sufficient friction the steady state will be unstable and perturbations will grow

exponentially until they reach the surface (that is, once A reaches 0). The hydrodynamic

force then switches off, and this non-linearity serves to set the amplitude of the bounces.

5.2 A shallow water experiment

As a qualitative test of the shallow water model, including the idealization of the splash up

as a shock, we designed an alternative experiment which comprised water flow under gravity

down an inclined plane. The flow was maintained by pumping water from a lower tank into

an upper one which overflowed down the ramp into the lower one. The flow on the ramp

was about 4 mm deep and travelling at about 60 cm s
−1

. The same paddle was placed in

this stream and, when light enough, was observed to oscillate up and down, coming clear

of the water momentarily. The paddle was widened so as to take up the full width of the

stream and minimise the flow around the sides. This made the oscillations greater, as the

theory would suggest. When the paddle was heavy enough there was a steady state in

which a large (several cm) wedge of fluid built up ahead, whereas when the paddle was light

enough this wedge of fluid oscillated to and from the trailing edge.

The crucial factor in the model we have proposed is the fact that the wetted length

(or equivalently in this case, the size of the leading wedge of water) does not respond

instantaneously to the depth of the paddle in the water. The lag between changing the

depth and increasing the wetted length is the essential mechanism in driving the oscillations.

By recording the position of the front of the leading wedge of water at the same time

as the vertical position of the paddle we are able to verify this lag experimentally. Figure
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Figure 22: Paddle trajectories for the generalized deep water model (66) and (67), released

from rest at 10 cm height, with water speed (a) 0.5 m s
−1

(below threshold) and (b) 1 m s
−1

(above threshold). m = 10 g, µ = 0.2 kg s
−1

and λ = 4.

21 shows the position of the wetted front L and the depth of the paddle −z, and there is a

clear lag between the two.

This experimental setup worked well and it would be good to conduct more tests with

the same setup, particularly with a larger flow rate so that the speed of the water can

be varied and its effect carefully monitored. A more precise bifurcation diagram might be

found in this way than we were able to do in the rotating tank.

5.3 Generalization to deeper water

We now attempt to use the simplified model of the previous section to generalize to deeper

water. (56) and (57) both contain the expression for the force Fn = AU2/H and this is the

only place in which the water depth H appears. It seems natural to suppose that the water

depth in this context represents the depth over which the presence of the paddle affects the

water; for shallow water this is the whole depth, but for deeper water it might be expected

to be on the scale of the horizontal perturbation (consider an analogy with surface gravity

waves, when the phase speed changes from (gH)
1/2

to (g/k)
1/2

where k is the horizontal

wave number). We therefore consider it appropriate to replace H in (56) and (57) by L,

(M + m)z̈ = −mg + ρW cosα
sLU2

2
− µż, (66)

sLL̇ = −zU

2
+

s2UL

4
− λ

sL2U

2W
. (67)

The steady state is now

L0 =
2mg

ρW cos α sU 2
, z0 = − mg

ρW cos α U

(

2λmg

sρW 2 cos α U2
− s

2

)

. (68)

Linearised perturbations about this again satisfy





L̇
ż
z̈



 =





b −a 0

0 0 1

c 0 −d









L − L0

z − z0

ż



 , (69)
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Figure 23: Exit velocity VOUT as a function of entry velocity VIN (solid) for deep water

model (66) and (67) This is for a mass of 3.4 g and paddle of width 7 cm with mass loss

λ = 1 and friction µ = 0.2 kg s
−1

. The different curves correspond to different water speeds

as labelled. The dashed line shows VIN as a function of VOUT as determined by resistance

in the ballistic motion and the dotted line is the line VIN = VOUT .

but now with

a =
ρW cos α U 3

4mg
, b =

ρW cosα s2U3

8mg
− λU

W
, c =

ρW cos αsU 2

2(M + m)
, d =

µ

M + m
.

(70)

The stability criterion is as in (64); b must be negative, and

µ

M + m
>

ρW cos α s2U3

16mg
− λU

2W

+
1

2





(

ρW cos α s2U3

8mg
− λU

W

)2

− ρ2W 2
cos

2 α sU5

2mg(M + m)

(

ρW cos α s2U3

8mg
− λU

W

)





1/2

. (71)

Again we find the steady state is stable provided there is sufficient friction, and the

critical level of friction increases with water speed. Above this, perturbations grow until

they reach the water surface, and they then settle into a natural amplitude of bouncing.

This amplitude is independent of the initial conditions - and the amplitude is larger for

larger water speeds. Figure 22 shows example trajectories for U smaller than and larger

than the threshold speed for instability, when the paddle is dropped into the water from a

height. The same steady oscillations would be reached in the latter case if the paddle were

initially perturbed slightly from the steady planing state.

6 Wagner model: potential flow

The previous sections have identified the rise of water ahead of the paddle, and the time

lag necessary for this to happen, as a mechanism for generating super-elastic bounces from

the water surface. We have attempted to model this in a shallow water setting and with an
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Figure 24: Potential flow problem for a paddle impacting the free surface of an inviscid

irrotational fluid, moving at undisturbed speed U . The free surface is at atmospheric

pressure p = 0, as well as being subject to a kinematic condition. The kinematic condition

also holds on the paddle, and the pressure there determines the vertical force on the paddle,

which can be used to determine how the paddle moves.

ad-hoc generalisation to deeper water. Both of these essentially use parameterisations for

the effect of the paddle on the water flow.

A different approach is to attempt to calculate the water flow due to the paddle explicitly.

This is again easiest in two dimensions, where we assume the flow is irrotational. We can

then write the velocity as u = −U i + ∇φ, where φ is the disturbance potential satisfying

Laplace’s equation. We assume the stream occupies the space −H < y < 0, and consider

the situation shown in figure 24. This type of problem has been reasonably well established

as a so-called Wagner problem [20, 7, 5, 6].

The pressure is given by Bernoulli’s equation, neglecting gravity,

ρ̄φt + p +
1

2
ρ̄| − U i + ∇φ|2 =

1

2
ρ̄U2, (72)

the constant being determined by a steady uniform upstream condition, and zero atmo-

spheric pressure. The free surface y = h(x, t) has kinematic condition φy = Dh/Dt, and

the pressure there must be atmospheric.

If a paddle enters the water, suppose it occupies the region of the surface 0 < x < L(t).
L here is treated as the ‘turnover’ point (figure 24); there will be a small jet of water ejected

ahead of the paddle, but the appreciable force comes only from the wetted region up to the

turnover point L. For the purposes of this problem we disregard the details of this region

and the high speed jet entirely; see [7] for further discussion. For this wetted part of the

surface the relevant boundary condition is that the normal velocity of the water must equal

the normal velocity of the paddle. If the paddle is a flat plate moving in a vertical plane

with angle of attack α, then the normal is n = (− sinα, cos α), so that

−(−U + φx) sinα + φy cos α = ż cos α, (73)
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Figure 25: The linearised Wagner problem for a bouncing paddle hp = z+sx occupying the

region 0 < x < L(t) of the surface of an inviscid irrotational fluid. The boundary conditions

are as in figure 24, but are now applied at the undisturbed surface y = 0.

where ż is the vertical velocity of the paddle. We also know the height of the paddle

hp(x, t) = z + x tanα, (74)

where z is the vertical position of the trailing edge above the undisturbed surface y = 0.

The unknown position of the leading edge x = L(t) is determined by the condition that the

free surface height here is equal to the height of the paddle:

h(L(t), t) = hp(L(t), t). (75)

If we consider the linearised form of this problem (figure 25) we have

∇2φ = 0, −H < y < 0; φy = 0 at y = −H; φx → 0 as x → ±∞, (76)

At the surface y = 0,

φy = ht − Uhx,
0 = −φt + Uφx,

}

for x < 0, x > L(t), (77)

h = hp = z + sx,
φy − sφx = ż − sU,

}

for 0 < x < L(t), (78)

where s = tanα is the slope of the paddle. At x = L(t),

h(L(t), t) = hp(L(t), t). (79)

For a given z(t) these provide the equations and boundary conditions to be solved for

φ(x, y, t) and h(x, t). However this is coupled to the equation of motion for the paddle,

(M + m)z̈ = −mg + Fn cos α − µż (80)
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since the normal force Fn is

Fn =

∫

L(t)

0
p dx = ρ̄

∫

L(t)

0
−φt + Uφx dx. (81)

We can attempt to solve this problem numerically by solving Laplace’s equation for φ
at every time step using the pressure boundary conditions for x < 0 and x > L and the

kinematic boundary condition for 0 < x < L (the other boundary conditions are φy = 0

at the bottom and φx = 0 at the sides, which we try to make far away from the paddle).

Then the kinematic boundary conditions on x < 0 and x > L give the motion of the

boundary there (with boundary condition h = 0 at x = +∞), whilst Bernoulli’s equation

for 0 < x < L gives the pressure there and hence the acceleration of the paddle. We can

therefore find the new position of the paddle and the free surface and find the new value of

L at which these surfaces are equal. This gives the region over which the different boundary

conditions should be applied for Laplace’s equation at the next time step.

The solutions indicate that if the background stream flow U is large enough the paddle

can receive a super-elastic kick from the water, just as we found in the shallow water model.

In this case any initial condition will reach a steady bouncing state, with the amplitude

dependent on the water speed and paddle mass. The water ahead of the paddle rises up

to meet it, and the paddle does not leave the water until it is some distance above the

undisturbed level at which it entered it. At slower speeds there seems to be a steady

planing state in which the pressure balances the weight of the paddle.

It seems therefore that although the quantitative values (the amplitudes of the bounces

and the speed at which bouncing starts) are different, the same instability mechanism is

inherent in this model as in the shallow water model. This is reassuring since the potential

flow captures more of the fluid dynamics than the shallow water assumptions do, but given

the computational intensity, this model is not particularly useful nor wholly satisfying for

understanding what is going on.

7 Conclusion

A light paddle towed along the surface of flat water will continually bounce, or skip, along

provided it is pulled fast enough. The experiments we conducted (in which the paddle could

move vertically and the water flowed past) suggest that for a given paddle mass there is a

threshold water speed below which it planes steadily through the water and above which it

oscillates up and down, leaving the surface and skipping if the oscillations are large enough.

The amplitude of oscillations increases with the water speed above the threshold. For a

given water speed there seems to be a natural bouncing mode (with characteristic amplitude

and period) to which any initial condition evolves.

The threshold velocity at which skipping starts is larger for a heavier paddle and lower

for a wider paddle, and for a given velocity lighter and wider paddles tent to bounce higher.

When bouncing occurs the collision with the water appears to be super-elastic; the paddle

gains energy from the water.

We have described several models to try to explain the experimental findings; the key

mechanism we identify which causes the instability is the transient response of the water to
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the paddle moving in and out. The most simple models which treat the water’s response as

a steady function of paddle displacement cannot explain the skipping. Instead, the variation

of the ‘wetted length’ over the collision must be explicitly accounted for.

A shallow water description, in which the splashed up water ahead of the paddle is

treated as a shock, indicates that there should be a bifurcation at a critical water speed

above which the steady planing state becomes unstable and a bouncing mode, with super-

elastic bounces, is reached. The amplitude of oscillations is larger for larger water speed

and wider paddle, as found in the experiments.

A simplification and generalization to deeper water allow for a simple two o.d.e. description

of the system which again has the bifurcation and correct dependence on the various pa-

rameters. The model is not quantitatively comparable to the experiment but this may be

due to uncertainties in the parameterized effects of the water flow beneath and around the

paddle.

A two dimensional linearized potential flow model verifies that accounting for the time

evolution of the wetted length can allow super-elastic bounces and destabilize the steady

planing state.

The shallow water model motivated a further experiment in which the paddle was placed

in a shallow stream. We were able to verify the lag between vertical paddle position and

wetted length during oscillations. This setup worked well and it would be worthwhile to

do some further studies with varying the flow speed. The setup was more robust, easier

to use, and avoids the complications of the wake in the rotating tank. With more careful

measurements we might also be able to test more critically the models suggested here.
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On the Organization of Geostrophic Circulations Over Large

Scale Topography by Eddy-Diffusion of PV

Malte Jansen

January 12, 2009

1 Introduction

The quasi-geostrophic (QG) potential vorticity (PV) for a homogeneous layer can be written

as

q = βy + ζ − f
h′

H
(1)

where β is the planetary PV gradient (
∂f

∂y
), ζ is the relative vorticity, H is the mean depth

of the layer and h′ is a perturbation of the latter. For a layer bounded below by the bottom

topography we can write:

q = βy + ζ − f
η

H
+ f

hb
H
, (2)

where η is the displacement of the interface bounding the layer at the top and hb is the

elevation of the bottom topography. A topographic feature can thus be viewed as an

anomaly in the in the background PV field, similar to the β-effect.

Different theoretical concepts have been propasfosed arguing that quasi-geostrophic tur-

bulence acts to ”homogenize” the mean potential vorticity (PV) field which can be ”dis-

turbed” by topographic features. (See [7] for an older but still very useful review.) This

homogenization would then lead to an anomaly in the relative PV field
1

over the topography

which would be associated with a mean circulation.

Indeed observational evidence exists for this kind of circulations around topographic

features. [8] first notized an almost barotropic 100Sv anticyclonic flow around the Zapiola

Drift in the South Atlantic. A result later confirmed by various other observational studies.

Many previous theoretical and numerical studies focused on the adjustment of a turbu-

lent flow in a closed domain in the abscence of forcing and with weak or no dissipation (e.g.

[3] or [5]). [2], however, suggests that the strength of topographic circulations might be

determined by a balance between the eddy flux of PV, and Ekman pumping due to bottom

friction. Kinetic energy is in this case assumed to be provided by eddies from remote regions

(such as the ACC for the Zapiola drift). The same approach is used in this study.

1relative PV is here used as the PV anomaly given by the displacement of the free interface and the
relative vorticity
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A simple qualitative explanation for the tendency of turbulent flows to homogenize PV

can be given by assuming that stirring by geostrophic turbulence moves elements of fluid

over the topography. Assuming that this happens on time-scales shorter than those of

forcing and dissipation, these fluid elements will conserve their PV. If the fluid is stirred

randomly so that each fluid parcel reaches each point of a domain with a similar average

frequency, the time-mean PV has to be constant over that domain. If we further assume

that the stirring ”transports” inhomogeneities to smaller scales, until viscosity finally mixes

the fluid irreversibly, the PV field will be homogenized.

Here we want to follow an approach used by [2] which is based on this idea of eddy-

mixing. Treating PV as a conserved passive tracer we apply the commonly used approach of

down-gradient eddy-diffusion. It should be noted that in doing this we ignore the fact that

PV is not strictly a passive tracer since it’s distribution determines the flow field. However,

the results of eddy resolving numerical simulations, presented in this study, tend to support

the use of this approximation.

An analytical derivation for the expected mean flow over topography in a two layer

QG model assuming down-gradient diffusion of PV is shown in section 2. In section 3

the predictions of this theory are tested against eddy-resolving numerical simulations and

section 4 presents some preliminary results from laboratory experiments. A concluding

discussion of the results is given in section 5.

2 A Two Layer QG Model Assuming Down-Gradient Diffu-

sion of PV

The two layer quasi-geostrophic PV equations on an f-plane with horizontal viscosity ν and

linear bottom friction F = −Ru, can be written as

[

∂

∂t
+ J(ψ1, )

]

q1 = ν∇4ψ1 (3)

[

∂

∂t
+ J(ψ2, )

]

q2 = −R∇2ψ2 + ν∇4ψ2 (4)

where

q1 = ∇2ψ +
f

H1
η (5)

q2 = ∇2ψ +
f

H2
(hb − η) . (6)

The shear between the two layers is given by the interface displacement η through the

thermal wind relation

ψ1 − ψ2 =
g′

f
η . (7)

Assuming that the eddy flux of PV can be described by down-gradient diffusion

u′q′ = −K ∂q̄

∂x
, (8)
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the steady-state solution would be given by:

(K1 + ν)∇4ψ1 +
K1f

H1
∇2η = 0 (9)

(K2 + ν)∇4ψ2 +
K2f

H2
∇2

(hb − η) −R∇2ψ2 = 0 , (10)

where where the eddy diffusivity of PV, K1/2 is allowed to be different in the two layers. If

hb, η and ψ2 vanish somewhere outside the domain of interest , (9) gives:

ζ1 ≡ ∇2ψ1 = − K1

K1 + ν

f

H1
η . (11)

Using (7), we find
(

K1 + ν

K1
L2
D1

∇2
+ 1

)

ψ1 = ψ2 (12)

where L2
D1

=
H1g

′

f2 . Hence we find a barotropic solution (ψ1 ≈ ψ2) if

L2
D1

L2
� K1

K1 + ν
, (13)

where L is the typical length-scale of the topographic mean flow which is assumed to be

of the same scale as the topography itself. Note that the left hand side corresponds to the

Burger number. With (13), we find from (11) that

η ≈ −K1 + ν

K1

H1

f
∇2ψ2 (14)

and therefore
η

H1
∼ K1 + ν

K1
Ro (15)

where

Ro =
U

fL
. (16)

We now find that (10) simplifies to

ψ1 = ψ2 =
K2f

RH2
h , (17)

if

L2
D1

L2
� K1

K1 + ν
, Ro� K1

K1 + ν

h

H1
and Ro� K2

K2 + ν

h

H2
. (18)

Note that the first two conditions imply that η � h.
For sufficiently small Rossby and Burger numbers, we find a barotropic flow along isolines

of constant depth controlled by an equilibrium between an eddy-diffusive flux of PV and

bottom friction. This result is similar to the result obtained by [2] in the limit of a vanishing

planetary vorticity gradient and wind-stress.
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3 Numerical Simulations

The full set of equations (3) to (7) are integrated numerically. A list of parameters is

given in table 3, they are chosen to resemble the laboratory experiments described later

in this report. The topography used is given by a truncated cone centered in the middle

of the domain. The length scale Ltop given in table 3 denotes the length of the slope, the

total diameter of the ”bump” is 3Ltop. It should be noted that the topography is large

compared to the deformation radius. Additionally to the truncated cone the topography is

slightly parabolic (maximum amplitude about 0.1H2) over the whole domain to simulate

the parabola arising due to the centrifugal force in the tank.

Ldomain Ltop LD H1/H2 hb/H2 f R ν

150 cm 17 cm 1.5 − 2 cm 0.5 0.5 3s−1
0.01 − 0.08 s−1

0.01 cm2 s−1

Table 1: Parameters used for the numerical simulations

The equations are intergrated using a pseudo-spectral
2

model with a grid spacing ∆ ≈
0.6cm. Considering that the typical eddy scale is a few times the deformation radius the

model is eddy resolving. The model has periodic boundary conditions though a sponge

layer is implemented along the boundaries which strongly damps PV perturbations and

thus eliminates eddies that move into this boundary layer. The sponge layer was chosen to

simulate an infinite domain in which eddies are allowed to move out of the area of interest.

Turbulence was generated by four pairs of sources and sinks of PV located in the middle of

the four sides of the square domain, right outside the sponge layer.

For the topography used in the simulation (17) gives a constant along-slope velocity

uφ =
∂ψ

∂r
=
K2f

RH2

∂hb
∂r

= −K2

R

hbf

H2Ltop
≡ −K2

R
β , (19)

where we defined β as the topographic PV gradient. Nondimensionalizing all variables using

the deformation radius LD as a length scale and L−1
D
β−1

as a time scale gives

u∗φ = −K
∗
2

R∗
. (20)

Two series of simulations are performed in which first the strength of the forcing was

varied, and then the magnitude of bottom friction. Each simulation is run into a statistically

steady state for at least 500 s. After this initialization period the PV fields of each layer are

averaged over at least 1000 s. An overview of all simulations is given in table 2. Figure 1

shows an example of mean relative PV and streamfunction fields from the S04-3 simulation.

We see the four PV sources which produce jets that get deflected to the right, which

can be explained by the parabolic background PV field. Over the topography we observe

anticyclonic circulations along the slope in both layers which is in qualitative agreement with

(19). This is associated with negative relative PV in the lower layer and a positive relative

PV in the upper layer, which is the PV disturbance expected from a positive displacement of

2Pseudo spectral here means that the product uq in the nonlinear advection term is calculated in grid-
space and then transformed back into fourier space
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the interface. The negative relative PV in the lower layer acts to reduce the topographic PV

anomaly, though it does not completely compensate the latter which is as high as
fh

b

H2
≈ 1.7.

Moreover we can find that a strong PV anomaly is only found on the lower part of the slope

with a relatively sharp transition to a smaller PV anomaly further inside. This indicates a

”PV staircase” as suggested by [7] due to a limitation of the coss-slope eddy mixing length

to the Rhines-scale (LR =

√

u/β) which is of the same order as the deformation radius

here.

Name S01 S02 S04-1 S04-2 S04-3 S08 S16 S32 R1 R2 R4 R8

Source [s−2
] 0.1 0.2 0.4 0.4 0.4 0.8 1.6 3.2 0.4 0.4 0.4 0.4

R [10
−2s−1

] 2 2 2 2 2 2 2 2 1 2 4 8

Table 2: List of performed numerical simulations. The second line gives the peak absolute

value of the vorticity sources and sinks and the last line gives the bottom drag. The

deformation radius LD was 2 cm for simulations S01-S32 and 1.5 cm for simulations R1-R8.

All other parameters are as given in table 1.

For a more quantitative analysis the mean along slope velocity was calculated for each

performed simulation. Figure 2 shows the non-dimensional mean along-slope velocity from

simulations S01 to S32 against the non-dimensional mean lower layer Eddy Kinetic Energy

(EKE) averaged over the whole domain of integration and against the EKE averaged only

over the topography. A first observation is that the along slope velocity increases with EKE.

Since we expect the eddy diffusivity to rise with EKE, this is in qualitative agreement with

the theoretical prediction (20). However, while the flow is anticyclonic in both layers, the

magnitude is quite different in some simulations, especially for those with low EKE where

we find a stronger anticyclone in the upper layer then in the lower layer. As the strength

of the sources is inreased and the EKE becomes higher, the flow becomes more barotropic

with the anticyclone in the lower layer being somewhat stronger than in the upper layer

for high EKE. Focussing on the lower layer velocities and the EKE over the topography

(which we assume is a better predictor for the eddy dissusivity in this area) we find that

the along-slope velocity approximately grows as EKE3/4
.

The left panel in figure 3 shows the along-slope velocity versus the inverse of the bottom

friction for experiments R1 to R8. The linear increase of u∗
φ

with 1/R∗
appears to be in

good agreement with (20), assuming that the eddy-diffussivity does not change between the

experiments. This, however, can not necessarily be expected.

To allow for a better test of prediction (20), two different methods were used to estimate

the eddy-diffussivity K2 and how it relates to EKE.

The eddy-flux of PV can generally be decomposed into a down-gradient flux and a bolus

flux along iso-lines of PV as follows:

u′q′ =
u′q′ · ∇q̄
|∇q̄|2 ∇q̄ − u′q′ ×∇q̄

|∇q̄|2 ×∇q̄ (21)

≡ −K∇q̄ + ψB ×∇q̄ . (22)

Using this formulation we can calculate the actual PV-diffussivity K and bolus stream-

function ψB from time averages of the numerical integration. While ψB is rather indistin-
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Figure 1: Mean relative PV in s−1
and velocity vectors (top) and streamfunction in cm2s−1

(bottom) for simulation S04-3. The upper layer is shown on the left and the lower layer

is shown on the right. The black circles indicate the topography, with the outer circle

representing the outer edge of the cone and the inner circle representing the truncated top.
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Figure 2: Non-dimensional mean along-slope velocity uφ in the upper (blue) and lower layer

(red) for simulations S01 to S32 vs. the (non-dimensional) mean EKE averaged over the

whole domain of integration (crosses) and against the EKE averaged over the topography

(circles).
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Figure 3: Left: Non-dimensional mean along-slope velocity uφ in the upper (blue) and

lower layer (red) for simulations R1 to R8 against the inverse of the non-dimesional friction

parameter (1/R∗
). Center: As left, but uφ against EKE∗/R∗

, where EKE∗
denotes EKE

averaged over the topography. Right: As left but uφ against EKE∗
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Figure 4: Lower level eddy-diffussivity K∗
2 over the topographic slope, estimated from (22)

(blue) and from (23) (red) against EKE∗
over the topography. The circles show data from

experiments S01, S02, S04-3 and S32. The cross shows an estimate from R8.

guishable from noise in both layers, for the data available, the lower layer diffussivity K2

is found to be coherently negative over the slope of the topography, which retrospectively

justifies the down-gradient diffusion parameterization used in the theory presented above.

An averaged eddy-diffussivity over the slope is calculated this way.

This direct calculation of PV diffusion is compared to the diffusion of a conserved tracer

obtained from particle release simulations. For two experiments (S04-3 and S32) 1000 par-

ticles were placed in a circle along the topographic slope. The diffussivity can be estimated

using

4K =
∂

∂t

〈

1

N

∑

i

r2i

〉

, (23)

where N is the total number of particles and ri is the distance of each particle from the

center. Since we are interested in estimating the diffussivity above the slope, we evaluate

(23) only until the particles leave the slope-area. To increase the accuracy of the estimate,

the tracer release was repeated 5 and 8 times in succession for the S04-3 simulation and the

S32 simulation, respectively. A possible error in this estimate up to a factor of two however,

should still be considered.

Figure 4 shows the eddy-diffusivity over the slope in the lower layer, estimated in this two

ways versus the lower layer EKE over the topography. Note, that for the two experiments

for which both methods were applied, the eddy diffussions of PV calculated directly from

(22) agree well with the diffussivity estimates from the particle release simulations. We

further find that the eddy diffussivity scales convincingly like

K∗ ∼ EKE∗ , (24)

though simulation R8 for which Ekman friction was increased by a factor of four deviates

somewhat from this scaling. This result might come rather surprising considering that for
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a fully turbulent flow we expect a scaling like

K ∼ UeddyLeddy (25)

with typical eddy velocities and scales Ueddy and Leddy, respectively. Assuming that Leddy
scales like the deformation radius this becomes, in non-dimensional parameters

K∗ ∼ U∗
eddy ∼

√
EKE∗ . (26)

This is not observed, probably because flow over the slope is not fully turbulent. Comparing

the nonlinear advection term of the QG PV equation with the advection of topographic PV

(the topographic β-term) we find a “nonlinearity -parameter”
3

N ≡ J(ψ,∇2ψ)

1
r

∂ψ

∂φ
β

∼ L2
R

L2
D

= U∗
eddy , (27)

where LR =

√

U
eddy

β
is the topographic Rhines scale. N ranges around 0.2 to 5 in the

simulations shown here, indicating that the assumption of fully developed turbulence is

rather inadequate. Considering that (undamped) linear motion does not contribute to

mixing we can argue that the eddy-diffusion in this weakly nonlinear case is given by the

traditional scaling for turbulent motion (25) times this nonlinearity-parameter which would

give

K∗ ∼ U∗
eddyN ∼ EKE∗ . (28)

However, to some extend any power of N and thus any power of U ∗
could be justified this

way. Since the eddy scale is generally larger than the deformation radius, which makes the

effective nonlinearity even smaller than the above estimate, we could argue that the motion

over the slope is in a regime of linear damped waves. In this case the “eddy diffussivity”

would be given by

K =

∫

u(t)u(t+ τ)dτ ∼ U2R

R2 + ω2
≈ U2R

ω2
(29)

where ω is the frequency, U is the velocity perturbation associated with the wave motion

and R is the coefficient of bottom friction (see above). The approximation on the right-

hand side holds for weakly damped waves. Assuming that the wave length scales like the

deformation radius and the corresponding frequency is given by the Rossby-wave dispersion

relation we find, in non-dimensional parameters

K∗ ∼ U∗2R∗

R∗2 + 1
≈ U∗2R∗

= EKE∗R∗ . (30)

This limit can explain the observed linear scaling of K ∗
with EKE∗

. However, the calcu-

lated eddy diffussivity for simulation R8 agrees somewhat less with (30) than with (28).

Plotting K∗
vs. EKE∗R∗

shows that the diffussivity of R8 lies significantly below the line

K∗ ∼ EKE∗R∗
(not shown).

The center and right panels of figure 3 show the along slope velocity versus EKE ∗/R∗

which would be expected to be linear from (20) and assuming the scaling law (28), and versus

3The inverse of this parameter is sometimes referred to as“steepness”.
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Figure 5: Non-dimensional along-slope velocity u∗
φ

in the upper (blue) and lower layer (red)

versus K∗
2/R

∗
for all simulations for which K2 was explicitly calculated (S01, S02, S04-3,

S32 and R8). The circles show two experimental results (see text). The solid straight line

denotes −u∗
φ

= 0.65 ·K∗
2/R and the dashed line shows −u∗

φ
= K∗

2/R which is the theoretical

result (20).

EKE∗ which would be expected to be linear assuming scaling law (30), for simulations R1

to R8. Both relations appear rather non-linear, suggesting that both scaling laws might be

inadequate to describe the scaling of the eddy diffusivity under variation of bottom friction,

found here.

The most direct test of the theoretical prediction (20) is given by figure 5 which shows

the along-slope velocity in both layers versus K ∗
2/R

∗
for all simulations for which K2 was

explicitly calculated. As mentioned before, we note the lack of barotropization especially

for low-EKE simulations, which was expected from the theory. For the lower layer, however,

we find good agreement with the theory as long as the EKE does not become too large.

For high EKE (i.e. high eddy diffussivity) the results indicate a deviation towards lower

along-slope velocities than expected from (20).

4 Experimental Results

In a second step the theory shall be verified by laboratory experiments. Experiments were

conducted in a rotating tank using a two layer fluid. The density difference was obtained

using water with slightly different salinity. The reduced gravity for the experiment shown

here is g′ = 4cms−2
. The rotation rate gives f = 4s−1

, which results in a deformation

radius LD ≈ 2cm. A truncated cone is placed in the center of the tank as in the numerical

simulations. A sketch of the experiment is shown in figure 6. Eddies are generated by four

pairs of sources and sinks in the upper layer equally spaced around the tank. The method

is described in detail in [4].

Since the expected along-slope velocities are on the order of 1mms−1
or less the experi-

ment, and especially the filling up of the upper layer, has to be done very carefully. A series

of similar experiment has previously been performed by [6], but the results are not used
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Figure 6: Sketch of the experimental setup. Left: Topview. The arrows on the tank wall

indicate sources and sinks in the upper layer to generate pairs of cyclonic and anticyclonic

eddies, indicated in red and blue. Right: Side view. The figure on the left is taken from [1].

here, mainly because a review of the lab-recordings suggested that the filling-up procedure

in these experiments might have had a significant influence on the observed circulation,

which can hardly be filtered out in hindsight. Due to similar and other problems during

this study, only the results of one experiment will be discussed here. However, the flow rate

of the sources and sinks was increased by a factor of 1.7 during this experiment, so that two

different values of the flow rate are presented. The first part of the experiment, with a flow

rate of 540 cc/min per jet, will be referred to as Ex3, while the second part, with a flow

rate of 920 cc/min per jet, will be refferred to as Ex3.5, in the following. Since the diffusion

of the interface between the two layers is significantly enhanced due to the eddy activity, it

is likely that a sharp interface did not exist any more during Ex3.5, which therefore has to

be handled with care.

Figure 7 shows a series of snapshots from Ex3. Neutrally buoyant dye, released from

outlets on the bottom of the cone, indicates an anticyclonic circulation around the cone in

the lower layer, with an average velocity of the order of −uφ2 ≈ 0.3mm/s. The flow in

the upper layer can be evaluated more quantitatively by tracking of surface particles which

can also be seen in figure 7. Two 30-minute time averages of surface velocity and vorticity

from Ex3 are shown in figure 8. The most striking feature that is observed is a strong

cyclone above the flat center of the truncated cone. It should be noted that the frame-rate

used for the particle tracking was slower for the figure shown on the left, which causes an

inadequate resolution of the fast cyclone observed over the top of the cone. The cyclone

remained above the flat center of the cone during the whole time of the experiment. Dye

releases in the lower layer indicate an associated cyclonic motion in the lower layer, though

probably weaker. A similar feature is not predicted by theory and was never observed in

the numerical simulations. It should be noted that the Rossby-number for this cyclone is

O(1), which might explain it’s absence in the numerical QG model. A physical explanation

for this observation, however, is still outstanding. Over the slope itself we observe an

anticyclonic circulation as predicted by the theory. The averaged along-slope velocity in

the upper layer is −uφ1 ≈ 0.9mm/s and thus probably stronger than in the lower layer,

similar to the results found in the numerical simulation for rather small EKE. We further
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Figure 7: Series of snapshots from Ex3. Time elapses from the top left to the bottom right

with the time difference between each snap-shot being about 4min 45s. One can see the

dye in the lower layer traveling anticyclonicly along the topographic slope.

observe a band-like vorticity structure. This was previously mentioned in the discussion of

the numerical results and probably indicates a PV-staircase as discussed by [7].

Figure 9 shows a ten minute average
4

of surface velocity and vorticity from Ex3.5, i.e.

with increased flow rate. Since the kinetic energy of the fluid injected by the sources scales

with the square of the flow-rate, and the amount of fluid with that kinetic energy scales

linearly with the flow rate, we expect the kinetic energy injected per time to scale like the

cube of the flow rate. Assuming linear dissipation, we thus expect the EKE in the tank to

rise approximately like the cube of the flow rate. An increase of the flow rate by a factor of

1.7 should therefore cause an increase of the EKE by a factor of 1.7
3 ≈5. Using the scaling

(28) or (30), the theoretical result (20) would therefore suggest an increase of the along-

slope velocity by a factor of 5. The experiments show an increase of the mean along-slope

velocity by about a factor of ten The estimated upper layer mean velocity over the slope

for Ex3.5 is −uφ1 ≈ 9mm/s.
The results of experiments Ex3 and Ex3.5 are added to figure 5. Since no good estimate

for the eddy diffussivity exists for the experiments exists, for Ex3 K ∗
2 is fitted to match with

the numerical results. For Ex3.5 K∗
2 was then chosen to be five times this value, following

the argumentation above. Due to the ”tuning” of the diffussivity of Ex3, the comparison to

the numerical result has some limitations. However, figure 5 indicates that the experiments

are in a regime well covered by the numerical study. Also the slope between the two

experimental data points, which is not affected by this tuning, shows general agreement

with the numerical results. Note, that the used EKE estimate provides an estimate for EKE

4Since the faster flow allows for a reasonable average in a shorter time and the strong eddy activity in
Ex3.5 caused the interface to be destroyed more rapidly, a shorter time average is used in Ex3.5 then in Ex3.
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Figure 8: Two different eulerian mean velocity fields and the resulting vorticity, each aver-

aged over about 30 minutes of EX3. The average field shown on the left was taken about

one hour earlier than the field on the right. Velocity vectors are stretched by a factor of 10.

The solid lines indicate the truncated cone.

Figure 9: Eulerian mean velocity fields and the resulting vorticity each averaged over about

10 minutes of EX3.5. Velocity vectors are stretched by a factor of 2
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averaged over the whole domain and not over the topography itself. The numerical models

showed that the latter might grow faster with increased forcing, since the topographic PV

gradient prevents weak eddies to propagate over the topography. Note also, that, due to

the better measurability, the experimental results show upper layer velocities. As in the

numerical simulations, however, the flow was not strictly barotropic.

5 Summary and Discussion

Assuming down-gradient eddy-diffusion of potential vorticity it was shown that in a two

layer QG model for small Rossby numbers an approximately barotropic mean along-slope

circulation is expected to arise over an isolated topographic feature which is anticyclonic

for a mount and cyclonic for a depression. The strength of the circulation is controlled

by an equilibrium between the eddy flux of PV and bottom friction. This prediction was

tested using numerical simulations performed with an eddy resolving two-layer QG model

and laboratory experiments.

The numerical simulations reproduce an anticyclonic along-slope circulation in both

layers over a mount. However, especially for low EKE, the magnitude of the circulation is

significantly different in the two layers, which disagrees with the theoretical prediction of a

barotropic flow. Part of this inconsistency might be explained by a direct influence of the

forcing. The latter consists of four pairs of PV sources and sinks in the upper layer which

generate jets penetrating towards the center of the tank. The jets get unstable and generate

eddies. These jets, however, could have a significant direct influence on the circulation in

the upper layer, especially in the less turbulent simulations with low EKE.

The eddy diffussivity was estimated for a series of experiments. The results suggest

a down-gradient diffusion of PV over the topography of similar magnitude as the eddy

diffussivity of a passive tracer. It was further found that in the performed simulations

the eddy-diffussivity over the slope scales linearly with the EKE, which suggests a linear

or weakly nonlinear motion over the slope. However, no scaling law was found which

consistently describes the dependence of the observed eddy diffussivity on bottom friction.

It is likely that the experiments are covering a transition between a regime of fully linear

damped waves and weakly nonlinear motion, for which case the dependence on bottom

friction is expected to change over the range of performed experiments.

In the simulations for which the eddy diffusivity is calculated explicitely, the lower layer

velocity agrees well with the theory in the range of lower and medium eddy diffussivity, but

the along-slope velocity is smaller than the theoretical prediction for high eddy diffussivity.

It seems desirable to test whether the differences between the eddy resolving numerical

simulation and the theoretical results, are mainly a shortcoming of the down-gradient diffu-

sion parameterization or due to additional approximations made for the analytical solution.

Preliminary results, not shown above, solving the full two layer QG model numerical without

forcing but using a down-gradient diffusion parameterization, indicate that the differences

are mostly a shortcoming of the down-gradient diffusion parameterization (including the

lack of a representation of the direct effect of the forcing) and not dominantly due to inap-

propriate additional approximations made to obtain a simple analytical solution. Adding

an additional eddy-viscosity seems to improve the results, though no convincing physical

justification for this is known to the author.
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Laboratory experiments using a two-layer fluid in a rotating tank do also reveal an

anticyclonic flow along the topographic slope, which is in qualitative and to a lesser ex-

tend quantitative agreement with the theory. However, additionally a strong cyclone was

observed over the flat center of the topography. An explanation for this observation is so

far outstanding. More, carefully performed, experiments would be necessary to test the

theoretical predictions in a more quantitative way.
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Turbulent Mixing in Shear Driven Stratified Fluid
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1 Introduction

Background turbulence frequently causes mixing across gravitationally stable density in-

terfaces in atmosphere and ocean. Some common examples include turbulence by surface

winds or the cooling causing the deepening of the upper ocean mixed layer into stably strat-

ified pycnocline and turbulent mixing at the tropopause causing the growth of a planetary

boundary layer. There can be some mixing at the thermocline due to discharge of the buoy-

ant jets from power plants. These mixing processes are important in order to understand

and control the biological activities and dispersion of pollutants in the environment ([3]).

For example, the diffusion of methane gas in mine shafts.

Many laboratory and associated theoretical studies have considered the response of a

stratified fluid to impulsive surface forcing. [3] provides an excellent review on studies with

turbulence and vertical shear, investigating the growth of mixed layer in a stratified fluid.

The nature of mixing at sheared and shear free density interfaces is very different. For

example, the mixing in shear-driven stratified flows, where a well mixed turbulent layer

entrains an adjacent non-turbulent layer, is believed to depend upon the external forcing,

the depth of the mixed layer and the buoyancy jump across the layer. All these parameters

are investigated in the present study of 2-layer fluid system.

The first set of experiments undertaken to explore the growth of the mixed layer as

a function of these factors were that of [4]. They found that the entrainment rate was

proportional to the friction velocity u∗ ((= |τ |/ρ0)
1/2

, where τ is the surface shear stress and

ρ0 is the reference density) and Ri−1
τ , where Riτ is the overall Richardson number, defined

as g′h/u2
∗. The current investigation has been motivated by the stratified flow experiments

of [2] and [1] in cylindrical geometries. The present work is based on the earlier two-layer

model of [1], where a horizontal disk at the base of the tank drives the flow. Their analysis

showed that for Richardson Number, RiB(= g′h/Ω2R2
) < 1.5, the growth of the elevation

of the interface separating the upper (almost quiescent) layer of constant density from the

lower mixed region is proportional to Ri−1
B

. Note that h is the depth of the mixed layer, Ω

is the rotation rate of the disk and R is the radius of the disk. The buoyancy is defined as

g′ = g(ρL − ρu)/ρ̄L, where g is the gravitational acceleration, ρL is the density of the lower

layer fluid, ρu is the density of the fluid in the upper layer and ρ̄L is the average density of

the fluid in the lower layer, relevant if the fluid in the lower layer is linearly stratified.
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Figure 1: Experimental set-up showing a tank with a horizontal disk spinning the fluid in

the upper layer.

The experiments in the current work are characterised by the growth of a mixed layer,

separated by the undisturbed stratified lower fluid by a curved surface. In this report,

the experimental set-up is discussed, along with the dimensionless parameters that come

into play. The experimental results are presented and an attempt to offer a theoretical

explanation of these results is made.

2 Experimental set-up and parameters

The experiment comprises of a cylindrical tank of diameter 30cm, with a horizontal disk at

the top attached to a motor. Figure (1) and figure (2) show a square tank used initially.

The disk is just below the free surface of the top layer, fully immersed in the upper layer

fluid. The radius of the disk is 12 cm. The rate of rotation of the disk is controlled by a

motor. The rotation rate ranges from 1s−1 ≤ 2πΩ ≤ 12s−1
, where Ω is the angular rotation

rate, which remains constant during an experiment. As the disk spins, it provides energy

for mixing the two layers. A conductivity probe is used to obtain vertical density profiles

in the fluid. The total depth of the fluid, H = 27cm is fixed and is the same for every

experiment. The depth of the upper layer, h, varies during the experiments. The initial

depth of the upper layer is indicated as h0 = h(t = 0), and the depth during an experiment

is h = h(t). For most experiments, h0 is varied between 6cm and 20.6cm. The consequences

of changing the Richardson number by varying R, the radius of the disk, are not explored

in the present experiments.

The most important dimensionless parameter for the flow is the Richardson number ([1]).

The following are the definitions of the Richardson number that will be used throughout

this report.

RiB(t) =
g′h

Ω2R2
,
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where R is the radius of the disk, g′ = g(ρL − ρu)/ρ̄L (ρL, ρu and ρ̄L as defined in the

previous section), and Ω is the rate of rotation of the disk. RiB is constant for most part

of the experiment as can be seen from Figure 6. For almost all the experiments, after an

initial spin-up (when the fluid in the top layer is set into motion), RiB reaches a constant

value and maintains that value until the very end of the experiment, where the cylinder

bottom affects the experiment. Near the bottom, the boundary layer effects cannot be

neglected. Consequently, the value of RiB used is this work is R̄iB , i.e the average value of

RiB calculated ignoring the beginning and the end of an experiment. It should be noted

that in this definition, the velocity is assumed to be the“solid body rotation” velocity, i.e.

uu (see below) is given by ΩR. Hence, RiB is the same as Riτ , discussed in previous section,

if the velocity is ΩR.

Ri0 =
g′0h0

Ω2R2
,

where g′0 is the initial buoyancy jump across the interface between the upper and lower

layer, measured before starting the experiment and h0 is the initial depth of the upper

layer.

Riu =
g′h

u2
u

= RiB

(

Ω
2R2

u2
u

)

, where uu is the characteristic velocity in the upper layer.

Rim =
g′Lm

u2
u

,

where , Lm is the interfacial length scale (i.e. radius of an eddy at the interface). Lm is

proportional to the Ozmidov scale, L0. The Reynolds number in the present experiments is

sufficiently high for the flow to be regarded as turbulent. Hence, allowing for the assumption

that the flow is independent of Reynolds number. The Schmidt number, Sc (ratio of

kinematic viscosity to mass transfer diffusion coefficient), is not an important parameter

for the flow as Sc � 1 for a salt stratified water solution and it is constant for all the

experiments. Thus, the overall fluid motion and mixing process is assumed to depend on a

single parameter, the Richardson number.

2.1 A Typical Experiment

Figure 2 shows a two-layer experiment, with R̄iB = 0.56. The upper layer is well mixed

with fluid being pulled up by the spinning disk, resulting in a dome-shaped interface. The

Ekman layer, below the disk, causes the fluid below to rise up. This results in a circulation,

where the fluid ascends from the middle and comes down from the side of the tank. As the

mixing at the interface occurs, the upper layer deepens until all the fluid in the lower layer

is mixed. It is worth noting that the lower layer is very quiescent. It is motionless and

retains this property until it is completely mixed. A schematic of the fluid circulation in

the upper and lower layer is shown in figure 3. The overturning billows seen at the interface

(for the case where Ri0 ≤ 1), entrain the lower layer fluid. This mechanism converts the

kinetic energy (provided by the disk) of the fluid in the upper layer, into potential energy

by lifting up the denser fluid particles from the lower layer and mixing them with the rest of
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(a) t̂ = 8 (b) t̂ = 17

(c) t̂ = 18 (d) t̂ = 28

Figure 2: A two-layer experiment with Ω = 1s−1, t̂ = Ωt, R̄iB = 0.56. In figure 2(c), the

fluid in the upper layer is pulled by the disk, spinning at the rate Ω at the top. The fluid in

the lower layer is motionless. The dye is rising in 2(d) because it is lighter than the lower

layer fluid.
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the fluid in the upper layer. It is the size of these overturning billows (in terms of Lm) that

determines the rate at which the fluid is mixed. However, once the size exceeds a certain

critical value, these billows can no longer develop and the fluid is not mixed efficiently. For

Ri0 > 1, a completely different regime is observed. The flow is no longer turbulent and the

overturning billows are replaced by waves at the interface.

Disk

Overturning billows

Interface

Free Surface
Ω

Lm

Figure 3: A schematic of the flow in the cylindrical tank, with the disk spinning at the top.

There is no circulation in the lower layer fluid.

As mentioned earlier, a conductivity probe is used to obtain vertical profiles of the fluid’s

density. Figure 4, shows one such profile with R̄iB = 0.19. The height of the interface (in

mm) is plotted against the density of the fluid (in g/cm3
). The evolution in time of the

profiles is from left to right. The profile on the extreme left represents the initial density

of the two layers. After the disk starts spinning, the first density profile obtained is the

second profile from the left (blue line). It is clear, from looking at the profiles from left to

right, that the upper layer is deepening as the level of the interface is going down in each

subsequent profile. As expected, the lower layer maintains its density until it is completely

mixed with the upper layer fluid.

3 Experiments

The following table shows the various experiments conducted to observe the mixing in a

two-layer stratified fluid.
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Figure 4: A typical vertical profile of the density during an experiment with R̄iB = 0.19.
The evolution of the profiles in time is from left to right.

Experiment Ri0 h0 (cm) Ω(s−1
) g′0(cms−2

) R̄iB
080713lo40 0.1527 8.7 3 22.7407 0.19

080714lo40 0.3109 17.8 3 22.6470 0.32

080715lo40 0.2367 13.5 3 22.7215 0.255

080716lo40 0.2554 18.5 3 17.8929 0.275

080718lo30 0.2406 6.1 2 22.7218 0.265

080720lo64 0.2336 13.5 5.4 73.1874 0.258

080721lo60 0.0851 13.5 5 22.7028 0.096

080727lo20 2.1293 13.5 1 22.7124 2.1

080731lo30 0.5317 13.5 2 22.6842 0.56

080809lo50 0.1328 13.5 4 22.6561 0.154

080810lo28 1.0016 20.6 1.8 22.6842 0.935

080812lo40 0.2124 13.5 3 20.3892 0.24

The last experiment, ‘080812lo40’, has a buoyant upper layer and a linearly stratified

lower layer with density profile evolving in time as shown in figure 5. The range of Richard-

son numbers explored in the experiments is shown in figure 6.

As expected, mass is conserved in all the experiments. This is clear from figure 7. The

value of RiB/Ri0 = g′h/g′0h0 is approximately 1 for the experiments, implying that g ′h is a

constant. The fluctuations seen in figure 7 are due to the fact that the flow is turbulent. It

is for this reason that the value of RiB/Ri0 is not exactly 1. Another observation that can

be made from this figure is that the value of RiB/Ri0 decreases dramatically for some cases

but not for the others. This can be attributed to the fact that all the profiles are included

in these experiments as there were relatively few of them. Since Ri0 for these experiments

is small, the mixing takes place very quickly as there is a small density difference between

the two layers. As mentioned earlier, the value of RiB/Ri0 at the bottom cannot be trusted
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Figure 5: Density Profiles from experiment ’080812lo40’: Plot of density (non-dimensional)

against depth that has been profiled (non-dimensional). Note the profiling depth is not the

same as the total depth, H = 27cm, instead the profiling depth is 24cm. Profiles evolve in

time from left to right. R̄iB = 0.24.
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Figure 6: Range of RiB(t) explored in the experiments.
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Figure 7: The value of RiB(t)/Ri0 = g′h/g′0h0 ∼ 1. This suggests that g′h is a constant.

because of the effect of bottom boundary layer. Hence, the last few profiles show such

a dramatic change in the value of RiB(t). Moreover, the initial value for almost all the

experiments is 1. It changes after the initial spin-up of the fluid, again reinforcing that

after the initial spin-up period, the value of RiB is almost a constant. From now onwards,

it is this value, found by averaging the value of RiB(t) (excluding the beginning and the

end profiles) that will be used for RiB .

It can be established from the following theoretical consideration that g ′h is a constant.

If A is the cross-sectional area of the cylinder, H is the total height, h is the height of the

upper layer, which evolves in time h = h(t), and Q = entrainment flux, then

d

dt
(Ah) = Q. (1)

The amount of fluid entrained is

d

dt

(

A

∫

h

0
ρu dz

)

= QρL, (2)

where ρL is the density in the lower layer. The average density in the upper layer is

ρ̄u =
1

h

∫

h

0
ρu dz, (3)

Hence, on substituting (3) into (2),

d

dt
(Ahρ̄u) = QρL. (4)
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Figure 8: Plot of dh/dt/ΩR against 1/RiB . The growth of the interface is not perfectly

proportional to 1/RiB .

which gives

d

dt
[A(ρ̄u − ρL)h] + ρL

d

dt
[Ah] = QρL, (5)

d

dt
[A(ρ̄u − ρL)h] = 0, (6)

d

dt
[Ag

(ρ̄u − ρL)

ρL

h] = 0, (7)

This shows that
d

dt
(g′h) = 0 and thus g′h is a constant and mass is conserved.

In figure 8, the growth of the interface (scaled by ΩR) is plotted against 1/RiB . This

figure suggests that the mixing, or the growth of the interface, does not scale perfectly with

Ri−1
B

. From the experimental results presented here, it is clear that the outcome of this work

does not support the conclusion of [1], where they found that the growth of the interface

is proportional to Ri−1
B

, where the velocity (= ΩR) of the upper layer fluid is constant in

each experiment. Thus the simple mixing law, inferred by [1] needs a modification. This

indicates that the results do not support the assumption that the fluid is in solid body

rotation, i.e. the velocity does not scale as ΩR as assumed in the definition of RiB . Hence,

it is not completely accurate to assume that the velocity in the upper layer is the same as

ΩR and that it does not change during the experiment. An immediate consequence of this

result will be to re-examine the velocity of the upper layer fluid.
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4 Theory

The driving disk sets up a characteristic velocity uu in the upper layer. Assuming that

the bottom layer is stationary, the interfacial stress, τ can be described by the following

expression,

τ = cDρLu2
u,

where cD is the drag coefficient. Hence, the work done, W , can be expressed as

dW

dt
= πR2uuτ = πR2cDρLu3

u, (8)

The potential energy, PE is

PE = πR2

[

−g

∫

h

0
ρuz dz − g

∫

H

h

ρLz dz

]

= (πR2ρL)
g′h2

2
+ k, (9)

It should be noted here that k is a constant. However, the reference level for potential

energy can always be chosen such that this constant k is zero. The potential energy is

negative because z = 0 is defined at the top of the tank. The rate of change of potential

energy of the fluid parcels is proportional to the amount of power provided by the disk, i.e.

d

dt
PE = Γ

dW

dt
, (10)

where Γ is the flux coefficient ([5]). Assuming that g ′h is a constant (see previous section),

this leads to

d

dt

[

(g′h)(πR2ρL)
h

2

]

= ΓπR2cDρLu3
u. (11)

Hence, the interface grows as

dh

dt
= 2Γ

cDu3
u

g′h
., (12)

Let

ĥ =
h

h0
, t̂ = Ωt,

dĥ

dt̂
=

2cDΓu3
u

Ωh0g′h
. (13)

It is quite intuitive to expect that the growth of the interface depends on the amount

of energy that is spent on mixing the two layers together. The following 3 sub-sections

quantify this statement based on the amount of energy (provided by the disk) that is spent

on entrainment.
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4.1 Case 1

Solid Body Rotation:

If none of the energy is spent on entrainment, then all of the energy provided by the

disk is exhausted in moving the fluid in the upper layer. The upper layer in this case moves

with a constant speed, ΩR, provided by the disk. In this case, the upper layer fluid is in

solid body rotation, i.e.

uu = ΩR,

where uu is the speed of the upper layer fluid.

dĥ

dt̂
=

R

h0

c1

RiB
= constant, (14)

c1 = 2cDΓ, (15)

ĥ − 1 =
R

h0

c1

RiB
t̂. (16)

This case is similar to the outcome of [1], with
dĥ

dt̂
a constant.

4.2 Case 2

ALL Energy spent on entrainment:

Assume uu can be expressed as

uu = ΩR

(

h0

h

)α

,

where h0 is the initial depth of the upper layer measured before starting the experiment.

This expression means that the velocity of the upper layer fluid decreases with time. It is

no longer a constant, which is the case if some energy is spent on mixing the two layers.

The total kinetic energy, KEu in the upper layer is

KEu =
πR2

2
ρrefu2

uh, (17)

where ρref is the density taken at some reference level. This reference density can, for

example, be the average upper layer density. It is assumed that in this case all the energy

is spent on mixing. This signifies that the kinetic energy of the upper layer does not change

as all the energy that the disk provides is lost in mixing the two layers. Hence,

d

dt
KEu = 0,

Thus,

πR2

2
ρrefu2

uh = constant, (18)
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By appealing to the Boussinesq approximation, changes in ρref can be ignored. Thus,

u2
uh is constant if α = 0.5 i.e

uu = ΩR

(

h0

h

)1/2

.

Hence, for the above expression to hold true, the fluid must spend all the kinetic energy on

mixing.

4.3 Case 3

Intermediate Case:

The two cases mentioned above are the extreme cases when either all the energy from

the disk is spent on mixing or all of it is expended on spinning the fluid in the upper layer.

A more sensible scenario is if part of the energy from the disk is consumed by the mixing

process and part of it is spent on mobilising the fluid. Suppose, as before,

uu = ΩR

(

h0

h

)α

.

Substituting this expression into equation (13) and integrating yields the following expres-

sion for ĥ:

ĥ − 1 =

[

R

h0

(1 + 3α)c1

RiB
t̂ + 1

]1/(1+3α)

− 1. (19)

Thus we can summarise the above results as follows:

• If α = 0: Entrainment has no effect on energy - this is the case when stratification is

weak.

• If α = 0.5: All the kinetic energy from the disk is spent on entraining the lower layer

fluid. Hence, there can be three dynamical regimes based on the value of RiB . When

RiB is small, it can be expected that the fluid is more or less in solid body rotation.

When the Richardson number is small, it is relatively easy for the upper fluid parcels

to lift the lower fluid and mix. This means that more energy is left for mobilising the

upper layer fluid. When RiB is large, it is presumed that most of the energy would

be spent on lifting up the lower layer fluid. For moderate values of RiB , some of the

energy is spent on the potential energy of the lower layer fluid parcels and a part is

spent on mobilising fluid in the upper layer. This is easier to visualise from figure 9.

In the three regimes shown, the velocity at the beginning is ΩR. RiB increases from

left to right in the figure, where (a) shows that the velocity of the fluid in the upper

layer is a constant as for small RiB most of the energy is spent on mobilising the

upper layer fluid. The middle picture, (b) represents the intermediate case where the

velocity is not a constant and the third case, (c) represents the large RiB regime. The

flow in this regime is not as turbulent as the other cases. There are no overturning

billows at the interface, instead it has waves. In this case, almost all the energy is

exhausted in mixing the fluid layers rather than providing kinetic energy to the upper
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layer fluid. The rate of change of interface drops from left to right. As expected, when

stratification is weak, it is relatively easy to mix the two fluids together. However,

as the stratification increases, it becomes increasingly expensive to mix the fluid. In

the high Richardson number case, the mixing is very inefficient, because of the lack

of overturning billows. Hence, it takes a significantly long time for the two layers to

mix.

b ca

Low Ri High Ri

U
u

U

U

U

Ω ΩR ΩRR
Evolution
in time

Figure 9: A sketch of the three dynamical regimes based on the Richardson number (see

text). The Richardson number increases from left to right in the figure. In b, u < U < ΩR
as part of the energy is spent on mixing the fluid and only part of it is used to mobilise the

upper layer fluid.

5 Discussion

In order to analyse the data to test the three regimes scenario that have been discussed

qualitatively, equation (19) is plotted for various values of α, with ĥ − 1 against t̂. The

constant c1 is calculated from the initial data gathered just after the spin-up stage. It is

assumed that just after the spin-up, the upper layer fluid is in solid body rotation. This is

a reasonable assumption because at the beginning the work is done mainly on mobilising

the upper layer fluid. The initial data (excluding the spin-up stage) is used to plot equation

(16). A value of c1 can be found from the slope of this curve. This constant c1 is assumed

constant throughout the experiment. The value of c1 is employed to plot α = 0.2, 0.4 and

0.5 curves. The data in figure 10 is very close to the line α = 0, as expected from the energy

arguments. The stratification in these experiments is quite weak, which suggests that the

mixing requires very little energy and most of the kinetic energy from the disk is consumed

by the fluid in the upper layer.

Similarly, for the curves in figure 11, the data lies above the line α = 0.5, indicative of an

intermediate regime. Figure 11(e), shows a good agreement with the theoretical arguments.

The data lies just above the α = 0.5 curve, again indicating that the upper layer fluid is
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ĥ
−

1

1

 

 
data
α=0
α=0.2
α=0.4
α=0.5

(b) RiB = 0.19, c1 = −0.0030

Figure 10: Equation (19) plotted with ĥ − 1 against t̂. It is plotted for α = 0, 0.2, 0.4, 0.5.

not in solid body rotation and the velocity decreases in time. For this moderate value of

Richardson number, relatively more energy is required to mix the two layers. As a result,

lesser energy is spent on driving the upper layer fluid. In figure 11(f), the data is very close

to α = 0.5 curve, indicating that most of the energy is consumed by the process of mixing.

Figure 12 shows the plot of ĥ − 1 against t̂ from equation (19) for an experiment with

two-layers, where the lower layer is linearly stratified. Figure 5 shows its vertical density

profiles. It appears from figure 12 that the data does not fit the theoretical model. It should

be noted, however, that the constant c1 needs to be recalculated after every profile. This

has not been done yet. Qualitatively, it can be seen that at the beginning, when g ′
is very

small, the data is close to the α = 0 curve. As g ′
increases, it gets closer to the α = 0.5

line, as expected. This is consistent with the argument that the larger the value of RiB or

stronger the stratification, the harder it is for the upper layer fluid to mix the denser lower

layer. Consequently, most of the energy is spent on mixing the fluids.

The flux coefficient, Γ, (defined in section 4) can be divided into 3 components: Γu:

mobilising flux coefficient, ΓD: dissipation flux coefficient, Γρ: Potential Energy flux coef-

ficient. Thus, Γu determines the amount of energy from the disk going into mobilising the

fluid in the upper layer, ΓD determines the energy spent on dissipation and Γρ, the energy

that is used up in lifting the fluid parcels from below. The reason for dividing Γ into three

components is to understand and establish the fraction of energy extracted from the disk

to drive the upper layer fluid, mix the two layers together and dissipate.

The growth of the interface occurs due to entraining of the lower layer fluid. Thus,

equation (12) can be written more precisely in terms of Γρ as

dh

dt
= 2ΓρcD

u3
u

g′h
, (20)

dh

dt
=

2ΓρcD

Rim

Lm

h
uu, Lm = Rim

u2
u

g′
, (21)
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(a) RiB = 0.255, c1 = −0.0015
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(b) RiB = 0.275, c1 = −0.0015
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(c) RiB = 0.265, c1 = −0.0017

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t̂

1

ĥ
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(d) RiB = 0.258, c1 = −0.0013
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(e) RiB = 0.56, c1 = −0.0015
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(f) RiB = 0.935, c1 = −0.00086

Figure 11: Plot of ĥ−1 against t̂ with value of α ranging from 0 to 0.5. The data lies above

α = 0.5 curve, suggesting that these experiments fall under the intermediate regime.
332



0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t̂

1

ĥ
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Figure 12: Linear Stratification, Ri = 0.24, c1 = −0.00082

Remember Lm is the interfacial length scale. From the definition of c1, given by (15), it

seems reasonable that it should be defined more precisely as c1 = 2cDΓu, since it is the

mobilising component of flux that plays an important role here. As discussed before, the

kinetic energy provided by the rotating disk is spent on dissipation, increasing the kinetic

energy of the upper layer by mobilising it and increasing the potential energy of the flow

by lifting the heavier lower layer particles and mixing them with the upper layer. Since the

flow has high Re,

ε =
a2u

3
u

h

(from classical turbulence theory)

Parametrizing the change in kinetic energy of the two-layer fluid by ε, produces the following

equation

d

dt

(

u2
uh

2

)

= a1εLm(= −F − D + M), (22)

where F is the force responsible for changing the potential energy of the flow, D is the

dissipation and M is the force applied on the upper layer for driving the fluid. a1 is a

scaling parameter.

d

dt

(

u2
uh

2

)

= 2ΓucD

Lm

h

u2
u

2
uu, (23)

if a1a2 = ΓucD. From (21),

cD

Lm

h
uu =

Rim
2Γρ

dh

dt
, (24)

d

dt

(

u2
uh

2

)

=
u2

u

2

2ΓuRim
2Γρ

dh

dt
. (25)
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Assume,

u2
u

2
=

Ω
2R2

2

(

h0

h

)2α

,

(

1 − 2RimΓu

2Γρ

)

u2
u

2

dh

dt
− 2α

Ω
2R2

2
h2α

0 hh−2α−1 dh

dt
= 0, (26)

(

1 − 2RimΓu

2Γρ

)

u2
u

2

dh

dt
− 2α

u2
u

2

dh

dt
= 0, (27)

RimΓu

Γρ

= 1 − 2α. (28)

It has been found experimentally that Rim = 0.2 (see [3], [6]). Substituting α = 0.4 (as

suggested by figure 11(e)) along with Rim = 0.2, analysis reveals that

Γu ∼ Γρ.

This is an interesting result showing that for intermediate values of RiB , an equal amount

of energy goes into driving the fluid and in mixing the layers.

Moreover, if α = 0,Γu = 5Γρ. Thus, for the solid body rotation case (small RiB), the

proportion of energy that goes into driving the fluid is much larger than the proportion

that is spent on mixing. On the other hand, if α = 0.5,Γu = 0. As mentioned before, this

represents the case where there is no change in the kinetic energy of the upper layer fluid.

Thus, all the energy is spent on entraining the lower layer fluid.

6 Conclusion

It can be concluded from the above analysis and experimental work that a Ri−1
B

law for

mixing is not found. Moreover, the fluid velocity in the upper layer is not always ΩR. It

would appear that the upper layer is not always spun-up during the experiment and is not

constant with h. It can be seen both from the theory and the density profiles that the height

of the interface decreases with time. For moderate values of Richardson number, energy

spent on mixing is of the same order as the energy that goes into mean velocity. For values

of RiB ≥ 1, the dynamics is completely different. The flow is no longer turbulent. This

implies that the Reynolds number can play a significant role in determining the dynamics

and can no longer be ignored. The qualitative behavior observed during an experiment at

these values of RiB is very different than the observed behavior for lower values of RiB .

The fluid is no longer mixed by eddies at the interface. The interface in this case is very

thin and dominated by wave activity.

It is safe to say that the model developed here can capture the various aspects of mixing

for RiB ≤ 1. More work is required to understand the higher Richardson number cases.
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1 Introduction

Consider a sea partially covered by a thin ice sheet, with a prevailing current driving water

under the ice edge. If the ice sheet is fixed relative to the flow then a Blasius boundary

layer will will develop beneath, due to the no-slip boundary condition at the underside of

the sheet. This viscous boundary layer will divert the oncoming flow, causing it to run

deeper under the ice, and thus produce a region of high pressure within the fluid in the

viscinity of the ice edge. This situation is illustrated in Figure 1. The pressure will cause

d

hPSfrag replacements

U

SEA ICE

x

Im k

z

Figure 1: Flow beneath an ice sheet leads to a Blasius boundary layer. The bottom of the

boundary layer is indicated by a dashed line.

deformations of both the sea surface and the ice sheet close to the ice edge. If the flow

is sufficiently rapid, and the sheet sufficiently thin, then the ice will fracture. Even if the

sheet remains intact, it may crumple when the flow speed exceeds some critical value. This

crumpling results from a standing flexural wave propagating downstream from the ice edge.

In this report we seek to describe mathematically the deformation of the ice sheet arising

from a steady incident flow at the ice edge. (The problem is equivalent to an ice sheet

moving across the surface of a stationary fluid.) The formulation of the problem is closely

analogous to that employed by Harper & Dixon [3] in their description of the so-called
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“Reynolds ridge”. In that problem a strong horizontal gradient in surface tension, due to

the presence of surfactant contamination, produces an effective no-slip boundary condition

beneath the contaminated part of the free surface. Again, a Blasius boundary layer forms,

leading to deformation of the free surface. In the present problem, the bending stiffness (or

flexural rigidity) of the ice sheet replaces surface tension in limiting the curvature of the

surface.

There is also an important analogy between the present problem and that of wave

scattering by the ice edge, as studied by Balmforth & Craster [1]. In that work, the

“forcing” applied to the ice sheet arises from a wave on the sea surface that is incident on

the ice edge. No background flow was included, and so there was no Blasius boundary layer

— in fact the fluid was regarded as perfectly inviscid. The inclusion of a background flow

in the present problem introduces advection terms into the linearised boundary conditions,

and so standing waves appear in the solution when the background flow exceeds a critical

value.

2 Formulation

Following Harper & Dixon, we regard the Blasius boundary layer beneath the ice sheet as

akin to a thin aerofoil; that is, the bottom of the boundary layer represents an inpenetrable

barrier to the incompressible fluid flow beneath. Outside the boundary layer we neglect

viscous effects, so that the flow may be regarded as irrotational. We may therefore describe

the fluid velocity u in terms of a velocity potential φ that satisfies

∇2φ = 0, (1)

u = ∇φ. (2)

The flow upstream is at speed U in the x direction and z is the vertical coordinate relative

to the undisturbed free surface. With regard to Figure 1, we take h(x, t) to be the height

of the free surface, and d(x) to be the thickness of the viscous boundary layer. If the ice

edge is located at x = 0 then

d(x) =

{

0, for x < 0

1.7208 (νx/U)
1/2 , for x > 0

(3)

where ν is the kinematic viscosity. Provided that the deflection of the free surface remains

small, we may linearise our equations about a state of uniform flow beneath a horizontal free

surface. We also suppose that the viscous boundary layer follows the contours of the free

surface; this assumption will cease to be valid if the curvature of the free surface becomes

comparable to the thickness of the boundary layer [2]. The linearised boundary conditions

on the ice surface (x > 0) are

(∂t + U∂x)(h − d) = ∂zφ|z=0 (4)

(∂t + U∂x)φ|z=0 + gh = −B

ρ
∂4

xh, (5)
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where ρ is the fluid density and B is the bending stiffness of the ice [5], which is related to

the Young’s modulus E and Poisson ratio r by

B =
E∆

3

12(1 − r2)
. (6)

Here, ∆ is the thickness of the ice, which we shall assume to be ≈ 1m. The characteristic

horizontal scale for deformations of the ice surface is the bending length, L ≡ (B/ρg)
1/4

;

for ice of thickness 1m, the bending length is approximately 50m [1].

On the free surface of the open sea, the bending stress vanishes, and in its place we

substitute surface tension, σ. We therefore replace (5) with a new dynamic boundary

condition for x < 0:

(∂t + U∂x)φ|z=0 + gh = +
σ

ρ
∂2

xh. (7)

The characteristic horizontal scale on the sea surface is given by the capillary length, l ≡
(σ/ρg)

1/2 ≈ 3mm. Since l � L we do not expect surface tension effects to be significant in

determining the shape of the ice surface. We have chosen to retain surface tension firstly to

regularise any small scale effects occuring on the sea surface. We also have in mind possible

laboratory experiments using materials with a much smaller bending length than sea ice,

for which surface tension effects would not be negligible.

Due to the discontinuity at the ice edge, we shall need to specify additional “edge

conditions” between x = 0− and x = 0+. In particular, we balance forces and torques at

the ice edge by integrating (5, 7) and their first moments across an interval (−ε,+ε), then

allowing ε to tend to zero. Assuming that u and h are continuous, we obtain the edge

conditions

B∂3
xh|0+

= −σ∂xh|0− (8)

B∂2
xh|0+

= −σh|0− . (9)

We now seek two dimensional, steady state solutions of the governing equation (1)

subject to (4, 8, 9) and the two-part boundary condition

U∂xφ|z=0 + gh =

{

+gl2∂2
xh, for x < 0

−gL4∂4
xh, for x > 0

(10)

Following Balmforth & Craster [1], we shall apply the Wiener–Hopf technique, and so we

define half-range transforms

Φ+(k, z) =

∫ +∞

0+

φ(x, z)e
ikx

dx (11)

Φ−(k, z) =

∫ 0−

−∞

φ(x, z)e
ikx

dx (12)

The full Fourier transform is then Φ = Φ+ + Φ− (similar notation will be employed for

the transforms of d and h). With these conventions Φ+ is well defined (and analytic) in

the upper half of the complex k-plane, and Φ− is similarly well defined in the lower half of
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Figure 2: Branch cuts in the complex k plane used in the definition of Γ(k).

the complex k-plane. We suppose that Φ+ and Φ− can be analytically continued over the

complex domains ⊕ and 	, which include, respectively, the upper and lower half k-planes.

The full Fourier transform of φ (and of h, d, etc.) is then well defined in the intersection
1

of ⊕ and 	. We now transform each of our equations in turn. From (1) we find

∂2
zΦ± = k2

Φ± ± (∂x − ik)φ|0± (13)

⇒ ∂2
zΦ = k2

Φ (14)

For simplicity, we restrict attention to the case of deep water. We then have a “lower

boundary” condition that φ → 0 as z → −∞. The solutions of (14) may then be written as

Φ(k, z) = Φ̂(k)e
Γ(k)z , (15)

where Γ(k) is defined so that Γ(k) = ±k and ReΓ(k) ≥ 0. In what follows we shall require

a more formal definition of Γ(k). We therefore temporarily allow d (and hence φ and h) to

have some slow sinusoidal modulation in the y direction, with small wavenumber ε. Then

equation (14) is replaced by

∂2
zΦ = (k2

+ ε2
)Φ (16)

and so Γ(k) = (k2
+ ε2

)
1/2

, where we take the branch cuts to lie in the intervals [±iε,±i∞)

(see Figure 2). The two dimensional problem represents the limiting case in which ε → 0,

so we define

Γ(k) ≡ lim
ε→0

(k2
+ ε2

)
1/2. (17)

We now transform the kinematic boundary condition (4) to find

−∂zΦ± = ikU(H± − D±) ± U(h − d)|0± (18)

⇒ −ΓΦ̂ = ikU(H − D) (19)

1Formally, the Wiener–Hopf technique requires the intersection of ⊕ and 	 to be some strip containing
the real axis. This and other technical details are not addressed here, but are described in detail in [1].
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where we have assumed that the boundary layer thickness d is continuous
2

at x = 0. Lastly,

transforming the two-part dynamic boundary condition (10) yields

g(1 + L4k4
)H+ = ikU Φ̂+ + gPice(k) + Uφ|0+

(20)

g(1 + l2k2
)H− = ikU Φ̂− + gPsea(k) − Uφ|0− (21)

∴ gH + L4k4H+ + l2k2H− = ikU Φ̂ + gP (k), (22)

where

Pice(k) = L4
(∂3

x − ik∂2
x − k2∂x + ik3

)h|0+
(23)

Psea(k) = l2(∂x − ik)h|0− (24)

P (k) = Pice(k) + Psea(k) (25)

are polynomials in k whose coefficients are the (unknown) values of h and its derivatives at

the ice edge. Applying the edge conditions (8–9) we find that

P (k) = L4
(−k2∂x + ik3

)h|0+
, (26)

so P is O(k2
) at k = 0. We may now eliminate Φ̂ between equations (19) and (22) to obtain

a single equation for the free surface:

H + l2k2H− + L4k4H+ =
U2

g

k2

Γ
(H − D) + P. (27)

In §3 we shall apply the Wiener–Hopf technique to this equation in order to find H(k) and

hence obtain the free surface h(x) via the inverse transform

h(x) =
1

2π

∫ +∞

−∞

e
−ikxH(k) dk. (28)

Before this, it is instructive to consider two simpler but related problems in which there is

no discontinuity in the boundary conditions.

2.1 The Reynolds Ridge

If the boundary condition (7) holds over the entire surface then we replace (27) with

H + l2k2H =
U2

g

k2

Γ
(H − D). (29)

We now define the Weber number m based on the length scale l

m =
U2

gl
(30)

2We have also assumed that d → 0 as |x| → ∞, which is not the case for a Blasius boundary layer.
This difficulty can be resolved by introducing a slowly-decaying exponential factor in d(x), then allowing
the decay rate to tend to zero.
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and the operator

Dsea(k) = 1 + l2k2 − mlk2/Γ(k) (31)

so that (29) may be written in the form

Dsea(k)H(k) = −mlk2D(k)/Γ(k). (32)

We note that Dsea(k) = 0 is the dispersion relation for standing capillary–gravity waves on

the free surface:

Dsea(k) = 0 (33)

⇔ (Uk)
2

= gΓ(k)(1 + l2k2
). (34)

The full dispersion relation is obtained by replacing Uk −→ −ω + Uk. The phase and

group velocities for capillary–gravity waves are plotted in Figure 3. Provided that there
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Figure 3: The phase speed cp and group speed cg of capillary–gravity waves in a flow of

speed U .

are no roots of Dsea for real k we may readily solve (32) for H(k) and then find the free

surface height from (28) by integrating along the real k axis, leading to the solution for the

Reynolds ridge problem presented by Harper & Dixon. In general, Dsea(k) has four complex

roots, which we label as ks1, ks2, ks3 and ks4 according to their location in the complex

k-plane (see Figure 4). For m > 2 all four roots fall onto the real k axis, corresponding to

the existence of standing waves; we must then deform the integration contour in (28) to

avoid the singularities in the integrand. The particular choice of integration contour will

determine which waves are present as x → ±∞, and so we must apply a suitable radiation

condition. We see from Figure 3 that the group speed exceeds the phase speed for short

wavelength (capillary) waves, and the converse for long wavelength (gravity) waves. We

should therefore deform our integration contour so that standing capillary waves appear

upstream and gravity waves downstream in the solution [4]. For x > 0, the integrand in

(28) is exponentially small for Im k < 0, so we can close our integration contour at infinity

in the lower half k-plane; the solution will only contain waves arising from poles located

in the 	 domain. So we formally regard the two roots of Dsea with smaller wavenumber k
(corresponding to gravity waves) as residing in the lower half k-plane, and label them as

ks3 and ks4. This leads us to adopt the deformed integration contour shown in Figure 5.
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Figure 5: The integration contour used in the inverse transform (28) when m > 2.

2.2 Infinite Icesheet

Sufficiently far into the ice covered region we might expect effects from the ice edge to be

negligible, and therefore apply boundary condition (5) for all x. In this case, (27) is replaced

by

H + L4k4H =
U2

g

k2

Γ
(H − D). (35)

We proceed by analogy with §2.1; we define a Weber number

n =
U2

gL
(36)

and a dispersion operator

Dice(k) = 1 + L4k4 − nLk2/Γ(k) (37)

so that (35) may be written in the form

Dice(k)H(k) = −nLk2D(k)/Γ(k). (38)

Dice(k) also has four complex roots, which fall on the real axis when n >
(

256
27

)1/4 ≈ 1.75;
these roots correspond to standing flexural waves on the ice surface. As in the previous
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section, we must deform our integration contour around these singularities when evaluating

the inverse transform (28). Due to the similarities between Dice(k) and Dsea(k), the correct

contour is qualitatively identical to that sketched in Figure 5.

3 The Wiener–Hopf Technique

We begin by rewriting (27) in the form

Dice

Dsea
(k) =

(1 + L4k4
)D − (L4k4 − l2k2

)H− − P (k)

(1 + l2k2)D + (L4k4 − l2k2)H+ − P (k)
(39)

To proceed with the Wiener–Hopf method we must split the LHS of (39) into a product of

⊕ and 	 functions:

Dice

Dsea
(k) = −K+(k)K−(k). (40)

The functions K± must have neither poles nor zeros in their respective domains. We describe

the splitting procedure in detail in §A; for now we simply observe that the split is unique

up to multiplication of K± by constants, and that K±(k) = O(k) as |k| → ∞. We now

deduce from (39) that

K+[(L4k4− l2k2
)H+ +(1+ l2k2

)D−P ] =
1

K−

[(L4k4− l2k2
)H−− (1+L4k4

)D+P (k)] (41)

If D(k) is an entire function then this expression is of the form

A+(k) = A−(k) (42)

where A+ and A− are analytic in, respectively, the ⊕ and 	 regions of the complex k-

plane. Therefore A±(k) can be extended to an entire function A(k), which is necessarily a

polynomial. If, however, D(k) contains finite poles, then these must first be removed. For

example, if d is given by

d(x, k0) =

{

0, for x < 0

2 sin(k0x), for x > 0
(43)

with k0 ∈ R then

D(k, k0) = D+(k, k0) =
1

k + k0
− 1

k − k0
. (44)

Since this is a ⊕ function, the simple poles at k = ±k0 must formally be regarded as residing

in the lower half plane. We therefore define

A+(k, k0) = K+[(L4k4 − l2k2
)H+ +

1 + l2k2

k + k0
− 1 + l2k2

k − k0
− P ]

+
1 + L4k4

0

K−(−k0)(k + k0)
− 1 + L4k4

0

K−(k0)(k − k0)
(45)

A−(k, k0) =
1

K−

[(L4k4 − l2k2
)H− − 1 + L4k4

k + k0
+

1 + L4k4

k − k0
+ P ]

+
1 + L4k4

0

K−(−k0)(k + k0)
− 1 + L4k4

0

K−(k0)(k − k0)
(46)
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and conclude, as before, that A±(k, k0) = A(k, k0), a polynomial in k. The true boundary

layer d(x), given by (3), can be written as a superposition of modes of the form (43). In

particular,

d(x) =
1.7208

2
√

2π

( ν

U

)1/2
∫

∞

0

d(x, k0)

k
3/2
0

dk0 (47)

The free surface h(x) can likewise be written as a superposition of single mode solutions

h(x, k0).

3.1 The single mode solution

We find from (45) and (46) that

H+(k, k0) =

1

K+

(

A(k, k0) +
1+L

4
k
4

0

K−(k0)(k−k0)
− 1+L

4
k
4

0

K−(−k0)(k+k0)

)

− 1+l
2
k
2

k+k0
+

1+l
2
k
2

k−k0
+ P

L4k4 − l2k2
(48)

H−(k, k0) =

K−

(

A(k, k0) +
1+L

4
k
4

0

K−(k0)(k−k0)
− 1+L

4
k
4

0

K−(−k0)(k+k0)

)

+
1+L

4
k
4

k+k0
− 1+L

4
k
4

k−k0
− P

L4k4 − l2k2
(49)

∴ H(k, k0) =
−2k0

k2 − k2
0

+

(

A(k, k0) +
1+L4k4

0

K−(k0)(k−k0)
− 1+L4k4

0

K−(−k0)(k+k0)

)

(

K−(k) +
1

K+(k)

)

L4k4 − l2k2

(50)

We find from (50) that H(k, k0) is O(A/k3
) a k → ∞. In order for h(x) to be continuous,

H(k) must be O(1/k2
), and so A(k, k0) must therefore be O(k); we write A(k) = a(k0) +

b(k0)k. The constants a and b are determined by the condition that H± should be analytic

for Im k ≷ 0, i.e. that the zeros in the denominators of (48) and (49) must represent

removable singularities. Since P (k) is O(k2
) at k = 0, we therefore require that

A(k, k0) +
1 + L4k4

0

K−(k0)(k − k0)
− 1 + L4k4

0

K−(−k0)(k + k0)
+

1 + L4k4

K−(k)(k + k0)
− 1 + L4k4

K−(k)(k − k0)
(51)

is also O(k2
). This implies that

k0a(k0) = − 2

K−(0)
+

1 + L4k4
0

K−(k0)
+

1 + L4k4
0

K−(−k0)
(52)

k2
0b(k0) = −2k0(1/K−)

′|0 +
1 + L4k4

0

K−(k0)
− 1 + L4k4

0

K−(−k0)
(53)

For notational convenience, we now define

Ã(k, k0) ≡ A(k, k0) +
1 + L4k4

0

K−(k0)(k − k0)
− 1 + L4k4

0

K−(−k0)(k + k0)
(54)

= − 2

k0

(

(1/K−)|0 + (1/K−)
′|0k

)

+
k2

(1 + L4k4
0)

k2
0K−(k0)(k − k0)

− k2
(1 + L4k4

0)

k2
0K−(−k0)(k + k0)

(55)
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We can now find the free surface height through the inverse transformation (28). In

order to evaluate this integral we make use of the fact that

K− + 1/K+

L4k4 − l2k2
=

K−

Dice
(56)

=
−1

K+Dsea
(57)

For x > 0, the integrand in (28) decays at infinity for Im k < 0. We therefore apply the

identity (56) and rewrite equation (50) as

H(k, k0) =
−2k0

k2 − k2
0

+ Ã(k, k0)
K−(k)

Dice(k)
(58)

We calculate h(x, k0) by collapsing the integration contour in (28) around the branch cut

in the lower half plane. In doing so, we pick up pole contributions from the poles at ki3, ki4

and ±k0, all of which are defined as residing in the lower half plane. The solution is

h(x, k0) = − 2nL|k0| sin(k0x)

1 + L4k4
0 − nL|k0|

+ 2 Im

{

Ã(ki4, k0)K−(ki4)

4L4k3
i4 − nL

e
−iki4x

}

− 1

π

∫

∞

0
dλ

nLλÃ(−iλ, k0)K−(−iλ)

(1 + L4λ4)2 + n2L2λ2
e
−λx

(59)

The corresponding solution for x < 0 is

h(x, k0) = 2 Im

{

Ã(ks1, k0)/K+(ks1)

2l2ks1 − nL
e
−iks1x

}

+
1

π

∫

∞

0
dλ

nLλÃ(iλ, k0)/K+(iλ)

(1 − l2λ2)2 + n2L2λ2
e
λx

(60)

3.2 The full solution

We deduce from (47) that the free surface height is

h(x) =
1.7208

2
√

2π

( ν

U

)1/2
∫

∞

0

h(x, k0)

k
3/2
0

dk0 (61)

Since Ã is O(k0) as k0 → 0 (which can be deduced from (55)), the obvious singularity in

(61) is integrable, and the solution is well defined.

4 Results

The effect of the ice edge can be seen by comparing (58) with the solution for an infinite

icesheet (38). Indeed we can recover (38) by replacing

ÃK− −→ −(1 + L4k4
)D (62)

in (58). In Figure 6 we illustrate the difference in a particular case. We find, as we might

expect on physical grounds, that the presence of the ice edge significantly alters the small

scale structure of the solution, but has negligible influence in the limit of zero wavenumber.

Both sides of (62) are −2/k0 + O(k2
) as k → 0.
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Re{ÃK−}
Im{ÃK−}
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Figure 6: The effect of the ice edge on the single mode solution in the case k0 = 1/L,

n = 1.5, l/L = 0.01. The real and imaginary parts of Ã(k, k0)K−(k) are shown along with

the function −(1 + L4k4
)D(k, k0).

A Wiener–Hopf Splitting

We need to find K±(k) such that

Dice

Dsea
(k) = −K+(k)K−(k). (63)

To this end, we define

Rice =
Dice(k)

L4(k − ki1)(k − ki2)(k − ki3)(k − ki4)
(64)

Rsea =
Dsea(k)Γ(k)

2

l2(k − ks1)(k − ks2)(k − ks3)(k − ks4)
(65)

Here, kij and ksj represent the roots of Dice and Dsea lying in the j-th quadrant of the

complex k plane. We note that ks2 = −k∗
s1 and ks4 = −k∗

s3 (similarly for the roots of Dice).

The functions Rice and Rsea have only branch cuts in their analytic structure, and tend to

unity for large k. Thus we may define

logRice+(k) =
1

2πi

∫ +∞

−∞

log[Rice(k
′
)]

dk′

k′ − k
(66)

logRsea+(k) =
1

2πi

∫ +∞

−∞

log[Rsea(k
′
)]

dk′

k′ − k
(67)

(68)

where the integration contour lies below the point k ′
= k. The integrands are continuous

provided that we take the branch of the logarithm with a cut along the negative real axis.
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The integration contour may then be collapsed around the branch cut in the lower half k ′

plane, which leads to

logRice±(k) =
1

π

∫

∞

0
tan

−1

[

nλ

1 + λ4

]

dλ

λ ∓ iLk
(69)

logRsea±(k) =
1

π

∫

∞

0
tan

−1

[

nλ

1 − l2λ2/L2

]

dλ

λ ∓ iLk
(70)

Some care is required in choosing the appropriate branches of tan
−1

in these expressions.

For the first, we require tan
−1 ∈ [0, π), but for the second, tan

−1 ∈ (−π, 0]. This means

that the integrand in (70) is ∼ −1
λ∓iLk

as λ → 0, implying a logarithmic singularity as k → 0.

We may now write

K+(k) =
L2

(k − ki3)(k − ki4)

l(k − ks3)(k − ks4)
k
Rice+(k)

Rsea+(k)
(71)

K−(k) = −L2
(k − ki1)(k − ki2)

l(k − ks1)(k − ks2)
k
Rice−(k)

Rsea−(k)
(72)

We note that K∗
±(k) = −K±(−k∗

) and that K±(k) = O(k) as |k| → ∞.

References

[1] N. J. Balmforth and R. V. Craster, Ocean waves and ice sheets, Journal of Fluid

Mechanics, 395 (1999), pp. 89–124.

[2] S. Goldstein, Modern developments in fluid dynamics, Oxford University Press,

(1938).

[3] J. F. Harper and J. N. Dixon, The leading edge of a surface film on contaminated

flowing water, Fifth Australasian Conference on Hydraulics and Fluid Mechanics, (1974).

[4] H. Lamb, Hydrodynamics, Dover Publications, (1932).

[5] R. D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic,

elastic plates, Journal of Applied Mechanics, 18 (1951), pp. 31–38.

347



Equilibria of diffusive moist static energy balance model

Yutian Wu

January 12, 2009

Introduction

Temperature is a key variable in the measurement of climate. The first order approximation

of temperature can be derived from the global energy balance model. The basic idea of the

global energy balance of the Earth is that the incoming solar radiation should always keep

in balance with the energy back to space by Earth’s radiative emission. Because of the

transparency of the Earth’s atmosphere to the incoming solar radiation and the opaque

characteristics to the terrestrial radiation, the absorption of solar radiation mostly takes

place at the surface while most of the emission happens at top of the atmosphere. Budyko

(1969)[4] and Sellers (1969)[11] brought up a type of energy balance model by using the

zonal and annual averaging but allowing the latitudinal dependences of surface temperature,

albedo and meridional heat transport. One of the major features of this type of model is

that it presented the possibility of an abrupt transition to a completely ice-covered Earth

if the solar constant is lowered by only a few percent.

My project aims to figure out the effect of water vapor in this type of energy balance

model. The effect of water vapor is significant on climate but complicated to analyze. First

of all, water vapor is one of the most important greenhouse gases of the atmosphere and has

a positive feedback on climate change: if anything happens to initiate a small temperature

increase of the atmosphere, due to the saturation vapor pressure given in Clausius-Clapeyron

equation, more water vapor can be held in the atmosphere. The additional water vapor

will lead to additional greenhouse effect which warms the Earth further beyond the initial

warming. Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report

(AR4)[7] suggested that water vapor changes represent the largest positive feedback affect-

ing equilibrium climate sensitivity, and it is this key positive feedback that amplifies the

response to the anthropogenic forcing. In addition, water vapor is playing a major role in

determining the atmospheric convection and cloud cover, which in turn exerts complicated

feedback on climate. However, cloud feedbacks still remain the largest source of uncer-

tainty in the projection of climate change. Finally water vapor is an important component

in atmospheric circulation and hydrological cycles. With increased moisture in the atmo-

sphere in the future climate baroclinic eddies may increase in strength, on the other hand,

the temperature gradient from the equator to the poles may decrease due to the increased

poleward moisture energy transport. Because of the many aspects of the impacts of water

vapor on the climate and various complicated water vapor feedbacks, the net effect of water
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vapor is complicated to analyze in real climate. In this study, we develop simple numer-

ical models with parameterizations of basic but essential physics. Rather than full-blown

General Circulation Models, simplified models can be understood completely and may be

able to address big questions in real climate. Section 1 introduces an one-layer diffusive

moist static energy balance model. Rather than sensible heat merely, moist static energy

is applied which includes not only sensible heat but also latent heat and potential energy.

Although the one-layer model has represented several interesting features, it cannot produce

modern climate even though all the model parameters are of modern values; in addition,

not much water vapor effect can be realized except the substantial atmospheric moisture

transport to the poles. The reason for it might be the one-layer model itself is too simple

to represent the real situation of the climate, for example clouds, which is an important

component of climate associated sensitively with water vapor in the atmosphere. Clouds

have substantial interactions with both solar and terrestrial radiation in both radiation re-

flection and absorption, therefore a net energy loss or gain to the atmosphere-Earth system

can be produced by clouds depending on their characteristics. Although the net nonradia-

tive and radiative effect of clouds is hard to predict, clouds do have the potential for climate

change. Lots of study has been focused on the physics of clouds and narrowing down the

uncertainty of cloud-climate feedback in model simulations. In Section 2 a simple two-layer

atmosphere-surface model is developed to implement the most basic but essential physics of

one of the most important features of water vapor, i.e. cloud feedback. In the discussion we

apply the basic idea of convective cloud feedback which was first proposed by Abbot and

Tziperman (2007)[2] to explain the equable climate during the late Cretaceous and early

Paleogene (about 100 million to 35 million years ago). Geological data suggests that the

Earth was much warmer than it is today, especially at high latitudes and during winter

time. For example, there were palm trees in Wyoming and crocodiles on islands in the

Arctic ocean. The equator to pole temperature difference and the amplitude of the seasonal

cycle at high latitudes were relatively small, hence the name ”equable climate”. The basic

idea of convective cloud feedback is that an initial warming, for example, due to the increase

of CO2 concentration, leads to the moist destabilization of the high-latitude atmosphere and

initiates atmospheric convection. The resulting convective clouds and atmospheric moisture

both help trap the outgoing longwave radiation, leading to further warming. Furthermore

since convective cloud feedback allows for multiple equilibria[2], more equilibria are expected

in the two-layer model when compared with the equilibria in the one-layer one. The physics

of those equilibria is also interesting to know, which is demonstrated in Section 3. In Sec-

tion 4, a seasonal model is set up when both the time-varying solar insolation and cloud

albedo effect are taken into account, for example, more solar incoming radiation is reflected

when convection happens due to the cloud albedo effect. We also explore the numerical

time-dependent solutions of the seasonal model.

One-layer Model

A one-layer model is set up based on the Budyko-Sellers type of energy balance model, in

which the basic idea of global energy balance is applied and the energy transport is diffusive.
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The model is defined by[8][9][5]

C
∂T

∂t
=

D̃

a2cos(φ)

∂

∂φ
[cos(φ)

∂M

∂φ
] + S − OLR (1)

where C is the thermal inertia, T is the temperature and D̃ is the diffusion coefficient. a
is the Earth radius, φ is the latitude. M is the moist static energy which is defined as

M = CpT + Lq + gz, where Cp is the specific heat capacity at constant pressure, L is the

latent heat release, q is the specific humidity and z is the height of the parcel. S is the

incoming solar radiation which is given by

S = L�(1 − α)F (φ) (2)

where L� = 1370W/m2
is the solar constant. α is the albedo. Albedo is not a static

quantity, however, is determined sensitively by the processes in the atmosphere and at the

surface. As climate changes, the surface characteristics change, for example, the proportion

of the Earth’s surface covered by ocean water, sea ice, land ice, vegetation and so on, and

the resulting albedo changes feed back on the state of the climate. In this model I choose

a simple but reasonable representation of albedo which is given by

α(T ) =

{
αi for T ≤ Ti

αo + (αi − αo)
(T−To)2

(Ti−To)2
for Ti < T < To

αo for T ≥ To

(3)

where αi and αo are albedos of sea ice and ocean water, respectively, and Ti and To are

two threshold temperatures. When surface temperature is very large within some area, i.e.

Ts > To, it is above freezing and there is no ice, thus in this case, the albedo is given by

the ocean water albedo; when surface temperature is very low, i.e. Ts < Ti, it is completely

covered by sea ice thus the albedo is given by the sea ice albedo within some area. In

between it is reasonable to interpolate the albedo by a quadratic form given above. F is the

annual mean flux factor of solar incoming radiation, which gives the latitudinal distribution

of solar flux. It peaks at the equator and decreases gradually to the poles. OLR is the

outgoing longwave radiation which is a function of the emission temperature Te at top of

the atmosphere, i.e. OLR(Te) = σT 4
e , where σ is the Stefan-Boltzmann constant. Budyko

(1969)[4] applied a linearized version of OLR, based on the fact that Te is linearly related

to the surface temperature Ts, which is given by

OLR(Te) ≈ A + BTs (4)

where A and B are constants that can be deduced from the fitting of observations. A
is roughly linear in 1/log(CO2) concentration. By analyzing the data of monthly mean

upward longwave radiation flux and surface air temperature from year 1961 to 2000 in

NCEP/NCAR Reanalysis Data, A = 211.2W/m2
and B = 2.09W/m2

(
oC)

−1
produces the

best fit between the annual mean fluxes calculated using the linearized approximation and

the reanalysis data.

By defining variable y = sin(φ), the equation of steady-state solution can be rewritten

as

D̃

a2

d

dy
[(1 − y2

)
dM

dy
] = OLR(Ts(y)) − S(y). (5)
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Steady-state solutions are important because a Lyapunov functional has been found in the

previous PDE which implies all time-dependent solutions will eventually converge to stable

steady-state solutions just like the case in Budyko-Sellers type of energy balance model.

Because it is symmetric between the Northern and Southern Hemisphere in the model, only

northern hemisphere is discussed here, i.e. 0 ≤ y ≤ 1. For boundary conditions, take
dT

dy
= 0

at the equator, which enforces symmetry between the two hemispheres, and insist that T
be regular at the poles.

Since M is conserved under conditions of either dry adiabatic ascent (exactly) or satu-

rated adiabatic ascent (approximately), M can be expressed in the term of Ts based on the

surface moist static energy and Clausius-Clapeyron equation, i.e.

M = CpT + Lq + gz (6)

= CpTs + Lvqs (7)

= CpTs + hsLvq
∗
s (8)

= CpTs + hsLv

Rd

Rv

1

ps

e∗s (9)

= CpTs + hsLv

Rd

Rv

1

ps

es(To)exp[
Lv

Rv

(
1

To

− 1

Ts

)] (10)

where the subscripts s represent surface values, the superscripts ∗ represent saturation

values. Lv is the latent heat release of evaporation, hs is the surface relative humidity

which is assumed to be a constant everywhere, q∗s is the saturation specific humidity at

the surface, To = 273.15K, Rd and Rv are the gas constants for dry air and water vapor,

respectively, ps is the surface pressure, and es(To) = 6.11mb is the saturation vapor pressure

at To.

Now the climate is characterized by the annual average and global mean surface tem-

perature Ts, and the steady-state equation becomes an nonlinear ODE of Ts which can

be solved numerically. For fixed A and B (fixed CO2 concentration and thus fixed OLR
in this model), for example, A = 211.2W/m2

and B = 2.09W/m2
(
oC)

−1
which are the

parameters derived from fitting the current climate data, but for different initial guesses,

steady-state solutions are not always the same, which implies the existence of bifurcation.

Hence instead I solve A (for fixed B) as an unknown parameter by prescribing the equatorial

surface temperature Ts(y = 0). Figure 1 shows the steady-state solutions of this model as

a function of A. In particular, not only equatorial surface temperature Ts(y = 0) but also

polar surface temperature Ts(y = 1) and mean surface temperature are drawn. The bifur-

cation diagram is composed of a stable ice-free climate a, an unstable climate b and a stable

snowball climate c. In particular, for A = 211.2W/m2
, three possible climate states are

shown in Figure 2. They are a stable snowball climate where temperature is below freezing

everywhere on the Earth, an unstable climate which is 20K lower than the current climate

everywhere from the equator to the poles, and a stable ice-free climate where temperature

is relatively high everywhere and the temperature difference between the equator and poles

is relatively small, respectively. As for the unstable climate, although it is 20K lower than

the current climate, the temperature gradient from the equator to the poles which is about

40K is quite reasonable. In addition, a comparison of the steady-state solutions has been

done between the dry (Figure 3) and moist diffusive energy balance model. For the dry
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Figure 1: Steady-state solutions of one-layer diffusive moist static energy balance model as

a function of A, which is roughly linear in 1/log(CO2) concentration. Relative humidity is

assumed to be 0.8 everywhere. Model parameters are: αi = 0.6, αo = 0.1, Ti = 260K,To =

290K,B = 2.09W/m2
(
oC)

−1.

diffusive energy balance model, there is no latent heat in the energy term but only sensible

heat. The major difference between the steady-state solutions of the two models is that

for the ice-free climate the temperature gradient from the equator to the poles is relatively

small in the moist case while it is roughly 50K in the dry one. My explanation for such a

difference is that in hot climate water vapor helps transport large amount of energy pole-

ward effectively and thus wipes out the temperature gradient. This is a distinguished role

that water vapor is playing in this one-layer model.

It is also noticed that by building up (or reducing) the atmospheric CO2 concentration,

the disappearance of the snowball climate (or ice-free climate) will be induced. For example,

based on this model, when A < 177W/m2
, which implies a very high CO2 concentration,

the stable snowball climate will disappear; when A > 266W/m2
, which implies a very low

CO2 concentration, the stable ice-free climate will disappear. Although these critical values

might be too rough to make any certain conclusions, it presents a simple trend of climate

states as the atmospheric CO2 concentration changes.

Therefore basically three steady states have been found in this one-layer diffusive moist

static energy balance model, of which one represents a stable ice-free climate where tem-

perature is relatively high everywhere and the temperature gradient is relatively small from

the equator to the poles. The other one shows an unstable climate while the third one

is a snowball climate. In addition, this model represents the possibility of abrupt climate

transitions, for example, the transition from the snowball climate to the unstable climate

state, or and the transition from the unstable climate state to the ice-free climate state

when temperature gets higher due to increased atmospheric CO2 concentration, for exam-

ple. Finally the model demonstrates one of the most important roles that water vapor is

playing on the real climate, i.e. the meridional moisture energy transport that helps wipe
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Figure 2: Steady-state solutions of one-layer diffusive moist static energy balance model

if A = 211.2W/m2
. The top, middle and bottom panels present the global mean surface

temperature in a stable snowball climate, an unstable climate which is 20K lower than the

current one, and a stable ice-free climate, respectively. Model parameters are the same as

before.

Figure 3: Steady-state solutions of one-layer diffusive dry energy balance model as a function

of A. Same model parameters.
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out the temperature gradient from the equator to the poles. However, the model has several

limitations: one is that it cannot produce the current climate, either the temperature of

the possible states is too high or too low. The second existing problem is that the effect of

water vapor can not be much realized in this simple model.

Since this model is of one-layer, many important effects of water vapor can not be pa-

rameterized, such as the greenhouse effect, atmospheric convection and cloud cover. Hence

we need to modify the model by adding some representation of cloud effects and hope for

better outputs, such as the simulation of modern climate and so on.

Two-Layer Model

a. Developing the Model

An important effect of water vapor on the climate is the formation of clouds which have

substantial interactions with both solar and terrestrial radiation. However, the impact of

an individual cloud on the local energy balance depends sensitively on its physical charac-

teristics, for example, the total mass of water, the size and shape of the droplets or particles

and so on. Generally speaking, low-altitude stratus clouds have a large and negative cloud

radiative forcing while high-altitude clouds are associated with a neutral or positive cloud

radiative forcing. For my further discussion, I apply a simple representation of the green-

house effect of clouds at first. As for the cloud albedo effect, it is closely related to the solar

flux at certain latitude and time. The model should have seasonal cycle included then since,

for example, at polar darkness, there is only greenhouse effect of clouds and it is discussed

in Section 4.

Abbot and Tziperman (2007)[2] proposed an idea of convective cloud feedback to help

explain the equable climate during the late Cretaceous and early Paleogene (about 100 mil-

lion to 35 million years ago). At high latitudes under lower solar insolation, it is potentially

possible to have a positive cloud radiative forcing with clouds associated with convection.

If the extratropical surface temperature had increased large enough to initiate high convec-

tion, clouds would change from low-altitude to high-altitude ones and thus cloud radiative

forcing would switch to positive from negative which could lead to further warming and

even more atmospheric convection. Simulations done by Abbot and Tziperman[3][2] have

shown that not only the high temperature situation at high latitudes and during winter

time but also the relative low equator to pole temperature difference can be reproduced

with the idea of high-latitude convective cloud feedback.

The model is composed of two layers[1]. The top one represents the free troposphere

(200 − 900mb) and the bottom one represents the surface layer which is composed of the

mixed-layer ocean (top 50m) and the boundary layer of the atmosphere (900 − 1000mb)

dominated by turbulence. The energy balance of this model can be written as

Cs

∂Ts

∂t
=

∂

∂y
[(1 − y2

)D1
∂Ts

∂y
] + L�(1 − α)F (y) − Fc + εσT 4

a − σT 4
s (11)

Ca

∂Ta

∂t
=

∂

∂y
[(1 − y2

)D2
∂Ta

∂y
] + Fc + εσ(T 4

s − 2T 4
a ) (12)

where Cs and Ca are the thermal inertia for the bottom and top layer, respectively; Ts and

Ta are the surface and atmospheric temperature, respectively; D1 and D2 are the diffusive
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coefficients for the bottom and top layer, respectively (the two diffusive coefficients should

be different in principle but are assumed to be the same at first); the first terms on the right

hand side of the equations are the diffusive heat transport at the bottom and top layers,

respectively; Fc is the convective flux from the boundary layer to the free troposphere; ε is

the emissivity of the free troposphere; and σ is the Stefan-Boltzmann constant. Boundary

conditions of this two-layer model are similar to that of the one-layer model, i.e.

dTs

dy
(y = 0) =

dTa

dy
(y = 0) = 0 (13)

Ts(y = 1) and Ta(y = 1) are regular. (14)

The value of convective flux Fc and emissivity ε depends on whether there is convection

or not, which is in turn described by moist instability. We determine the moist instability

by comparing the surface moist static energy

Ms = CpTs + Lvqs (15)

with the atmospheric saturation moist static energy

M∗
a = CpTa + Lvq

∗
a + gza (16)

where q?
a is the atmospheric saturation specific humidity, g is the acceleration of gravity, za

and pa are the height and pressure of the atmospheric layer, respectively. The convective

flux Fc and emissivity ε are given by

Fc =
{ γ(Ms − M∗

a ) if Ms ≥ M∗
a

0 otherwise
(17)

ε =
{ εo + ∆ε if Ms ≥ M∗

a

εo otherwise
(18)

If Ms < M∗
a , ascending parcel is stable to moist convection and thus no convection happens.

In this nonconvecting case, Fc is set to be 0 and atmospheric emissivity ε is given by the

background emissivity εo which is mainly determined by the atmospheric CO2 concentration

and is roughly linear in log(CO2) (Sasamori, 1968 [10]). As long as the moist static energy of

the ascending parcel reaches the atmospheric saturation moist static energy, i.e. Ms = M∗
a ,

the parcel becomes unstable to convection and releases latent heat to the surrounding

environment, and thus Fc is set to be linear of Ms − M∗
a with a linear coefficient γ given

by
Cs

Cp

1
τ
, where τ is the time scale of convection, for example, about 1 − 10 hours, and

atmospheric emissivity is increased by a certain amount ∆ε due to convective clouds and

increased atmospheric moisture.

b. Equilibria in the Model

The two joint nonlinear ODEs (steady state of equations 11 and 12) are solved numeri-

cally to find out the solutions of steady-state surface and atmospheric temperature. For

the same background emissivity εo, steady-state solutions are sensitive to the initial guesses

and thus there again exists bifurcation in the solutions. Same as the numerical method
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Figure 4: Steady-state surface temperature (left) and atmospheric temperature (right) of

two-layer diffusive moist static energy balance model as a function of background emissivity

εo, which is roughly linear in log(CO2) concentration. Part of the convecting branch where

the total atmospheric emissivity ε is larger than 1 is not physical and not shown here.

Model parameters are: ∆ε = 0.3, γ = 5.8101kg/m2/s,RHs = 0.8, za = 5km,αi = 0.6, αo =

0.1, Ti = 260K,To = 290K.

in one-layer model, we solve the background emissivity εo as an unknown eigenvalue by

prescribing the equatorial surface temperature. Figure 4 shows the bifurcation diagrams

of the steady-state surface and atmospheric temperature produced by the two-layer model.

In particular, ∆ε is set to be 0.3, and thus part of the bifurcation diagram where the total

atmospheric emissivity ε is larger than 1 (or the background emissivity εo is larger than

0.7) has no physical meaning and is not drawn here since 0 ≤ ε ≤ 1. If it starts with a

background emissivity larger than 0.7 and has convection happening, then the steady-state

solution will stay with the atmospheric emissivity equals 1.

One of the interesting features of the bifurcation diagram of this model is that there are

two more equilibrium solutions around εo = 0.6 and when surface temperature is relatively

high. Physical interpretation of the solutions in the following demonstrates that one is

a stable equilibrium corresponding to a fully convecting state where surface temperature

is high and convection happens everywhere from the equator to the poles, and the other

one is an unstable equilibrium which is not shown in the figures. The problem with the

unstable equilibrium branch (not shown) is that it is hard to find the solution numerically

with the method other steady-state solutions are figured out. By doing projection onto

Legendre polynomials and characterizing the steady-state solutions by first few modes, the

unstable equilibrium branch can be found numerically but without high accuracy. Since

the numerical computation is not reliable so far, it is not shown here.

In order to further understand the physics of the bifurcation diagram, a diagnosis of

temperature and convection situation has been done in the following for various steady

states, for example, states < 1 > − < 11 > marked in Figure 5. Figure 6, 7, 8, 9 show the

steady-state atmospheric and surface temperature, i.e. Ta and Ts, and ∆M = Ms − M∗
a

which is a measure of whether there is convection or not as a function of y for these

11 states, respectively. If the surface temperature is very low, there is no possibility of

convection where the moist instability is negative everywhere from the equator to the poles.
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It is the same stable snowball climate as represented in one-layer model (states < 1 ><
2 >< 3 > shown in Figure 6). If the equatorial surface temperature increases and reaches

some critical value such that Ms = M∗
a , moist convection will firstly take place at the

equator. The transition of convection at the equator corresponds to the first edge in the

bifurcation diagram. As the equatorial surface temperature gets higher and higher, the

upper atmospheric layer becomes moist unstable and convection can be initiated gradually

from latitude to latitude. As shown in Figure 7 and 8, moist convection extends from the

equator to the poles as the equatorial surface temperature increases, but since up to, for

example, state < 8 >, convection doesn’t come out at the poles yet, we name it partially

convecting state. However, stability analysis tells that the branch where states < 4 > and

< 5 > (in Figure 7) lie is unstable while the one which has states < 6 >,< 7 >,< 8 > (in

Figure 8) is stable, and this transition corresponds to the second edge of the bifurcation

diagram. This is also consistent with the stability results in one-layer model. Eventually

moist convection occurs at the poles when the surface equatorial temperature is large enough

and this is what Figure 9 shows in which moist instability is positive at the poles. Due to

the fact that convection takes place everywhere from the equator to the poles in states

< 9 >,< 10 >,< 11 >, we name them fully convecting states. Although the unstable

missing branch is hard to compute numerically, it is related to the transition of polar

convection when the moist instability of state < 8 > is compared with that of state < 9 >.

The stability of each branch can also be checked by identifying the eigenvalues of the

Jacobian matrix estimated at equilibrium states in perturbation equation. Therefore in

conclusion the bifurcation diagram of the two-layer model is composed of several steady-

state branches, for example, a stable nonconvecting branch, an unstable partially convecting

branch, a stable partially convecting branch, an unstable branch which is related to the onset

of polar convection, and a stable fully convecting branch.

Moreover the stable partially convecting state where the background emissivity εo =

0.46 roughly represents the modern climate with 293K at the equator and 257K at the poles.

It demonstrates that the implement of convective cloud feedback helps better simulate the

real climate and the impact of clouds is significant on climate.

c. Climate Sensitivity in the Model

There are several free parameters in the two-layer model, such as surface relative humidity

RHs, height of the atmospheric layer za and linear coefficient of convective flux γ. Our

next step is to study the climate sensitivity of this model by varying these free parameters.

Climate sensitivity is a significant component and is defined as the relationship between the

forcing and the magnitude of the climate change response. The study of climate sensitivity

can help better understand and interpret the model and also the physics of it.

As the surface relative humidity increases, the parcel lifted upward from the surface

can get saturated more easily and thus convection can be initiated more quickly. With a

high surface relative humidity convection can occur early before the surface temperature

there reaches a high value. The numerical comparison of the bifurcation diagrams of differ-

ent surface relative humidity is shown in Figure 10. Figure 11 represents the steady-state

solutions of different heights of atmospheric layer. For the climate sensitivity of the height

of the atmospheric layer, as the height decreases, the onset of convection can be more easily
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Figure 5: Steady-state surface temperature of two-layer diffusive moist static energy bal-

ance model as a function of background emissivity εo which is roughly linear in log(CO2)

concentration. Various steady-state solutions, for example, states < 1 > − < 11 > are

marked.

initiated at each latitude and the transition to both partially and fully convecting branches

can be reached with a lower surface temperature compared with the case of a higher atmo-

spheric layer. Figure 12 represents the steady-state solutions of different linear coefficients

of convective flux. The linear coefficient of convective flux γ determines the magnitude of

convective flux transferred from the boundary layer to the free troposphere when convection

happens. Since the time scale of convection can vary within 1 − 10 hours, small changes of

γ in this model are physically reasonable. As γ gets smaller, the top atmospheric layer gets

less convective flux from the bottom one, which reduces the saturation moist static energy

in the atmospheric layer. In this case, convection again can be more easily initiated which

leads to the situation of fully convection at a lower surface temperature compared with the

case with larger γ. The difference between this case and the former two is that varying the

value of γ only changes the critical surface temperature of the onset of moist convection but

keeps the structure (relationship between background emissivity and surface temperature)

of convecting branches, i.e. both partially convecting and fully convecting branches, invari-

ant. My understanding is that the structure of convecting branches is merely determined

by Ms = M∗
a and γ has nothing to do with this criterion, which is different from the former

two cases of varying RHs and za.

d. Seasonal Cycle in the Model

In addition to convective cloud feedback, cloud albedo effect is also included into the two-

layer model. Since cloud albedo effect is closely related to the solar incoming radiation at

top of the atmosphere, the two-layer model should also have the seasonal variability since,

for example, at polar darkness, there is no solar radiation, and the only effect of clouds is
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Figure 6: Steady-state surface temperature, atmospheric temperature, and moist instability

measured by ∆M = Ms − M∗
a at equilibrium states < 1 >(top left), < 2 >(top right) and

< 3 >(bottom) with corresponding background emissivity εo = 0.2, 0.6, 0.8, respectively.

Nonconvecting. Stable.

Figure 7: Steady-state surface temperature, atmospheric temperature, and moist instabil-

ity measured by ∆M = Ms − M∗
a at equilibrium states < 4 >(left) and < 5 >(right)

with corresponding background emissivity εo = 0.6, 0.46, respectively. Partially convecting

(Convection firstly takes place in tropics and extends to high latitudes, but doesn’t come

out at the poles yet). Unstable.
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Figure 8: Steady-state surface temperature, atmospheric temperature, and moist instability

measured by ∆M = Ms − M∗
a at equilibrium states < 6 >(top left), < 7 >(top right) and

< 8 >(bottom) with corresponding background emissivity εo = 0.46, 0.6, 0.7, respectively.

Partially convecting. Stable. State < 6 > whose background emissivity εo = 0.46 roughly

represents the modern climate with 293K at the equator and 257K at the poles.
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Figure 9: Steady-state surface temperature, atmospheric temperature, and moist instability

measured by ∆M = Ms −M∗
a at equilibrium states < 9 >(top left), < 10 >(top right) and

< 11 >(bottom) with corresponding background emissivity εo = 0.58, 0.6, 0.7, respectively.

Fully convecting (Convection takes place everywhere from the equator to the poles). Stable.

Figure 10: Steady-state polar surface temperature of two-layer diffusive energy balance

model with surface relative humidity RHs = 0.6, 0.7, 0.8, 0.9, 1, respectively.
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Figure 11: Steady-state polar surface temperature of two-layer diffusive energy balance

model with height of the atmospheric layer za = 4km, 5km, 6km, respectively.

Figure 12: Steady-state polar surface temperature of two-layer diffusive energy balance

model with γ = 1kg/m2/s, 5kg/m2/s, 10kg/m2/s, respectively.
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the albedo effect.

In order to figure out the average daily insolation[6] at top of the atmosphere as a

function of time and latitude, some parameters are introduced beforehand. First of all,

solar zenith angle θs is defined as the angle between the local normal to Earth’s surface and

the direction of incoming solar flux and determines the actual solar flux per unit surface

area Q, which is given by

Q = L�(
d̄

d
)
2cosθs (19)

where d̄ is the mean distance from the sun where the solar constant is measured and d
is the actual distance. There is less energy per unit surface area if the surface is not

perpendicular to the incoming solar flux compared with that in the perpendicular case.

Secondly, declination angle δ, which is defined as the latitude of the point on the surface of

Earth directly under the sun at noon, varies between +23.45o
at northern summer solstice

(June 21) and −23.45o
at northern winter solstice (December 21). Finally the longitude

of the subsolar point relative to its position at noon is defined as the hour angle h. The

relationship between the above three parameters, i.e. solar zenith angle θs, declination angle

δ, hour angle h, and the latitude φ is given by

cosθs = sinφsinδ + cosφcosδcosh. (20)

When it is sunrise or sunset, cosθs = 0, and the hour angle of sunrise and sunset is given

by

cosho = −tanφtanδ. (21)

Then if we plug (20) into (19) and integrate it from sunrise to sunset, the average daily

insolation at top of the atmosphere can be rewritten as

Q̄day
=

L�

π
(
d̄

d
)
2
[hosinφsinδ + cosφcosδsinho]. (22)

However there are special conditions at the poles. When the latitude φ and the declination

angle δ are of the same sign, which is the case in summer hemisphere, latitudes poleward of

90−δ are constantly illuminated. In addition, when the latitude φ and the declination angle

δ are of the opposite sign, which is the case in winter hemisphere, latitudes poleward of

90− |δ| are in polar darkness. Therefore, at polar region, six months of darkness alternates

with six months of sunlight. Hence the governing equations become two joint nonlinear

PDEs given by

Cs

∂Ts

∂t
=

∂

∂y
[(1 − y2

)D1
∂Ts

∂y
] + Q̄day

(1 − α) − Fc + εσT 4
a − σT 4

s (23)

Ca

∂Ta

∂t
=

∂

∂y
[(1 − y2

)D2
∂Ta

∂y
] + Fc + εσ(T 4

s − 2T 4
a ). (24)

Since solar flux is not symmetric between the two hemispheres in this time-dependent

case, the seasonal model and its solutions are not symmetric anymore. The condition of

Ts(y = ±1) and Ta(y = ±1) are regular gives the boundary condition. If there is convection

within some region, not only convective flux Fc and atmospheric emissivity ε as mentioned
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Figure 13: Steady-state surface temperature of two-layer diffusive energy balance model

when cloud albedo effect is taken into account but without seasonal cycle at first. If con-

vection takes place within some region, albedo there is assumed to increase by 0.05 in the

simulation.

before, but also albedo within that region will change, for example, albedo will increase by

0.05 due to clouds’ reflection of solar incoming radiation. The corresponding bifurcation

diagram of steady-state solutions is represented in Figure 13 in which cloud albedo effect

is taken into account but without seasonal cycle at first. It shows that due to the effect of

cloud albedo, the bifurcation diagram is shifted to the right compared with Figure 5.

The above two joint nonlinear PDEs can be solved numerically and the time-dependent

solutions of different initial guesses, for example, states 1 − 4 in Figure 13, are represented

in Figure 14 − 17. The solutions of surface temperature at South Pole, at North Pole and

at the equator are plotted every 12 months. When running the seasonal model with initial

guess of state < 1 > which is a stable nonconvecting state, the time-dependent solution

is wild at the beginning but eventually reaches a periodic equilibrium after about 1500

months, which is shown in Figure 14. In Figure 15, if the seasonal model starts with initial

guess of state < 2 >, a stable partially convecting state, the solution quickly jumps to the

snowball climate within a short time period. As shown in Figure 16, the time-dependent

solution periodically oscillates around the initial steady-state equilibrium, i.e. the stable

partially convecting state < 3 >. In Figure 17 which is the time-dependent solution with

initial guess of state < 4 >, it is roughly periodic but with several abrupt sharp transitions.

Since these abrupt transitions are transient, the intermediate states are unstable. It is

interesting to notice that state < 4 > is a stable fully convecting state and is very close

to the unstable missing branch that we mentioned before. It is reasonable to explain the

existence of these abrupt transient transitions in this way: oscillations around the initial

steady-state equilibrium < 4 > allow the possibility of transition to lower unstable branch,

however, the time-dependent solution has to find other stable states such as the stable

partially convecting states and the stable fully convecting states due to the instability of
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Figure 14: Time-dependent solution of the seasonal model with an initial guess of state

< 1 > in Figure 13, i.e. 233K at the poles and 247K at the equator and with background

emissivity εo = 0.6. Time is in the unit of month. The top left panel is the surface

temperature at south pole as a function of time, the top right one is the surface temperature

at north pole as a function of time, the bottom left one is the surface temperature at the

equator as a function of time, and the bottom right one is the phase portrait with x-axis

the surface temperature at the equator and y-axis the surface temperature at north pole.

the lower branch. It is another indirect indicator of the existence of the unstable branch

that is related to the transition of polar convection.

Conclusions

We start the problem trying to figure out the effect of water vapor in the climate system

in simplifies model simulations. A one-layer diffusive moist static energy balance model is

applied at first. From the model output, three possible steady climate states, i.e. a stable

snowball climate, an unstable climate in which surface temperature is about 20K lower than

the modern value everywhere, and a stable ice-free climate, have been found, moreover, the

effect of water vapor is represented mainly by the meridional moisture transport to the poles

through the comparison with dry model. However, even if all the model parameters are

based on modern climate observations, the one-layer model is unable to produce the modern

climate. In order to better simulate the real climate, a two-layer diffusive energy balance

model has been developed in which an important effect of water vapor, i.e. convective

cloud feedback, is parameterized through the impact of convective flux and atmospheric

emissivity. The solutions of this model are very interesting. First of all, it is able to roughly

represent the modern climate which in turn indicates the significance of clouds effect in

real climate. Furthermore, two more steady equilibrium states, besides the three equilibria

turned out in one-layer model, have been found due to the implement of convective cloud

feedback. Significantly, each equilibrium has its clear physical meaning. For example, when
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Figure 15: Time-dependent solution of the seasonal model with an initial guess of state

< 2 > in Figure 13, i.e. 254K at the poles and 290K at the equator and with background

emissivity εo = 0.48. Time is in the unit of month. Others are the same as Figure 14.

Figure 16: Time-dependent solution of the seasonal model with an initial start of state

< 3 > in Figure 13, i.e. 279K at the poles and 296K at the equator and with background

emissivity εo = 0.6. Time is in the unit of month. Others are the same as Figure 14.
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Figure 17: Time-dependent solution of the seasonal model with an initial start of state

< 4 > in Figure 13, i.e. 287K at the poles and 299K at the equator and background

emissivity εo = 0.7. Time is in the unit of month. Others are the same as Figure 14.

surface temperature is very low everywhere, there is no possibility of convection because

it is always moist stable, and it is the same equilibrium state that is noticed in one-layer

model. As the equatorial surface temperature reaches some critical value, convection takes

place at the equator firstly. As the equatorial surface temperature gets higher, convection

takes place at high latitudes. Eventually there is convection at the poles when temperature

is relatively high. One of the two more equilibria in two-layer model represents a stable

climate state with convection taking place everywhere from the equator to the poles while

the other one is an unstable branch that is related to the transition of polar convection. The

last section of the project is the seasonal model, in which both the seasonal cycle of solar

insolation and cloud albedo effect are included. The time-dependent solutions are basically

oscillations around steady equilibria of constant solar insolation. Depending on how large

the variability of climate is at each state, it is possible to switch from one equilibrium to

another, for example, the transition to snowball climate from a warmer climate state.

Although this study is basically based on a simple two-layer energy balance model, it

is able to capture the basic but essential physics of convective cloud feedback and produce

multiple steady equilibria in addition to temperature distribution of modern climate. Since

the model is a simplified version, the physics can be understood completely and clearly.

Furthermore, it indicates the importance of convective cloud feedback of real climate. How-

ever, since the model is simply parameterized and only includes few effects and feedbacks in

real climate, the results from the model cannot be simply compared with real climate situ-

ation. For example, albedo is a complicated variable which not only depends sensitively on

the surface and clouds situation but also varies with time and has feedback to the climate,

and the real effect of clouds is much more complicated than what is parameterized in the

model. More numerical computation and analysis will be done on the seasonal model and

its time-dependent solutions in the future.
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