
Preface

The 2012 GFD Program theme was Coherent structures with Professors Jeffrey Weiss of
the University of Colorado at Boulder and Edgar Knobloch of the University of California
at Berkeley serving as principal lecturers. Together they introduced the audience in the
cottage and on the porch to a fascinating mixture of models, mathematics and applications.
Deep insights snaked through the whole summer, as the principal lecturers stayed on to
participate in the traditional debates and contributed stoutly to the supervision of the
fellows. The first ten chapters of this volume document these lectures, each prepared by
pairs of the summer’s GFD fellows. Following the principal lecture notes are the written
reports of the fellows’ own research projects. This summer’s fellows were:

• Cédric Beaume, IMFT, Toulouse

• Vamsi Chalamalla, University of California, San Diego

• Felicity Graham, University of Tasmania

• Yuan Guo, New York University

• Pedram Hassanzadeh, University of California, Berkeley

• Duncan Hewitt, University of Cambridge

• Bevin Maultsby, University of North Carolina

• Rosalind Oglethorpe, University of Cambridge

• Alban Sauret, IRPHE, Marseille

• Srikanth Toppaladoddi, Yale University

In 2012, the Sears Public Lecture was delivered by Professor Howard Bluestein, of the
University of Oklahoma on the topic of “Probing tornadoes with mobile doppler radars”.
The topic was particularly suitable for the summer’s theme: a tornado is a special examples
of a vortex, perhaps the mother of all coherent structures in fluid dynamics. Howie “Cb”
showed how modern and innovative measurement techniques can yield valuable information
about the formation and evolution of tornadoes, as well as truly amazing images. Over a
hundred listeners filed into Redfield for the occasion, and then enjoyed refreshments in the
evening air afterwards outside the auditorium.

Charlie Doering and Oliver Bühler initially acted as the co-directors for the summer,
with Colm-cille Caulfield ably stepping in to replace Oliver after he had to bow out. A large
number of long-term staff members ensured that the fellows never lacked for guidance, and
the seminar series was filled by a steady stream of visitors, talking about topics as diverse as
how sharks smell and how to slice symmetry. Anders Jensen worked his usual magic in the
Lab, dealing inventively with aquarium sand, bentonite and ketchup as well as with more
traditional experimental fluids, and Janet Fields and Jeanne Fleming kept the program
running smoothly behind the scenes.



 ii

TABLE OF CONTENTS 
 
  
PREFACE ...................................................................................................................................... i 
  
TABLE OF CONTENTS .............................................................................................................. ii 
 
PARTICIPANTS ......................................................................................................................... iv 
 
LECTURE SCHEDULE ............................................................................................................ viii 
  
PRINCIPAL LECTURES 

Jeffrey Weiss, University of Colorado, Boulder 
Edgar Knobloch, University of California, Berkeley 

 
Lecture 1 
Dynamics of coherent structures and the impact on transport and predictability 
Jeffrey Weiss ..................................................................................................................................1 
  
Lecture 2 
Coherent structures in 2D fluid dynamics 
Jeffrey Weiss  .................................................................................................................................9 
 
Lecture 3 
Coherent structures in 2D fluid dynamics and structures in 3D quasi-geostrophic fluid 
dynamics 
Jeffrey Weiss ................................................................................................................................20 
 
Lecture 4 
Part I: Structures in 3D quasi-geostrophic flows 
Jeffrey Weiss ................................................................................................................................36 
 
Part II: Rapidly rotating convection 
Jeffrey Weiss ................................................................................................................................47 
 
Lecture 5 
Applications of coherent structures to the study of weather and climate 
Jeffrey Weiss ................................................................................................................................55 
 
Lecture 6 
Introduction to spatially localized structures 
Edgar Knobloch ...........................................................................................................................67 
  
Lecture 7 
The Swift-Hohenberg equation in one spatial dimension 
Edgar Knobloch ...........................................................................................................................88 



 iii

 
Lecture 8 
Pinning and depinning in one and two dimensions 
Edgar Knobloch .........................................................................................................................106 
 
Lecture 9 
Spatially localized structures in fluid flows 
Edgar Knobloch .........................................................................................................................129 
 
Lecture 10 
More applications 
Edgar Knobloch .........................................................................................................................151 
 
  
FELLOWS’ REPORTS 
 
Thixotropic gravity currents 
Duncan R. Hewitt, Cambridge University .................................................................................168 
 
Smoothing out sandpiles:  rotational bulldozing of granular material 
Alban Sauret, Aix-Marseille University & IRPHE ....................................................................198 
 
Spin down of a stellar interior 
Rosalind Oglethorpe, Cambridge University .............................................................................224 
 
Slender swimmers in Stokes flow 
Srikanth Toppaladoddi, Yale University ...................................................................................249 
 
Scattering of internal waves over random topography 
Yuan Guo, New York University ..............................................................................................267 
 
The effect of upwelling and downwelling on turbulent entrainment in a surface  
stress-driven flow 
 Vamsi Chalamalla, University of California, San Diego ..........................................................287 
 
Equatorial quasi-geostrophy 
Felicity Graham, University of Tasmania ..................................................................................307 
 
2:1 Spatial resonance in Langmuir circulation 
Bevin Maultsby, University of North Carolina ..........................................................................334 
 
Optimal transport from  wall to wall 
Pedram Hassanzadeh, University of California, Berkeley .........................................................362 
 
A reduced model for exact coherent states in high Reynolds number shear flows 
Cedric Beaume, Universite de Toulouse ...................................................................................406 



iv 
 

2012 GFD Fellows, Staff and Visitors 
 
 
Fellows 
 
Cedric Beaume    Universite de Toulouse 

Vamsi Krishna Chalamalla   University of California, San Diego 

Felicity Graham    University of Tasmania 

Yuan Guo     New York University 

Pedram Hassanzadeh    University of California, Berkeley 

Duncan Hewitt    Cambridge University 

Bevin Maultsby    University of North Carolina 

Rosalind Oglethorpe     University of Cambridge 

Alban Sauret     Aix-Marseille University & IRPHE 

Srikanth Toppaladoddi   Yale University 

 
Staff and Visitors 

 
James Anderson Stevens Institute of Technology 
Gualtiero Badin University of Hamburg 
Neil Balmforth University of British Columbia 
Helmut Baumert IAMARIS e.V. - Applied Water Research 
Javier Beron-Vera RSMAS, University of Miami 
Howard Bluestein University of Oklahoma 
Onno Bokhove University of Twente  
Oliver Buhler Courant Institute of Mathematical Sciences 
Colm-cille Caulfield University of Cambirdge 
Matthew Chantry University of Bristol 
Sergei Chernyshenko Imperial College London 
Greg Chini University of New Hampshire 
Predrag Cvitanovic Georgia Institute of Technology 
Robert Deegan University of Michigan  
Diego Del-Castillo-Negrete Oak Ridge National Laboratory 
Navid Dianati-Maleki University of Michigan 
Charles Doering University of Michigan 
Francesco Fedele Georgia Institute of Technology 
Raffaele Ferrari Massachusetts Institute of Technology 
Pascale Garaud University of California, Santa Cruz 
John Gibson Imperial College London 
David Goluskin Columbia University 
Nicolas Grisouard Courant Institute of Mathematical Sciences 
George Hagstrom New York University 



v 
 

George Haller McGill University 
Miranda Holmes-Cerfon Harvard University 
Keith Julien University of Colorado, Boulder 
Joseph Keller Stanford University 
Richard Kerswell University of Bristol 
Edgar Knobloch University of California, Berkeley 
Norman Lebovitz University of Chicago 
Stefan Linz Institut fuer Theoretische Physik 
Alireza Mashayekhi University of Toronto 
Philip Morrison University of Texas, Austin 
Josefina Olascoago RSMAS, University of Miami 
Michael Proctor University of Cambridge 
Matthew Salewski Philips University Marburg 
Tobias Schneider Max Planck Inst. for Dynamics and Self-Organization 
Tiffany Shaw Lamont Doherty Earth Observatory 
Edward Spiegel Columbia University 
Wenbo Tang Arizona State University 
Anthony Thornton University of Twente 
Jacques Vanneste University of Edinburgh 
Geoffrey Vasil Canadian Inst. for Theoretical Astrophysics (CITA) 
George Veronis Yale University 
Jeffrey Weiss University of Colorado, Boulder 
John Whitehead Woods Hole Oceanographic Institution 
Djoko Wirosoetisno Durham University 



vi 

 

2012 Principal Lecturers 

 

Edgar Knobloch 

Jeffrey Weiss 

gfdadmin
Typewritten Text



vii 
 

 

2012 Geophysical Fluid Dynamics Particiants 
 
First row (seated on ground):  David Goluskin, Vamsi Challamalla, Srikanth Toppaladoddi, Alban Sauret, Pedram 
Hassanzadeh, Cedric Beaume, Felicity Graham, Duncan Hewitt, Rosalind Oglethorpe, Bevin Maltsby, Yuan Guo 
 
Second row (seated):  Charles Doering, Norman Lebovitz, unknown, Philip Morrison, Joseph Keller, George Veronis, 
Jeffrey Weiss, Edgar Knobloch, Ali Mashayekhi, Pascale Garaud, Claudia Cenedese, Oliver Buhler, Matthew Chantry 
 
Third row:  Edward Spiegel (standing), Tiffany Shaw, Greg Chini, Colm Caulfield, unknown, Shreyas Mandre, Tobias 
Schneider, Georgy Manucharyan, James Anderson, Neil Balmforth, Robert Deegan, Matthew Salewski 
 
Fourth row:  Raffaele Ferrari, Woosok Moon (hidden) Glenn Flierl, John Gibson, unknown, Michael Proctor, Stefan 
Linz, Gualtiero Badin, Nicolas Grisouard, L. Mahadevan, Rich Kerswell, Keith Julien, Onno Bokhove 
 
Not pictured:  Helmut Baumert, Javier Beron-Viera, Howard Bluestein, Sergei Chernyshenko, Predrag Cvitanovic, 
Diego Del-Castillo-Negrete, Navid Dianati-Maleki, Francesco Fedele, George Hagstrom, George Haller, Miranda 
Holmes-Cerfon, Josefina Olascoago, Wenbo Tang, Anthony Thornton, Geoffrey Vasil, Djoko Wirosoetisno 

 



viii 
 

GFD Lecture Schedule 
June 18 – August 24 

 
 

June 18 – June 22 – Principal Lectures - 10:00 AM 
 
Dynamics of Coherent Structures and their Impact on Transport and Predictability 
Jeffrey Weiss, University of Colorado 
 
June 25 – June 29 – Principal Lectures - 10:00 AM 
 
Spatially Localized Structures:  Theory and Applications 
Edgar Knobloch, University of California, Berkeley 
 
 
Beginning July 2 lectures will be at 10:30 AM unless otherwise noted 
 
July 2 
 
Exchange Flows and the Principle of Maximum Flux 
Rich Kerswell, Bristol University 
 
July 3 
 
Summer Subtropical Anticyclones and their Role in the General Circulation of the 
Atmosphere 
Tiffany Shaw, Lamont Doherty Earth Observatory 
 
July 4 
 
HOLIDAY – no lectures 
 
July 5 
 
Convection, Stability, Coherent Structures and Turbulence 
Charlie Doering, University of Michigan 
Greg Chini, University of New Hampshire 
 
July 6 
 
Odor Dispersal in the Sea and the Physiological and Behavioral Responses of Sharks and 
Lobsters to Find Food by Smell 
Jelle Atema, Boston University 

 



ix 
 

Monday, July 9 

10:00 AM 
A Unified Theory of LCS as Transport Barriers 
George Haller, McGill University 
 
11:00 AM 
Elliptic LCS in the Ocean: Geodesic Detection of Mesoscale Eddies 
Francisco J. Beron-Vera, RSMAS, University of Miami 
 
2:00 PM 
Hyperbolic LCS in the Ocean: Forecasting Oil Spill Movement 
M. Josefina Olascoaga, RSMAS, University of Miami 

Tuesday, July 10 

Scalar Dispersion in the Large-Deviation Regime 
Jacques Vanneste, University of Edinburgh 

Wednesday, July 11 

Timestepping Schemes - Global Stability and Convergence 
Djoko Wirosoetisno, Durham University 

Thursday, July 12 

Geostrophic Turbulence in the Upper Ocean 
Joern Callies, MIT 

Friday, July 13 

Down-welling in Basins Subject to Buoyancy Loss 
Claudia Cenedese, WHOI 
 
Monday, July 16 
 
Wall-localized Convection and Multiple-Scale Dynamics 
Geoff Vasil, CITA, Toronto 
 
Tuesday, July 17 
 
Double-Diffusive Convection 
Pascale Garaud, University of California, Santa Cruz 
 
 
 



x 
 

Wednesday, July 18 
 
Universal Equations and Constants of (3D) Turbulent Motions 
Helmet Baumert, ISMARIS, Hamburg 
 
Thursday, July 19 
 
From the Luzon Strait to the Lab:  Modeling the Internal Tides 
Matthieu Mercier, MIT 
 
Friday, July 20 
 
Undercompressive Shocks on Ion-Bombarded Surfaces 
Miranda Holmes-Cerfon, New York University 
 
Monday, July 23 
 
Boundary Layers and Mixing in Abyssal Canyons 
Rebecca Walsh-Dell, MIT/WHOI 
 
Tuesday, July 24 
 
Conservative Water Wave Model with Full Wave Dispersion and Horizontal Circulation 
Onno Bokhove, University of Twente 
 
Wednesday, July 25 
 
Chaotic Stirring in an Idealized 3D Eddy 
Larry Pratt, Woods Hole Oceanographic Institution 
 
Thursday, July 26 
 
Linear Stability of Non-Autonomous Systems 
Shreyas Mandre, Brown University 

Friday, July 27 

Dynamical Systems, Kinetic Theory, Fluid Equations and All That 
Ed Spiegel, Columbia University 

Monday, July 30 

Eddy Diffusion in Lagrangian Coherent Structures 
Wenbo Tang, Arizona State University 

 



xi 
 

Tuesday, July 31 

Non-local Models of Anomalous Transport in the Presence of Coherent Structures 
Diego Del-Castillo Negrete, Oakridge National Laboratory 

Wednesday, August 1 

Modeling Particle Size Segregation and its Applications to Geophysics Granular Flows 
Anthony Thornton, University of Twente 

Thursday, August 2 

Generalized Linear Models for Networks of Spiking Neurons 
Sara Solla, Northwestern University 

Friday, August 3 

The Solar Tachocline - Rotating, Stratified, Magnetized Turbulence 
Toby Wood, University of California, Santa Cruz 

Monday, August 6 

The Structure and Dynamics of Tornadoes:  A Review 
Howard Bluestein, University of Oklahoma 

Tuesday, August 7 

Spontaneous Generation of Near-Inertial Internal Waves from an Oceanic Front 
Amala Mahadevan, WHOI 

PUBLIC LECTURE, 5:00 PM, Redfield Auditorium 

Probing Tornadoes with Mobile Doppler Radars 
Professor Howard Bluestein, University of Oklahoma 

Wednesday, August 8 

10:30 

Zonal Flow Formation and Convection Structures in Spherical Quasigeostrophic Models at 
Low Prandtl Number 
Celine Guervilly, University of California, Santa Cruz 

2:30 PM 

Got Symmetry?  Here is how you slice it 
Predrag Cvitanovic, Georgia Tech 



xii 
 

Thursday, August 9 

10:30  

Water Wave Production by Oscillating Bodies 
Joe Keller, Stanford University 

2:30 PM 

From Oceanic Sea States, Wave Spectra and Dispersion to Traveling Waves in Navier-
Stokes 
Francesco Fedele, Georgia Institute of Technology 

Friday, August 10 

Jamming 
L. Mahadevan, Harvard University 

 
AUGUST 13-17 
 
QUIET WEEK – NO LECTURES 
 
 
August  20-23 
 
Fellows’ Presentations 
 
Monday, August 20 
 
10:15 to 11:15 
 
Thixotorpic Gravity Currents and the Ketchup Question 
Duncan Hewitt, Cambridge University 
 
11:30 to 12:30 
 
Smoothing Out Sandpiles:  Rotational Bulldozing of Granular Material 
Alban Sauret, IRPHE 
 
Tuesday, August 21 
 
10:15 to 11:15  
 
Spin Down of a Stellar Interior 
Rosalind Oglethorpe, Cambridge University 
 



xiii 
 

11:30 to 12:30 
 
Swimming Slender Rods in Stokes Flow 
Srikanth Toppaladoddi, Yale University 
 
2:30 to 3:30 
 
Scattering of Internal Waves Over Random Topography 
Yuan Guo, New York University 
 
Wednesday, August 22 
 
10:15 to 11:15 
 
What Goes Up Doesn't Come Down:  The Effect of Upwelling and Downwelling on 
Turbulent Entrainment in a Surface Stress-Driven Flow 
Vamsi Chalamalla, University of California, San Diego 
 
11:30 to 12:30 
 
Equatorial Quasi-Geostrophy 
Felicity Graham, University of Tasmania 
 
2:30 to 3:30 
 
A 2-Dimensional, 3-Component Model of Langmuir Circulation 
Bevin Maultsby, University of North Carolina 
 
Thursday, August 23 
 
10:15 to 11:15 
 
Optimal Transport:  Wall to Wall 
Pedram Hassanzadeh, University of California, Berkeley 
 
11:30 to 12:30 
 
A Reduced Model for Exact Coherent Structures in High Reynolds Shear Flows 
Cedric Beaume, IMFT 



GFD 2012 Lecture 1: Dynamics of Coherent Structures and

their Impact on Transport and Predictability

Jeffrey B. Weiss; notes by Duncan Hewitt and Pedram Hassanzadeh

June 18, 2012

1 Introduction

1.1 What is a Coherent Structure?

Structures are ubiquitous in planetary atmospheres, oceans, and stars (figure 1). These
structures are of great interest because some of them have significant direct human im-
pact (e.g. hurricanes, storms, Jet Stream). In addition, studying structures can provide
insight into understanding and modeling other high-impact phenomena such as climate and
weather. For example, sub-gridscale parametrization is an important part of ocean mod-
eling; however, it has been observed that increasing resolution (and hence the accessible
Reynolds number) drastically changes the flow field and results in an ‘explosion’ in the
population of coherent vortices (figure 2).

There is no rigorous definition of a coherent structure. In general, the best way to
categorize them is based on the human brain, and employing the principle of ‘you know one
when you see one’. On the whole, structures cannot be derived from the underlying partial
differential equations: some conclusions can be drawn from these governing equations, but
in general we need experimental and numerical observations to guide a theoretical study of
structures.

In general, simple systems provide a road map for more complex physical systems on
a planetary scale, such as oceans and atmospheres. Therefore, the overall approach is to
seek the generic properties of these planetary fluids, and study simplified systems. We then
extrapolate these simple systems back to the more complex large-scale physical systems of
interest.

1.2 Properties of Coherent Structures

The term ‘coherent structure’ was first coined by [1] for vortices in a free shear layer.
Below we give some properties of coherent structures, following [2]. It should be noted that
the properties listed here are suggestions, and are probably both incomplete and overly
exclusive, such that some things we would like to include as structures are either not included
or are ruled out.

• Coherent structures are recurrent.
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(a) An oceanic eddy off the coast of Tasmania (b) Hurricane Dennis off the coast of Florida

(c) The Great Red Spot of Jupiter (d) The Jet Stream over North America

Figure 1: Examples of structures in planetary atmospheres and oceans.
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(a) 6.3 km resolution ∼ 1/12o (b) 1.6 km resolution ∼ 1/48o

Figure 2: The effect of increasing numerical resolution in a simulation of ocean gyre, taken
from [3].

• Coherent structures are spatially localized and isolated, as opposed to waves with a
single Fourier mode

”
which are not. Solitary waves, which are localized and contain

many Fourier modes are an example of a coherent structure.

• Coherent structures are a preferred state of the nonlinear dynamics: they are either
close to stationary flow configurations, or self-similarly evolving states, which are
robust to perturbations.

• Coherent structures are dynamically self-organizing, and thus not characteristic of any
forcing.

• Coherent structures are long-lived in a Lagrangian frame, meaning that the time scale
over which the structure decays is much longer than the typical Eulerian time scales
of the flow (e.g. the Eulerian rotation period of the vortex). Structures are therefore
weakly dissipative on Eulerian timescales.

1.2.1 Coherent Structures and Turbulence Theory

In traditional theories of turbulence, flows are treated as random, and a random phase
approximation in (Fourier) wavenumber space is typically used to analyze them. However,
coherent structures, as defined above, are local in physical space, and therefore a random
phase approximation will destroy the physical localization. For example, a step function in
physical space has a wide spectrum in Fourier space (Heisenberg’s uncertainty principle).

1.2.2 Recognition Algorithms

Structures can be identified by a number of different techniques. The most common ap-
proach is using subjective automated algorithms. These algorithms work by taking prede-
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fined criteria and thresholds for the various properties outlined above. Such a method has
an inherent subjectivity. A good recognition algorithm will be robust to small changes in
the criteria such as the specific values of the thresholds. Other methods include human
identification by eye, Lagrangian coherent structure theory, wavelet theory, and various
statistical procedures.

2 Two-Dimensional Fluid Dynamics

The large-scale dyynamics of planetary and oceanic flows are dominated by rotation and
stable density stratification. Such flows are charactrized with velocity scale V , length scales
L (horizontal) and H (vertical), Coriolis parameter f = 2Ω sin θ (where Ω is the frequency
of rotation and θ is the latitude), and Brunt-Väisälä frequency N . The Brunt-Väisälä
frequency describes the frequency of oscillation of a displaced parcel of fluid in a stable
stratified density field ρ(z), and is given by N2 = (−g/ρ) ∂ρ/∂z, where g is the gravitational
acceleration.

The effects of rotation are described by the Rossby number Ro, which can be thought
of as a ratio of the timescales for rotation and advection, and is given by

Ro =
U

Lf
. (1)

If Ro � 1, then the rotation timescale 1/f is much shorter than the advection timescale
L/U , and the effects of rotation dominate.

The effects of stable stratification are described by the Froude number F , which can
be thought of a ratio of the timescales for oscillation in the background stratification and
advection, and is given by

F =
U

HN
. (2)

If F � 1, then the stratification in strong.
In the limits Ro� 1 and F � 1, the system is marked by rapid rotation and strong sta-

ble stratification, which results in significant (spatial) anisotropy in the flow. In particular,
the vertical velocity w is smaller than the horizontal ones (i.e. w � u, v). If the extreme
limit of w = 0, we can consider the system as two-dimensional in the x− y plane.

2.1 2D Fluid Equations

We assume that the flow u(x, y, t) = (u, v) is incompressible

∇ · u = 0, (3)

and that the density ρ is constant. Without loss of generality, we set ρ = 1. The flow
satisfies the Navier-Stokes momentum equation,

Du

Dt
=
∂u

∂t
+ (u · ∇)u = −∇p+ ν∇2u, (4)

where p is the pressure, ν is the viscosity, and rotation is ignored for now (i.e. f = 0). We
define the vorticity ω to be

ω = ∇∧ u = ωẑ, (5)
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Due to incompressibility (3) the flow can be described by a streamfunction ψ(x, y, t) as
(u, v) = (−∂ψ/∂y, ∂ψ/∂x). With respect to this streamfunction, the vorticity is given by

ω = ∇2ψ. (6)

Taking the curl of (4) gives the vorticity equation,

Dω

Dt
=
∂ω

∂t
+ J [ψ, ω] = ν∇2ω, (7)

where the Jacobean J is given by

J [ψ, ω] =
∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
. (8)

In the inviscid limit, ν → 0, (7) reduces to

Dω

Dt
= 0, (9)

and vorticity is conserved following the flow.
In general, the flow is described by the vorticity equation (7) and the equation relating

vorticity to the streamfunction (6). Often, in more situations beyond pure 2d flows, conser-
vation equations for ‘potential vorticity’ can be derived that are analogous to (7), but the
relationship between potential vorticity and velocity will be different to (6) (e.g. see 2.1.1).

Finally, we define the circulation ΓC around a closed curve C to be

ΓC =

∮
C
u · dl =

∫
S
ω · dS, (10)

where the closed curve C, with line element dl, contains an area S, with area element dS.

2.1.1 Effect of Rotation

In 2D fluid dynamics, if the Coriolis parameter f is a constant (the ‘f–plane approximation’),
then it can be absorbed into a modified pressure p in (4), becuase the Coriolis term f(u∧ ẑ)
can be written as a perfect gradient f∇ψ. In this case, the flow is still described by (6)
and (7). However, if f varies by latitude, e.g. as f(y) = f(yo) + βy where β = (∂f/∂y)yo
(β–plane approximation), then (7) will be replaced with an equation conserving potential
vorticity q = ω + βy (i.e. Dq/Dt = 0).

2.2 Steady Inviscid Solutions

On an f -plane, if the flow is steady and inviscid, then (7) reduces to

J [ψ, ω] = 0. (11)

Therefore, any parallel flow, in which the streamfunction is a function of x or y only, is a
solution of the equations. For example, zonal or meridional jets are solutions.

Note, however, that under a β–plane approximation (described above), meridional jets
(ψ = ψ(x)) are no longer solutions of the equations. To the degree that coherent structures
are steady-solutions of the inviscid equations, this explains why coherent jets tend to zonal
rather than meridional.
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2.3 Vortices

In polar coordinates (r, θ), the steady inviscid governing equation (11) and the vorticity (6)
can be written as

J [ψ, ω] =
1

r

(
∂ψ

∂r

∂ω

∂θ
− ∂ψ

∂θ

∂ω

∂r

)
= 0, (12)

ω = ∇2ψ =
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2
∂2ψ

∂θ2
. (13)

Therefore, any axisymmetric flow ψ = ψ(r) satisfies the steady inviscid equations (12) and
(13). Again, to the degree that coherent structures are steady-solutions of the inviscid
equations, we expect to see axisymmetric vortices.

2.3.1 Gaussian vortex

Consider the axisymmetric vortex given by

ω(r) =
Γ

2πr20
e−r

2/2r20 , (14)

which is described by two constant parameters: the circulation Γ; and the size r0. The
velocity field is purely azimuthal u = uθeθ, and can be found from inverting the curl (13)
(analogous to the Biot-Savart law in electromagnetism). This operation gives a constant
of integration, which is chosen to ensure that the velocity is bounded at the origin. The
velocity is therefore given by

uθ(r) =
Γ

2πr

[
1− e−r

2/2r20

]
. (15)

Note that, with vortices, we often define a vorticity ω, and infer the velocity uθ. Equation
(15) shows that the velocity is zero at the origin and increases initially linearly with r. The
velocity is maximum at r0, and then decays like 1/r.

2.3.2 Point Vortex

In the limit r0 → 0, we can consider the Gaussian vortex to be a point vortex, with vorticity
ω given by

ω(x) = Γδ(x). (16)

The corresponding velocity is given by

uθ(r) =

{
Γ/2πr r 6= 0

0 r = 0
(17)

Suppose we have N point vortices, each with circulation Γi and location xi. Then the
vorticity at position x is obtained from the superposition of ωi

ω(x) =
N∑
i

Γiδ (x− xi), (18)
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(a) (b)

Figure 3: Schematic showing point vortex pairs: (a) two vortices of equal and opposite
circulation, translate without changing their separation; (b) two vortices of equal circulation,
rotate without changing their separation.

and the corresponding velocity field outside all point vortice is given by

u(x, y) =

N∑
i

Γi
2π

[
− (y − yi) x̂ + (x− xi) ŷ

(x− xi)2 + (y − yi)2

]
, (x, y) 6= (xi, yi) (19)

and the velocity at point vortex j is given by

u(xj , yj) =
N∑
i6=j

Γi
2π

[
− (y − yi) x̂ + (x− xi) ŷ

(x− xi)2 + (y − yi)2

]
. (20)

Consider now the inviscid time-dependent governing equation,

∂ω

∂t
+ J [ψ, ω] = 0. (21)

Inserting (18) into (21), and balancing terms, gives

∂Γi
∂t

= 0, and
Dxi
Dt

= u(xi), (22)

which shows that the circulation of each vortex remains constant, and each vortex moves
with the velocity that is induced from the other vortices at that point.

Examples of the motion of two point vortices are given in figure 3. A pair of point
vortices with equal but opposite circulation separated by a distance d translates at the
speed of Γ/2πd without changing the separation. The direction of translation can be easily
inferred by finding the direction of velocity induced by one vortex on the other one. On the
other hand, a pair of vortices with equal circulation of the same sign rotates around their
centre of vorticity with a period of 2π2d2/Γ.
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GFD 2012 Lecture 2: Coherent Structures in 2D Fluid

Dynamics

Jeffrey B. Weiss; notes by Yuan Guo and Bevin Maultsby

June 19, 2012

1 Introduction

Structures in the atmosphere and ocean such as hurricanes, storms and the path of jet
streams that have large human impact like They provide insight into better sub-grid-scale
parameterization. Most structures cannot be derived from underlying PDE’s and to learn
about their details requires observations and numerical simulations. There are several in-
teresting and important structures present in two-dimensional fluid dynamics. One major
motivation for examining such 2D fluid dynamics is to further understand the anisotropy
that is present in atmosphere and ocean. These lecture notes are organized as follows:

In section 2, we introduce the point vortex model. This idealized model provides mathe-
matical and physical insight. The equations for point vortex dynamics define a Hamiltonian
system. However, their singular nature gives no insight into the dynamics of vortex shape,
and filters out processes that depend on the shape dynamics.

Thus in section 3, we present a model of compact and well-separated vortex. The vortex
moments are defined and the equations of the motion of the centroid are given. Asymptotic
analysis leads to an infinite system of coupled ordinary differential equations for physical-
space moments of the individual regions. If truncated to a finite number of moments, a
self-consistent closed model is obtained at any order. Nonzero 2nd order moments yields
the ”elliptical moment model”.

In section 4, we examine an important process in fluid mechanics: same-sign vortex
merger. A threshold for the merger of equal-sized vortices is given. We also discuss the
situation when diffusion is present, as well as the interesting phenomenon of the onset of
chaotic motion in the elliptical moment model. Statistical mechanics give some predictions,
but there are some constrains in actual fluids that prevent vortices from exploring the phase
space as described by statistical mechanics.

In section 5, we briefly introduce the cascade theory of turbulence, focusing on 2D tur-
bulence. We describe four different types of vortex interactions in 2d decaying turbulence:
two-vortex merger, dipole propagation, vortex scattering, and tripole merger. The conser-
vation laws of energy and enstrophy are crucial in the study of cascade theory. We also
examine the relationship of cascade and vortex merger and the role of energy and enstrophy
fluxes.

In section 6, we look into structure-based temporal scaling theory, which is quite different
from traditional cascade theory. Our goal is to construct scaling theory guided by vortex
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statistics from numerical simulations. We make several assumptions in the theory resulting
in relationships between the exponents of the power law evolution of vortex properties.

2 Point Vortices

First we will examine point vertices in greater detail; the setting here is inviscid dynamics.
A point vortex system is closed: the vorticity of the system will always remain concentrated
at the point vortices. This no longer holds, however, with the addition of viscosity, which
causes the vorticity to spread out across the system. We will examine this case later.

Recall, the vorticity evolution equations

∂tω + J [ψ, ω] = ν∇2ω

ω = ∇2ψ,

while the definition of a point vortex is

ω(~x) =
N∑
i=1

Γiδ(~x− ~xi).

This expression may depend on time t. From the above, we obtain

Dωt
Dt

=
N∑
i=1

[∂tΓiδ(~x− ~xi)− Γi∇δ(~x− ~xi) · ~̇xi] +
N∑
i=1

~U · ∇(Γiδ(~x− ~xi)) = 0.

The gradient of a delta-function is infinite. Reinterpreting these equations for a small but
finite-size Gaussian vortex of size r0 renders these terms O(1/r0). Considering only the
order one term yields

∂tΓi = 0,

while the O(1/r0) term gives
~̇xi = ~U(~xi),

and the point vortex is advected by the velocity field.
Another important fact to observe is that a collection of point vortices is Hamiltonian.

Denoting the Hamiltonian by H, we can write

H = −
∑
i6=j

ΓiΓj
4π

ln |~xi − ~xj |.

(In the above, the natural logarithm is a result of Green’s function for the Laplacian in two
dimensions.) The equations of motion for this system are

Γi

(
ẋi
ẏi

)
=

−
∂H

∂yi
∂H

∂xi

 .
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A physical interpretation of the Hamiltonian is that of the “interaction energy for an infinite
domain.”

As this is a Hamiltonian system, we can observe both regular and chaotic dynamics.
Depending on the boundary conditions, there may be other invariants as well, such as
translation symmetries that yield linear momentum conservation, and rotation symmetries
that yield angular momentum conservation. Exploration in this direction reveals that a
system on an infinite domain with three vortices is regular, while a system with four is
chaotic.

3 Elliptical vortices

Elliptical vortices exhibit particular interesting behavior, and there is a lot of literature on
this subject. One of the first papers on the subject is the 1986 paper on vortex interactions
by Melander, Zabusky and Styczek [1].

Figure 1: Two compact, separated vortices.

In this setting we are considering compact, well separated vortices, such as the two
vortices above. In such systems, the vorticity is zero outside of these compact structures.
Each vortex has its own constant vorticity ωi, area Ai, and circulation Γi, defined by

Γi := ωiAi.

As shown in the elliptical vortex on the right in the above illustration, we can put local
coordinates (ξi, ηi) on each vortex. The centroid ~xi of each vortex is then given by

Ai~xi =
∫

vortex i
~x dξi dηi

Each vortex also has moments, which are given by

J
(m,n)
i =

∫
vortex i

ξmi η
n
i dξi dηi.

We can glean various bits of information by choosing m and n in specific ways. For example,
setting m = n = 0 yields the area of the vortex. If m = 1 and n = 0, we obtain the x
component of the centroid, while if m = 0 and n = 1, we obtain the y component of the
centroid. If m = 2 and n = 0, we obtain the variance in ξ of the size of the vortex, while if
m+ n = 2 then we obtain the covariance matrix for the size of the vortex. The sum m+ n
defines the order of moments.
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There are a couple of assumptions which are key to the development of these ideas. In
particular, we have a small parameter

ε =
size of a vortex

separation between vortices
<< 1.

In other words, we assume that the separation between vortices is O(1), with the size of
each vortex much smaller. As the size of each vortex is small, the moments bring in power
of ε:

J (m,n) ∼ O(εm+n+2),

where the additional 2 in the exponent comes from the integration in the definition of Ji.
Therefore, each higher moment is higher order in ε than lower order moments.

The above definitions are focused on a single vortex within the system. We have not yet
addressed the interaction of the vortices. It is important to note that we do not need any
assumption that vortices maintain the same shape; instead we describe vortices in terms of
their moments.

Since the area Ai is constant, the motion of the centroids is given by

Ai~̇xi =
d

dt

∫
vortex i

~x dξi dηi

=
∫

vortex i

~U(~x) dξi dηi.

The velocity ~U(~x) is the velocity induced by all of the other vortices, which we recall are far
away from our basic assumption on the separation distance between vortices. Asymptotic
analysis can show that in the same way that point vortices do not have any self advection,
the centroid position does not have any self advection.

We can now Taylor expand the velocity ~U(~x) around the centroid of a vortex. Here ~xi
is in vortex i, and its velocity induced by vortex j becomes

~̇xi =
1
Ai

∞∑
q=0

q∑
p=0

1
p!(q − p)!

J
(p,q−p)
i

∂p

∂xp
∂q−p

∂yq−p
~U

∣∣∣∣∣∣
~xi

.

Recall that
U(~x) =

∑
j

Uj(~x),

where Uj(~x) is the velocity induced by vortex j at ~x.
One can repeat similar steps to get an equation for ∂

∂tJ
(m,n)
i , from which one can perform

asymptotic analysis. We do not go into details here, see Melander et al. 1986 [1] for more
information.

A result of this analysis is that we can truncate at any order and get a closed system.
In other words, if we keep all moments through the kth order in the initial condition, then
the time evolution of those moments up through the kth order will not generate moments
of order greater than k.
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If we keep only the centroid, then this is exactly the point vortex model. The first order
moment is zero by definition. For the second order moments, we need m+ n = 2. In other
words, we set the pair (m,n) to be (2, 0), (1, 1), and (0, 2).

Here we can get a good idea of what it means for a system of point vortices to be closed.
If we truncate at order two, then closure implies that all higher order moments depend
completely on the 2nd order moments. As long as the second order moments are nonzero,
this yields an ellipse, called the “elliptical moment model.” In addition to the position
and location parameters we have already seen, the elliptical model yields two additional
parameters, illustrated below.

Figure 2: Two additional parameters for the elliptical moment model.

One of the additional parameter is the angle φi, while the other parameter is the ellip-
ticity ratio a

b of lengths of the major and minor axes. These parameters completely describe
the ellipse. The result is a Hamiltonian dynamical system with four degrees of freedom (as
the area is fixed).

4 Same-sign vortex merger

Same-sign point vortices co-rotate. We will see that two finite-size vortices with the same
sign which are “close enough” will merge together. Such same-sign merger can be illustrated
with numerical simulations and observed in laboratory experiments.

There is a threshold for merger which can make this notion of “close enough” more
precise. In general, if the separation between two vortices of equal size is larger than 3.3
times the radius of those vortices, then they will rotate around each other for all t and never
merge. However, their behavior changes dramatically once the separation distance is less
than 3.3 times their radius; in this case, they will merge quite quickly.

If there is diffusion present in the system, then vortices will alway merge. This behavior
happens because the radii will grow slowly on a diffusive time scale. As a result, the ratio
between their radii and the separation is eventually small enough to cross the threshold.

One interesting phenomenon is the onset of chaos in an elliptical model. If a system
begins with two elliptical vortices whose separation is above the threshold, as expected they
rotate around each other. Visually, they appear to wiggle as their ellipticity rotates, and
they become essentially circular. If however, their separation is below the threshold, the
distance between their centers quickly collapses. As a result, the ellipticity of the system
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Figure 3: Measured two-vortex merger time as a function of separation 2D normalized to
vortex diameter 2Rv, by C. F. Driscoll, et al. 1991 [4].

becomes infinite. As the equation for the model has a term of 1
r , where r denotes the

separation between the vortices, the model blows up. This singular behavior is analogous
to vortex merger.

There are several theories that give correlations with merger, yet do not seem to fully
explain the threshold. One can argue that the threshold is still something of a mystery. It
is interesting to note that statistical mechanics predicts that vortices always merge if the
system is allowed to fully explore the phase space. According to this prediction, a system
with an initial condition of two vortices will always result in a single vortex as the most
probable state. However, there are constraints in the actual fluid dynamics that prevent
vortices from exploring the phase space as described by statistical mechanics. But if the
fluid dynamics allows the vortices to merge, then statistical mechanics calculations give the
correct predictions.

We can connect the ideas of the last three sections with the following observation. Point
vortices do not exhibit merger at all, whereas the elliptical moment model, which allows
shape oscillations gives the signature for vortex merger. Hence the elliptical model is the
simplest inviscid model that provides information about this important dissipative process.

5 Cascade Theory

5.1 2d turbulence cascades

We now give a brief overview of two-dimensional turbulence cascades. First we note that
fluids in this context have small viscosity v, and large dimensionless Reynolds number given
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Figure 4: Vortex separation squared R2(t) from the elliptical-moment model for initially
circular vortices with Γ1 = π/4, Γ2 = π and initial separations R0 = 2.746− 2.751 in steps
of 0.001. The trajectories are successively offset by 4R2 = 0.25, by J. B. Weiss and J. C.
McWilliams, 1993 [2].

by

Re =
UL

v
>> 1,

where U is the velocity and L is the length scale. From the Laplacian dissipation, we get a
term of

− k
2

Re
,

in wavenumber space, where k is the wavenumber.
Classical cascade theories are based on physical models of how energy flows through

wavenumber space coupled with dimensional analysis of Navier-Stokes equations. There
are a few typical assumptions for cascade theory. The first is to assume that a system
has some forcing concentrated along a particular forcing scale, kf . Due to the form of the
dissipation operator, dissipation occurs at large wavenumbers. There is an inertial range
(perhaps more than one inertial range, in fact) determined by values of k where forcing and
dissipation are both small. Lastly, the fundamental concept of local cascade theory is that
energy is transferred locally in scale.

5.2 3D Cascades

When we consider 3d homogeneous isotropic turbulence, we assume that we have forcing
at large scales and dissipation at small scales.

Let ε represent the energy flux of the system. If we assume that we are in a statistically
steady state, then ε moves from large scales to small scales. In a statistically steady state
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ε for a turbulent cascade must be constant in inertial range as there is no large forcing or
dissipation terms. Dimensional analysis yields the Kolmogorov scaling relation

E(k) ∼ k−5/3,

which represents a direct transfer from large scales to small scales.

5.3 2D Cascades

5.3.1 Conservation of Energy and Enstrophy

Two-dimensional homogeneous isotropic turbulence is different from the 3D case because
there is conservation of enstrophy. Denote enstrophy by Z, then

Z =
1
2

∫
d2~x|~ω|2.

Statistically, enstrophy represents the mean square of the vorticity. It can also be seen
though as analogous to the kinetic energy of the system.

Now let us examine the role that energy conservation plays. First, note that the time
derivative of energy E depends on the enstrophy:

dE

dt
= −2νZ.

A fact about 3d turbulence is that the energy dissipation is constant as the viscosity goes
to zero because the enstophy of the system grows. The resulting vortex stretching is crucial
in 3D. The major difference when we switch to 2D is the lack of a vortex stretching term.
(Later, we will see quasigeostrophic dynamics in 3D that will resemble 2D as there is a
similar lack of vortex stretching.)

The time derivative of the enstrophy is

dZ

dt
=
〈
ωiωj

∂Ui
∂xj

〉
− 2νP,

where ωiωj is the vortex stretching term, and P is the “palinstrophy” given by

P =
1
2

∫
dx|∇ × ~ω|2.

One may wonder why the vortex stretching term ωiωj is zero in two dimensions. This is due
to the fact that the vorticity and the velocity are always in perpendicular directions, which
prevents vortex stretching. As a result, the enstrophy time derivative is always negative.
Taking the limit as viscosity vanishes, we see that the enstrophy cannot grow. Hence the
energy is conserved in 2D.
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5.3.2 Cascade Theory and Mergers

Now we examine what happens if we add energy and enstrophy fluxes to the system. Due
to the conservation of energy, there are separate energy and enstrophy cascade regimes with
cascades in opposite directions. Energy cascades to large scales, while enstrophy cascades
to small scales, where it then dissipates. Dimensional analysis gives the slope of spectrum
in these cascades, and the inverse energy cascade results in large scale structures.

Several typical numerical simulations of decaying 2d turbulence have shown that in
relatively short times periods, individual vortices self organize into a collection of coherent
vortices. Afterwards, the vortices advect each other around, and same-sign vortices merge,
whence there are fewer vortices. After a much longer period of time, the system ends with
a dipole which slowly decays through diffusion.

The dominant dissipative mechanism in decaying 2d turbulence is vortex merger. Most
merger events are two-vortex mergers, which are often catalyzed by a third vortex, but
occasionally three-vortex mergers occur. Conservative vortex interactions include dipole
propagation and vortex scattering. The idea of scattering is illustrated in the following
example: imagine two dipoles, A translating with opposite sign vortex A′, and B translating
with opposite-sign vortex B′, and the dipoles propagate to bring them close together. When
A and B are close together, they may be near an unstable co-rotating periodic state. Then
they will “switch partners” so that A is now rotating with B, and A′ is rotating with B′.
The trajectories of these new pairs depart near unstable manifolds of the are near unstable
orbits of the periodic state. Varying the impact parameters, which governs how the pairs
approach, changes how close the incoming dipoles are the stable manifold of the periodic
orbit. The closer the dipoles approach the periodic orbit, the longer they remain in its
vicinity, and the more they co-rotate before leaving its neighborhood. In this case, the
angle at which they exit becomes sensitive to the impact parameter and is unpredictable.
This example is a case of “chaotic scattering.”

Figure 5: Energy spectra for the solution at high Re for times t=1,2,...,11. Solid line shows
the k−3 classical prediction, by A. Bracco et al. 2000 [4].
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6 Structure-Based Temporal Scaling Theory

Structure-based scaling theory address the properties of the vortex population, as well as
the global quantities like energy and enstrophy. This differs from traditional cascade theory
which ignores the coherent structures. Simulations of 2d decaying turbulence exhibit spectra
that are steeper and an enstrophy time decay that is slower than cascade theory predicts.

In numerical simulations, we see three phases: vortex formation, vortex interaction, and
the final dipole. The first phase is poorly understood compared to the vortex interaction
phase. The goal here is to construct a scaling theory guided by vortex statistics from
numerical simulations. First, however, we must measure vortex statistics, which is inevitably
based on a subjective census algorithm (as there is no entirely precise definition of a vortex).
The output this census is the number of vortices and the distribution of their properties,
such as vortex size and enstrophy, over the course of the simulation.

6.1 Vortex Scaling Theory

For scaling theory we have a few assumptions. The first assumption, based on inviscid
dynamics, is that energy is conserved. Let ωp denote the peak vorticity, as illustrated
below.

Figure 6: Typical vortex shape indicating the peak vorticity.

The second assumption, also based on inviscid dynamics, is that ωp is conserved. More-
over, we assume that all of the vorticity is inside the coherent, well-formed vortices and the
vorticity outside these vortices is zero.

Observations from numerical simulations show that the number of vortices N decays
with a power law:

N ∼ t−ξ, ξ ≈ 0.72.

Each individual vortex is characterized by a location ~xi, a size ri (the notion of size can
be made precise), and a vorticity ωi. The population of vortices is then characterized by a
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probability density function
p(r, ω, t),

which represents the probability if finding a vortex of size r and with vorticity ω at time t.
For convenience we assume that r and ω are independent. With this assumption we can

write
p(r, ω, t) = pr(r, t)pω(ω, t).

In fact this assumption is not necessary, but it simplifies the following equations, as we
reduce the number of variables from two to one.

The final assumption is that the probability density functions evolve self-similarly. In
other words, the time dependence of the pdf depends only on the time dependence of the
average

〈r〉 (t).

Thus if we define a new variable
X :=

r

〈r〉 (t)
,

then the assumption is that p(X) is independent of time. (This could be done for the joint
distribution as well.)

The assumption of self-similarity allows one to write the moments of the pdf in terms
of the average. In particular, the average of the nth power of the radius is equal to the nth

power of the average multiplied by a constant depending on n:

〈rn〉 (t) = cn 〈r〉n (t).

Thus the time dependence of all moments can be related to the time dependence of the
average.
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Dynamics and Structures in 3D Quasi-Geostrophic Fluid

Dynamics

Jeffrey Weiss; notes by Rosalind Oglethorpe and Felicity Graham

June 20, 2012

1 Structure based scaling theory

In this lecture, we revisit the structure based temporal scaling theory for two-dimensional
turbulent fluids. Scaling theory involves characterising the vortex population in terms of
some of its properties; here, the total number of vortices N , vorticity ω, and vortex radius r
are considered. The scaling behaviour of other vortex properties can be defined in terms of
these quantities. We relate the three quantities to the scaling exponent ξ. Our assumptions
from yesterday are that both energy and peak vorticity is conserved over the domain (note
that this is only expected to be valid as Re →∞), that all vorticity is contained within the
vortices themselves, and that the probability distribution functions (PDFs) of the vortex
properties evolve self-similarly. Note that the latter assumption implies that averages of
powers of quantities scale the same as powers of averages, for example:

< rn > (t) = cn < r >n (t), (1)

where cn is independent of time and < . > denotes an averaged quantity.

1.1 Scaling of vortex properties

1.1.1 Circulation

Circulation Γ can be expressed in the following form

Γi =
∫

vortex i

ω d2x ∼ ωir2i , (2)

where constant relating Γi to ωir2i depends on the specific shape of the vortex. Hence, the
evolution of the average circulation can be expressed as follows

< |Γ| >∼< ω >< r >2 . (3)
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1.1.2 Energy

In 2D fluids, energy can be expressed in the following form

E =
1
2

∫
|u|2d2x =

1
2

∫
|∇ψ|2d2x. (4)

We integrate the above expression by parts, and since

ω = ∇2ψ, (5)

the energy can be expressed as

E = −1
2

∫
ωψd2x. (6)

Here, we’ve assumed that either ψ goes to 0 at infinity, for an infinite domain, or that the
domain has periodic boundaries.

By inverting ω = ∇2ψ, the streamfunction becomes

ψ(x) =
1

2π

∫
ω(x′) ln |x− x′|d2x′. (7)

It is important to recognise that the vorticity generates the streamfunction; the streamfunc-
tion is not a locally derived property, but rather depends on the vorticity at near and far
scales.

Substituting (7) into (6), we obtain

E = − 1
4π

∫
ω(x)ω(x′) ln |x− x′|d2xd2x′. (8)

Now, considering isolated vortices, we sum over the domain to obtain

E = − 1
4π

[
N∑
i=1

∫
vortex i

ω(x)ω(x′) ln |x− x′| d2xd2x′

+
∑
i6=j

∫
vortex i

d2x
∫

vortex j

ω(x)ω(x′) ln |x− x′| d2x′
]
. (9)

The first part of equation (9) describes the energy induced by self-interactions and the
second part of the equation describes the energy induced by vortex-vortex interactions.
The logarithmic term is the Green’s function. For the purposes of scaling E, in what
follows logarithmic corrections are ignored. Further details regarding the accuracy of this
omission are discussed in [1].

From the interaction energy part of equation (9), it might be assumed that the energy of
interaction scales like N2Γ2; however, this result disagrees with turbulence simulations [2].
To derive the scaling expression for E, we consider the numbers of same-sign and opposite-
sign interactions between pairs of vortices from equation (9) above. The total vorticity is
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zero so that we have an equal number of vortices with positive and negative vorticity (note
that we assume that all vortices have approximately the same magnitude of vorticity)

number of same-sign pairs = 2
N

2

(
N

2
− 1
)
, (10)

number of opposite-sign pairs = 2
(
N

2

)2

. (11)

It is clear that we get cancellation from the contribution of same-sign and opposite-sign
pairs, so that E scales like the number of vortices rather than the number of pairs, i.e.

Einteraction ∼ Eself ∼ N < Γ >2 . (12)

This scaling now represents the combined effect of all vortices, rather than including them
one at a time.

1.1.3 Enstrophy

The enstrophy equation can be expressed in the following form

Z =
1
2

∫
|ω|2d2x, (13)

from which, the scaling Z ∼ N < ω >2< r >2 is obtained.

1.1.4 Final scalings

We have derived the scaling of Γ, E and Z as follows

< Γ >∼< ω >< r >2, (14)

E ∼ N < Γ >2, (15)

Z ∼ N < ω >2< r >2 . (16)

Using these three quantities it is possible to express the scaling behaviour of the other vortex
properties of the fluid field.

Now, our underlying assumptions that E and ω are conserved properties, namely

E ∼ t0, and (17)

< ω >∼ t0, (18)

along with the evolution of the vortex number N observed in turbulence solutions

N(t) = N(T0)
(
t

t0

)−ξ
, (19)

provide the necessary closure to the theory. Empirically, we find that N ∼ t−ξ, where
ξ ∼ 0.72.
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It is possible to express the time-evolution of all quantities in terms of scaling exponent
ξ. For example,

E ∼ t0 ∼ N < Γ >2, (20)

< Γ >∼ N−1/2 ∼ tξ/2, (21)

< r >∼ tξ/4. (22)

Experimental studies have employed a range of numerical techniques to evaluate the
evolution of vortex properties, as proposed by the scaling theory, and the value of the
exponent ξ. These include direct numerical simulations (DNS) of 2D turbulence, point
vortex models and laboratory experiments (e.g., that examine electrically excited vortices
in a thin electrolyte). There is reasonable agreement between most experimental studies on
the robustness of the scaling relationships and most studies estimate a value of ξ close to 0.7
[3, 4]. For example, Bracco et. al. [9] found good agreement between numerical simulations
of decaying 2d turbulence and scaling theory for the vortex properties N , r, ω Γ and the
scaling exponent ξ (figure 1). These agreements are relatively consistent between low and
high resolution simulations (figure 2). However, some studies estimate slower or faster
decays (table 1 from [3]). These differences may be due to the choice of analysis technique
used, lateral dissipation and initial conditions such as the initial number of vortices (for
example, all of the studies estimating a value of ξ much different to 0.7 had less than 100
vortices initially, which decreases the statistical significance of the results [3]). Whether
experiments were run for a sufficient period of time to resolve the scaling regime has also
been questioned [3]. Finally, despite reasonable agreement with experimental studies, there
remains no convincing theory for the value of ξ.

2 Point-vortex model of 2D decaying turbulence

One of the primary goals of the point-vortex model was to construct the simplest model
capturing the scaling regime of two-dimensional decaying turbulence [1]. In this model,
2D decaying turbulence is described by a “vortex gas” with circulations that determine
the velocity field. Vortex same-sign merger is the dominant dissipative mechanism. The
point-vortices are Hamiltonian, and hence, conservative, and each vortex has a position
and circulation. Under this framework, same-sign pairs rotate without merger. However,
given that when two point-vortices approach, the dissipation becomes important, we require
a modification of the dynamics: when two same-sign vortices approach within a critical
merger distance, they merge instantaneously, and are replaced by a single new vortex. The
Hamiltonian dynamics then continues with this new vortex set. So, the new point-vortex
dynamics is conservative everywhere in time except for a set of measure zero. This is a new
class of dynamical system, which has been called punctuated Hamiltonian dynamics, and
is neither conservative nor smoothly dissipative. This class of dynamical systems captures
the intermittency of high Reynolds number turbulence.

2.1 Merger rules

When two same-sign vortices approach within a critical merger distance, determined to
be less than approximately 3.3 times the vortex radius, the Hamiltonian dynamics are
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Figure 1: A comparison of average vortex numberN(t), vortex radius r(t), vortex circulation
magnitude Γ(t), and peak vorticity ω (denoted by ζ in the figure) from a 2d decaying
turbulence simulation (symbols) and scaling theory (solid lines) with ξ = 0.72. The model
was of 40962 resolution. Each of the quantities has been multiplied by a suitable constant
for graphical representation purposes. Note the logarithmic x- and y-axes. From [9].

interrupted and the two vortices merge into one new vortex. To capture this merger, we
must modify our point-vortex model so that each vortex carries a dynamically inactive
size. During the merger, the energy and peak vorticity are conserved, as in scaling theory.
We further assume that the initial vortices have uniform peak vorticity, ωi = ±ωa for all
i, and that the newly formed vortex also has the same vorticity (i.e. ωnew = ω1 = ω2).
Furthermore, we derive the following rules for the size and circulation of the new vortex
based on the conservation of E

Γ2
new = Γ2

1 + Γ2
2, (23)

r4new = r41 + r42. (24)

An interesting experiment would be to trace the linear momentum as two vortices merge.
Since the circulation of the new vortex is not identical to the sum of the circulations of the
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Figure 2: A comparison of average vortex number N(t) estimated from decaying 2d tur-
bulence simulations at high resolution (circles) and low resolution (triangles). Evolution
predicted by scaling theory with ξ = 0.72 is represented by the solid line. Note the loga-
rithmic x- and y-axes. From [9].

merging vortices, we would expect a change in linear momentum over the simulation.

2.2 Results of Punctuated model

Long integrations of the punctuated point-vortex model are obtained through renormaliza-
tion, whereby the final state of an integration is used to initialise a new simulation with
many more vortices, allowing us to reach the asymptotic scaling regime more quickly and
to obtain sufficient data to reduce the sampling error. The model reproduces the vortex
number N , vortex radius ra, circulation magnitude Γ, enstrophy Z and kurtosis Ka pre-
dicted from scaling theory very well (figure 4). Figure 5 shows that the punctuated model
produces scaled distributions that, within sampling variability, are constant in time and
hence evolve self-similarly, although the model contains a higher number of small vortices
than the turbulence solution.

3 Forced 2D turbulence

Forcing can be included in the 2D Navier-Stokes equations as follows
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Figure 3: table from [3]

∂tu + u · ∇u = −∇p+ ν∇2u− αu + f , (25)

where ∂t denotes a partial derivative with respect to time, u is the 2D fluid velocity, p
is pressure, ν is the viscosity, α is a linear frictional damping term and f is the forcing
term [5]. The evolution of fluid properties (e.g. energy, enstrophy, vorticity) depends on
the details of the forcing. The forced state produces an inverse energy cascade to larger
scales, which arises primarily from the interaction of strain and vortices of different sizes,
without requiring vortex merger or growth as in the non-forced simulations [5]. Forced 2D
turbulence also produces a direct enstrophy cascade to smaller scales. We direct readers to
[5] for a more comprehensive review of forced 2D turbulence.

4 Summary of 2D

We have considered the properties and evolution of coherent structures under decaying and
forced 2D turbulence. 2D vortex dynamics can be modelled by both point vortices and
elliptical vortices, where decaying turbulence acts like a “vortex gas”. By implementing
structure based scaling theory, we can represent all vortex properties in terms of a few
quantities, such as vortex number N , vortex radius r and vorticity ω. Furthermore, the
time-evolution of all vortex properties can be expressed in terms of the vortex exponent ξ.
Numerical and experimental studies show a reasonable agreement of values of the exponent;
disagreements on the value of ξ can be attributed to different lateral dissipations or initial
conditions. The punctuated point vortex model is a Hamiltonian point vortex model that
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FIG. 8. Probability distribution functions p(r,t’), t’=O, from the modi- 
fied point-vortex model for several different renormalization cycles, la- 
beled by the numbers on the right. Each distribution is an average over 
the five independent trajectories. The delta-function initial condition is 
indicated symbolically by the arrow. 

we thus use data from cycles 7-12 from each of the five 
trajectories, resulting in a total of 30 cycles. 

The initial condition for each cycle is defined to occur 
at t’=O, but it is to be considered a state within the scaling 
regime at some time t= t’ + to = q,. The hypothesized scal- 
ing behavior is (4)-( 6). In terms of t’, the equation for 
vortex number, for example, is 

t’+to -6 
N(t) =N(to) - 

( ) to * (20) 

The unknown parameters are thus the exponent c, the time 
to, and the values of the average vortex properties at to. The 
only parameter that is relevant for comparison with the 
turbulence solution in Sec. III is g. 

The individual cycles exhibit significant variability, 
both within a single cycle and between cycles, as can be 
seen in p( r,t) (Fig. 8) and N(t) (Fig. 9). To test scaling 
theory we consider average quantities, denoted by a sub- 
script a. We shall need two different averages: an average 
over all vortices iti a single cycle at a single time, denoted 
by an overbar; and an average over all cycles at a single 
time; denoted by angular brackets. Furthermore, the quan- 
tities of interest can all be expressed as averages over vor- 
tex number and radius: 

N,(t) = (N(t) >, 
r&>=(W), 
r,(t) =4b?(t)), 

Z(t) =; (N(t)<(t)), 

K”‘t)=4?i( N(t)&, * 

(21) 

FIG. 9. Vortex number N(t), t>te, te=O.O50, for 30 cycles from the 
modified point-vortex model. 

The values of to, c, and N( to) are obtained by perform- 
ing a least-squares fit of the logarithm of (20)) 

lnN,(t>=A-gln(t’-i-to), (22) 
where ‘4 =ln[N(to)t$]. One can analytically obtain a fit for 
A and g as functions of to. A numerical search for the to 
that minimizes the error completes the fit. Uncertainties 
are obtained by approximating the fitting error near the 
minimum as a quadratic function of to, and finding the At, 
which increases the error by 20%. The results are 
to=0.050*0.003 and ~=0.72*0.02. 

The fit of N,(t) to scaling behavior, shown in Fig. 10, 
is excellent, indicating that the vortex number does indeed 

4x102 , . . . . . I 1 

.I.\,..- 
. . . . . 102 * 

FIG. 10. A comparison of average vortex number N,(t), vortex radius 
r,(t), vortex circulation magnitude I,(t), enstrophy Z,(t), and kurtosis 
K,(t) from the modified point-vortex model (solid lines) and scaling 
theory (dotted lines). In the model, to < t < to + t&,,, where fc=O.O50 and 
&d = 0.14 is the earliest time for one of the 30 cycles to reach N= 100. 
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Figure 4: A comparison of average vortex number Na(t), vortex radius ra(t), vortex circu-
lation magnitude Γa(t), enstrophy Za(t), and kurtosis Ka(t) from the modified point-vortex
model (solid lines) and scaling theory (dotted lines). In the model, t0 ≤ t ≤ t0 + t′end, where
t0 = 0.050 and t′end ≈ 0.14 is the earliest time for one of the 30 cycles to reach N = 100.
From [1].

has been modified such that vortices carry a size that is dynamically-inactive except during
close approaches, when dissipative vortex merger occurs. This modified model captures the
main features of 2D decaying turbulence well. According to [4],

Concerning the decay problem, we are thus left at the present time with an
elegant phenomenological theory (“universal decay theory”), which turns out to
represent consistent sets of numerical and experimental observations.

However, there remains disagreement, particularly observable at Walsh Cottage, whether
decay theory is truly “universal” and whether the numerical and experimental observations
that underlie the theory are truly “consistent”. Finally, it is possible to observe inverse en-
ergy cascades in forced 2D turbulence, although the properties and evolution of the coherent
structures in this framework will depend on the mechanism of forcing.
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FIG. 11. Probability distribution functionsp(x) (9) at six different times 
from the modified point-vortex model calculated by averaging over the 30 
cycles. 

evolve algebraically. Furthermore, the value. of g found 
here fits the turbulence solution extremely well (Fig. 1) . 

A comparison of the other quantities with the scaling 
theory predictions (6) is also shown in Fig. 10. The values 
of to and c used in the scaling theory predictions are from 
fitting N, while the initial values [I( to), etc.] are chosen by 
requiring the data to match scaling theory at a single in- 
termediate time. The quantities exhibit algebraic evolution, 
with the exponent well predicted by scaling theory. 

The scaling behavior can be interpreted using (21)) 
together with the fact that the transformation rule (18) 
requires N( t)r:( t) be strictly constant for all t and all 
cycles. Thus, one concludes that (Naz) - (N) “( c),>p, 
from which we infer self-similar evolution of the distribu- 
tion function, as in (7)-(g). Because all quantities are 
related by (21) to the vortex number and radius, we focus 
on the vortex size distribution p (r,t), and test the inference 
that p(r,t) evolves as (9). 

The distributions at six different times, each obtained 
by averaging over- the 30 cycles, are plotted in Fig. 11. The 
distributions are, within sampling variability, identical, and 
one concludes that the hypothesis (9) is true. 

The best estimate for p(x) is obtained by averaging 
over the 30 cycles and several times within each cycle. The 
behavior of fluctuations leads us to conclude that the cor- 
relation time is less than half a cycle. Thus we average over 
three times: at the beginning, near the middle, and near the 
end of each cycle. The best estimate for p(x) and its un- 
certainty are piotted in Fig. 12. 

Figures 6 and 11 show that both the modified point- 
vortex solution and the turbulence solution evolve self- 
similarly according to (9). Comparison of Figs. 7 and 12, 
however, shows that the actual shape of p(x) differs sig- 
nificantly between the two, with the point-vortex model 
containing significantly more small vortices than the tur- 
bulence solution. Differences in the large vortex portion of 

1.5 

1 .o 

2 
“a 

0.5 

0.0 
0.0 0.5 1.0 1.5 2.0 

X 
5 

FIG. 12. Best estimate for p(x) (9) from the modified point-vortex 
model, obtained by averaging over the 30 cycles and over three times 
within each cycle. The dotted lines indicate the uncertainty estimated by 
the standard error of the mean, assuming the 90 measurements are inde- 
pendent. 

9 are small enough to be accounted for by sampling vari- 
ability. 

V. ENERGY PARTlTlQN 

The transformation rules for the modified point-vortex 
model are based on conservation of energy, up to a possible 
logarithmic correction. Figure 4 shows that the turbulence 
solution conserves energy extremely well. In this section, 
we investigate energy conservation in the point-vortex 
model. In doing so, we formulate an energy partition ap- 
plicable to any structured flow. 

When the vorticity field is structured, one can partition 
the energy E into three components: the self-energy E, the 
configuration energy EC, and the background energy EJ,. 
Here E,, the energy due to self-interaction of the struc- 
tures, is independent of their positions, while EC, the inter- 
action energy of the structures, is a function of their spatial 
configuration. Here Eb is the. energy resulting from the 
nonstructured part of the vorticity, and contains both the 
interaction between the structures and the background and 
the self-energy of the background. 

The partition is accomplished by rewriting the energy 
(2) in terms of a Green’s function: 

dx’ S‘(x)G(x-x’){(x’), 

(23) 
where G is defined by 

dx’ G(x-x’)c(x’), (24) 

and translation symmetry requires G( x,x’) = G( x-x’). 
Periodic boundary conditions require that the total circu- 
lation in the (27~L)’ domain be zero. The relation V2$=g 
then determines the differential equation which G satisfies: 
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Figure 5: Probability distribution functions p(x) at six different times from the punctuated
point-vortex model calculated by averaging over 30 cycles. From [1].

5 Structures in 3D Quasigeostrophic Fluid Dynamics

5.1 Quasigeostrophic equations

We relax the 2D assumption and again consider the case of Ro � 1 (rapid rotation, i.e.
scales slower than a day) and F � 1 (strong stratification). We assume the system is
hydrostatic,

∂p

∂z
+ ρg = 0, (26)

so vertical gravity is balanced by the vertical pressure gradient, and that the fluid is thin, so
the vertical dimension is much smaller than the horizontal dimensions. The 3D momentum
equation is

∂u
∂t

+ (u · ∇)u = −∇p+ ν∇2u− f × u, (27)

and the fluid is incompressible
∇ · u = 0. (28)

The equation for conservation of mass is

∂ρ

∂t
+ (u · ∇)ρ = 0, (29)
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and the vertical density gradient is given by

∂ρ

∂z
= −N

2

g
, (30)

where N = N(z) is the buoyancy frequency, which we assume to be horizontally uniform.
An asymptotic analysis of the 3D equations, with Ro � 1, results in the quasigeostrophic
equations.

At lowest order in Ro, we obtain

0 = −∇p− f × u, (31)

where the leading order velocity field is

u(x, y, z, t) = (u, v, 0), (32)

and f is the Coriolis parameter defined in lecture 1. Therefore, to leading order, the Coriolis
force balances the horizontal pressure gradient. This is called geostrophy. The leading order
velocity field is called the geostrophic velocity. The geostrophic velocity is 2D, so using
incompressibility we can write the geostrophic velocity in terms of a streamfunction ψ:

(u, v) =
(
−∂ψ
∂y
,
∂ψ

∂x

)
. (33)

The next order in the asymptotic analysis gives the time dependence of u and the
vertical velocity. Taking the curl of the next order of the momentum equation (27) and
using incompressibility gives

Dω

Dt
− f ∂w

∂z
= ν∇2ω, (34)

where we define the material derivative as

D

Dt
≡ ∂

∂t
+ u · ∇. (35)

Using (29) and (30) we find an equation for the vertical velocity

w = − f

N2

D

Dt

∂ψ

∂z
. (36)

We then combine this with (34) to obtain

D

Dt

(
ω +

∂

∂z

(
f2

N2

∂ψ

∂z

))
= ν∇2ω, (37)

or
Dq

Dt
= ν∇2q, (38)

to leading order, where q is the potential vorticity

q = ω +
∂

∂z

(
f2

N2

∂ψ

∂z

)
. (39)

29



The first term in this equation is the relative vorticity obtained from the curl of the
geostrophic velocity, ω = ∇ × u = ∇2

2Dψ, and the second is the ‘stretching term’. The
vertical velocity causes stretching, which causes ω to change over time.

If N is constant, N 6= N(z), then let z′ = Nz/f , and the potential vorticity is given by
the isotropic 3D Laplacian,

q = ∇2
3Dψ. (40)

Equations (38) and (40) are the 3D quasigeostrophic (QG) equations for constant N . The
3D Laplacian in (40) indicates that the velocity field depends on the global 3D vorticity
distribution.

We can compare the 3D QG equations with constant N to the 2D equations found
previously:

2D 3D QG, constant N

Inviscid vorticity equation: Dω
Dt = 0 Dq

Dt = 0

q − ψ relationship: ω = ∇2
2Dψ q = ∇2

3D′ψ

The similarity of the QG equations to the 2D vorticity equations leads to the same
turbulent cascade theory as 2D. If ν = 0, the potential vorticity q is invariant, so as in 2D
there is no stretching of potential vorticity in QG. The energy

E = −1
2

∫
q(x)ψ(x)d3x (41)

is conserved, as in 2D, although there is now a contribution from potential energy. Thus the
analysis of the 2D equations gives some insight into a fully 3D, asymptotic ( Ro� 1, F � 1)
regime.

5.2 QG decaying turbulence

Isotropy of the q − ψ relation (q = ∇2ψ) and Taylor-Proudman ideas led to predictions
of 3D isotropic spectra [7] and vertical barotropic (depth-independent) columns. However,
numerical simulations (3203 resolution) by [6] with random homogeneous and isotropic
initial conditions show otherwise. The simulations use the dynamical QG equation

Dq

Dt
= −D, (42)

with q defined in (39). The dissipation operator D = ν∇4q represents the effects of the
smaller scales of motion (ν is a small hyperviscosity). Figure 6 shows results of the sim-
ulations at four different times. The simulations show the formation of roughly spherical
vortices (in stretched coordinates z′ = Nz/f). The vortices are advected by the velocity
field caused by the other vortices. The two primary interaction mechanisms that transform
the vortex population are between same sign vortices: nearly horizontal merger, as we have
already seen in 2D, and vertical vortex alignment, which is a new phenomenon to QG.
Unlike vortex merger, the vertical alignment process is at least partly reversible (in that
aligned vortices can move out of alignment) and the vortices remain distinct. The number
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resembles vertically uniform columns of
potential vorticity, which would have ac-
companying depth-independent (barotro-
pic) motion. Such an outcome has been
seen in simulations with very coarse vertical
resolution (14). However, the actual end
state is significantly different from barotro-
pic motion and, because there is no inviscid

mechanism for vertical homogenization of
the potential vorticity, will remain so.

Coherent vortices occur abundantly in
nature, and the particular examples men-
tioned in the introduction are known to
contribute significantly to the dynamical bal-
ances of the global circulations. The turbulent
vortex dynamics shown here must, in nature,

compete with other influences such as global
circulations, small-scale forcing, inhomoge-
neities in N and f, and anisotropic domains.
Nevertheless, our idealized model exhibits the
fundamental phenomena ofvortex emergence
and evolution and allows us to study their
roles in the statistical dynamics of planetary
turbulence.

Fig. 4. Potential vorticity q(x,yz) at (A) t = 5.0, (B) t = 10.0, (C) t transparency (left) (larger values are less transparent) and hue (right) as
= 25.6, and (D) t = 72.1. The z' axis is up. The data are displayed a function of q, centered about q = 0. Thus, for example, a large
by a volume-rendering technique: Each grid value is assigned a color positive q is purple and opaque, whereas a smallish negative q is yellow
and degree of transparency affecting light rays that pass through the and fairly transparent. Very small lqj is completely transparent, hence,
volume to the viewer. The curves beneath the images show the invisible.
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Figure 6: Potential vorticity q(x, y, z′) at (A) t = 5.0, (B) t = 10.0, (C) t = 25.6, and (D)
t = 72.1. Taken from [6].
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(a) (b)

Figure 7: (a) Wavenumber spectra of potential vorticity S(κ) at t1 = 2.2, t2 = 5.0, and
t3 = 10.0. (b) Spectrum anisotropy A(κ) at t1, t2, and t3. Taken from [6].

of vortices decreases with time due to vortex merger, and the end result is of two columns
of vertically aligned same-sign vortices, with the appearance of ‘beads on a string’. This
two column system is an analogue of the final vortex dipole in 2D. Similarly to 2D, the
spectra are steeper than cascade theory predicts. In addition, there is significant spectral
anisotropy,

A(κ) =
3Sz′(κ)

Sx(κ) + Sy(κ) + Sz′(κ)
6= 1, (43)

where Si(κ) are the directionally weighted wavenumber spectra of q

Si(κ) =
∫
|κ|=κ

(κi
κ

)2
|q̂|2dκ, (44)

i = x, y, z′, q̂(κ) is the 3D Fourier transform of q(x), and κ = |κ| is the magnitude of
the 3D wavenumber. Note that

∑
i Si = S(κ) which is the spectrum of q̂ averaged over a

shell of constant κ. Graphs of S(κ) and A(κ) are shown in figure 7. A(κ) 6= 1 indicates
an anisotropic potential vorticity distribution at wave number κ. Due to this anisotropy
(which is perhaps not surprising since D/Dt is not isotropic), the vortices are broader in
the horizontal than the vertical.

5.3 QG vortex census ([8])

With the idea that ‘geostrophic turbulence is controlled by the self-, pair-, and collective-
dynamics of its coherent vortices’, [8] did a vortex based statistical analysis of the results
from the numerical simulations described above. This describes the structure and evolution
of the vortex population in QG turbulence. A subjective automated algorithm is used
to perform a vortex census to identify vortices and to measure their size, strength and
shape. The result of this census is that the number of vortices decreases over time, which is
expected from vortex merger. The mean enstrophy and mean circulation both increase over
time. The mean of the peak vorticity, qp, is approximately constant after an initial time
(when the number of weak vortices appears to decrease faster than the number of strong
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(a) (b)

(c) (d)

Figure 8: Graphs of the QG vortex census results: (a) number of vortices; (b) Γ and Z; (c)
maximum of qp and mean of qp; (d) height h, radius R and aspect ratio. Taken from [8])

vortices), while the maximum of qp decreases due to dissipative effects. The mean radius
and height both increase over time, but the aspect ratio remains approximately constant
(≈ 0.8). However, this constancy is not yet well understood. All these quantities appear to
be described relatively well by power laws in t (see figure 8), which indicates the possibility
of a scaling theory. Since there are no vertical velocity dynamics in the potential vorticity
q, which is only advected horizontally, a scaling theory for QG can be derived in a similar
way to the 2D scaling theory above.

5.4 QG scaling theory

The scaling theory is derived similarly to 2D (see section 1), with an additional empirical
constant of the vortex aspect ratio. The assumptions are

• qp ∼ constant

• Aspect ratio ∼ constant

• N ∼ t−ξ

• E conserved

• All vorticity is within vortices (this assumption turns out to be less valid than in 2D,
because there are more background vorticity effects)

Following the same arguments as in the 2D scaling, we find scaling exponents for the
different quantities in terms of a single exponent ξ. Empirically, from the results of the
vortex census, ξ ≈ 1.25, which is higher than for 2D. Therefore the number of coherent
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vortices decreases more rapidly in 3D QG than in 2D. The assumption of constant aspect
ratio gives

< h >∼< R >, (45)

where < h > is the average vortex height and < R > is the average vortex radius. Similarly
to 2D, the circulation and enstrophy scale as

< Γ >∼< q >< R >2, < Z >∼< q >2< R >2, (46)

where q is potential vorticity (39). The energy is given by

E ∼
∫

d3x
∫

d3x′q(x)q(x′)G(x,x′), (47)

where G is a Green’s function. In 2D, the Green’s function ∼ ln |x−x′|, and we ignored the
log terms in the scaling theory (see section 1.1.2). However, in 3D QG, the Green’s function
∼ 1/|x− x′|, so we must pick a length scale L ∼ |x− x′|. This introduces some ambiguity.
Considering the interaction energy between vortices, we choose L ∼ N−1/3, which is the
typical vortex pair separation distance. This gives scalings of

< R >∼< h >∼ t2ξ/9 = t0.28, (48)

< Γ >∼< Z >∼ t4ξ/9 = t0.55. (49)

Considering the self-interaction energy, we choose L ∼ R, which is the vortex size. This
gives scalings of

< R >∼< h >∼ tξ/5 = t0.25, (50)

< Γ >∼< Z >∼ t2ξ/5 = t0.50. (51)

For both choices of L, the scalings of < R >, < h > and < Γ > agree well with the
vortex census results (< R >∼ t0.29±0.05, < h >∼ t0.28±0.05, < Γ >∼ t0.45±0.10). There
is more discrepancy in the exponent of < Z >, which is smaller in the vortex census
results (< Z >∼ t0.34±0.10) than in the scaling theory. This indicates that there is greater
dissipation of vorticity q within the vortices in the numerical simulation than assumed in
the scaling theory.

5.4.1 QG column waves

Another interesting observation from the numerical simulations in [6] is the appearance of
vertical helical and planar waves on the vortex columns. These are shown in figure 9, but
have not yet been studied.
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Figure 9: Top view of the simulation results [6] at two different times, showing a planar
wave (blue vortex column, positive vorticity) and a helical wave (red vortex column, negative
vorticity).
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1 Introduction

Geostrophic fluid dynamics describes a flow in which the force due to pressure gradient
balances the Coriolis force. The large-scale flows in the atmosphere and ocean are ap-
proximately in geostrophic balance. Many studies show that the QG decaying turbulence
self-organizes into roughly spherical vortices. Dynamical evolution of these vortices such as
merging and alignment processes are interesting. Results of numerical investigations which
studied the evolution processes such as merging and alignment are discussed in the following
sections [1, 2].

2 Vortex merging

Similar to the two-dimensional decaying turbulence, quasi-geostrophic three-dimensional
turbulence leads to same sign vortex merging, which is an important mechanism in deter-
mining the flow evolution.

2.1 Numerical method and initial condition

Numerical simulations are performed to study the dynamics of vortex merging process and
also the effects of varying the aspect ratio on the merging process [1]. The following equation
for potential vorticity has been solved numerically.

∂q

∂t
+ J(ψ, q) = D, (1)

where
J(ψ, q) =

∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
, (2)

is the Jacobian operator, ψ is the stream function and the potential vorticity q is defined as

q =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z′2 , (3)

where z′ is the rescaled vertical coordinate, z′ = (N/f)z. D on the right hand side of
the potential vorticity equation represents the dissipation term, which is assumed to be
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small compared to the other terms. Simulations are performed in a domain of size 2π in
the horizontal directions and D in the vertical direction, where D=2π in all simulations
except those with the smallest aspect ratio H/R=0.16 where D=π/2. Periodic boundary
conditions are used in all the three directions. The initial condition for potential vorticity
is given by two ellipsoidal distributions with circular horizontal cross-sections of radius R
and half-height H. Figure 1 shows the initial potential vorticity distribution. The vorticity
field is symmetric with respect to the mid-plane zc′ = D/2.

Figure 1: Initial potential vorticity distribution (a) the cosine profile of the vortices (b)
horizontal PV section on the mid-plane (c) vertical PV section on the plane (x,z).

2.2 Results

Figure 2 shows the time evolution of the vorticity field for one of the simulated case with
aspect ratio H/R = 1.5. Figure 2(a) shows the potential vorticity field at a horizontal
section zc

′ = D/2. Figure 2(b) shows PV distribution at z′
1 = zc

′ + 3H/4, whereas figure
2(c) shows the PV distribution at a vertical section y = π. The horizontal section of PV
distribution at zc′ = D/2 shows the vortices merging to form a core with thin filaments
around the core. Vertical section of PV distribution shows that these filaments are actually
an ensemble of ’PV sheets’ which enclose the merging vortices. Horizontal section of PV
distribution at z′

1 shows that there is no definite core at this vertical level and the vorticity
has been elongated to form spiral like shape. Overall, the evolution leads to an increase in
the final radius and decrease in the vortex height thus reducing the aspect ratio. Another
interesting dynamics of the vortex cores is that they elongate to form a flattened core before
merging. Figure 3 shows the three-dimensional volume rendering of the PV field at different
time instances.
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Figure 2: Potential vorticity distribution for baroclinic merging with vertical aspect ratio
H/R= 1.5 at times t = 6, 12, 20. (a) Horizontal sections of potential vorticity on the mid-
plane zc′ = D/2 (b) horizontal sections of potential vorticity on the plane z1′ = D/2+3H/4
(c) vertical sections of potential vorticity on the plane (x,z).
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Figure 3: Volume rendering of potential vorticity at time t=0, 1, 2, 4 for baroclinic merging
with H/R = 1.5.

At larger aspect ratio (H/R = 2.5), there is not much difference in the structures and the
merging dynamics when compared with the case when H/R = 1.5. However, at low aspect
ratios some interesting new features are observed in the outer filaments. Figure 4 shows the
(a) horizontal (b) vertical sections of PV field at 3 different time instances. The aspect ratio
H/R is 0.66 in this case. A horizontal section at zc′ = D/2 shows the merging of vortices
forming a central core along with the shedding of thin filaments . At a later time, these
vortex filaments develop secondary instabilities forming small vortices along the filaments.
A vertical section of the PV field shows the curvature similar to the large aspect ratio
result. The vortices formed by the secondary instability of the filaments are also visible in
the vertical section.
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Figure 4: Potential vorticity distribution for baroclinic merging with vertical aspect ratio
H/R = 0.66 at times t=6, 12, 20 (a) Horizontal sections of potential vorticity on the mid-
plane zc′ = D/2 (b) vertical sections of potential vorticity on the plane (x,z).

Next, still lower aspect ratio H/R = 0.16 is considered. The secondary instabilities are very
prominent in the outer filaments. Figure 5 shows the horizontal section (zc′ = D/2) of PV
field at 3 different times. The PV field shows that the filaments are almost destroyed and
the newly formed vortices are prominently seen in the outer region.

Figure 5: Potential vorticity distribution for baroclinic merging with vertical aspect ratio
H/R = 0.16. The panels show horizontal sections of potential vorticity on the mid-plane
zc

′ = D/2 at times t=6, 12, 20.

2.3 Lagrangian analysis

Lagrangian analysis provides a good picture of the dynamical evolution of vortex core. The
source of fluid particles in the final core (merged) is studied by seeding the tracer particles
at two horizontal sections zc′ = D/2 and z1

′ = zc
′ + 3H/4. The grey scale in the inset of

figures 6(a) and 6(b) indicates the final distance of particles at the end of merging process.
At zc′ = D/2, figure 6 shows that the fluid particles forming the core of the final vortex are
originating mainly from the cores of the merging vortices. Outer layers of each vortex move
far from the core forming the thin filaments, as discussed before. However at z1′, there is no
definite core and the particles inside the individual vortices do not play a significant role.
Most of the vorticity is distributed in the outer spiral-shaped filaments.
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Figure 6: Initial tracer distribution for an aspect ratio H/R = 1.5. The grey scale indicates
the final distance from the center of the domain that the particles will achieve at the
end of the merging process, as depicted in the smaller panel inset. (a) zc′ = D/2, (b)
z1

′ = zc
′ + 3H/4.

2.4 Critical merging distance

Similar to two-dimensional vortex merging, we expect there to be a critical merging distance
between the merging vortices. The dependence of this merging distance on the aspect ratio
is presented here. Tracer particles are introduced into the flow with certain number of
particles inside each vortex . Merging is considered to be done, when the total number of
particles in the suitably defined central region reaches a threshold value which is taken as
99% of the total particles seeded in the flow. Figure 7 shows the graph of critical merging
distance as a function of the aspect ratio. Results show that the critical merger distance is
influenced strongly by the baroclinicity in the flow. At low vertical aspect ratio, interactions
are more local and the critical merging distance is low. For example when H/R = 0.66,
critical merging distance is observed to be 2.1R. As the aspect ratio (H/R) increases the
critical merging distance increases rapidly. At very higher values of H/R, the critical merging
distance exceeds that of barotropic vortex merger. Since the vortices here are constrained
to have initial conditions which decay in z, they are never barotropic which could explain
this apparent contradiction.
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Figure 7: Critical merging distance dc/R as a function of the initial vertical aspect ratio
H/R.

3 Vortex alignment and merger

Interactions between the ellipsoidal vortices in the three-dimensional quasi-geostrophic tur-
bulence has been studied using the ellipsoidal moment model and the results compared to
the numerical simulations [2]. First, we establish the governing equations for the potential
vorticity for three-dimensional QG turbulence.

3.1 Ellipsoidal moment model

The equation for the evolution of the potential vorticity q is

∂q

∂t
+ J(ψ, q) = D, (4)

where
J(ψ, q) =

∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
, (5)

is the Jacobian operator, ψ is the stream function and the potential vorticity q is defined as

q = −∇2ψ = −
(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
, (6)

The process of Hamiltonian moment reduction [3] is applied to the three-dimensional QG
equations. The equations and the details of this reduction can be found in the appendix
section of [2]. The ellipsoid moment model is used to study the interaction of the symmetric
vortices. Initial vortex size has been chosen as a spheroid with the aspect ratio of 0.8, which
is relevant to the recent QG turbulent simulations [4, 5]. Figure 8 shows the initial positions
of the two vortices. The trajectories of the vortices were tracked using an adaptive Runge-
Kutta method. Figure 9 shows the trajectories of one of the vortices with two different
initial positions.
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Figure 8: Schematic diagram of the initial positions of the two vortices and the coordinate
system used.

Figure 9: Trajectories projected into the x − y plane for vortices with initial positions (a)
x1(0) = 1.275, z1(0) = 0.175 and (b) x1(0) = 0.5, z1(0) = 2.0 as shown schematically in the
insets.

3.2 Characteristics of merger/alignment

In two dimensions, when the centers of two vortices coincide, the Hamiltonian becomes
singular. However, in three-dimensions the centers of vortices never coincide unless they
lie on same horizontal plane initially. Based on the trajectories of the ellipsoid moment
model, the horizontal separation rh(t) = 2

√
x1(t)2 + y1(t)2, between the centers of vortices

has been considered as the criteria for vortex merging/alignment. The minimum value of
horizontal separation R = min(rh(t)/rh(0)) for different initial positions is shown in figure
10. For larger vertical separations, no sharp transition between merging/non-merging is
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observed. In conclusion, there is a sharp transition between merging and non-merging but
a smooth transition between alignment and non-alignment.

Figure 10: Contours of R = mint(rh(t)/rh(0)) for varying initial positions [x1(0), z1(0)].
The solid line is the curve of initial positions that result in two vortices that are initially
touching.

3.3 Three-dimensional QG simulations

Numerical simulations are performed integrating the three-dimensional QG equations using
a fully pseudo-spectral model. Dissipation is included to obtain well behaved numerical
solutions. The domain is periodic in all the three directions. Initial conditions for vorticity
are chosen such that it matches with the ellipsoidal moment model simulations described
above. Vortex merging is observed with small vertical separation and certain critical hor-
izontal separation. Figure 11 shows the evolution of vortex merging in the x − y plane at
different time. Each vortex is seen to have developed a handle which move towards the other
vortex along with the formations of filaments. The filaments here dissipate rather quickly
because of the non-zero dissipation term. But the total dissipation is not severe, since the
the maximum value of the potential vorticity falls to 93% of the initial value at t =500.
The predictions by the ellipsoidal moment model for the range of initial positions resulting
in vortex merging agree well the QG simulation results. The three-dimensional structure of
vortices has been investigated in the alignment region to learn about the inviscid behavior of
vortices in the alignment region. The evolution of two aligning vortices in a high resolution
simulation shows traveling wave-like structures that move up and down the vortex. These
waves appear in most of the simulations in the alignment region, which are speculated to
be related to the alignment process.
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Figure 11: Snapshots of the evolution with x0 = 1.35 and z0 = 0.3 at (a) t = 0 (b) t = 50
(c) t = 200, and (d) t = 500. The isosurfaces are at 90%, 50%, and 10% of the maximum
potential vorticity at that time. The view is looking down the z axis onto the x− y plane.

4 Conclusion

Numerical studies show that the vortex merging in three-dimensional QG turbulence in-
volves more complex dynamics when compared with the two-dimensional turbulence. The
ellipsoid moment model has been used to study the merger and alignment of interacting
vortices. Numerical simulations of the QG equations show a good agreement with the el-
lipsoid moment model regarding the range of initial positions which will result in merging
or alignment. Higher resolution simulations and further study of ellipsoid moment model is
required to improve the understanding of three-dimensional vortex merging and alignment.
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GFD 2012 Lecture 4 Part II: Rapidly rotating convection

Jeffrey B. Weiss; notes by Alban Sauret and Vamsi Krishna Chalamalla

June 21, 2012

1 Introduction

Rapidly rotating convection constitutes an interesting mathematical system, and is relevant
in geophysics and oceanography, for example, in the phenomenon of ocean deep convection.
However, the rapid rotation and strong thermal forcing found in natural systems is inac-
cessible to numerical simulations of the underlying Boussinesq equation. By applying an
asymptotic expansion one obtains reduced equations for non-hydrostatic quasi-geostrophic
dynamics that allows one to reach regimes of rapid rotation and strong thermal forcing.
Some results of numerical simulations and a model to describe those results will be pre-
sented, in particular the regime where coherent convective plumes are obtained.

1.1 Ocean deep convection

Figure 1.a presents the global thermohaline circulation on Earth. Sinking water is present
in the Atlantic, in the Antarctic that creates a global overturning which circulates around
the globe. It also raises the question of how the water gets to the top or to the bottom of
the ocean. Note that the timescale of this motion is roughly 1000 years. The intermittent
sinking takes place on very small scales and is relatively fast. Therefore, different time and
length scales are present in this problem which makes it difficult to simulate. Figure 1.b
shows zones where deep and bottom or intermediate waters form and sink and the major
broad scale upwelling zone. This circulation of waters, has a large impact on the global
climate and therefore constitutes an important topic.

1.2 Phases of deep convection

The phenomenon of deep convection [1] shows three major phases: a preconditioning phase
where a cyclonic gyre of length scales L ∼ 100 km domes isopycnals making the density
more uniform; then, there is a deep convecting phase where cooling events trigger deep
plumes of length scales L ∼ 1 km; finally these plumes organize and creating geostrophic
eddies that have scales about L ∼ 10 km. In the following discussion, plumes of length
scales L ∼ 1 km are considered.

1.3 Rotation and deep convection

Before going further, it is important to notice that the deep convection is influenced by
rotation. Indeed, it occurs in polar latitude where the Coriolis parameter f is large. Thus,
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Figure 1: (a) Schematic of a generalized model of thermohaline circulation showing the
Global Conveyor Belt. (b) Schematic of the principal zones where deep and bottom (in
purple) or intermediate waters (in blue) form and sink and the major upwelling zone (in
green).

we can define a natural Rossby number R∗0 such that

R∗0 =
Lrot

H
=

√
B

f3H2
(1)

where Lrot is the horizontal rotational scale, H the height, and B the buoyancy flux. Ob-
servations show that R∗0 ∼ 0.1− 0.4.

2 Non-hydrostatic quasi-geostrophic model

The traditional quasigeostrophic approximations result from assuming rapid rotation, strong
stable stratification, hydrostatic balance (vertical pressure gradients are balanced by grav-
ity), and geostrophy (horizontal pressure gradients are balanced by the Coriolis force). This
results in a diagnostic relation for the geostrophic velocity. By going to higher order, one
obtains a prognostic equation for the time evolution.

Here, a non-hydrostratic quasi-geostrophic model [2, 3] is considered. We start with
Boussinesq equations in a rapidly rotating regime, i.e. the Rossby number is small, R0 =
ε � 1. Usually structures in ocean and atmosphere have a large horizontal scale and a
small vertical scale. But if we now consider structures such as convective plumes, they are
tall and thin which imply Az = H/L = 1/ε� 1.

Then, a multiscale asymptotic expansion is done, assuming a large vertical scale Z =
z/Az = ε z. It also requires a slow time T defined by T = ε2 t. Then, using asymptotic
expansions, the partial derivatives in the vertical direction and time become

∂/∂z → ∂/∂z + ε ∂/∂Z and ∂/∂t→ ∂/∂t+ ε2 ∂/∂T. (2)
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Considering a Reynolds decomposition where averaging is done over the fast space and fast
time results in mean equations for the slow vertical scale and slow time

ū(Z, T ) =
∫

dx dy dz dtu(x, y, z, t, Z, T ). (3)

Define the velocity fluctuation as u′ = u − ū(Z, T ). Using asymptotic analysis both the
mean velocity and the fluctuation term are expanded in powers of ε:

ū = ū0 + ε ū1 + ... and u′ = u′0 + εu′1 + ... (4)

The vertical momentum equation gives the leading balances for the first-order terms:

∂p̄0

∂Z
= Γθ̄0 (5)

which says that the mean state hydrostatic at lower order, where p is the pressure, θ is
the temperature, Γ the non-dimensional buoyancy frequency defined by: Γ = B L/U2. The
horizontal momentum equation to lowest order is

ū0 = 0 and ẑ× u′0 = −∇p′1. (6)

Therefore, at lowest order, the mean velocity is zero and the fluctuation of the velocity field
is in geostrophic balance.

These lowest order equations lead to some implications. Geostrophy implies horizontal
non-divergence, ∇⊥ ·u′0⊥ = 0 and then the vertical velocity is independent of z, ∂w′0/∂z = 0.
In a traditional QG model, this leads to w′0 = 0 since layer is thin and w0 = 0 on boundaries.
But here, because of the multiple length scales, we just have no fast z derivatives, so w′0 6= 0
remains possible provided it only depends on slow Z. Thus, the lowest order velocity can
have a slow vertical scale dependence: w′0 = w′0(x, y, Z). As a results, the first order
fluctuations are non-hydrostatic.

To write the equations of motion, we use the usual toroidal and poloidal decomposition
through the streamfunctions Ψ and φ which are defined by

u′ = −∇×Ψ ẑ−∇×∇× φ ẑ. (7)

We therefore can write

u′0 =



−∂Ψ0/∂y
∂Ψ0/∂x
∇2
⊥ φ0


 (8)

where φ0 = φ0(x, y, Z) and has no fast z variation. The first two terms are given by the
function Ψ in the usual way and the last terms, ∇2

⊥ φ0 gives a non-hydrostatic vertical
velocity that shows the difference with the classical quasi-geostrophic model.

49



3 Rotating Rayleigh-Bénard convection

3.1 Non-dimensional parameters

The length scale is chosen such that the Reynolds number is unity, Re = 1. The remaining
parameters describing the problem are the scaled Rayleigh number: R̃a = E4/3Ra, which
defines the strength of the buoyancy frequency, where E is the Ekman number defined by
E = ν/(2 ΩH2), and the Prandtl number σ which represents the ratio of momentum to
heat diffusion. This scaling of E and Ra is based on the critical Rayleigh number for the
initial instability in the presence of rotation. In the following sections, numbers indicating
order are dropped but the lowest order in all cases are kept.

3.2 Reduced equation

The vertical velocity equation is:

∂w

∂t
+ J(Ψ, w) +

∂Ψ
∂Z

=
R̃a

σ
θ′ +∇2

⊥w (9)

where θ′ is the temperature fluctuation, and J is the Jacobian defined by

J(A,B) =
∂A

∂x

∂B

∂y
− ∂A

∂x

∂B

∂x
. (10)

In this equation, ∂w/∂t is the vertical velocity tendency, J(Ψ, w) represents the horizontal
advection of vertical velocity. Note that there is no vertical advection. The term ∂Ψ/∂Z
is the unbalanced vertical pressure gradient which forces vertical velocity, R̃a θ′ /σ is the
buoyancy forcing term and finally ∇2

⊥w is the horizontal dissipation.

The equation for the vertical vorticity defined by ω = ∇2
⊥Ψ is:

∂ω

∂t
+ J(Ψ, ω)− ∂w

∂Z
= ∇2

⊥ω (11)

Here, ∂ω/∂t is the vertical vorticity tendency, J(Ψ, ω) the usual horizontal advection of
vertical vorticity, −∂ω/∂Z represents a stretching term where vertical velocity gradients on
large scales spin up vorticity and implies an ageostrophic horizontal divergence, and lastly
∇2
⊥ω stands for the horizontal dissipation.

We can also write the temperature fluctuation equation:

∂θ′

∂t
+ J(Ψ, θ′) + ω

∂θ̄

∂Z
=

1
σ
∇2
⊥θ (12)

where ∂θ′/∂t is the temperature fluctuation tendency, J(Ψ, θ′) is the horizontal advection
of temperature, ω∂θ̄/∂Z is the vertical advection of the mean temperature gradient (this
is the only mean quantity which comes into this equation) and 1/σ∇2

⊥θ is the horizontal
diffusion of temperature fluctuation.

Finally, the mean temperature evolves on a slow time:

∂θ̄

∂T
+
∂θ′ ω′

∂Z
=

1
σ

∂2θ̄

∂Z2
(13)
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where ∂θ̄/∂T represents the mean temperature tendency on the slow time, ∂θ′ ω′/∂Z is the
large scale divergence of the eddy temperature flux and the overline denotes the horizontal
average and average over fast time. Finally 1/σ ∂2θ̄/∂Z2 is the dissipation.

4 Numerical simulations

Numerical simulations [3, 4] have been performed with periodic boundary conditions using
the Galerkin-Fourier approach in (x, y) direction and Chebyshev polynomials in the vertical
direction z. The simulations have been done for a range of scaled Rayleigh numbers R̃a
and Prandtl numbers σ. The resolution has been varied with the scaled Rayleigh number
R̃a. A semi-implicit Runge-Kutta time stepping is used. The boundary conditions are
impenetrable, fixed temperature, stress-free boundaries. Mathematically, it can be written
as θ̄ = 1 at z = 0, θ̄ = 0 at z = 1, and w = 0, ∂zΨ = 0, θ′ = 0 at z = 0 and z = 1.
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Figure 1. Volume renders of θ for σ = 7 and varying fRa (left) and fRa = 160 and varying σ (right).

Figure 2: Temperature fluctuations for various Rayleigh numbers and Prandtl numbers.
From [4].

51



4.1 Observations

Figure 2 shows snapshot of the simulations for various Rayleigh and Prandtl numbers. The
left column is for Prandtl number σ = 7 and the Rayleigh numbers increases from top to
bottom. We see that we first have the presence of columns at low Rayleigh number, R̃a = 20,
here we are going to focus on this regime. Then, the Rayleigh number R̃a increases and the
columns start breaking up leading to a more turbulent regime. The right columns shows
a fixed Rayleigh number, R̃a = 160, with increasing Prandtl number going down. We see
that increasing the Prandtl number leads to the appearance of columns. Note that there is
no exact correspondence between varying the Prandtl and the Rayleigh number.

In summary, for rotating convection, columns are present for small Rayleigh number
and/or large Prandtl number. In the following we are going to focus on this particular
regime.

4.2 Convective Taylor Column regime

We consider the regime of convective Taylor columns. The simulation parameters are R̃a =
E4/3Ra = 40, σ = 7 and the grid resolution in this case is 192 × 192 × 97. Starting with
arbitrary initial conditions, the temperature fluctuations relatively quickly organize into 2D
convective columns. Hot plumes and cold plumes are present and the columns have nearly
zero circulation. As a result they don’t significantly advect each other in the horizontal
direction. Moreover, the vorticity shows that fluid flows in opposite directions at the top
and bottom with ring of vorticity around the center of the column. Also note that vorticity
goes to zero at the mid-plane owing to symmetry.

4.3 Model of convective Taylor columns

To build a model of this convective Taylor columns, we seek steady nonlinear solution with
axisymmetric structures [5]. It is also assumed that all the heat flux is carried by columns
(this can be relaxed). Then we define cf as the number of columns per units area and the
Nusselt number by Nu = −∂z θ̄(z = 0). Then, the set of equations for a single column
become

∂2φ

∂Z2
+∇2

r

(
R̃a

∂θ̄

∂Z
+∇4

r

)
φ = 0 (14)

∂θ̄

∂Z
+

Nu

1 + cf σ < (∂rφ)2 >
= 0 (15)

where <> denotes the horizontal integral over column and ∇2
r is the radial component of

the Laplacian.

4.4 Convective Taylor columns

The simplest solution of the set of equations (14)-(15) is a separable solution between the
vertical and horizontal directions. First, consider horizontal Bessel function of first kind,
φ(r, Z) = φ̂(Z) J0(k r). The problem with this first solution is that there is an infinite heat
flux and infinite circulation, we therefore need a cutoff. Moreover, another problem is that
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this model fails to match numerical solution as the radial decay is too slow compared to the
numerical simulations.

Therefore, we can improve the model by looking at Hankel functions, which are complex
Bessel function defined by H0(kr) = J0(kr) + i Y0(kr). Then the solution can be written as

φ(r, Z) =
(

π

8σ2 cf

)1/2

φ(Z)H0(kr) + c.c (16)

where c.c. denotes the complex conjugate. In this case the integral quantities (mass flux,
heat flux, circulation) are finite, although there is a singularity at r = 0 which will be
neglected because the integrated physical quantities are finite. If we take this ansatz in
the equations (14)-(15), the vertical amplitude function φ(Z) is solution of an eigenvalue
problem.

We can compare the analytical solutions to numerical simulations (see figure 3). We
see that the solution based on Bessel functions (red curve) oscillates long after the actual
structures goes to zero. The solution based on Hankel functions (blue curve) matches well
with the numerical results for the radial solution. However for the axial profile, the Bessel
functions gives a better results than Hankel functions. The horizontal oscillation is better
captured by the Hankel solution than the Bessel functions.

Simulation 
Hankel 

Bessel 

Figure 3: Radial and vertical (inset) profiles of the vertical velocity w(z = 1/2, r), the vor-
ticity ω(z = 1/96, r) and the temperature fluctuation θ(z = 1/96, r) solid line are the results
of numerical simulations, blue dashed line is the solution based on Hankel function, and red
dotted line the solution based on Bessel function. Note that the logarithmic singularity is
present but nearly invisible. From [5].

5 Conclusion

We have seen that the non-hydrostatic quasi-geostrophic equations describe rapidly rotating
convection. The numerical simulations show that there are several regimes of rotating
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convection. Here, the focus is on the moderate forcing regime which has convective Taylor
columns. The horizontal structure of these columns is well-described by an analytical model
based on Hankel functions.

Ongoing work on the topic include the study of the turbulent regime and understanding
the Lagrangian transport, which has implications for how how tracers such as CO2 are
transported from surface to the deep ocean, and to construct a census to measure the
population statistics of the columns.
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GFD 2012 Lecture 5: Applications of coherent structures to

the study of weather and climate

Jeffrey B. Weiss; notes by Srikanth Toppaladoddi & Cédric Beaume

June 22, 2012

1 History of computational weather forecasting

Weather forecast plays an important role in preventing disasters. Weather and climate mod-
eling started approximately one century ago, in 1922 with L. F. Richardson. He divided a
region into a grid of cells and did 6 weeks of hand calculations to try and model the pressure.
The use of computers in weather prediction started only in 1950, when J. G. Charney and
his group completed a two-dimensional weather model and ran it on the Electronic Numer-
ical Integrator And Computer (ENIAC). This early work paved way for the founding of the
Geophysical Fluid Dynamics Laboratory (GFDL) in the National Oceanic and Atmospheric
Administration (NOAA) to study the physical processes that govern the behavior of the
atmosphere and the oceans as complex fluid systems. Computers enhanced numerical mod-
eling of the atmosphere and in 1956 N. Phillips developed a mathematical model to depict
monthly and seasonal patterns in the troposphere [2]. This model became the first realistic
and successful climate model. In 1963, motivated by the study of atmospheric convection,
E. N. Lorenz derived simplified equations of convection rolls and implemented them in a
simple program. Computations of the resulting equations led to the discovery of chaotic
dynamics [3]. Climate modeling has improved a lot since then, and in 1974 S. H. Schneider
& R. E. Dickinson reviewed the advances in the field, stating “climate modeling has possibly
now reached a threshold where further progress will lead to potential human benefits” [4].

2 Coherent structures in weather and climate

Despite the progress made since the 70’s, weather forecast is an extremely difficult task to
do accurately. The dynamics of most flows in the atmosphere and oceans is chaotic and
even small perturbations can cause large changes. An idea to improve current forecasts
is to use coherent structures as the backbone for geophysical turbulent flows. Although
being subjective, these structures can be used to reduce variable description of turbulence.
Here, we give an example of such coherent structures and their use in numerical weather
prediction.
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Figure 1: Initial prediction on September 20, 2005 by NWS TPC/National Hurricane Cen-
ter. Rita is at the tip of Florida and heads west. The black line indicates prediction and
the white cone the error. After [1].

2.1 Coherent structures: hurricane Rita

On September 18, 2005 hurricane Rita formed near the Bahamas and became the fourth
most intense Atlantic hurricane ever recorded. The potential danger of such an event
motivated weather forecasters to predict Rita’s trajectory and prompted mass evacuation
in coastal Texas. Approximately 3 million people fled prior to Rita’s landfall, and the losses
were heavy: approximately 100 people died and the damage cost was evaluated at $ 12
billion. Predictions are reported in figure 1. The predictions contain a large error cone
indicating the prediction uncertainty, and are to be compared with Rita’s actual trajectory,
reported in figure 2. The hurricane finally hit the US at the boundary between Texas and
Louisiana 4 days after the initial prediction in figure 1. Rita’s trajectory is located within
the large cone of errors but very close to its boundary which led to inappropriate decisions
in several areas. Although the predictions were rather good, there is room for improvement
which translates in more security and less damage.

2.2 Climatic variations: El Niño

Climate and local events are influenced by many variations occurring on different timescales.
Among these variations one can cite the North Atlantic Oscillation which consists of atmo-
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Figure 2: Rita’s trajectory. Blue dots indicate low speed (>39mph), yellow medium speed
(>58mph) and red fast speed (>74mph). Rita finally hit the boundary between Texas and
Louisiana, slightly to the right of the initial predictions 4 days later. After [1].

spheric surface pressure oscillations between the Icelandic low and the Azores high. An-
other important example of climate variability is given by El-Niño. It is a coupled at-
mosphere/ocean phenomenon characterized by unusually warm ocean temperatures in the
equatorial Pacific that has important consequences on the weather around the globe. This
phenomenon can be identified in Pacific Sea Surface Temperature (SST) representations. In
figure 3 are reported Pacific SST from 1986 to 2007, time increasing downwards. Indonesia
is towards the left of the figure while South America is towards the right. The blue areas
on the right of the first plot indicate cool water. The temperature of the water in these
areas varies seasonally, being warmest in the northern hemisphere springtime and coolest
in the northern hemisphere fall. The red areas on the left indicate hot water, usually seen
in the western Pacific. El Niño is an exaggeration of the usual seasonal cycle and can easily
be identified in the anomalies on the right figure. Indeed, several El Niños can be seen,
for example, in 1986–1987, in 1991–1992 and in 1997–1998. These climate patterns cause
extreme weather in many regions of the world such as floods and droughts that can affect
many countries.

3 Using coherent structures to improve forecasts

In this part, we discuss traditional methods to predict climate change and weather forecast,
and introduce how coherent structures could be used to improve forecasts.
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Figure 3: Left: Plot of the tropical Pacific Sea Surface Temperature (SST) in the horizontal,
Indonesia is towards the left and South America towards the left. Time is increasing from
top to bottom. Red areas indicate hot water while blue ones indicate cool water. Right:
Same type of plot but SST anomalies are plotted instead of SST. The anomalies are the
difference between the SST and the average for each month.

3.1 Traditional method

The basic method used in numerical weather prediction can be divided into the following
steps. A preliminary step consists in covering the area in which the weather is to be predicted
with an appropriate model grid. Then, we need to gather information about the current
state of the atmosphere (temperature, pressure, wind velocity, humidity, precipitation, etc.).
This information is then used to describe the initial condition of the model through a data
assimilation scheme which merges the observations with previous model forecasts. As we
obtain more observations the initial condition becomes more accurate. Once the initial
condition is set, the simulation is run forward to the forecast time. For subsequent forecasts,
former predictions are compared to the corresponding observations to verify the model did
a good job. Corrections and improvements can then be undertaken. In practice, about
half of the cost of numerical weather prediction comes from obtaining observations and the
other half comes from running models.

3.1.1 Observation

The first major step in predicting weather is observation. This is done using different kinds
of instruments to measure the state of the nature. Ground station are stationary and are
used to measure local quantities such as temperature, pressure, wind velocity, precipitation,
humidity, etc. Ground stations are often well equipped and very reliable. Observations
are also obtain from other instruments such as balloons, satellites, radar, ships or aircraft.
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Observations are not typically taken at the same locations as model gridpoints and can be
at different times than model timesteps. Data assilimation is used merge these observations
onto the model grid.

3.1.2 Data assimilation

Data assimilation is a mature field with much previous work and a sometimes dense nomen-
clature (see, e.g.,[5, 6]). Different types of data assimilation algorithms are available such
as sequential ones (nudging, optimal interpolation, or Kalman filtering), variational ones
(minimizing a cost function or 3D variational assimilation) and hybrid ones that combine
both methods. Let us introduce a nomenclature of the main state vectors that we will use
in the following:

• the true state of the atmosphere xt. This is a quantity we cannot access.

• the background state xb which results from a previous model forecast.

• the observations taken from measurements of the true state y. This quantity is a
post-processing of the data collected during observation.

• the analysis xa. This is the best estimate of the true state obtained by data assimi-
lation.

We give now the example of a 3D variational assimilation (3Dvar). Let us define the
observational operator H so that H(x) is the observation obtained from state x. Then we
define two error covariance matrices: the error in the background state,

B =< (xb − xt)(xb − xt)
T >, (1)

and the error in observations,

R =< (y − H(xt))(y − H(xt))
T >, (2)

where < · > denotes time averaging and T denotes the transpose. Note that these error
matrices are difficult to estimate because they involve xt which is the unknown true state
of the atmosphere. It is commonly assumed that H is a linear operator, H(x) = Hx with
H the corresponding matrix. We also make the assumptions that the error is unbiased (the
mean is zero) and that the observations and background errors are uncorrelated. We define
then a cost function

J(x) = (xb − x)T B−1(xb − x) + (y − Hx)T R−1(y − Hx). (3)

The analysis state xa is then by definition the solution that minimizes J , given by

xa = xb + K(y − Hxb), K = BHT (HBHT + R)−1. (4)

Implementing this solution is difficult for two main reasons. First, as mentioned above,
obtaining estimates of B and R are difficult. Second, the vectors are very high dimensional
(often 107-d for x and 105-d for y) making the computations expensive. There are many
strategies for dealing with these issues which will not be discussed here.

While numerical weather prediction has seen significant improvements over the decades,
there are still failures. Often the failures involve errors in prediction the location of struc-
tures such as storms, hurricanes, or the jet stream [7].
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Figure 4: Depiction of a standard assimilation technique applied to a structure with different
locations in the observations y and background xb (a) and a suggested improvement (b). The
simplified assimilation technique consists of taking the average between the background and
the observation which smears the original structure. The proposed improvement consists of
constructing a structure at the mean location of the background structure and the observed
structure.

3.2 Improving data assimilation

One drawback of standard assimilation techniques is that they do not preserve the coherence
of physically localized structures. As a simple example, imagine an assimilation scheme that
takes the average between the observation y and the background xb. Application of such
an algorithm is depicted in figure 4.a. It consists in setting the analysis xa as the average
between the observation y and the background xb. As the figure shows it, such an algorithm
leads to a structure that does not possess the same properties as the observed or background
ones: its amplitude is low, its center is no longer a maximum and it can possess two local
maxima depending on the position of y and xb.

To avoid such issues, we desire techniques that can work in many scenarios and applicable
to a variety of structures. We refer to methods that explicitly include properties of structures
in the data assimilation as “structure assimilation”. We build this type of methods in three
modular steps.

First, structures need to be identified. This can be done using a variety of existing tech-
niques including those based on wavelets, manifolds, a subjective technique. Once identified,
state variables such as the position, size and strength of the structure are defined. The iden-
tification is applied to both the background and observations, resulting in background and
observed structure variables.

The second step of the method consists in assimilating the structure variables. One can
use any of the various data assimilation methods for this step. The result is an analyzed
structure that is the best estimate based on the observed and background structure. For
example, if the assimilation scheme is a simple average, then the center of the analyzed
structure x0

a is then given by

x0

a =
x0

b
+ y0

2
(5)
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Figure 5: Depiction of a 1D grid morphing technique from a structure f to f∗. The starting
structure lies on the grid x. Segments of the grid are stretched or compressed to obtain the
grid x∗. The displacement of the meshpoints provides a new structure f∗(x∗).

with x0

b
being the center of the background structure and y0 that of the observed one. This

type of method is depicted in figure 4.b.
Finally, the last step is the computation of the analysis field on the model grid. While

the first two steps implement on well developed techniques, this step has not been previously
explored. We propose using the technique of grid morphing to map the structure variables
back onto the model grid. Grid morphing is attractive because it has been studied for image
processing in the field of computer science. An example of 1D grid morphing is shown in
figure 5. The idea of grid morphing is to displace some meshpoints and conserve the value
of the field at these points as they are displaced. The resulting shape is then deformed to
fit the desired one.

Preliminary numerical simulations using structure assimilation show significant improve-
ments in forecast error [8]. The method was tested using a two-layer QG channel model.
Figure 6 compares the errors made by traditional assimilation and structure assimilation.
One can see that the error curve for structure assimilation is significantly below that of
traditional assimilation. This trend is strengthened by the standard deviation which is
smaller for structure assimilation than for traditional assimilation. It follows that structure
assimilation can improve forecasts and lead to more reliable results.

4 Climate variability

Climate dynamics is a topic that has assumed importance in recent times due to anthro-
pogenic greenhouse gas emissions leading to climate change. The climate system is a highly
nonlinear and a highly coupled system with many feedback mechanisms. Studying the
climate system thus requires a hierarchy of models, from highly simplified energy balance
models to complex Global Climate Models (GCMs). GCMs include as much of the essential
physics as is computationally feasible, and parameterize many processes to reduce their
computational cost.
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Figure 6: Average kinetic energy of error per grid point as a function of hour after 10,000
forecasts. The straight bold line represents structure assimilation while the dashed bold line
represent traditional assimilation. Standard deviations are shown in straight and dashed
lines respectively for structure assimilation and traditional assimilation.

In this section, we use stochastic dynamical systems and non-equilibrium statistical
mechanics to explore the natural variability of the climate system.

The Earth’s climate system has processes whose governing timescales vary from a day to
thousands of years, and these nonlinear processes are highly coupled. The natural variability
of the climate system takes the form of spatio-temporal patterns which are often difficult
to predict. Examples of spatio-temporal patterns include El Niño and the North Atlantic
Oscillations.

5 Non-equilibrium Thermodynamics

Non-equilibrium thermodynamics deals with systems which are far from thermodynamic
equilibrium. Such systems sustain heat fluxes and produce entropy. A non-equilibrium
steady state (NSS) is a statistically steady-state that is kept away from equilibrium by
external forcing. One of the simplest examples of this forcing is a system connected to
thermal reservoirs at two different temperatures. The NSS then carries a heat from the hot
reservoir to the cold reservoir.

A NSS sustains statistically stationary fluctuations about its mean state. Associated
with these fluctuations is an entropy production, which can be either positive (entropy
producing) or negative (entropy reducing). The Fluctuation Theorem (FT) gives the ratio of
the probability of finding fluctuations which increase or decrease entropy. If the probability
of a finite time fluctuation changing entropy by S is P (S), and the probability of it changing
by the opposite amount is P (−S), then the FT tells us that:

P (S)

P (−S)
= eSt. (6)

Equation (6) means that, for a given positive entropy production |S|, the probability of a
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system having an entropy reducing fluctuation is exponentially smaller than the probability
of having an entropy producing fluctuation. Because the second law of thermodynamics says
that entropy must increase on average, we only expect to see negative entropy fluctuations
in thermodynamically small systems on thermodynamically short timescales.

6 Linear Gaussian models

Linear Gaussian stochastic models are some of the simplest models that capture a nonequi-
librium steady-state. They also have been effectively used to model a number of phenomena
in the climate system. These models take the form

d ~X

dt
= A ~X + F~ζ, (7)

where ~X represents the state space of the system. The first term on the right hand side is
the linear deterministic dynamics and for the model to remain finite the matrix A must be
stable, i.e. the real parts of its eigenvalues are all negative. The second term on the right
hand side is additive Gaussian noise where ~ζ is Gaussian white noise with

< ~ζ(t)~ζT (t′) >= Iδ(t − t′) >, (8)

where T denotes the matrix transpose and I is the identity matrix. The diffusion matrix
which characterizes the noise process is D = FF T /2.

The most common approach for constructing linear Gaussian models for climate phe-
nomena is to build empirical models. In the this approach one fits the matrices A and
D to data from either observations or numerical models. The data is typically reduced to
O(10−50) degrees of freedom through the use of empirical orthogonal functions (EOF). For
example, to study El-Niño one uses observations of sea surface temperature and the state
space ~X represents the amplitudes of the EOF patterns.

These simple stochastic models often perform surprisingly well when compared to com-
plex dynamical systems models as can be seen from figure 7. However, it is still unclear
why the models perform well for some phenomena and not for others.

Much of the recent work on stochastic models in the climate system has focused on the
non-normality of the deterministic operator and the amplification of the noise. The property
of non-normality is unsatisfying in that the matrix A can be made normal by a suitable
coordinate transformation. However, there is a related coordinate invariant property of
the system: the violation of detailed balance. Thermodynamically, systems in thermal
equilibrium satisfy detailed balance, while systems in a NSS violate detaled balance. A
linear Gaussian model violates detaled balance when AD − DAT 6= 0, and produces noise
amplification regardless of the coordinate system.

To analyze the time series data, we make us of the stochastic entropy production which
is defined as:

S = ln

(

P (X)

P (X ′)

)

, (9)

where X is a finite time trajectory segment, X ′ is the time reversed trajectory segment,
and P (X) is the probability of finding the segment in a long time series. The stochastic
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Figure 7: Comparison of different models used to forecast the Nino-3.4 sea surface temper-
ature anomaly. The blue bar is from a stochastic model. From [9]

entropy production requires the trajectory segment over all times between the endpoints of
the segment. To apply this to discrete-time climate data, we use a coarse grained entropy,
based only on the state vector at the endpoints of the trajectory segment, the endpoint
entropy production. The calculations are done with two different methods: the theoretical
method which is based on an analysis of the Equation 7, and the direct method, which is
based on constructing a pdf of the entropy production of the individual trajectory segments
in the data. Agreement between the two methods demonstrates the self-consistency of the
linear Gaussian model applied to the data. Computation of the entropy production in a
linear Gaussian model of tropical SST shows that we observe negative entropy producing
fluctuations on timescales of months (Figure 8). This demonstrates that tropical SST
dynamics on monthly timescales is a thermodynamically small system.

In summary, many aspects of natural climate variability takes the form of well-defined
patterns. Natural climate variability has a large human impact, and is often poorly captured
by GCMs. Climate variability can be modeled as fluctuations about a nonequilibrium steady
state in a thermodynamically small system. This suggests that improved understanding of
nonequilibrium steady states could have a significant impact on understanding the climate
system.
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Lecture 6: Introduction to spatially localized structures

Edgar Knobloch: notes by Srikanth Toppaladoddi and Cédric Beaume
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December 18, 2012

1 Introduction

Patterns are abundant in Nature. Some, for example, the stripe pattern on a zebra (or
zebrafish!) arise for biological reasons, perhaps to serve as camouflage. However, essentially
identical patterns are found in a variety of different physical and chemical systems. Figure 1
shows stripe patterns on a sand dune and in the atmosphere while Fig. 2 shows labyrinthine
patterns in a ferrofluid system and on a pufferfish. The similarities between these patterns
suggest the existence of general principles behind pattern formation that are independent of
the detailed physics responsible for their presence. This is so for spatially localized patterns,
too. In this lecture we shall look at spatially localized structures in a number of different
physical systems in an attempt to illustrate the universal properties of such structures. We
also introduce the Swift-Hohenberg equation that turns out to be very useful for studies of
such structures, and show, using a multiple-scale analysis, how such an equation may arise
in a fluid dynamical context, in this case as a description of gravity-capillary waves on the
surface of an inviscid fluid.

Figure 1: This image shows the stripe patterns on a sand dune (left), and in the cloud layer
in the atmosphere (right). The patterns in these disparate systems bear strong resemblance.
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Figure 2: Labyrinthine patterns in a ferrofluid system (left), and on a pufferfish (right).

2 Localized structures in physical systems

There are many physical systems which show the presence of localized structures under
appropriate conditions. In these lectures we shall be interested in localized structures in
driven dissipative systems. Such structures are frequently referred to as dissipative solitons

[22]. Structures of this type can be stationary or move. Here, we shall look at a few
examples, and then introduce the Swift-Hohenberg equation that is a prototypical equation
that exhibits structures of this type.

Figure 3: Displacement (left) and stress (right) patterns in a cylinder under axial loading.
The displacement is the outward radial displacement measured from an unbuckled state.
Both figures show a cellular pattern. From [15].

2.1 Cellular buckling in long structures

Hunt et al. [15] showed that when a tall structure, in their case a cylindrical shell, is loaded
axially, the buckling of the structure may be confined to mid-section. The internal stress
and displacement patterns formed are both cellular, and the number of these structures
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increases with the magnitude of the load. Figure 3 shows the resulting cellular pattern,
and in particular the localization of the displacement field for loads slightly larger than
threshold. These buckled states may be stable, and although they are weaker than the
unbuckled state, they are still able to support a load. However, when this load exceeds
a critical value the structure collapses further, leading to a progression of buckled states
consisting of more and more rows of cells.

The above results are best summarized in terms of a bifurcation diagram that tracks
changes in the response of the system as a parameter changes. The variation in the pa-
rameter must be quasi-static; in simulations the parameter value is fixed for the duration
of the simulation. The final state may then be used as the initial condition for a nearby
parameter value. This process is laborious and numerical techniques have been developed
to follow different states of the system without resorting to time-stepping. This approach
offers considerable advantage in that unstable states can be followed as easily as stable
states.

Figure 4: Bifurcation diagram for the buckling of an axially loaded cylinder. From [15].

Figure 4 shows the bifurcation diagram for the buckling problem. The diagram shows
steady solutions of the system in terms of the end displacement as a function of the load
parameter λ (plotted vertically). The unbuckled state loses stability at the linear buckling
load. The bifurcation is strongly subcritical, meaning that for larger loads the buckling is
catastrophic. For smaller λ, however, a variety of steady buckled states is present. These
differ in the number of rows of cells generated, and these increase by two as the solution
branch is followed. The states with positive slope are stable and can support increasing
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load despite being buckled. When the load is increased too far a dynamic jump occurs to a
state with an additional pair of rows etc. Thus there is a range of λ within which multiple
stable solutions exist. The figure shows that these solutions are organized around a special
value of the load parameter, called the Maxwell load. The significance of this parameter
value will become apparent as the lectures proceed.

2.2 Solitons on the surface of a ferrofluid

A ferrofluid is a suspension of small magnetic dipoles. The free surface of this fluid undergoes
a buckling instability, called the Rosensweig instability, when a uniform magnetic field of
sufficiently large strength is applied in a direction normal to the surface [23]. This instability
results in a hexagonal array of stationary peaks. Like the buckling of the cylindrical shell this
instability is also strongly subcritical, leading to a broad region of magnetic field strengths
for which the hexagonal pattern coexists with the flat surface. Within this region there
is a subregion where multiple localized states can be created [23]. This can be done by
bringing a bar magnet towards the surface, pulling out a peak, and removing the bar
magnet. Remarkably, in this subregion the peak remains, and the process can therefore
be repeated, pulling out more and more peaks. Figure 5 shows an example of a structure
created in this way. Thus at every point in this subregion a number of different states,
consisting of one, two, three or more peaks coexists with the flat and the hexagonal states,
and all are simultaneously stable.

Figure 5: Two-dimensional localized structures on the surface of a ferrofluid. From [23].

Figure 6 shows the resulting bifurcation diagram. The diagram shows the surface energy
as a function of the applied vertical magnetic field B. When B is increased from B = 0,
the solution remains qualitatively unchanged until a threshold is reached at B ≈ 9mT. At
this value, a subcritical instability generates a hexagonal pattern of peaks. Since this is an
experiment the small amplitude but unstable hexagons present for smaller B are not seen
and the system jumps instead to a large amplitude hexagonal state. When B is decreased the
hexagonal pattern persists until B ≈ 8mT, where the peaks collapse and the flat interface is
restored. The above process thus describes a hysteresis loop within which two stable states
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coexist, the flat interface and the hexagonal pattern. The multi-peak states are present at
B = 8.91mT, multi-peak states with n = 1, 2, . . . peaks were created by the process just
described, leading to a large number of coexisting stable states at this parameter value.

Figure 6: Bifurcation diagram for two-dimensional solitons on the surface of a ferrofluid
showing the surface energy as a function of the imposed magnetic field B. Stable steady
states with n = 1, 2, . . . peaks are present at B = 8.9mT. From [23].

2.3 Oscillons

Spatially localized oscillations called oscillons were found by Lioubashevski et al. [17] in
experiments on a clay suspension subjected to vertical vibration. Figure 7 (left panel) shows
an oscillon at several different times, while the right panels show different bound states of
this type of oscillon. All states oscillate with twice the period of the forcing, i.e., all are
subharmonic. Very similar behavior is present in vertically vibrated granular systems [26].
Figure 8 shows the interaction of two or more subharmonic oscillons created in this system.

Similar structures, called cavity solitons, are present in photonic systems [1]. Figure 9
shows how a cavity soliton is written and erased using a localized laser pulse.

2.4 Self-organized patterns in planar DC gas-discharge systems

Strumpel et al. [24] found that the discharge current in a DC-driven planar semiconductor
gas discharge system is able to self-organize into a variety of nonlinear structures, including
in some cases localized current filaments that interact in a manner similar to point vortices
in fluid mechanics, i.e., via the Biot-Savart law. Figures 10 and 11 show some of these
structures.
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Figure 7: Oscillons on the surface of a clay suspension vibrated harmonically in the vertical
direction. Figure (a) shows a single oscillon while (b) and (c) show different bound states
of these oscillons. From [17].

2.5 Localized structures in fluid flows

There are many rich fluid dynamical systems where localized structures can be found. Some
of them are briefly described here.

2.5.1 Convectons

Convectons, a term coined by Blanchflower [4], are stationary solutions of a convection
problem consisting of convection rolls embedded in a background where heat is transported
by conduction alone. Good examples of convectons have been observed in doubly diffusive
convection. The first computation of convectons is due to Ghorayeb and Mojtabi [14] who
studied a vertically extended rectangular cavity heated from one side in the presence of a
parallel concentration gradient. When the concentration gradient is chosen appropriately
the system possesses a conduction state for all values of a dimensionless number, the Grashof
number Gr, that measures the thermal forcing of the system. However, this state loses sta-
bility at Gr = Grc to a subcritical bifurcation, and for Gr < Grc Ghorayeb and Mojtabi
found the states shown in Fig. 12. Similar structures have also been found in magnetocon-
vection [4] and in binary fluid convection [2]. Figures 13 and 14 show examples of structures
found in these systems. In all these examples the system forms convectons in response to a
finite amplitude perturbation, and does so despite spatially uniform forcing. Each example
also exhibits a multiplicity of different localized states under identical conditions.
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Figure 8: Oscillons in a granular system. From [26].

Figure 9: Writing and erasing of cavity solitons. From www.funfacs.org.

2.5.2 Shear flow

Shear flow also exhibits localization phenomena. Figure 15(a) shows a picture from an
experiment by Gad-El-Hak et al. [12]. These authors studied the response of laminar flow
over a stationary plate to a one-time perturbation generated by injecting additional fluid
through a minute hole on the plate. The flow was visualized using fluorescent dye techniques.
The tiny perturbation develops into a coherent structure whose Λ shape persists in time
(Fig. 15(a)). Despite evident localization the structure is spatially and temporally complex.

Plane Couette flow provides perhaps the simplest example of a shear flow and is therefore
of particular interest. This flow is generated by the motion of two parallel plates in opposite
directions. The resulting linear velocity profile is stable for all plate velocities and a finite
amplitude perturbation is needed to trigger persistent turbulence. The boundary in phase
space between perturbations that decay to the laminar state and those that evolve into
persistent turbulence is populated by unstable edge states. As shown in Fig. 15(b) some
of these states may be localized. States of this type and the experimentally observed state
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Figure 10: Different spatial patterns formed in a gas discharge system. From [21].

Figure 11: Point vortex-like structures found in a gas discharge system. From [21].

in Fig. 15(a) have some features in common suggesting that they may play a role in the
transition to turbulence.

2.5.3 Defects

Defects in an otherwise periodic pattern can and should also be viewed as localized struc-
tures. Such defect states are most easily identified using demodulation techniques. Figure
1 shows several examples of defects in an otherwise periodic stripe pattern. Such defects
typically move (“climb”) and undergo a variety interactions. We shall not be discussing
defects in these lectures.
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Figure 12: Different stable time-independent spatially localized structures in doubly diffu-
sive convection in a rectangular cavity obtained for identical parameter values. The solutions
are visualized using streamlines of the flow. From [14].

3 The Swift–Hohenberg equation

In the preceding section we have established a connection between the presence of spatially
localized states and a subcritical bifurcation of a homogeneous state responsible for the
coexistence of this state with a spatially periodic state. We have also seen that inside
the resulting hysteresis loop one may find a large large multiplicity of coexisting localized
states. We now turn to an explanation of this remarkable phenomenon. For this purpose
we shall analyze in some detail a model problem, the Swift–Hohenberg equation [7, 8].
This equation was originally suggested as a description of pattern formation in Rayleigh–
Bénard convection [19, 25] and it and its variants have led to substantial progress in our
understanding of localized structures in driven dissipative systems in both one and two
spatial dimensions [3, 18, 20]. However, its simplest realization is in the context of gravity-
capillary waves on the surface of a liquid as described next.

3.1 Long gravity-capillary waves

Consider a two-dimensional fluid layer unbounded in x with −H < y < ζ(x, t), where H is
the depth of the fluid and ζ(x, t) is the elevation of the surface relative to the undisturbed
free surface at y = 0. The equations describing inviscid water waves read [27]:

φxx + φyy = 0 in −H < y < ζ(x, t), (1)

φy = 0 on y = −H, (2)

ζt + φxζx − φy = 0 on y = ζ(x, t), (3)

φt +
1

2

(

φ2

x + φ2

y

)

+ gζ − κζxx

(1 + ζ2x)
3/2

= 0 on y = ζ(x, t), (4)

where φ(x, y, t) is the velocity potential, i.e., the velocity (u, v) = (φx, φy). Equation (1)
represents the incompressibility of the fluid, while Eq. (2) implies that the bottom boundary
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Figure 13: Time-independent spatially localized structure in magnetoconvection. Top panel
shows the temperature fluctuation with superposed streamlines; the bottom panel shows
contours of magnetic field strength with superposed magnetic field lines. From [5].

is impenetrable. Of the remaining equations Eq. (3) states that the interface moves with the
local vertical velocity while Eq. (4) represents the Bernoulli’s condition on the free surface.
In this equation the last term represents the increase in pressure in the liquid due to surface
deformation when the surface tension κ is nonzero.

3.2 Linear theory

The problem (1)–(4) has the trivial solution φ ≡ 0, ζ ≡ 0. We consider infinitesimal
perturbations of the free surface of the form ζ = ζ0sin(kx−ωt), where k is the perturbation
wavenumber and ω is its frequency. This expression represents a periodic wave traveling
to the right with phase speed c = ω/k. Associated with this disturbance is a velocity
disturbance given by φ = φ0(y)cos(kx−ωt), where the function φ0(y) captures the decrease
of the velocity with depth. With this Ansatz Eq. (1) yields

φ0yy − k2φ0 = 0. (5)

The boundary condition (2) implies that φ0y = 0 at y = −H and hence that

φ0 = A cosh [k(y +H)] , (6)

where A is an arbitrary constant. The perturbed velocity potential then reads

φ = Acosh [k(y +H)] cos(kx− ωt). (7)

Equation (3), linearized about y = 0, now yields

ζ0ω = −Ak sinh(kH), (8)

while Eq. (4) yields
−ωAcosh(kH) + gζ0 + κk2ζ0 = 0. (9)
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Figure 14: Coexisting stable odd and even convectons in binary fluid convection, shown in
terms of the contours of the temperature fluctuation Θ relative to the conduction profile
and of the concentration field C. From [2].

Elimination of the arbitrary amplitude A yields finally the dispersion relation for infinites-
imal gravity-capillary waves:

ω2 = (g + κk2)k tanh(kH). (10)

We are interested in long waves, i.e., waves for which kH ≪ 1. In this limit, the Taylor
expansion of the hyperbolic tangent gives tanh(kH) = kH(1− k2H2/3)+O(k5H5) and the
dispersion relation (10) becomes

ω2 = gk2H + gk4H3(Bo− 1/3) +O(k6), (11)

where Bo ≡ κ/gH2 is the Bond number. Thus long waves are nondispersive at leading order
but with a dispersive correction at higher order as described by the second term provided
Bo 6= 1/3. The special case Bo = 1/3 is thus of particular interest, and in the following we
study the weakly nonlinear regime near this special value of Bo.

3.3 Weakly nonlinear regime

Weakly nonlinear traveling waves are most easily found in the frame moving with the speed
of the wave since in this reference frame the wave becomes stationary. We therefore set
ξ = x− ct, and choose for c the long wave phase speed c =

√
gH . This will not in fact be

the speed of the traveling wave since nonlinearity will modify its speed but it is a good first
guess.
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Figure 15: (a) Two-dimensional spatially localized structure in boundary shear flow, viewed
from above (from [12]). (b) Edge solution in plane Couette flow at Re = 375 in a 2×30×200
domain. The structure is elongated in the streamwise direction, with yellow (blue) indicating
positive (negative) streamwise velocity perturbation (from [10]).

In this frame Eqs. (1)–(4) become

φξξ + φyy = 0 in −H < y < ζ(ξ, t), (12)

φy = 0 on y = −H, (13)

ζt + cζξ + φξζξ − φy = 0 on y = ζ(ξ, t), (14)

φt + cφξ +
1

2

(

φ2

ξ + φ2

y

)

+ gζ − κζξξ

(1 + ζ2ξ )
3/2

= 0 on y = ζ(ξ, t). (15)

Mass conservation requires that we impose the additional condition
∫

∞

−∞

ζ dξ = 0 (16)
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on all our solutions.
We begin by defining a small parameter ǫ in terms of the departure of the Bond number

away from its critical value, i.e., we write κ = κ0 + ǫ2κ2, where κ0 ≡ gH2/3 (corresponding
to Bo = 1/3). Next we look for long waves with O(ǫ) wavenumber, i.e., waves whose
wavelength λ satisfies the relation H/λ = O(ǫ). To do so, we introduce a large spatial scale
X = ǫξ and a slow time scale T = ǫ5t that describes the evolution of the wave in the moving
frame. The next step is harder because one needs to identify the scaling of the magnitudes
of φ and ζ with ǫ that will lead to a balance between nonlinearity and the assumed weak
dispersion. The correct choice is φ → ǫ3φ and ζ → ǫ4ζ, yielding the scaled problem

ǫ2φXX + φyy = 0 in −H < y < ǫ4ζ(X,T ), (17)

φy = 0 on y = −H, (18)

ǫ6ζT + ǫ2cζX + ǫ6φXζX − φy = 0 on y = ǫ4ζ(X,T ), (19)

ǫ4φT + cφX + ǫ2
1

2

(

ǫ2φ2

X + φ2

y

)

+ gζ

−ǫ2(κ0 + ǫ2κ2)ζXX = O(ǫ12) on y = ǫ4ζ(X,T ). (20)

We now expand φ and ζ in powers of ǫ2: φ = φ0 + ǫ2φ2 + ... and ζ = ζ0 + ǫ2ζ2 + ....
The leading order of Eqs. (17)–(18) indicates that φ0 = f0(X,T ), where f0(X,T ) is to be
determined. At O(ǫ2), we obtain φ2yy = −f0XX with the boundary condition φ2y = 0 on
y = −H. Thus

φ2 = −1

2
(y +H)2f0XX + f2(X,T ), (21)

where f2(X,T ) is unknown. Equations (19)–(20) on the boundary y = ǫ4ζ(X,T ) give at
leading order:

cζ0X = −Hf0XX , (22)

cf0X + gζ0 = 0. (23)

In view of the mass conservation condition (16), Eq. (22) can be integrated and gives
cζ0 = −Hf0X which, when combined with equation (23), gives the dispersion relation for
long waves, viz., c2 = gH.

At next order, Eq. (17) yields

φ4yy = −φ2XX =
1

2
(y +H)2f0XXXX − f2XX , (24)

which can be integrated twice with respect to y:

φ4 =
1

24
(y +H)4f0XXXX − 1

2
(y +H)2f2XX + f4(X,T ), (25)

where the boundary condition φ4y = 0 at y = −H has been used to eliminate one constant
of integration. The following order gives

φ6yy = −φ4XX = − 1

24
(y +H)2f2XXXX − f4XX , (26)
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leading to

φ6y = − 1

120
(y +H)5f0XXXXXX +

1

6
(y +H)3f2XXXX − (y +H)f4XX . (27)

These expressions are to be complemented with corresponding boundary conditions from
Eqs. (19)–(20). At O(ǫ4), Eq. (19) reads:

cζ2X = φ4y =
1

6
H3f0XXXX −Hf2XX , (28)

or

cζ2 =
1

6
H3f0XXX −Hf2X , (29)

where we have again used the mass conservation relation (16) to fix the constant of inte-
gration. At O(ǫ2), Eq. (20) reads:

cφ2X + gζ2 − κ0ζ0XX = 0, (30)

or equivalently,

c

(

−1

2
H2f0XXX + f2X

)

+ gζ2 +
cκ0
g

f0XXX = 0. (31)

Notice that Eqs. (29) and (31) are identical provided κ0 = gH2/3. This fact confirms that
we have scaled the linear terms correctly.

We proceed next to O(ǫ6) in Eq. (19):

ζ0T + cζ4X + f0Xζ0X = − 1

120
H5f0XXXXXX +

1

6
H3f2XXXX −Hf4XX − ζ0f0XX . (32)

The last term in this equation arises from the ζ contribution to φ2y. Equation (20) at O(ǫ4)
yields:

φ0T + cφ4X +
1

2
f2

2X + gζ4 − κ0ζ2XX − κ2ζ0XX = 0, (33)

where φ4 is to be evaluated at y = 0 using Eq. (25). Eliminating f4 and ζ4 from the resulting
equations we obtain a solvability condition which can in turn be simplified by eliminating
f0 in favor of ζ0. We obtain

2c

H
ζ0T − 3g

H
ζ0ζ0X + κ2ζ0XXX +

1

30
gH4ζ0XXXXX = −κ0ζ2XXX − 1

3
cH2f2XXXX . (34)

The right hand side of this equation can be evaluated in terms of ζ0 with the help of Eq.
(31) and the relation κ0 = gH2/3 leading finally to an evolution equation satisfied by ζ0:

2c

H
ζT − 3g

H
ζζX + κ2ζXXX − 1

45
gH4ζXXXXX = 0. (35)

In writing this equation we have dropped the subscript 0 on ζ0. The resulting equation
generalizes the Korteweg–de Vries equation by retaining higher order dispersion.

Solitary waves traveling to the right with speed V and without change of shape may now
be obtained by writing z ≡ X − V T to boost the reference frame by just the right amount
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so that the nonlinear solution remains stationary. In this frame such a wave satisfies the
ordinary differential equation

1

45
gH4ζ ′′′′ − κ2ζ

′′ +
2cV

H
ζ +

3g

2H
ζ2 = 0 (36)

obtained after one integration with respect to the variable z. Here the prime denotes a
derivative with respect to z. The resulting equation is the simplest case of the Swift–
Hohenberg equation, hereafter SH20, because it only includes a single nonlinearity of second
order. Despite its simplicity this equation has a remarkably rich solution structure that
includes a large number of solutions homoclinic to ζ = 0, i.e., solitary waves [6, 11].

We remark that Eq. (36) is dissipative in space although the time-dependent problem
from which it was derived is conservative, with an energy that is conserved in time.

4 The Korteweg–de Vries equation

The Korteweg–de Vries equation (named after [16]) can be derived from Eqs. (17)–(20)
using a different scaling that is valid for all values of Bo that are not close to the critical
value Bo = 1/3. This time we write X = ǫξ, T = ǫ3t, φ = O(ǫ), ζ = O(ǫ2) and assume
that κ − κ0 = O(1). Thus, the small parameter ǫ is now defined by the ratio H/λ instead
of being defined in terms of the Bond number. Proceeding as in the preceding section we
obtain at second order

ζT + ζζX + ζXXX = 0, (37)

where T and X have been rescaled to eliminate constants.
Waves of constant form can be found by writing ξ ≡ X − V T and integrating the

resulting equation twice. The Korteveg–de Vries equation (37) then takes the form of an
equation for a particle in a potential,

1

2
ζ2ξ + U(ζ) = E, (38)

where E is a constant and
U(ζ) ≡ ζ3/6 − V ζ2/2. (39)

The potential U(ζ) is represented in Fig. 16. Sinusoidal oscillations are present around the
local minimum of the potential provided E + 2V 2/3 ≪ 1. As E increases the oscillations
become more and more nonlinear and their (spatial) period increases.1 When E = 0 the
solutions have infinite period, i.e., they are solitary waves. These form a one parameter
family,

ζ = a sech2
[

a

2
√
3

(

X −
√

gHt− a

3
T

)

]

, (40)

parametrized by the wave amplitude a. Thus all finite amplitude solitary waves travel
faster than

√
gH and larger solitons travel faster than smaller solitons. These solutions

interact in a particle-like manner, i.e., they are in fact true solitons [13, 28]. This is a

1A second constant of integration must be included in U(ζ) in order to satisfy the mass conservation
condition (16).
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Figure 16: Potential U(ζ) in Eq. (39) when V = 1. The gray region indicates periodic
solutions and the horizontal line delimitating this region at the top corresponds to a solitary
wave.

consequence of complete integrability of the Korteweg–de Vries equation as an infinite-
dimensional Hamiltonian system.

Soliton behavior of the solutions of the Korteweg–de Vries equation is shown in Fig. 17.
The left figure shows one soliton drifting to the right without change of shape. The second
figure shows the collision between two solitons with different amplitudes and hence different
speeds. During their collision, they pass through each other and resume their course at the
same speed after a slight delay.

5 Spatial eigenvalues and localization

In the Korteweg–de Vries problem one cannot tell the direction of propagation of the wave
from the solution profile or even that the wave is traveling. This is a consequence of the
invariance of the water wave problem under Galilean transformation, but this is not the
case in driven dissipative systems. In such systems a solitary wave travels whenever it is
not reflection symmetric. Generically, only reflection-symmetric states are stationary.

For solitary waves in driven dissipative systems, we therefore need to distinguish between
stationary solitary waves and traveling ones. Suppose that ut = g(u, ux, uxx, ...), where g is
real-valued and g(0) = 0. Then, g(u, ux, uxx, ...) = 0 is a dynamical system in space, with
phase space (u, ux, uxx, . . . ), and its solutions represent steady states. Of particular interest
is the fixed point u = 0 in this phase space. This point represents a spatially homogeneous
state and this state must have at least one unstable and one stable direction in space in order
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Figure 17: Left: spatio-temporal visualization of a Korteweg–de Vries soliton. Right: same
type of visualization but for two different solitons. The soliton with larger amplitude travels
faster as indicated by Eq. (40). After the collision the solitons continue their course with
the same velocity but with a slight delay due to the collision. Courtesy L. Gelens.

that a solitary wave be present. Thus a necessary condition for the existence of solitary
waves biasymptotic to the homogeneous state u = 0 is that u = 0 is a hyperbolic fixed
point. To determine conditions for this to be so we must examine the spatial eigenvalues of
u = 0. For this purpose we linearize g(0) = 0 around u = 0,

gu(0)u+ gux
(0)ux + guxx

(0)uxx + ... = 0, (41)

and look for solutions with u = u0 expλx. The spatial eigenvalues λ are thus given by

P (λ) = 0, (42)

where P is real-valued so that P (λ) = 0 ⇒ P (λ̄) = 0. If, in addition, the system is spatially
reversible, meaning that it is invariant under spatial reflection, x → −x, u → u,2 then
P (λ) = 0 ⇒ P (−λ) = 0. Thus, if u = 0 has two negative real eigenvalues it also has two
positive real eigenvalues. Likewise, if λ is a complex root of P (λ) = 0 then so are −λ and
±λ̄ and the eigenvalues form a quartet in the complex plane. Thus, unless an eigenvalue has
a zero real part, u = 0 has a two-dimensional unstable manifold W u and a two-dimensional
stable maniold W s. If these manifolds intersect it is possible to find a trajectory that leaves
u = 0 as x increases from −∞ and returns to u = 0 as x → ∞, i.e., a spatially localized
solution. The likelihood of such an intersection is very much less when u = 0 has only one
negative eigenvalue (and hence one positive eigenvalue), with the remaining eigenvalues on
the imaginary axis.

It follows that in spatially reversible systems P is in fact a function of λ2 and the simplest
nontrivial case yields P (λ) ≡ λ4 + bλ2 + a = 0. Figure 18 depicts the location of the four
eigenvalues of the spatial problem in the complex plane as a function of the parameters a
and b. Below the curve C2 ∪ C3, the eigenvalues lie on the axes, meaning that either their

2We remark that the Korteweg–de Vries equations (35) and (37) have a different type of spatial reversibil-
ity: x → −x, ζ → −ζ.
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Figure 18: Roots of the equation λ4 + bλ2 + a = 0 in the (a, b) plane. From [9].

real part or their imaginary part is zero. Above this curve the eigenvalues form a complex
quartet. We focus on the transition occurring at C2. In the region labeled 4 in Fig. 18, all
the eigenvalues lie on the imaginary axis, meaning the eigenmodes are purely oscillatory in
space. As a or b increase the eigenvalues collide on the curve C2 and move into the complex
plane forming a quartet as anticipated above. This transition will provide a key to the
appearance of spatially localized states as discussed in the next lecture.

In the Korteweg–de Vries case (37), the phase space of the equivalent particle-in-
potential problem is two-dimensional and the fixed point (u, ux) = 0 has a one-dimensional
stable manifold W s and a one-dimensional unstable manifold W u. Consider the surface Σ
representing ux(x = 0) = 0 which is intersected by all spatially reversible solutions. Its
dimension is dim(Σ) = 1. The intersection W u ∩Σ is then a point and by reversibility this
point is also onW s∩Σ. Thus the pointW u∩Σ lies on a homoclinic orbit to (u, ux) = 0. This
result also follows from “energy conservation” since both manifolds lie in the energy surface
E = 0. Moreover, if E 6= 0 no homoclinic orbit is present implying that the homoclinic
orbit is present at a single parameter value only.

The situation is quite different in the generalized Korteweg–de Vries equation such as
Eq. (35) because this equation is of fifth order in space. Here the phase space of the
equivalent dynamics problem is four-dimensional and in region 4 of Fig. 18 the fixed point
(u, ux, uxx, uxxx) = 0 has a two-dimensional stable and a two-dimensional unstable man-
ifold. In four dimensions these manifolds will not intersect in general but we can find a
large number of homoclinic orbits to (u, ux, uxx, uxxx) = 0 by examining the vicinity of a
heteroclinic cycle between this point and a symmetric periodic orbit Γ when such an orbit
is present and is hyperbolic. This cycle consists of a heteroclinic connection from 0 to Γ
followed by a heteroclinic connection from Γ back to 0. Note that if one can establish the
presence of the first connection then the return connection follows using spatial reversibil-
ity. The periodic orbit plays a vitally important role in the generation of spatially localized
states. The reason is that Γ has one zero eigenvalue (more correctly a Floquet multiplier
equal to one) that is doubled by spatial reversibility. For Γ to be hyperbolic there must in
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addition be one stable Floquet multiplier and one unstable Floquet multiplier. Under these
conditions Γ has a three-dimensional center-stable manifold W cs and a three-dimensional
center-unstable manifold W cu. Since an intersection between the two-dimensional unstable
manifold W u of 0 and the three-dimensional center-stable manifold W cs of Γ is generic in
four dimensions such an intersection cannot be perturbed away by making small changes to
the parameter values (or indeed the equation). We call such intersections structurally stable

and conclude, invoking spatial reversibility, that under these conditions the dynamical sys-
tem g = 0 possesses a structurally stable heteroclinic cycle. Since such a heteroclinic cycle
is associated with nearby homoclinic orbits (such orbits in fact accumulate on the cycle)
it follows that near such a cycle one will find a plethora of homoclinics that persist over a
finite parameter interval. We call such solitary waves robust.

In the next lecture we shall provide a concrete illustration of this abstract geometric ar-
gument. However, the argument suggests that the key to finding time-independent spatially
localized states in reversible systems is provided by the presence of a heteroclinic connection
0 → Γ, i.e., of a front connecting a spatially homogeneous state to a spatially periodic state.

We mention that if spatial reversibility is absent then a heteroclinic cycle of the above
type becomes of higher codimension and the situation becomes quite different. This is
why the properties of traveling solitary waves differ substantially from those of stationary
structures in spatially reversible systems.
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Lecture 7: The Swift-Hohenberg equation in one spatial

dimension

Edgar Knobloch: notes by Vamsi Krishna Chalamalla and Alban Sauret
with substantial editing by Edgar Knobloch

January 10, 2013

1 Introduction

Let us consider the Swift-Hohenberg equation in one spatial dimension:

ut = r u− (q2c + ∂2x)2 u+ f(u). (1)

Here f(u) represents the nonlinear terms in u and r is the bifurcation parameter. The pa-
rameter qc represents a characteristic wavenumber, i.e., it selects a characteristic lengthscale
given by 2π/qc. In unbounded domains the wavenumber qc can be set equal to qc = 1 but
this is not the case on finite domains.

Despite its simplicity, Eq. (1) has very remarkable properties and we shall use it here as
a “normal form” for systems exhibiting spatially localized structures on the real line. The
equation is of fourth order in x and reversible in space, i.e., it is equivariant under x→ −x,
u → u. Motivated by the experiments summarized in the previous lecture we select a
bistable nonlinearity of the form f(u) = b2u

2 − u3 (hereafter SH23) and f(u) = b3u
3 − u5

(hereafter SH35), with b2 > 0 (resp., b3 > 0); the latter nonlinearity leads to an additional
symmetry, x → x, u → −u, that plays an important role in the properties of the solutions
and is analogous to the so-called Boussinesq symmetry of Rayleigh-Bénard convection with
identical boundary conditions at the top and bottom.

Equation (1) has variational structure, i.e., it possesses a Lyapunov functional F [u(x, t)],
such that

ut = −δF
δu
, (2)

where F is given by

F =

∫ ∞
−∞

dx

[
−1

2
r u2 +

1

2

[
(q2c + ∂2x)u

]2 − ∫ u

0
f(v) dv

]
. (3)

It follows that
dF

dt
= −

(
∂u

∂t

)2

≤ 0, (4)

and hence that dF/dt < 0 provided ∂u/∂t 6= 0 somewhere in the domain. Thus on a finite
domain with null boundary conditions all solutions evolve towards stationary states; on an
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unbounded or periodic domain solutions in the form of moving fronts are possible. In the
following we will think of the functional F [u] as the (free) energy of the system. Stable
(unstable) solutions correspond to local minima (maxima) of this energy. We shall see that
in appropriate parameter regimes the energy landscape described by the free energy (3) can
be exceedingly complex.

2 Linear stability of the uniform state

2.1 The temporal view

The usual way to examine the stability of the state u = 0 is to linearize Eq. (1) about this
state and look for solutions of the form u ∝ exp(σkt+ ikx), where σk is the growth rate of
a perturbation with wavenumber k. The growth rate σk is given by the dispersion relation

σk = r − (q2c − k2)2. (5)

The marginal stability curve is determined by setting σk = 0 and then minimizing the
marginal value r = rk with respect to the wavenumber k. This calculation leads to the
prediction r = 0 for the onset of instability, and of the associated wavenumber, k = qc.

Observe that if one takes r < 0 then the condition for marginal stability, r = (q2c − k2)2,
has no solution for real k but it does have a solution with k complex. In contrast, if r > 0
there is a pair of real solutions, k = k±, with k− < qc < k+. As r decreases to zero from
above the wavenumbers k± approach k = qc from opposite directions and at r = 0 they
collide at k = qc. Thus the minimum of the marginal stability curve is in fact associated
with the collision of two roots of the marginal dispersion relation.

2.2 The spatial view

We can appreciate what is happening if we focus on steady states from the outset. These
satisfy the ordinary differential equation (ODE)

r u−
(
q2c +

d2

dx2

)2

u+ f(u) = 0. (6)

As explained at the end of the preceding lecture we can also study the stability of the trivial
flat state u = 0 in space by linearizing (6) around the u = 0 state and looking for solutions
of the form u ∝ exp(λx). We obtain

(q2c + λ2)2 − r = 0. (7)

For r < 0 the spatial eigenvalues of u = 0 form a complex quartet (see Fig. 1a). At r = 0
these eigenvalues collide pairwise on the imaginary axis (see Fig. 1b) and for r > 0 they split
but remain on the imaginary axis (see Fig. 1c) [3]. It should be evident that the temporal
and spatial points of view are closely related; in particular, the onset of instability in the
temporal point of view is equivalent to the presence of a pair of purely imaginary spatial
eigenvalues of double multiplicity.
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Figure 1: The behavior of the spatial eigenvalues λ of u = 0. (a) r < 0, (b) r = 0, (c) r > 0.

It is useful to look at the transition at r = 0 in a little more detail. We write r = ε2µ,
where µ = O(1) and ε � 1. We then find that for µ < 0 the spatial eigenvalues are
λ = ±ε(2qc)−1

√
−µ± i(qc +O(ε2)) while for µ > 0 the eigenvalues are λ = ±iε(2qc)−1

√
µ±

i(qc + O(ε2)). These considerations suggest that when r < 0 the solutions near u = 0 will
be growing or decaying as u ∼ exp(±ε

√
−µx/2qc), i.e., that the amplitude of such solutions

will vary on a long scale X ≡ εx while their wavenumber will remain close to qc. We will
take advantage of this insight in the next section.

3 Weakly nonlinear analysis

We now consider the steady states of SH35 with f(u) = b3 u
3− b5 u5 (SH35); the coefficient

b5 can be scaled to unity but is retained here to emphasize the contribution of the fifth
order term. The steady states satisfy the ODE

r u−
(
q2c +

d2

dx2

)2

u+ b3 u
3 − b5 u5 = 0. (8)

Because of the symmetry x→ x, u→ −u the weakly nonlinear theory for this case is simpler
than for SH23. Indeed, we can establish the presence of homoclinic orbits near r = 0 by
setting r ≡ ε2 µ < 0 with µ = O(1). As suggested by the linear theory in the preceding
section we use a multiple scale expansion with spatial scales x and X ≡ ε x, and introduce
the Ansatz:

u`(x) = ε u1(x,X) + ε2 u2(x,X) + ..., (9)

where
u1(x,X) = Z(X; ε) eiqc x + c.c. (10)

The following calculation determines Z(X; ε). For reasons that will become apparent the
calculation needs to be done to fifth order in the small parameter ε. For this reason it is
simplest to perform the calculation at r = 0 and then figure out what additional terms
involving µ have to be added. We begin by writing

d

dx
=

∂

∂x
+ ε

∂

∂X
. (11)
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Matching terms order by order in ε gives:

O(ε) : (∂2x + q2c )
2 u1 = 0 (12)

O(ε2) : (∂2x + q2c )
2 u2 = −4∂xX (∂2x + q2c )u1 (13)

O(ε3) : (∂2x + q2c )
2 u3 = −4∂xX (∂2x + q2c )u2 − 4 ∂xxXXu1 − 2∂XX(∂2x + q2c )u1 + b3 u

3
1

(14)

O(ε4) : (∂2x + q2c )
2 u4 = −4∂xX (∂2x + q2c )u3 − 4 ∂xxXXu2 − 2∂XX(∂2x + q2c )u2

−4 ∂xXXXu1 + 3 b3 u
2
1 u2 (15)

O(ε5) : (∂2x + q2c )
2 u5 = −4∂xX (∂2x + q2c )u4 − 4 ∂xxXXu3 − 2∂XX(∂2x + q2c )u3

−4 ∂xXXXu2 − ∂4X u1 + 3 b3 (u1 u
2
2 + u21 u3)− b5 u51. (16)

We solve these equations order by order. The O(ε, ε2) equations are solved by

u1(x,X) = A1(X)ei qc x + c.c., u2(x,X) = A2(X)ei qc x + c.c., (17)

where A1,2(X) are as yet undetermined and c.c. denotes a complex conjugate. The Ansatz

u3(x,X) = A3(X)ei qc x + C3(X)e3 i qc x + c.c. (18)

in the O(ε3) equation leads to the two results

4 q2c A
′′
1 = −3 b3A1 |A1|2, C3 =

b3
64 q4c

A3
1, (19)

with A3 arbitrary. The Ansatz

u4(x,X) = A4(X)ei qc x + C4(X)e3 i qc x + c.c. (20)

in the O(ε4) equation likewise leads to

4 q2c A
′′
2 = 4 iqcA

′′′
1 − 3 b3 (2 |A1|2A2 +A2

1 Ā2); (21)

the expression for C4 in terms of A1,2 is not needed in what follows. Finally, the O(ε5)
equation with the Ansatz

u5(x,X) = A5(X)ei qc x + C5(X)e3 i qc x + E5(X)e5 i qc x + c.c. (22)

yields

4 q2c A
′′
3 = 4 i qcA

′′′
2 +A′′′′1 − 3 b3 (2A1 |A2|2 + Ā1A

2
2 + 2 |A1|2A3 +A2

1 Ā3)

+

(
− 3 b23

64 q4c
+ 10 b5

)
A1 |A1|4 (23)

after elimination of C3. Equations (19), (21) and (23) can now be assembled into a single
equation for Z(X, ε) ≡ A1(X) + εA2(X) + ε2A3(X) + ...,

4 q2c Z
′′ = −3 b3Z |Z|2 + 4 i qc ε Z

′′′ + ε2
[
Z ′′′′ +

(
− 3 b23

64 q2c
+ 10 b5

)
Z |Z|4

]
+O(ε3). (24)
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The higher derivatives can be eliminated iteratively, resulting in the amplitude equation

4 q2c Z
′′ = −3 b3Z |Z|2 −

3 i ε b3
qc

(
2Z ′|Z|2 + Z2 Z̄ ′

)
+ ε2

[
9 b3
2 q2c

(
2Z |Z ′|2 + (Z ′)2 Z̄

)
+

(
−327 b23

64 q4c
+ 10 b5

)
Z |Z|4

]
+O(ε3). (25)

Equation (25) represents the Ginzburg-Landau approximation to the Swift-Hohenberg equa-
tion (8) at r = 0 [5].

4 Normal form theory

The linear problem at r = 0 is degenerate because the purely imaginary eigenvalues λ = ±iqc
have double multiplicity. The presence of this degeneracy is a consequence of the spatial
reversibility of the equation and this fact allows us to make use of normal form theory
developed for a Hopf bifurcation in systems that are reversible in time. For this reason
the bifurcation at r = 0 is often referred to as the reversible Hopf bifurcation with 1 : 1
resonance or sometimes as the Hamiltonian-Hopf bifurcation.1 The normal form for this
bifurcation is derived and analyzed in [9], and is given by

Ȧ = i qcA+B + i AP (µ; y, w), (26)

Ḃ = i qcB + i B P (µ; y, w) +AQ(µ; y, w), (27)

where y ≡ |A|2, w ≡ i
2(AB̄ − ĀB). Here µ is the bifurcation parameter and P and Q are

(infinite) polynomials with real coefficients:

P (µ; y, w) = p1 µ+ p2 y + p3w + p4 y
2 + p5w y + p6w

2 + ..., (28)

Q(µ; y, w) = −q1 µ+ q2 y + q3w + q4 y
2 + q5w y + q6w

2 + ... (29)

Although these equations look quite different from the equation obtained through multiple
scale analysis the two calculations are in fact one and the same. To see this we set µ = 0
and write (A,B) = (ε Ã(X), ε2 B̃(X))ei qc x, obtaining

ε2A′ = ε2B + iεA

[
ε2p2 |A|2 + ε3p3

i

2
(AB̄ − ĀB)

]
+O(ε5), (30)

ε3B′ = i ε2B

[
ε2 p2 |A|2 + ε3 p3

i

2
(AB̄ − ĀB)

]
+εA

[
ε2 q2 |A|2 + ε3 q3

i

2
(AB̄ − ĀB) + ε4q4|A|4

]
+O(ε6). (31)

Equation (30) now yields a power series expansion for B in terms of A,

B = A′ − i ε p2A |A|2 + ε2
p3
2
A (AĀ′ − ĀA′) +O(ε3), (32)

1Hamiltonian systems are reversible in time; eq. (8) is in fact a Hamiltonian system in space [11]
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and this equation can be used to eliminate B from Eq. (31):

A′′ = q2A |A|2 + i ε

[(
3 p2 −

1

2
q3

)
A′|A|2 +

(
p2 +

1

2
q3

)
A2 Ā′

]
+ε2

[
p3 ((A′)2 Ā−AA′ Ā′) + (q4 − q3 p2 + p22)A |A|4

]
+O(ε3). (33)

Finally, writing Z = A+ ε2 ρA |A|2 +O(ε4) allows one to compare the result with Eq. (25)
and thereby deduce the normal coefficients:

ρ =
9 b3
16 q4c

, p2 = − 9 b3
16 q3c

, q2 = −3 b3
4 q2c

, p3 = 0, q3 = −3 b3
8 q3c

, q4 = −177 b23
128 q6c

+
5 b5
2 q2c

.(34)

The remaining coefficients p1 and q1 are determined as part of the unfolding. This term
is used to refer to the reintroduction of the bifurcation parameter into the description. As
indicated earlier, we write r = ε2 µ < 0, where µ = O(1), and compute the resulting linear
terms. The unfolded version of (33) through O(ε) is

A′′ = −q1 µA+ q2A |A|2 + i ε

[
2 p1 µA

′ +

(
3 p2 −

1

2
q3

)
A′ |A|2

+

(
p2 +

1

2
q3

)
A2 Ā′

]
+O(ε2) (35)

and since Z = A+O(|A|2A) this equation corresponds to the amplitude equation [5]

4 q2c Z
′′ = −µZ − 3 b3 Z |Z|2 +

i ε

qc

[
−µZ ′ − 3 b3 (2Z ′ |Z|2 + Z2Z̄ ′)

]
+O(ε2). (36)

Matching terms through linear order gives

p1 = − 1

8 q3c
, q1 =

1

4 q2c
. (37)

5 Homoclinics and heteroclinics

The normal form (26)–(27) is completely integrable [9], with integrals

K ≡ 1

2
(AB̄ − ĀB), H ≡ |B|2 −

∫ |A|2
0

Q(µ, s,K) ds. (38)

Note that orbits homoclinic to (0, 0) lie in the surface H = K = 0. In this case the equation
for a ≡ |A|2 > 0 takes the particle-in-potential form

1

2

(
da

dX

)2

+ V (a) = 0, (39)

where

V (a) ≡ 2 q1 µa
2 − q2 a3 −

2

3
q4 a

4. (40)
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The shape of the (truncated) potential V (a) depends on the coefficients q1, q2 and q4
determined in the previous section. The essential role played by the coefficient q4 is now
evident.

The behavior of solutions of (39)–(40) when q4 < 0 is shown in Fig. 2. The insets
show the effective potential V (a) associated with each region in the (µ, q2) parameter plane.
Shading indicates the existence of homoclinic orbits to a = 0; elsewhere, a = 0 is a local
minimum of the potential and no homoclinic orbits are possible. We see that homoclinic
orbits exist in the whole half-space µ < 0, i.e., in the subcritical region. The transition from
region (d) to region (c) involves a local bifurcation at µ = 0 which creates a small amplitude
homoclinic orbit. The transition from region (a) to region (b) involves a global bifurcation
at µ = 0 which creates a large amplitude homoclinic orbit at µ = 0; the turning point of
the orbit occurs at a0 = −3 q2/(2 q4) > 0.

Figure 2: Summary of the behavior of Eqs. (26)–(27) when q4 < 0. Shading indicates the
existence of homoclinic orbits to the fixed point at the origin. Insets show V (a) characteristic
of the four regions (a)–(d). At µ = 0, there is a local (global) bifurcation in q2 < 0 (q2 > 0).
From [9].

The behavior of solutions of Eqs. (39)–(40) when q4 > 0 is summarized in Fig. 3. In
this case, homoclinic orbits to a = 0 only occur in region (d). In regions (a) and (e), a local
minimum of the potential is located at a = 0 so a particle that starts at this point remains
at rest. In regions (b) and (c), the trajectory of a particle that starts at a = 0 is unbounded.
The boundary between regions (c) and (d), marked in the figure with a dot-dashed line, is
given by

µ∗ = − 3 q22
16 q1 q4

(41)

and corresponds to the presence of a heteroclinic cycle between the origin and the point
a = −3q2/q4 > 0 corresponding to a periodic solution Z(X).

Note that the leading order amplitude equation

4 q2c Z
′′ = −µZ + 4 q2c q2 Z |Z|2 +O(ε) (42)
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Figure 3: Summary of the behavior of Eqs. (26)–(27) when q4 > 0. Shading indicates the
existence of homoclinic orbits to the fixed point at the origin. Insets show V (a) characteristic
of the five regions (a)-(e). A heteroclinic cycle is present along the dot-dashed line µ = µ∗.
From [9].

has two types of solutions when q2 < 0, µ < 0. One is constant:

Z(X) =

(
µ

4 q2c q2

)1/2

ei φ +O(ε) (43)

and corresponds to

u(x) =

(
r

4 q2c q2

)1/2

cos(qc x+ φ) +O(r), (44)

while the other is spatially localized:

Z(X) =

(
µ

2 q2c q2

)1/2

sech

(
X
√
−µ

2 qc

)
ei φ +O(ε) (45)

and corresponds to

u(x) = 2

(
r

2 q2c q2

)1/2

sech

(
x
√
−r

2 qc

)
cos(qc x+ φ) +O(r). (46)

For the periodic states the spatial phase φ is arbitrary; this is not so for the localized states
for which the spatial phase φ is locked to 0, π/2, π, 3π/2 when terms beyond all orders are
kept. Thus in SH35 four branches of localized states bifurcate from u = 0 at r = 0. Of
these the branches with φ = 0, π correspond to solutions that are reflection-symmetric while
those with φ = π/2, 3π/2 are odd under reflection. The φ = 0, π states are related to one
another by the symmetry u → −u as are the φ = π/2, 3π/2 states. Thus in a bifurcation
diagram that represents the solution amplitude as a function of r one finds two branches,
one of even states and the other of odd states. The above calculation shows, in addition,
that such localized states are only present when the periodic state bifurcates subcritically
and hence are present in the region of coexistence between the periodic state and the trivial
state u = 0, cf. lecture 6. Analogous results, not discussed here, show that in the case of
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SH23 two branches of localized states bifurcate from u = 0 at r = 0. Both correspond to
even states and are characterized by φ = 0, π. In this case the φ = 0, π states are no longer
related by symmetry and the bifurcation diagram therefore also consists of two distinct
branches.

The selection of the spatial phase φ is a highly subtle point [7, 8, 10]; however, one can
get a good appreciation of the issues involved by substituting the approximate solution (46)
into Eq. (1). Note in particular that states of the form (46) have no particular symmetry
unless φ takes one of the special values just mentioned. Such asymmetric states are in
fact present but are only created in secondary bifurcations from the primary branches of
localized states that bifurcate from u = 0. Figure 4 shows schematically the number and
connectivity of the resulting localized states in the SH23 and SH35 cases: in the SH35 case
four asymmetric branches are created at finite amplitude and connect each of the two even
branches with each of the two odd branches (see Sect. 7 below).

Figure 4: Schematic diagram showing the number and connectivity of the branches of
localized states for (a) SH23 and (b) SH35. In (a) each rung consists of two distinct branches
connecting the two constant phase branches; in (b) each rung consists of four distinct
branches connecting each constant phase branch with its two neighbors. From [3].

6 Example: Natural doubly diffusive convection

Natural convection is a term given to convection driven by horizontal temperature convec-
tion. When the fluid is a mixture of two components (eg., water and salt) and the gradients
of both temperature and (salt) concentration are horizontal we speak of natural doubly
diffusive convection.

Motivated by the results in Sect 2.5.1 of lecture 6, we examine an infinite vertical slot
filled with such a mixture. We adopt no-slip boundary conditions on the vertical plates and
suppose that these are maintained at fixed but different temperatures and concentrations.
These can be arranged such that the buoyancy force due to the temperature field is ex-
actly balanced by the buoyancy force arising from the concentration field. In this case the
system possesses a conduction state characterized by linear variation of temperature and
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concentration across the system and no flow. This state will be stable for small tempera-
ture differences but is expected to lose stability as this temperature difference, traditionally
measured by the dimensionless Grashof number Gr ≡ gα∆T`3/ν2, increases. Here α is the
coefficient of thermal expansion, ∆T is the imposed temperature difference, and ` is the
separation between the two plates, assumed to be placed at x = 0, `.

Linear analysis about the conduction state with respect to two-dimensional spatially
growing perturbations looks for solutions of the time-independent linearized equations of
the form (ũ, w̃, T̃ , C̃)(x) exp(λ z), where λ ≡ qr + i qi is the spatial growth rate. This
formulation leads to the dimensionless equations [2]:

λ ũ = −∂xp̃+∇2ũ (47)

λ w̃ = −∂z p̃+∇2w̃ +Gr (T̃ − C̃) (48)

0 = ∂xũ+ ∂zw̃ (49)

λ T̃ = ũ+
1

Pr
∇2T̃ (50)

λ C̃ = ũ+
1

Sc
∇2C̃ (51)

with the boundary conditions ũ = w̃ = T̃ = C̃ = 0 at x = 0, 1. Here Pr ≡ ν/κ is the
Prandtl number and Sc ≡ ν/D is the Schmidt number. In contrast to the Swift-Hohenberg
equation, this problem is an eigenvalue problem for λ that has to be solved for each value of
Gr and fixed values of the remaining parameters. Such a problem has in general an infinite
number of eigenvalues, but we are interested here only in the leading eigenvalues, i.e., the
eigenvalues whose real parts are closest to zero.

Figure 5: The spatial growth rate qr as a function of the distance from the critical Grashof
number Grc in the subcritical regime Gr < Grc. From [2].

Solution of this problem indicates that the four leading eigenvalues form a pair of purely
imaginary eigenvalues qr = 0, qi ≡ qc = ±2.5318 of double multiplicity when Grc =
650.9034. Thus at this value of Gr the solution takes the form of a spatially periodic
wavetrain. Moreover, one also finds that (Fig. 5)
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• Gr < Grc: λ = ±i qc ±O(
√
Grc −Gr)

• Gr > Grc: λ = ±i qc ± i O(
√
Gr −Grc),

implying that the leading spatial eigenvalues behave exactly as in the Swift-Hohenberg
equation. This is a consequence of the reversibility of the equations with respect to the
symmetry ∆: (x, z) → (1 − x,−z), (ũ, w̃, T̃ , C̃) → −(ũ, w̃, T̃ , C̃) which plays exactly the
same role as the symmetry x → −x, u → u in SH23. Thus in this case we expect two
branches of localized states of even parity (with respect to ∆), corresponding to φ = 0, π.
Theory predicts that these branches will only be present if the coefficient q2 in the normal
form (26)–(29) is negative. This will be so if the branch of periodic states with wavenumber
qc bifurcates subcritically. The theory also predicts that if this is the case the branches of
localized states also bifurcate subcritically. Thus the prediction of localized states in the
present system reduces to the computation of the direction of branching of periodic states.
This is a standard calculation that can be done in a periodic domain of period 2π/qc, i.e.,
in a small domain, although it may have to be done numerically. For Pr = 1, Sc = 11 this
bifurcation is indeed subcritical [2]; moreover, two branches of even parity localized states
are present and these also bifurcate subcritically, exactly as predicted by SH23 [4].

Figure 6: (a) Bifurcation diagram showing the snakes-and-ladders structure of localized
states. Away from the origin the snaking branches L0 and Lπ are contained within a snaking
region (shaded) between E− and E+, where r(E−) ≈ −0.3390 and r(E+) ≈ −0.2593. Solid
(dotted) lines indicate stable (unstable) states. (b) Sample localized profiles u(x): (i)–(iv) lie
on L0, near onset and at the 1st, 3rd, and 5th saddle-nodes from the bottom, respectively;
(v)–(viii) lie on Lπ, near onset and at the 1st, 3rd, and 5th saddle-nodes, respectively.
Parameters: b2 = 1.8. From [4].
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7 Snakes-and-ladders structure of the pinning region: SH23

In this section we describe what happens when the small amplitude results are extended
into the fully nonlinear regime using numerical continuation. We describe the results for
SH23,

ut = r u− (q2c + ∂2x)2 u+ b2 u
2 − u3. (52)

Figure 6 shows the L2 norm, ||u|| ≡
∫∞
−∞ u

2(x) dx, of the localized states L0,π as a function
of the bifurcation parameter r. The L2 norm (per unit length) of the periodic state, labeled
P , is shown for comparison. The figure shows that the two branches of even parity localized
states that bifurcate subcritically from u = 0 at r = 0 enter a shaded region, hereafter
the snaking or pinning region, in which they undergo repeated saddle-node bifurcations as
they snake across the region. These saddle-nodes converge exponentially rapidly to a pair
of r-values, hereafter r(E−) and r(E+), representing the boundaries of the shaded region.
The convergence is monotonic and from the right in both cases. The lower panels show a
series of profiles of u(x) at successive saddle-nodes and reveal that the states labeled L0 are
characterized by a peak in the center while those labeled Lπ have a dip in the center. The
panels show that each localized state nucleates a pair of peaks or cells, one on either side,
in the vicinity of r = r(E−). As one proceeds up the branch to the next fold on the right,
at r = r(E+), the peaks or cells grow to the height of the coexisting periodic state P and
the branch turns around to repeat the process. Thus as one proceeds up the intertwined
L0,π branches the localized states repeatedly add cells on either side while preserving their
parity, each back-and-forth oscillation increasing the width of the state by two wavelengths
2π/qc. On the real line this process continues indefinitely as both branches approach the
periodic state P .

Figure 7(a) is a close-up view of Fig. 6, focusing on the rung states which connect the
L0,π snaking branches. These states are asymmetric with respect to the reflection x→ −x
(Fig. 7(b)). In generic translation-invariant systems such states would drift. This is not
so here because of the gradient structure of Eq. (52) and the rung states correspond to
stationary states. The rungs are created in pitchfork bifurcations which break the u(x) →
u(−x) symmetry of the L0,π states. Consequently each rung in the figure corresponds to
two states related by reflection symmetry and hence of identical L2 norm.

The location of these pitchfork bifurcations is determined by linearizing Eq. (52) about
a localized solution u = u0(x) and solving the eigenvalue problem

L[u0(x)] Ũ ≡ {r − (q2c + d2x)2 + 2b2 u0 − 3u20}Ũ = σŨ (53)

for the eigenvalues σ and for the corresponding eigenfunctions Ũ . This problem has to
be solved numerically; if the domain used is much larger than the length of the localized
structure the resulting eigenvalues will be independent of the boundary conditions imposed
at the boundary. The eigenvalues comprise the spectrum of the linear operator L[u0(x)] and
this spectrum consists of two components depending on the symmetry of the eigenfunctions.
Even eigenfunctions share the symmetry of u0(x) and correspond to amplitude modes. These
modes are neutrally stable (σ = 0) at saddle-node bifurcations. Odd eigenfunctions will be
called phase modes. There is always one neutrally stable phase mode, the Goldstone mode.
To see this we consider two stationary solutions of Eq. (52), u0(x+d) and u0(x), i.e., a pair
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Figure 7: (a) Close-up view of Fig. 6(a) showing two rungs connecting the snaking branches
L0 and Lπ. Solid (dotted) lines indicate stable (unstable) states. (b) The profiles (i) and
(viii) lie on L0 while (iv) and (v) lie on Lπ. The remaining profiles are asymmetric and lie
on the rungs. From [4].

of solutions related by translation. We subtract the equations satisfied by these solutions,
divide by d and take the limit d→ 0. The result is

L[u0(x)]u′0 = 0, (54)

implying that u′0 is a neutrally stable eigenfunction of L[u0(x)] for all parameter values.
Evidently the presence of this mode is a consequence of the translation invariance of the
system. In addition, there is a discrete set of neutrally stable phase modes associated with
symmetry-breaking bifurcations of u0(x), i.e., the creation of the rung states. Figure 8(b)
shows each of these eigenfunctions, computed as described above, for a relatively long local-
ized state high up the snakes-and-ladders structure. We make two important observations:
the amplitude and phase modes are localized in the vicinity of the fronts bounding u0(x); by
adding and subtracting these modes we construct eigenfunctions localized at one or other
front. This observation implies that both the saddle-nodes and the pitchfork bifurcations
are associated with instabilities of individual fronts. This picture becomes better and better
as the length of u0(x) becomes longer, i.e., for long localized structures the fronts at either
end can be treated independently, and in this regime the localized structure u0(x) can be
considered to be a bound state of a pair of fronts.

Figure 9 shows the eigenvalues σ along the L0,π snaking branches starting from the
primary bifurcation at r = 0 and moving upward along each branch. The phase and
amplitude modes are labeled. We see that close to r = 0 both states are amplitude-
unstable, as expected of a subcritical bifurcation. In contrast, the phase eigenvalues are
almost zero, with L0 phase-stable and Lπ phase-unstable. Each zero of the amplitude
eigenvalue generates a saddle-node bifurcation and since σ oscillates about zero each solution
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Figure 8: (a) A localized state u0(x) at E− high up the L0 snaking branch. (b) From
top to bottom, the corresponding amplitude, phase, and translational modes. Parameters:
b2 = 1.8, r = −0.3390. From [4].

gains and loses amplitude stability at successive saddle-nodes. The phase eigenvalue also
oscillates about zero and tracks ever more closely the amplitude eigenvalue. Thus as one
proceeds up the snaking structure the bifurcations to the rung states approach ever closer
to the saddle-nodes (in fact exponentially rapidly), although they always remain on the
unstable part of the branch. Thus near a saddle-node of a long localized structures one
finds three near-marginal modes, the amplitude and phase modes, as well as the Goldstone
mode. This fact will be useful in interpreting the dynamical behavior one finds just outside
of the snaking region as discussed in lecture 8.

The above results account for the stability changes indicated in Figs. 6 and 7; no other
eigenvalues are ever involved. A similar calculation shows that the asymmetric rung states
are always unstable. Altogether, the results show that in the snaking region one finds
an infinite number of coexisting stable symmetric localized structures of different lengths.
These come in two types, with maxima or minima in their symmetry plane. Each state
can be realized in the time-dependent problem by selecting an appropriate finite amplitude
(localized) initial condition. The results for SH35 are essentially identical.

7.1 Multipulse states

In fact things are much more complicated. This is because the snaking region also contains
a variety of multipulse states [6]. The term multipulse refers to the fact that the phase space
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Figure 9: Spectrum of growth rates σ along the (a) L0 and (b) Lπ branches of localized
states in SH23 as a function of the arc length s along each branch, measured from the
bifurcation at the origin. The lower panels show the location in r of the corresponding
branches. Parameters: b2 = 1.8. From [4].

trajectory comes close to the origin after the first localized state (pulse) but only forms a
homoclinic orbit to the origin after a second (two-pulse) or more (multipulse) excursions.
Multipulse states should be thought of as (weakly) bound states of two or more localized
structures of the type we have been discussing.

Multipulse states can be equispaced forming a periodic array of identical localized struc-
tures. Such states are not very different from the single pulse states and it will come as no
surprise that they also snake (Fig. 10). But one can also find two-pulse states consisting
of identical pulses that are separated by a distance that is less than the average interpulse
spacing. The locations of such pulses are ‘quantized’ in terms of half wavelengths π/qc.
Specifically, two identical L0 pulses can have a local maximum or a local minimum at the
half way location between them [6]. On a periodic domain of a large but finite period there
is thus a finite number of such these states. These do not snake but instead lie on nested
isolas. The nested isolas in turn form a vertical stack of like states, each stack consisting
of bound states of localized states of ever increasing length (Fig. 11). The break-up of
the two-pulse states into isolas as soon as they are not evenly spaced is a consequence of
asymmetry in the interaction between the pulses.

In addition, one can also find two-pulse states consisting of different localized states [6].
Thus the snaking region consists of an unimaginable variety of different localized structures
a large fraction of which can be stable.

7.2 Finite size effects

Figure 10(a) reveals two additional insights. The figure is computed on a periodic domain of
length Γ with periodic boundary conditions. We see that for Γ <∞ the multiple bifurcation
at r = 0 breaks up into a primary bifurcation to a periodic wavetrain, together with a
secondary bifurcation from this state to the (two) branches of localized states that takes
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Figure 10: Bifurcation diagrams showing (a) a L0 single-pulse snaking branch, and (b) a
two-pulse snaking branch consisting of two evenly spaced copies of L0, both on the same
periodic domain of period Γ. (c,d) Sample profiles at the points indicated in the bifurcation
diagrams; the states in (d) are separated by Γ/2. Similar branches consisting of Lπ pulses
are omitted. Parameters: b2 = 1.8, Γ = 118. From [6].

place at small but nonzero amplitude. This is almost certainly the reason why spatially
localized states have been discovered only recently: almost all textbooks on hydrodynamic
instability immediately impose periodic boundary conditions when studying the instability
of a homogeneous base state. This inocuous assumption pushes the bifurcation to localized
states to finite amplitude where its discovery requires not only knowledge of the finite
amplitude periodic state but also a linear stability analysis of a nontrivial periodic state
requiring Floquet theory. As we have seen the problem becomes so much easier if posed on
the whole real line!

Figure 10(a) also reveals that on a finite periodic domain snaking does not continue for
ever. Once the localized structure has grown to fill the domain no additional growth is
possible and the branch of localized states exits the snaking region and terminates near the
fold on the branch of periodic states. The details of this transition are in general complex
since they depend on exactly how much space is left, i.e., on Γ mod λc, where λc is the
critical wavelength [1]. Observe, however, that near the fold the localized states resemble
holes in an otherwise periodic wavetrain. We shall come across hole states in subsequent
lectures. For now the lesson learnt is that holes are related to secondary bifurcations near
the fold of the periodic state.

Note, finally, that Fig. 10(b) shows that on a smaller domain, here Γ/2, a single pulse
state bifurcates from the periodic states at a larger amplitude, and that the resulting branch
also terminates further from the fold.
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Figure 11: (a) Bifurcation diagram showing isolas of symmetric but unevenly spaced two-
pulse states. In the main diagram, only one isola at each level of the isola stack is plotted
to avoid clutter. (b) Profiles at the points labeled in the bifurcation diagram; the states are
separated by distances less than Γ/2. Parameters: b2 = 1.8, Γ = 118. From [6].
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Lecture 8: Pinning and depinning in one and two dimensions

Edgar Knobloch: notes by Rosalind Oglethorpe and Felicity Graham
with substantial editing by Edgar Knobloch

January 10, 2013

1 Pinning region (SH23)

Recall that the Swift-Hohenberg (SH) equation has multiple steady states in a ‘snakes-and-
ladders’ structure, which is contained in a region of r called the snaking or pinning region.
The width of this region can be understood on the basis of a geometrical picture of phase
space behavior and a physical (“intuitive”) picture in terms of front pinning. The pictures
are complementary as well as useful.

1.1 Mathematical explanation of the pinning region

The time-independent SH equation is of fourth order in space,

uxxxx + 2q2
cuxx + (q4

c − r)u = f(u) (1)

so the phase space is four-dimensional. This equation conserves the spatial Hamiltonian

H = −1

2

(
r − q4

c

)
u2 + q2

cu
2
x −

1

2
u2
xx + uxuxxx −

∫ u

0
f(v)dv, (2)

i.e., dH/dx = 0. Since the homogeneous state uxxx = uxx = ux = u = 0 corresponds to
H = 0 any homoclinc orbit connecting this state, hereafter O, to itself must lie in the level
set H = 0, i.e., in a three-dimensional surface in four dimensions. As explained in lecture 6
to find such homoclinics it is advantageous to look for a heteroclinic cycle between O and a
periodic orbit γ that also lies in H = 0. Near this cycle we expect to find orbits homoclinic
to O that start from O and wind a finite number of times around γ before returning to O.

Because of translation invariance periodic orbits of Eq. (1) are not isolated – for each H
there is a continuous family of such orbits. In the following we pick H = 0 and select one
representative from this family, for example by assigning the origin x = 0 to the maximum
value of u along the orbit. We call the resulting orbit γ. A point on this orbit with phase φ
relative to x = 0, γ(φ), will be a fixed point of a“time-T”map, where T is the (spatial) period
of the orbit, and we may pick φ to correspond to a point of symmetry on γ, for example
φ = 0 [15]. Note that T depends in general on H. By construction the “time-T” map is two-
dimensional and has two fixed points, O and γ(φ). The result of repeated application of the
“time-T” map can therefore be represented in a plane, as shown in fig. 1. The figure shows
the two fixed points as solid black points; these lie on a green line representing solutions with
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Figure 1: A cartoon of the stable and unstable manifolds for the fixed points O and γ(φ)
in the planar representation, at different values of µ in the pinning region. From [15, 2].

the symmetry u(−x) = u(x). The figure shows the intersections of the stable and unstable
manifolds of O, labeled W s,u(O), with the surface H = 0. Both are one-dimensional and are
shown in blue, and consist of points that approach O after an infinite number of backward
and forward applications of the map. The intersection of corresponding (three-dimensional)
center-stable and center-unstable manifolds of γ with H = 0 are shown in brown and are
also one-dimensional. Since we are dealing with a discrete map these manifolds consist
of discrete sequences of points obtained by applying the map to different points in the
stable and unstable manifolds of these fixed points. Because of the discrete nature of the
resulting two-dimensional dynamics we expect the unstable manifold W u(O) to intersect
transversally with the center-stable manifold W s(γ) (top right panel in the figure). The
point of intersection is simultaneously on both manifolds implying that forward iterations
take it to γ(φ) while backward iterations take it to O, i.e., such a point is a heteroclinic
point. Each image of this point, forward or backward, will also be a heteroclinic point since
it must again lie on an intersection of these manifolds. Since the forward iterates accumulate
on γ the unstable manifold W u(O) must execute increasingly wild gyrations near γ(φ) as
indicated in the figure. This is a consequence of the Hamiltonian nature of Eq. (1) which
implies that the “time-T” map is area-preserving. Thus the areas of the (primary) lobes are
all the same and since the foot of the lobes shrinks towards γ(φ) their length must grow
in proportion. Spatial reversibility implies that W s(O) undergoes identical behavior and
hence that W u(O) and W s(O) must intersect. The primary intersections must lie on the
green curve and hence correspond to solutions with u(−x) = u(x) that lie simultaneously
in W u(O) and W s(O) (large red dot). Such solutions represent symmetric homoclinic
solutions of Eq. (1). Observe that since the primary intersections accumulate on γ(φ) there
will in fact be an infinite number of such homoclinic solutions corresponding to symmetric
localized structures of ever larger length. The figure also indicates that associated with each
primary intersection there is a pair of secondary intersections (small red dots, bottom right
panel in the figure). These do not lie in the green line and hence correspond to asymmetric
homoclinic points, i.e., the rung states of lecture 7.

Figure 1 shows that the heteroclinic tangle described above is created, as the bifurcation
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Figure 2: A cartoon of the motion of a front separating phase 1 (liquid) from phase 2 (gas)
either side of the Maxwell point F (1) = F (2) (bottom panels). The quantity F represents
the free energy. The front is stationary only at the Maxwell point (middle panel). The top
panel shows the case when phase 2 is a crystalline solid.

parameter µ (equivalently r) increases, at the point of first tangency between W u(O) and
W s(γ) (top left panel) and destroyed at the point of last tangency (bottom left panel).
Thus the snaking region is bounded on either side by the location of tangencies between
these manifolds and no (long) localized states are present outside of the parameter interval
between these two tangencies [2, 15].

An essentially identical picture applies to reversible but non-Hamiltonian systems since
the fundamental properties of the heteroclinic tangle depend only on the presence of a
transversal intersection between W u(O) and W s(γ) together with spatial reversibility. For
this reason the geometrical picture sketched here has a far greater applicability than one
may imagine at first sight. This is a consequence of the fact that a transversal intersection
between manifolds cannot be destroyed by small perturbations in the parameter µ, i.e., it
is a consequence of structural stability.

1.2 Physical explanation of the pinning region

Consider now the energetics of the system. The Lyapunov function F (defined in lecture 7)
can be thought of as the free energy of the system. This allows us to compare the energy
of the zero state and of the periodic state. Equilibria correspond to critical points of F ,
and without loss of generality we can define F = 0 at u = 0. We can calculate F for
the periodic orbit with onset wavenumber qc, which is a well-defined integral, and find the
point where F = 0 for the periodic orbit. This construction define the “Maxwell point”
r = rM by analogy with standard phase transitions, for example, a transition between a
gas and a liquid (fig. 2). At a critical temperature Tc (equivalently rc) the liquid (phase
1) and gas (phase 2) coexist with equal energy and the insertion of a front separating the
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Figure 3: (a) The two types of fronts ξ1 (unstable) and ξ2 (stable) in SH23. (b) A section
of the bifurcation diagram. (c) Three different localized states constructed from ξ1 and ξ2.
From [3].

two states does not cost additional energy (middle panel in fig. 2). If the temperature is
lowered (bottom left panel in fig. 2), T < Tc, the energy of the liquid phase is less than the
energy of the gas phase, and we expect the gas to condense. In this case the front between
the two phases moves into the gas phase, effectively replacing the gas with liquid. If the
temperature is raised (bottom right panel in fig. 2), T > Tc and the front will propagate
to the left turning the liquid into gas. The front is therefore stationary only when T = Tc
(that is, the critical temperature can be thought of as the ‘Maxwell temperature’). Now
suppose that one of the phases is structured, for example a crystalline solid (top panel in
fig. 2). Here, small temperature perturbations will not result in front motion as the front is
held back by a “pinning potential” due to the structured state behind it [13]. This pinning
allows stationary fronts over a range of T about Tc, and the temperature must be changed
by a finite amount to overcome the effective pinning potential and allow the fronts to move.
There are many coexisting steady states within the interval of temperatures around Tc,
where the fronts are pinned since in this region it costs little to insert fronts between the
two competing phases.

At each value of r in the pinning region one can identify two types of front, ξ1 and
ξ2, as shown in fig. 3(a). These fronts can be placed back to back to contruct localized
structures. The three different localized states that can be constructed from these fronts at
each parameter value are shown in fig. 3(c), with the location of these states indicated in
the bifurcation diagram in fig. 3(b) using solid dots. There are symmetric states with either
(i) ξ1 fronts at either end or (iii) ξ2 fronts at either end; asymmetric states (ii) consist of
one ξ1 and one ξ2 front. We can assign stability to these fronts and find that front (i) is
unstable while front (ii) is stable. These stability assignments are indicated in fig. 3(b) by
solid (stable) and dotted (unstable) lines. The pinning region can thus be thought of as an
unfolding of the Maxwell point due to the heterogeneity of one of the states.

1.3 Wavelength selection (SH23)

Consider the wavenumber inside the localized structure. Computations show that the
wavenumber (equivalently the wavelength) of the pattern depends on the value of r within
the pinning region. This wavenumber is not given by minimizing the free energy F because
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Figure 4: The wavenumber k found by minimizing F (dotted black line), minimizing F
with the H = 0 constraint (solid red line) and results from numerical simulations (blue
diamonds). The pinning region is shaded in grey. From [3].

of the H = 0 constraint required of all homoclinic orbits. Figure 4 shows that to the left
of the Maxwell point r = rM , k is higher than the Maxwell value, so the wavelength is
less than the Maxwell wavelength. For r < rM , the periodic state has a higher energy F
than the zero state, so in the absence of pinning the fronts would move inwards eliminating
the periodic state. However, in the pinning region they are prevented from moving by the
pinning effect. Instead the energy difference between the two states manifests itself in a
compression of the resulting steady structure. Conversely, for r > rM the periodic state
has lower energy than the zero state, so in the absence of pinning the fronts would move
outwards and the structure would grow. Since the fronts are prevented from moving by the
pinning effect the structure instead stretches. The variation of k(r) can be calculated by
minimising F subject to the constraint H = 0, and the result agrees well with measurements
from numerical calculations (fig. 4).

We remark that the presence of the fronts at either end leads to a unique wavenumber
between them, however far apart the fronts are. This is in contrast to spatially periodic states
for which there is an interval of stable wavenumbers within the so-called Eckhaus stability
limits. Evidently wavenumber selection is very sensitive to what happens “at infinity” and
in particular the boundary conditions applied there. We may say that the fronts collapse
the Busse balloon [8].

1.4 The pinning region in parameter space

The extent of the pinning region for SH23 in the (r, b2) plane is shown in fig. 5. The pinning
region is shaded and bounded by two blue lines corresponding to first and last tangencies
as explained above. The region is exponentially thin near its tip at (0,

√
27/38q2

c ) [6]. Near
the tip, i.e., when r = O(ε4) and b2 = O(ε2), ε � 1, the width of the snaking region is
exponentially thin, of order ε−4 exp(−π/ε2), a result that requires the use of exponential
asymptotics [9].

Away from the exponentially thin region near r = 0, the snaking region broadens but

110



Figure 5: The pinning region (shaded in blue) for SH23 in the (r, b2) parameter plane. The
pinning region for SH35 is similar. From [3].

always straddles the Maxwell line, which is the purple dot-dash line in fig. 5. The red line
shows the fold (saddle-node bifurcation) of the periodic orbit γ with wavenumber qc. The
snaking region tracks the fold, but does not reach it. A similar plot can be drawn for the
SH35 equation [5].

Additional Maxwell points involving nontrivial homogeneous states are also present and
considerably complicate the full picture [6]. These are responsible, for example, for the
boundary E∗+ in fig. 5. In fact SH23 is still by no means completely understood.

2 Depinning

If r is moved sufficiently far from rM the energy difference between the zero state and γ
exceeds the pinning potential and the fronts depin. The resulting motion can be predicted
by projecting SH23 onto the near-marginal eigenfunctions present at either edge of the
pinning region.

At the boundary of this region the marginally stable amplitude eigenfunctions are lo-
calized near either front of the structure (see lecture 7). Near E+, where the state of the
system evolves towards the lower energy periodic state, this fact indicates incipient nu-
cleation of new cells just outside the localized state. Direct integration of Eq. (1) reveals
time-dependent growth of the structure via sequential nucleation of new cells (fig. 6(a)). The
nucleation time depends on the distance from the edge of the pinning region, as indicated
in fig. 6(b). The time diverges at the edge of the pinning region (where it takes an infinite
amount of time to nucleate a new cell) and decreases as the distance from the pinning region
increases. The speed of the front, which is a ‘pushed front’ because it propagates into a
stable state [14], can be calculated from the time it takes to nucleate cells at the front. To
the left of the pinning region (where the solution moves towards the lower energy zero state)
the fronts move inwards via sequential annihilation of cells with the same dependence on
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Figure 6: (a) Space-time plot of the evolution of a localized structure in time, and (b) the
nucleation time T as a function of r. From [3].

the distance from E− as in the E+ case.

2.1 Theory

To calculate the speed of the front we need the time taken to nucleate (or annihilate) a cell
[6]. For this purpose we suppose that

r = r(E−) + δ, (3)

where r(E−) denotes the left edge of the pinning region and |δ| � 1. Thus δ determines
the distance away from the edge of the pinning region: if δ > 0, then r is inside the pinning
region and if δ < 0 then r is outside the pinning region. We anticipate that nucleation
takes place on an O(|δ|−1/2) time scale and therefore introduce the slow time τ = |δ|−1/2t.
Finally we write

u(x, t) = u0(x) + |δ|1/2u1(x, τ) + |δ|u2(x, τ) +O(|δ|3/2), (4)

where u0(x) is one of the stationary localized states at the edge of the pinning region,
assumed to be of even parity.

Substituting this Ansatz into SH23, we find at O(|δ|1/2)

L[dx, u0]u1(x, τ) = 0, (5)

where L is the linearised SH operator evaluated at r = r(E−). The solutions of this problem1

were found in lecture 7:

u1(x, t) = a(t)Ũamp + b(t)Ũph + c(t)ŨG. (6)

Of these marginal modes the amplitude mode Ũamp is even while the remaining two are
odd. We may therefore suppose that the ‘centre of mass’ remains fixed and take b = c = 0.

1In the following we treat the exponentially small phase eigenvalue as zero.
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Thus it suffices to determine the evolution of a(t), the amplitude of the mode responsible
for depinning.

For this purpose we proceed to O(|δ|) obtaining

L[dx, u0]u2(x, τ) = ∂τu1 − [sgn(δ)u0 + b2u
2
1 − 3u0u

2
1]. (7)

For the ordering assumed in the Ansatz (4) to remain valid on the timescale τ = O(1) the
solution u2(x, τ) must remain O(1) on this timescale. This will only be so if an appropriate
solvability condition is imposed on the right hand side of Eq. (7). To find this solvability
condition we apply the so-called Fredholm alternative [] and multiply Eq. (7) by Ũamp and
integrate over x from −∞ to ∞. Since L[dx, u0] is self-adjoint the left hand side vanishes
after integration by parts, leaving the condition

α1dta = α2sgn(δ) + α3a
2, (8)

where

α1 ≡
∫ ∞

−∞
Ũ2
ampdx, α2 ≡

∫ ∞

−∞
u0Ũampdx, α3 ≡

∫ ∞

−∞
(b2 − 3u0)Ũ3

ampdx. (9)

This is the required evolution equation for the amplitude of the nucleation mode. The
nucleation time, which is the time T for the solution to move from one fold of the snaking
branch to the next one below, is approximately the time taken for a(τ) to go from −∞ to
∞. Writing this condition in terms of the original time we obtain

T− =
πα1

(α2α3δ)1/2
≈ 4.388|δ|−1/2, δ < 0. (10)

This prediction compares well with the simulation result

T− ≈ (4.57± 0.34)|δ|−0.499±0.006, δ < 0. (11)

The method can be similarly applied near the right edge of the snaking region, r = r(E+)+δ,
0 < δ � 1, with corresponding prediction

T+ =
πα1

(α2α3δ)1/2
≈ 5.944δ−1/2, δ > 0, (12)

and simulation result

T+ ≈ (6.04± 0.18)δ−0.501±0.003, δ > 0. (13)

The nucleation time, T , thus depends on the inverse square root of the distance from the
folds in the snaking region. These are very well aligned high up the bifurcation diagram, so
here T is independent of which fold is considered and the nucleation front therefore moves
with constant speed. This is not so low down the snaking diagram where the folds do not
line up with the edge of the pinning region.
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Figure 7: One set of isolas with b2 = 2 and γ = 0.05, 0.10, 0.20, 0.35. From [4].

3 Broken symmetry and drift

It is interesting to examine the effect of broken spatial reversibility on the nucleation process.
For this purpose we may add a dispersive term to SH23 to obtain

∂tu =
(
r − (1 + ∂2

x)2
)
u+ γ∂3

xu+ b2u
2 − u3. (14)

We anticipate that when γ 6= 0 the solutions will drift, and therefore look for steady solutions
drifting with speed c. Such solutions satisfy the ODE

0 =
(
r − (1 + d2

x)2
)
u+ cdxu+ γd3

xu+ b2u
2 − u3, (15)

where x is now the comoving coordinate and c is a nonlinear eigenvalue, i.e., c is determined
as part of the solution.

Figure 7 shows the solution to this problem. One finds that the presence of dispersion
destroys the snakes-and-ladders structure of the snaking region and that the drifting local-
ized states fall on a stack of figure-eight isolas, one of which is shown in the figure. All the
localized states now travel: c = c(r) along each isola (not shown). Note in particular that
as γ increases the isolas shrink and eventually disappear. Thus drifting localized structures
are absent for large dispersion.

To the immediate right of the pinning region, r = r(E+) + δ for δ � 1, the nonzero
value of γ leads to asymmetry between the nucleation rates associated with the leading
and trailing fronts. This is shown in fig. 8, where all the patterns drift slowly to the right.
For small enough δ, nucleation only occurs at the leading front but fails at the trailing
front (fig. 8(a)). Further from the saddle-node, the rate of nucleation increases (as in
the symmetric case) so that nucleation now takes place at both fronts, albeit at different
rates. As a result the trailing front overcomes the slow drift of the structure downstream,
and propagates upstream (fig. 8(b)). However, increasing γ can prevent nucleation at the
trailing front so that the pattern only grows at the leading front (fig. 8(c)). The front
speed for the asymmetric problem (15) can be calculated in much the same way as in the
symmetric problem (see section 2.1) as discussed next.
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Figure 8: Space-time plots showing asymmetric front propagation when b2 = 2: (a) γ =
0.001, δ = 0.00015; (b) γ = 0.001, δ = 0.00065; (c) γ = 0.01, δ = 0.00065. From [4].

3.1 Theory

For small dispersion the drift speed c is expected to be of order γ. We therefore write
r = r(E+) + δ, take γ = σ|δ|, σ = O(1), and write []

u(x, t) = u0(x+ θ(T )) + |δ|1/2u1(x+ θ(T ), τ) + |δ|u2(x+ θ(T ), τ) + . . . , (16)

where τ = |δ|1/2t, T = |δ|t and θ(T ) captures the drift of the leading order localized
structure, i.e., c = θt = |δ|θT . Note that the drift and nucleation occur on disparate
timescales: the perturbations u1 and u2 drift on the same slow time T as u0, but can also
grow on a different, and faster, timescale τ . The leading order, O(1), terms are

r(E+)u0 − (1 + ∂2
x)2u0 + b2u

2
0 − u3

0 = 0. (17)

This is the equation for steady solutions of the reversible SH23 equation with solutions
u0 = u0(x+ θ(T )). At next order, O(|δ|1/2),

L[∂,u′]u1 ≡
(
r(E+)− (1 + ∂2

x)2 + 2b2u0 − 3u2
0

)
u1 = 0, (18)

and u1, as in section 2.1, is a superposition of three (almost) marginal modes. Since the
translation has been included by introducing the phase θ(T ), the ŨG mode is already in-
cluded. Thus

u1 = a(τ)Ũamp(x+ θ(T )) + b(τ)Ũph(x+ θ(T )). (19)

At O(|δ|),
u′0θT + u1τ = Lu2 + sgn(δ)u0 + σu′′′0 + (b2 − 3u0)u2

1. (20)

Since the kernel of L is spanned by three independent solutions, the three marginal modes,
we must impose three different solvability conditions on u2. These will in turn determine
the evolution of θ(T ), a(τ) and b(τ).

To obtain the solvability conditions we multiply Eq. (20) in turn by the three marginal
modes, u′0 (i.e., the Goldstone mode), Ũamp and Ũph, and integrate over x from −∞ to ∞.
The first solvability condition predicts the drift speed

θt = −0.9663γ, (21)

which agrees well with the drift speed measured from numerical simulations. The solvability
conditions for the phase and amplitude modes give coupled equations for a and b. However,
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if the structure described by u0 is long enough, the two fronts at either end decouple from
one another (lecture 6) and the two equations reduce to [4]

(a± b)τ = α1sgnδ ∓ βσ + α3(a± b)2. (22)

We define the nucleation time at the leading front as

Tleading =

∫ ∞

−∞

dτ

a− b =
π

α
1/2
3

1

(α1δ + βγ)1/2
(23)

and at the trailing front as

Ttrailing =

∫ ∞

−∞

dτ

a+ b
=

π

α
1/2
3

1

(α1δ − βγ)1/2
. (24)

The value of δ for which the nucleation time diverges corresponds to the value at which
nucleation ceases, and is given by

δleadingc = −βγ/α1 = −0.3543γ, δtrailingc = βγ/α1 = 0.3543γ. (25)

These predictions agree well with numerical simulations [4].

4 Two-dimensional structures

We now consider the two-dimensional (2D) Swift-Hohenberg equations SH23

ut = ru− (∇2 + 1)2u+ b2u
2 − u3, (x, y) ∈ R2, (26)

and SH35
ut = ru− (∇2 + 1)2u+ b3u

3 − u5, (x, y) ∈ R2. (27)

In both these equations u = u(x, y, t) and ∇2 ≡ ∂2
x + ∂2

y . These equations are reversible in
both x and y but steady state solutions still correspond to critical points of the Lyapunov
energy function F . In 2D, there is a larger range of different types of localized structures
that arise, including stripes, spots, targets, squares and hexagons. For a more extensive
treatment of this topic, we refer the reader to [5].

4.1 Wall and body modes

Stripe-like localized structures in 2D (e.g. fig. 9) are only stable inside a subregion of the
1D pinning region (fig. 10). This is a consequence of the presence of distinct 2D instabilities
that destabilize localized stripes that are stable in 1D. These instabilities can be divided
into “wall” modes which are characterized by a y-dependent eigenfunction that is localized
at the fronts, and “body” modes whose eigenfunction extends across the whole localized
structure.

Figures 11(a,b) show the evolution of a wall mode in SH23. Depending on the parameters
the excitation of the wall mode may lead to depinning (fig. 11(a)) with both inward and
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Figure 7.1: (a) A stationary localized state u0(x) in one dimension, and (b) the corre-
sponding localized stripe u(x, y) in two dimensions. Parameters: r = 0.7106, b3 = 2. The
domain shown in (b) is (x, y) ∈ [−70, 70] × [−30, 30].

where u = u(x, y, t) and ∇2 = ∂2
x + ∂2

y . As in the one-dimensional version, this equation is

variational and stationary states correspond to local minima of the associated free energy.

We are particularly interested in time-independent solutions to (7.1) that satisfy

u(x, y) = u0(x) . (7.2)

The function u0(x) is a stationary solution to the Swift-Hohenberg equation (3.47), so each

one-dimensional solution in Chapter 3 generates a solution in two dimensions (Fig. 7.2a).

The spatially periodic states correspond in two dimensions to stripes (or rolls), and the

localized states correspond to localized stripes. Those profiles u0(x) that are unstable in

one dimension will necessarily generate localized stripes that are also unstable. However,

the profiles that are stable in one dimension are not necessarily stable in two because of

various transverse instabilities that may be present (Fig. 7.2b).

Although (7.1) is defined on (x, y) ∈ R2, in practice we solve this equation on a

bounded domain. Recall that the localized states u0(x) determined numerically in Chap-

ter 3 are defined on x ∈ [−Γx/2,Γx/2] where Γx � 2π/k0. We also restrict the transverse

coordinate to y ∈ [0,Γy] with periodic boundary conditions at y = 0 and y = Γy, since our

focus is on solutions in two-dimensions which satisfy (7.2).

In general the stability of any stationary solution to (7.1) is found by considering

infinitesimal perturbations of the form ��U(x, y)eσt, � � 1, which leads to a two-dimensional

Figure 9: Localized 2D stripe in SH23. From [5].

Figure 10: Stability regions for the 1D (light) and 2D (dark) localized structures in (a)
SH23 and (b) SH35. From [5].

outward front propagation that converts the stripe state into a hexagonal array of spots
that invades the whole domain. It is also possible to choose parameters such that there
is not enough energy to depin the front connecting the structure to the background state
(fig. 11(b)). In this case the outer fronts remain pinned and the instability propagates only
inwards, turning the localized stripes into a localized patch of hexagons.

An example of the body mode is illustrated in fig. 11(c). As the mode evolves the whole
structure buckles into a zigzag structure. In the case shown the buckling is strong enough
to depin the fronts on either side resulting in the growth of a set of transverse stripes. The
wavelength of the stripes is determined dynamically by the motion of the fronts and so is
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Two spatial dimensions: SH23

Edgar Knobloch (UC Berkeley) Localized patterns June 2012 28 / 53

Figure 11: Evolution of (a,b) the wall mode, and (c) the body mode in SH23. From [5].

not the equilibrium wavelength. As a result the perpendicular stripes undergo their own
zigzag instability that brings their wavelength closer to their equilibrium wavelength. SH35
undergoes similar instabilities but hexagonal coordination is no longer the preferred case.
Instead the instabilities may generate moving fronts that undergo dendrite-like instabilities
or lead to a dynamically selected labyrinthine pattern.

4.2 Two-dimensional spatially localized states

In the preceding section we have seen that time evolution can lead to stable localized states
with nontrivial 2D structure. It is possible to follow solutions of this type numerically as a
function of the parameters. Figure 12(a) from [1] shows one such steady-state solution of
SH35 (right panel, corresponding to the red dot in the bifurcation diagram in the left panel).
Following the solution numerically towards lower values of r (fig. 12(b)), we find that the
amplitude ||u||22 begins to grow as the structure sends out “fingers” that extend farther and
farther outwards. Since the front that connects this “finger” state with the background
states only sees behind it a translation-invariant state no pinning takes place. In this
case the pinning region is absent (we speak of collapsed snaking) and a heteroclinic cycle
between the background state and the “finger” state is only present at a single parameter
value. However, as we follow the solution in the other direction, we observe the formation
of a rug-like structure associated with a snaking bifurcation diagram (fig. 12(c)). Here,
the snaking is caused by the pinning of each front to stripes parallel to the front. It is
remarkable that solutions of the form shown in figs. 12(b,c) in fact lie on the same solution
branch.
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Figure 12: Bifurcation diagram of a localized stripe pattern in SH35. (a) A localized state
identified through time integration. (b) Collapsed snaking. (c) Snaking. Each figure shows
the appropriate portion of the bifurcation diagram (left panel) and the solution profile
u(x, y) (right panel) corresponding to the location indicated by the red dot. The profiles
are shown with x vertically and y horizontally. From [1].

It is useful to think of structures such as that shown in fig. 12(b) in terms of a phase space
representation, treating x as an unbounded time-like variable while y remains bounded (with
Neumann boundary conditions imposed). This description is analogous to that employed
in fig. 1: in fig. 13(a) the black dot represents the zero state while the red point represents
an extended state of periodic stripes with finite y-wavenumber that fills the whole domain.
A connection (1) between these two fixed points in the phase plane represents a front con-
necting the zero state to the pattern state (a heteroclinic orbit). An excursion (2) from the
patterned state back to itself represents a defect in the patterned state. Spatial reversibility
implies the existence of a complete heteroclinic cycle. As in 1D, numerical calculations
identify homoclinic orbits with exactly this template, such as state (3) in fig. 13(b).

Figure 14 shows a detail of the bifurcation diagram for SH35. The sequence of transitions
along the snaking branch produces alternating stable and unstable states, which grow in
space. The growth mechanism is slightly different at points 3 and 7 compared with points
1, 5 and 9 owing to the Neumann boundary conditions in y used in the calculation. This
leads to the observed misalignment of successive folds.

The rug-like structures in fig. 14 are just one set of localized structures present in this
system; however, other structures are present as well. For example, it is possible to produce
odd rug-like structures that also snake (dotted grey line in fig. 15). There are also rungs
(blue line of fig. 15) of asymmetrical states that connect even states (solid grey line in
fig. 15) to odd states. These Z-shaped rungs are unstable throughout as indicated by the
eigenvalues shown in fig. 15(a). However, S-shaped rungs connecting even states to even
states possess a stable middle segment (fig. 16).

Other structures that arise in 2D are checkerboard rugs (this live on isolas, of which
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Figure 11: The non-snaking branch of the bifurcation diagram from panel 2 in Figure 10 is displayed in more detail.

As we move along the branch, the solution develops blue and red spots along the interface. These red spots subsequently

develop into vertical stripes, which progressively cover the entire domain. The vertical asymptote occurs at the Maxwell

point µr = 0.6753 of the 1D rolls.

3

1

2

Figure 12: We illustrate the spatial-dynamics interpretation of the y-dynamics of almost planar stripes along the

non-snaking branch. We can interpret the almost planar stripe pattern shown in the right panel as a homoclinic orbit

to U = 0 that bifurcates from the heteroclinic network shown in the left panel. The heteroclinic network consists of

a codimension-one heteroclinic cycle between U = 0 and vertical 1D rolls, which exists only at the Maxwell point of

1D rolls, and a robust reversible homoclinic orbit to vertical 1D rolls. Note that vertical 1D rolls are equilibria in the

y-dynamics.
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Figure 13: In the centre, we show a section of the snaking branch from the right panel of Figure 10. As we move

along the branch, the pattern grows horizontal stripes via a sequence of nine saddle nodes as shown in panels (1)-(9).

For the pattern shown in panel (1), the interface between rolls and the trivial state is made up of blue spots. As we

move up on the branch through panels (2)-(5), red spots are added to the interface, whilst the blue spots merge to

form the first half of a new roll. Panels (6)-(9) show the development of new blue spots along the interface, whilst the

red spots merge to complete the formation of the new roll seen in panel (9). Inspecting panels (1) and (5), we find

that the interface regions, plotted here over four full periods in x so that x ∈ (0, 8Lx), are related by the symmetry

operator κ, which corresponds to multiplication of the pattern by −1 and reflecting it in x across x = Lx.

12

Figure 13: Phase plane description of collapsed snaking. From [1].
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Figure 14: A section of the snaking branch from fig. 12 and the corresponding solution
profiles at successive folds. From [1].

there is likely an infinite stack; fig. 17) and barrel-shaped structures (fig. 18). The latter are
of particular interest since the fronts on the left and right are clearly pinned to the stripe
pattern inbetween, while the curved boundaries likely experience weaker pinning arising
from the circumferential wavelength gradient introduced by the curvature of the boundary.
Perhaps of greatest interest are the leaf-like structures shown in fig. 19. These structures
have a convex boundary that becomes, in some cases, concave near the cusps of the leaf.
This fact implies that it is not possible to think of these structure as being produced by an
effective surface tension since surface tension cannot produce structures that are concave.
An understanding of the sharp, internally-generated cusp-like features of these structures
represents a major challenge from the point of view of pde theory.

In SH23 the presence of the quadratic nonlinear term leads to a preference for hexagonal
structures instead of stripes [8]. The different localized structures present in SH23 are
discussed in [10]. As shown in fig. 20, localized hexagons, targets and spots occur in the
different regions in the parameter plane as shown in fig. 20(a). The green line shows the fold
of the extended periodic hexagonal pattern. Figure 20(b) shows the region near r = 0 and
fig. 20(c) shows the bifurcation diagram for two different localized states, namely localized
targets and hexagons. Pinning takes place as in 1D, although as the structure grows its
effect decreases and snaking may collapse. We mention that target patterns behave quite
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Figure 15: Unstable rung-like Z-shaped branches of asymmetrical states connecting even
and odd parity branches (middle panel). The eigenvalues of the solutions as a function
of arclength are shown in the left panel. The changes in the solution structure across the
Z-shaped branch are shown in the right panel. From [1].

Figure 16: Rung-like S-shaped branches of asymmetrical states connecting even states to
even states (middle panel). The eigenvalues of the solutions as a function of arclength (left
panel) show that the middle segment is stable. The changes in the solution structure across
the S-shaped branch are shown in the right panel. From [1].

differently from spots. The former are present only in the subcritical regime while spots
are present even in the supercritical regime [11].2 This important point may explain the

2There are in fact two types of spots, spot A which is present regardless of the direction of branching of
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Figure 17: Left panels: localized checkerboard patterns on an isola. Solid line represents
stable solutions. Right panel: part of a stack of such isolas with broader structures at the
top and narrower structures at the bottom. From [1].

Figure 18: Left panel: barrel-shaped localized structures initially snake but large structures
of this type lead to collapsed snaking. Right panel: subsidiary barrel-shaped structures
differing by one stripe. From [1].

prevalence of spots in experiments.
Consider the hexagonal patch corresponding to the first fold in parameter space shown

in fig. 21. It is possible to follow the solution branch numerically in parameter space [10].
At point 1, a regular hexagonal crystalline solution is present (note the “echoes” along
the periphery the structure, which is a consequence of the oscillatory front between the

the stripe pattern and spot B which is only found in the subcritical regime [12].
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Figure 19: Planar leaf-like solutions of SH35. From [1].

hexagonal structure and the background state). By point 2 the structure has evolved by
adding a cell at the mid-point of every edge. Further cells have been added symmetrically
along the boundary by point 3, but the resulting structure is not hexagonal. The hexagonal
structure reforms near point 4. Since the edges now consist of five cells apiece and the
subsequent evolution differs from that just described. One must therefore proceed further
up the solution branch on order to form a hexagonal structure with an even number of
cells along each edge before the type of growth described in going from point 1 to point 4
recurrs. The misalignment of the folds provides an indication of the energy associated with
the nucleation of cells in different locations along the edges. Comparison of the energy F
for the different states shown in fig. 21 could provide an explanation why the hexagonal
structure grows in the manner it does.

5 Oscillons

In lecture 6, we saw the difference between “standard” and “reciprocal” oscillons. Here,
we consider steady, localized solutions to the forced complex Ginzburg-Landau (FCGL)
equation. Our motivation for looking at this problem is two-fold. Firstly, oscillons have
been observed in experiments. Secondly, the FCGL equation is similar to the SH equation
when written in terms of the real and imaginary parts as coupled second order equations
are equivalent to a problem of fourth order in space. However, the equation does not have
a Lyapunov function, so we expect interesting dynamics.

5.1 Forced Ginzburg-Landau equation

Oscillons are typically subharmonic instabilities, and are easily observable in the vicinity
of a subharmonic resonance (or 2:1 resonance) when an oscillatory system with natural
frequency ω is driven with a driving frequency Ω ≈ 2ω. If the detuning ν ≡ ω−Ω/2 is small
the system will oscillate with frequency Ω/2 instead of ω. This oscillation is called a phase-
locked oscillation since the phase of the driving and response remain in phase. Outside
of this region, the response frequency is no longer locked to the forcing frequency and the
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Figure 20: Localized hexagons, targets and spots in SH23. From [10].

phase slips [7]. We can describe the resulting phase-locked oscillations, including standard
and reciprocal oscillons by examining the small amplitude

have been observed in the solutions of the FCGL equation for the amplitude of the
phase-locked oscillation.

We suppose a dynamic observable w(x, t) can be written in the form

w(x, t) = w0 +A(x̃, t̃)eiΩt/2 + c.c. + ..., (28)

where w0 is a steady homogeneous state of the system, A(x̃, t̃) is the (small) complex
amplitude of the forced subharmonic response, and x̃ and t̃ are suitable slow spatial and
temporal scales. The oscillation amplitude A(x̃, t̃) obeys the following evolution equation

At̃ = (µ+ iν)A− (1 + iβ)|A|2A+ (1 + iα)Ax̃x̃ + γA, (29)

where µ represents the (small) distance from onset of a (supercritical) homogeneous os-
cillatory instability and γ is the (small) amplitude of the forcing. The coefficients α, β

124



Figure 21: Bifurcation diagram for localized hexagons in SH23 showing the L2 norm as
a function of the bifurcation parameter −r. The sidepanels illustrate the solution profiles
at the points labeled in the middle panel. Solid (dashed) lines indicate stable (unstable)
solutions. From [10].

represent dispersion and nonlinear frequency correction, and are assumed to be O(1).3 In
the following we drop the tildes on x̃ and t̃.

Given the large number of parameters in equation (29), we expect that the system will
display a wide range of behaviors. We restrict our attention to two cases corresponding to
the parameter µ, namely when µ < 0 and µ > 0, respectively. In the case µ > 0 the unforced
system is self-exciting, but the free oscillations are damped when µ < 0. In both cases, we
assume that β > 0 and allow α to be positive or negative. The key observation is that the
subharmonic forcing in the damped case creates a region of bistability between A = 0 and
and a large amplitude phase-locked state A+

u with uniform amplitude [7]. Inside this region
one expects localized states created by the same mechanism as in the Swift-Hohenberg
equation.

We consider the damped case µ < 0 in the (ν, γ) plane and find that a saddle-node
bifurcation involving the uniform phase-locked states A+

u and A−u occurs at γ = γb ≡ |ν −
βµ|/ρβ, ρβ ≡

√
1 + β2, whenever ν > νβ ≡ −µ/β. At this point, the uniform state has two

zero spatial eigenvalues and two real nonzero spatial eigenvalues. Along the larger amplitude
A+
u branch the zero eigenvalues split along the real axis and A+

u has two-dimensional stable
and unstable manifolds. Thus localized states may exist in the form of orbits homoclinic to
A+
u . We calculate these as follows.

To find these states, we expand γ about the fold γb: γ = γb + ε2δ, where ε2δ depends on
the distance to the fold, ε� 1 and δ > 0. We solve the time-independent problem as in [7]
(their Appendix C)

(L+N )

[
U
V

]
= 0, (30)

where A = U + iV , L is a linear operator and N is a nonlinear operator. Localized states

3Specifically if µ = O(ε2) the forcing amplitude and frequency must satisfy γ = O(ε2), ν = O(ε2) and
the response satisfies A = O(ε), x̃ = εx and t̃ = ε2t.
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biasymptotic to A+
u take the form

[
U
V

]
=

[
U
V

]+

+

[
u
v

]
, (31)

where the first term is the phase-locked state A+
u and the second term corresponds to space-

dependent terms that decay to zero in the limit x→ ±∞. We can approximate A+
u by the

series [
U
V

]+

=

[
U0

V0

]
+ ε

[
U1

V1

]
+ ε2

[
U2

V2

]
+ ..., (32)

where [
U0

V0

]
=

[
ηb
1

]
Υ0,

[
U1

V1

]
=
√
δ

[
ξb
1

]
Υ1. (33)

Here

ηb = β + ρβ, ξb =
ηbν + (1− βηb)|Au(γb)|2
ν − (β + ηb)|Au(γb)|2

, (34)

Υ0 =
|Au(γb)|√

1 + η2
b

, Υ1 = sgn[ξbηb + 1]

√
ηb

(ξbηb + 1)(ξb − ηb)
. (35)

We expand the space-dependent second term in equation (31) as

[
u
v

]
= ε

[
u1

v1

]
+ ε2

[
u2

v2

]
+ ...,

noting that all the quantities in this equation depend on x in the slow spatial scaleX ≡ ε1/2x.
The linear operator in equation (30) can be written L = L0 + εL1 + ε2L2, where

L0 =

[
µ+ γb −ν
ν µ− γb

]
, L1 =

[
1 −α
α 1

]
∂XX , L2 =

[
δ 0
0 −δ

]
. (36)

The nonlinear terms can be written N = N0 + εN1 + ε2N2 + ..., where

N0 = −
[
U0 V0

] [U0

V0

] [
1 −β
β 1

]
, N2 = −2

[
U0 V0

] [U1 + u1

V1 + v1

] [
1 −β
β 1

]
, (37)

N2 = −
{[
U1 + u1 V1 + v1

] [U1 + u1

V1 + v1

]
+ 2

[
U0 V0

] [U2 + u2

V2 + v2

]}[
1 −β
β 1

]
. (38)

At order ε0, the stationary solutions to equation (30) satisfy

{L0 +N0}
[
U0

V0

]
=

[
0
0

]
. (39)

This equality can be determined from the definition of U0 and V0. At order ε, we have the
following expression

{L0 +N0}
[
U1 + u1

V1 + v1

]
= −{L1 +N1}

[
U0

V0

]
. (40)
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The X-independent terms in this equation cancel (from the definition of U1 and V1), and
we obtain {

L0 +N0 − 2

[
1 −β
β 1

] [
U2

0 U0V0

U0V0 V 2
0

]}[
u1

v1

]
=

[
0
0

]
. (41)

Hence, we write [
u1

v1

]
=

[
ξb
1

]
B(X), (42)

where B(X) is an unknown function of X. We proceed to order ε2, obtaining

{L0 +N0}
[
U2 + u2

V2 + v2

]
= −{L1 +N1}

[
U1 + u1

V1 + v1

]
− {L2 +N2}

[
U0

V0

]
. (43)

As previously, the X-independent terms cancel. To obtain the solvability condition for this
equation, we take the scalar product with

Ξb =
[
−ηb 1

]
, (44)

and eliminate the u2, v2 terms, so that

abBXX = bb(2V1B +B2). (45)

Here,

ab = 1 + αξb + αηb − ηbξb, bb = −Υ0(1 + η2
b )

Υ2
1

, (46)

and we must have bb < 0. Equation (45) yields either spatially homogeneous solutions
B = −2V1, or the solution [

U
V

]
=

[
U0

V0

]
− ε
[
U1

V1

]
+ ..., (47)

corresponding to the other branch of uniform phase-locked states, A−u . Equation (45) also
possesses X-dependent solutions of the form

B(X) = −3Υ1

√
δsech2





(
Υ1

√
δ

2ab/bb

)1/2

X



 . (48)

These correspond to the solution

[
U
V

]
=

[
U
V

]+

− 3Υ1
√
γ − γb

[
ξb
1

]
sech2

{
(γ − γb)1/4

(
Υ1

2ab/bb

)1/2

x

}
, (49)

describing reciprocal oscillons, i.e., ‘holes’ in an otherwise uniformly oscillating state. If this
state is followed numerically one finds that the holes deepen and fill with the trivial state
A = 0. Pinning is absent since the spatial eigenvalues of A+

u are real.
Other localized states are also present and these are discussed in [7].
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Lecture 9: Spatially localized structures in fluid flows

Edgar Knobloch: notes by Bevin Maultsby and Yuan Guo
with substantial editing by Edgar Knobloch

January 5, 2013

1 Defect-mediated snaking

In lecture 8 we explained the origin of the snaking-pinning region in parameter space con-
taining a large multiplicity of spatially localized single-pulse states of ever greater length as
well as a great variety of bound states of such structures called multipulse states. We also
discussed the behavior of the system outside this region focusing on different types of de-
pinning. We saw that in one spatial dimension structures in the Swift-Hohenberg equation
grow by adding new cells on the outside, and examined some of the ways localized struc-
tures in two spatial dimensions grow in size as one follows them through parameter space.
Certain aspects of this behavior appear to be universal in the sense that they depend only
on the presence of a structurally stable transverse intersection of certain stable and unstable
manifolds. However, other mechanisms for growth exist as well and we begin this lecture by
describing one such mechanism that arises in the forced complex Ginzburg-Landau equation.

We consider a continuous system in one spatial dimension near a bifurcation to spatially
homogeneous oscillations with natural frequency ω in the presence of spatially homogeneous
forcing with frequency Ω. We focus on the behavior near strong resonances of the form
Ω/ω = n, where n = 1, 2.

1.1 2:1 resonance

Suppose that a dynamical observable w(x, t) takes the form

w = w0 +AeiΩt/n + c.c.+ · · ·

where w0 represents the homogeneous equilibrium state and A(x, t) is a complex amplitude.
Under appropriate conditions the oscillation amplitude A(x, t) obeys the forced complex
Ginzburg-Landau equation (FCGL),

At = (µ+ iν)A− (1 + iβ)|A|2A+ (1 + iα)Axx + γĀn−1, (1)

as obtained in lecture 8. Here µ represents the distance from onset of the oscillatory instabil-
ity, ν is the detuning from the unforced frequency, and α, β and γ > 0 represent dispersion,
nonlinear frequency correction and the forcing amplitude, respectively, all suitably scaled.
Figures 1(a,b) show the (ν, γ) parameter plane for n = 2 (subharmonic resonance) and
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suitable values of the remaining parameters. The figure shows the curve γ = γ0 correspond-
ing to a subcritical bifurcation of phased-locked states from the trivial A = 0 state. An
analysis similar to that performed for the Swift-Hohenberg equation at r = 0 shows that
this bifurcation is also associated with a bifurcation to spatially localized states. This time
these states take a top hat form (the spatial eigenvalues λ at γ = γ0 are real) and there
is only one branch of such states that bifurcates at γ = γ0. These eigenvalues becomes
complex along γ = γT0 , i.e., the bifurcation at γ = γT0 is precisely of the type discussed
in lecture 7 in the context of the Swift-Hohenberg equation.1 The figure also shows the
line γ = γT of analogous bifurcations that occur along the upper branch of the spatially
uniform phase-locked states A+. These states are stable in time in the shaded region where
the spatial eigenvalues λ are complex (region 1, lecture 6), and unstable in time outside,
where the spatial eigenvalues are purely imaginary (region 4, lecture 6). The bifurcation at
γ = γT is supercritical (towards lower γ) between the two open diamonds and subcritical
otherwise. The figure also shows the line of heteroclinic connections between A = 0 and
A = A+, i.e., the curve of collapsed snaking, where the localized states created at γ = γ0

terminate (Fig. 2(a)). This curve, γ = γCS , crosses the curve γ = γT at ν = ν∗. For
ν > ν∗ the state A = A+ is hyperbolic in space and heteroclinic connections involving A+

are therefore possible. This is no longer so when ν < ν∗, where A+ becomes a center. It
follows that something new must take place as ν decreases through ν = ν∗.

Figure 2(a) shows the bifurcation diagram of solutions at ν = 1.35, larger than the
critical value ν∗ ' 1.3077, plotted in terms of the L2 norm N defined as

N =

√
1

l

∫ l/2

−l/2
|A(x)|2 + |Ax(x)|2 dx,

while Fig. 2(b) shows the real and imaginary part of the complex amplitude A ≡ U + iV at
a location high up the collapsed snaking branch, labeled L0 in Fig. 2(a). The oscillations
at the fronts at either end are a reflection of the complex spatial eigenvalues of A+ in the
region ν > ν∗.

The bifurcation diagram for steady solutions at a value of ν = 1.26 < ν∗ is shown in
Fig. 3. Here we can see that the behavior of the spatially homogeneous states A = 0 and A±

remains similar to the previous case, but the behavior of the localized states is very different:
a single snaking branch L0 of spatially localized states bifurcates from A = 0 at γ = γ0 but
this branch must now interact with the spatially periodic solutions created at γ = γT that
surround A+ when ν < ν∗. In standard homoclinic snaking between A = 0 and a periodic
orbit (lecture 7) this process makes use of two intertwined branches of localized states in
the form of localized wavepackets. Here, on the other hand, one starts with a single branch
L0 of top hat profiles on top of which oscillations gradually develop as one approaches the
snaking region shown in Fig. 3(a). The resulting L0 branch combines elements from the
classical picture into a single branch and it does so via a distinct growth mechanism which
we call defect-mediated snaking (DMS).

The growth of the localized states along the DMS branch is illustrated in Fig. 4. This
branch contains two distinct families of states. One consists of uniform amplitude segments,
which resemble the localized states found in regular homoclinic snaking and is represented

1The superscript T refers to Alan Turing since the famous Turing instability is exactly of this type.
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Figure 1: Parameter plane for α = −2, β = 2 and µ = 1 in Eq. (1). The curve γ0

is plotted as a solid line in ν < νβ, where the bifurcation to the uniform phase-locked
states is supercritical, and dashed in ν > νβ, where it is subcritical. The (solid) line γT0
in ν < να represents a Turing bifurcation on A = 0. The corresponding bifurcation on
the spatially homogeneous state A+ is denoted by γT . The shaded region contains states
A+ that are stable in time. A heteroclinic cycle between A = 0 and A = A+ forms
along the dot-dashed line γCS corresponding to collapsed snaking. (b) Detail near the
codimension-two point ν = ν∗ marked with an open circle, where collapsed snaking turns
into defect-mediated snaking within γDMS

1 < γ < γDMS
1 . The dotted line shows the pinning

region γHS2 < γ < γHS2 containing regular homoclinic snaking. (c) The solid line shows the
wavenumber range included in defect-mediated snaking as a function of ν. The dashed line
shows kT (ν). The wavenumber range shrinks to kT (ν∗) as ν increases towards ν∗. From
[10].

by solid lines. The other consists of defect segments, shown by means of dashed lines.
Figure 4 shows that the DMS branch alternates between two types of uniform amplitude
segments: those where V (x) has a minimum at x = 0 (labeled by the spatial phase Φ = 0) or
maximum at x = 0 (labeled by the spatial phase Φ = π); these two segments are separated
by a defect segment. Evidently the defect is a steady state analog of a pacemaker: as one
proceeds up the DNS branch the defect at x = 0 repeatedly splits in two thereby inserting
a new wavelength into the localized states and pushing the existing cells apart.

The oscillatory wavetrain high up the DMS branch necessarily resembles the periodic
wavetrain created at γ = γT provided this wavetrain is hyperbolic in space. It turns
out that this requirement corresponds to a region of the (γ, k) plane called the Eckhaus-
stable region [7]. In this region a periodic wavetrain with wavenumber k is stable in time
(Fig. 5, region I), while outside this region the wavetrain is unstable with respect to phase
slips (Fig. 5, region II), which force the wavenumber into the Eckhaus-stable region. In
region II all Floquet multipliers of the wavetrain lie on the unit circle and the wavetrain
is nonhyperbolic. Consequently no heteroclinic connections involving such a wavetrain are
possible. It follows that in this case the boundary of the snaking or pinning region is
determined by the requirement that the wavenumber k at γDMS

1 and γDMS
2 is neutrally
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Figure 2: Bifurcation diagram corresponding to the ν > ν∗, where the branch of localized
states undergoes collapsed snaking towards γ = γCS > γT . The localized states are every-
where unstable but are shown as a solid line. The remaining solid (dotted) lines correspond
to stable (unstable) homogeneous states. (b) A sample solution far up the collapsed snaking
branch, at γ ≈ γCS . From [10].

stable with respect to the Eckhaus instability (Fig. 5, end points of the curve C). In this
case it is therefore the γ-dependence of the wavenumber k selected by the fronts on either
side that is ultimately responsible for the boundaries of the snaking region. Although it looks
like this mechanism is quite different from that discussed in lecture 8, viewed appropriately,
it is in fact the same [4].

1.2 1:1 resonance

Similar behavior to that described above takes place when n = 1, i.e., in the 1:1 resonance,
even though the A = 0 state is now absent and the phase symmetry (A) → (Ae2πi/n) is
trivial [10]. Instead of describing this behavior we focus on different types of depinning that
arises in systems of this type.

Figure 6 shows type I depinning that is associated with the top hat profiles present for
ν > ν∗: the structure either expands uniformly or shrinks uniformly, unless γ is chosen such
that the uniform state becomes unstable (as in Fig. 6(c)).

More interesting is type-II depinning that occurs outside of the DMS pinning region
ν < ν∗. We find that, in contrast to the depinning in the Swift-Hohenberg equation,
in the FCGL the fronts move by gradually deleting cells through repeated phase slips.
These phase slips eliminate/insert new wavelengths into the structure and hence control
the inward/outward speed of the fronts on either side of the structure. These phase slips
take place at preferred locations within the structure implying that the structure grows
so to speak from within, with a constant front profile at either end. The phase slips occur
because the depinned fronts move, thereby compressing/stretching the structure and forcing
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Figure 3: (a) Bifurcation diagram corresponding to the ν = 1.26, where the branch of
localized states undergoes defect-mediated snaking. The localized states are present within
the pinning interval γDMS

1 6 γ 6 γDMS
2 . The remaining solid (dotted) lines represent stable

(unstable) homogeneous solutions. (b) A sample solution high up the snaking branch. From
[10].

Figure 4: (a) Detail of the L0 snaking branch. The uniform amplitude segments of the
branch are shown as solid lines, while the defect segments are shown as dashed lines. (b)
Five sample solutions, all at γ = 0.41. The spatial phase Φ is indicated for each profile on
a uniform amplitude segment. From [10].
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Figure 5: Section of the surface of spatially periodic states for the parameters used. The
surface is bounded by the neutral stability curve of the A+ state. The curve C shows the
wavenumber k(γ) of the patterns included in defect-mediated snaking; this wavenumber
spans the width of the Eckhaus-stable interval. From [10].

Figure 6: Type-I depinning at γ = γCS +dγ . (a) dγ = 0.04; (b) dγ = −0.04; (c) dγ = −0.24.
From [10].

the wavenumber outside of the Eckhaus-stable region. The phase slip then attempts to
return the wavenumber into the stable region until pattern compression/expansion moves
it outside again, triggering a further phase slip.

When the structure is short the phase slips occur in the center (Fig. 7); for longer
structures phase slips occur simultaneously in a pair of symmetrically located points which
move inward and outward with the moving fronts (Fig. 7). We may refer to the former
case as slow depinning and the latter as fast depinning. Similar phase slips eliminate phase
when a nonlinear wave is incident on a solid boundary [15]. Figure 8 looks at this process
in more detail.

Evidently in this type of problem the front speed is determined by the competition
between natural front motion and the ability of the phase slips to keep up. This is a subtle
process that remains incompletely understood [11].
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Figure 7: Type-II LS depinning at (a) γ = γDMS
1 − 1 × 10−3; (a) γ = γDMS

2 + 1 × 10−4.
From [10].

Figure 8: Type-II depinning: (a) Slow depinning (d − γ = −2 × 10−5): phase slips take
place at the center x = 0. (b) Fast depinning (dγ = −4 × 10−3): phase slips take place at
a constant distance from the moving front. (c) Intermediate case (dγ = −1× 10−3): phase
slips gradually move towards the front. From [10].

135



2 Spatially localized binary fluid convection

Convectons are localized convecting structures. Examples of convectons arising in several
different systems were described in lecture 6. One of these systems is binary mixture convec-
tion. A binary mixture consists of two miscible components, one of which consists of larger
molecular weight molecules than the other. Common experimentally studied examples are
salt-water and ethanol-water mixtures. Both mixtures are characterized by cross-diffusion
quantified by a separation ratio S. When S > 0 the lighter component of the mixture
migrates towards the hot boundary while the heavier component migrates towards the cold
boundary. This is a kinetic effect and indeed S > 0 is typical of gas mixtures. Liquid
mixtures at appropriate concentrations may have S < 0.2 When such a mixture is heated
from below the heavier component migrates towards the lower hot boundary and this effect
increases the local density and hence competes with thermal buoyancy. In the absence of
diffusion effects a mixture with density that decreases in the vertical direction would be
stable. This is no longer necessarily the case if diffusion effects are included. Since heat
diffuses much faster than concentration temperature perturbations equilibrate rapidly while
concentration perturbations do not. A fluid element displaced upwards therefore cools but
retains its excess concentration which pushes it back down. If the “spring” provided by the
concentration is strong enough to overcome viscosity (i.e., if S is sufficiently negative) this
mechanism will lead to growing oscillations. This phenomenon, sometimes called oversta-
bility, is characteristic of binary mixtures placed in a thermal gradient. There is a second
characteristic effect as well: steady convection is subcritical. This is because the concen-
tration reduces thermal buoyancy near the lower boundary and hence delays the onset of
steady convection. However, once steady convection is generated, for example, due to a
finite amplitude instability, it mixes the concentration thereby reducing its stabilizing ef-
fect. Thus finite amplitude steady convection occurs more easily (i.e., for lower imposed
temperature difference) than small amplitude convection.

The above physics is independent of the way the stabilizing concentration gradient is set
up. In doubly diffusive convection concentration difference is imposed via the concentration
boundary conditions at top and bottom. This is not easily done in the laboratory (although
it is possible [14]). Here binary mixtures with a negative separation ratio have a great
advantage since the required stabilizing concentration gradient is set up in response to the
thermal gradient, i.e., the concentration gradient is set up in a closed container, and no
contact with a concentration bath via permeable walls is required.

In the Boussinesq approximation binary fluid convection is described by the Boussinesq
equation of state,

ρ = ρ0(1− α(T − T0) + β(C1 − C̄1)), α > 0, β > 0,

where C1 is the concentration of the heavier component. The mass flux of the latter depends
both on the concentration gradient via the usual Fick’s law but also on the temperature

2This case is sometimes referred to as the anomalous Soret effect.
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gradient via cross-diffusion, the Soret effect:3

j1 = −ρ0D(SSoretC̄1(1− C̄1)∇T +∇C1).

Here D is the molecular diffusivity of the heavier component. The resulting system is
described by the dimensionless equations

ut + (u · ∇)u = −∇P + PrR[(1 + S)θ − Sη]ẑ + Pr∇2u

θt + (u · ∇)θ = w +∇2θ

ηt + (u · ∇)η = τ∇2η +∇2θ

together with the incompressibility condition

∇ · u = 0.

Here u = (u,w) is the velocity field in (x, z) coordinates (assumed to be two-dimensional),
P is the pressure, and θ is the departure of the temperature from the conduction profile,
in units of the imposed temperature difference 4T > 0 across the layer. The variable η is
defined such that its gradient represents the dimensionless flux of the heavier component.
Thus η = θ − Σ(x, z, t), where T = 1 − z + θ(x, z, t) and C = 1 − z + Σ(x, z, t) is the
concentration of the heavier component in units of the concentration difference that develops
across the layer as a result of cross-diffusion. The system is specified by four dimensionless
parameters: the Rayleigh number

R =
gα4T l3

νκ

providing a dimensionless measure of the imposed temperature difference4T , the separation
ratio

S = C̄1(1− C̄1)SSoret
β

α

that measures the resulting concentration contribution to the buoyancy force due to cross-
diffusion, and the Prandtl and Lewis numbers defined as

Pr =
ν

κ
, τ =

D

κ
.

Here ν is the kinematic viscosity of the mixture, κ is the thermal diffusivity and l is the
height of the layer. All lengths have been nondimensionalized using l while time has been
nodimensionalized using the thermal diffusion time in the vertical, l2/κ.

As in all problems of this type the boundary conditions are key. Experimentally realistic
boundary conditions demand that the velocity vanishes at the top and bottom (no-slip
boundary conditions) and that the boundaries are impermeable (the vertical flux of C1

vanishes on the boundaries). We also assume that the thermal mass of the boundaries
is large compared to that of the liquid mixture so that the boundaries remain at fixed
temperature even while the fluid convecting. If this is the case (in practice this is rarely

3In this discussion we ignore the Dufour effect which is responsible for setting up a temperature gradient
in response to a concentration gradient. This effect is small in liquids although it may be important in gas
mixtures.
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checked) we may suppose that the temperature fluctuation θ vanishes at the top and bottom.
We thus have:

u = w = θ = ηz = 0 on z = 0, 1.

It remains to specify the boundary conditions in the horizontal. In the following we use either
periodic boundary conditions (PBC) with period Γ in x, or Neumann boundary condition
(NBC), or insulating closed container boundary conditions (ICCBC) at x = ±Γ/2, where

NBC u = wx = θx = ηx = 0 on x = 0,Γ,

ICCBC u = w = θx = ηx = 0 on x = 0,Γ.

Figure 9: Bifurcation diagram showing the time-averaged Nusselt number N as a function
of the Rayleigh number R when Γ = 60. The conduction state loses stability at Rc =
1760.8. Steady spatially periodic convection (SOC) acquires stability at a parity-breaking
bifurcation marking the destruction of a branch of spatially periodic traveling waves (TW).
Above threshold small-amplitude dispersive chaos is present (solid dots), which leads into
the pinning region (1774 < R < 1781) containing a multiplicity of stable localized states of
both even and odd parity. From [1].

2.1 Convectons

The above equations and boundary conditions are invariant under the symmetries x →
−x, (u,w, θ, η)→ (−u,w, θ, η) and (x, z)→ (−x, 1−z), (u,w, θ, η)→ −(u,w, θ, η) analogous
to the symmetries x → −x, u → u and x → x, u → −u of SH35. We expect, therefore, the
presence of steady solutions satisfying

(u(x, z), w(x, z), θ(x, z), η(x, z)) = (−u(−x, z), w(−x, z), θ(−x, z), η(−x, z)),
(u(x, z), w(x, z), θ(x, z), η(x, z)) = −(u(−x, 1− z), w(−x, 1− z), θ(−x, 1− z), η(−x, 1− z))
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Figure 10: (a) The Nusselt number N(t) at R = 1774 showing relaxation oscillations be-
tween dispersive chaos and localized steady convection. (b,c) Space-time plots at two dif-
ferent time intervals in the time series (a), showing (b) the destruction of localized steady
convection, and (c) the formation of localized steady convection from dispersive chaos. Time
is in units of the thermal diffusion time in the vertical. From [1].

relative to a suitable origin in x. The former have even parity and correspond to the states
L0, Lπ of SH35 while the latter have odd parity when z = 1/2 and correspond to the states
Lπ/2, L3π/2. These are the only steady solutions that can bifurcate from the conduction
state (u,w, θ, η) = 0.

Spatial stability analysis of the conduction state of the type described in lecture 7 shows
that on the real line a branch of periodic states with wavenumber k = kc bifurcates from
the conduction state when R = Rc and that this bifurcation (if it exists and is subcritical)
is accompanied by the simultaneous bifurcation of even and odd spatially localized states.
As explained on physical grounds we expect the primary bifurcation to periodic states to
be subcritical when S is sufficiently negative and this is indeed the case.

The equations describing binary fluid convection are not variational, however, and conse-
quently one finds persistent time-dependent solutions as well. These are typically associated
with the presence of a Hopf bifurcation from the conduction state that precedes the onset
of steady convection (Fig. 9). This bifurcation generates branches of traveling and standing
waves [9]. The former are subcritical (Fig. 9) implying that neither time-dependent state is
stable near onset [9]. Instead one finds that the solution takes the form of a spatiotemporally
chaotic states called dispersive chaos ([3], solid dots in Fig. 9). Numerical time-integration
shows that this state undergoes a rapid focusing instability as R increases, forming tran-
sient localized structures (Fig. 10(b,c)) which then gradually erode in the same manner as
one finds in SH35 and ultimately collapse back into spatiotemporal chaos. Since this state
is unstable to the focusing instability, the process repeats, generating a chaotic relaxation
oscillation (Fig. 10(a)). The successive localized states tend to form in the same location
because the collapsing structure leaves a footprint in the slowly diffusing concentration field.
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A very small increase in R, to R = 1775, suffices to stabilize the localized structure
against erosion and the localized state that grows out of the chaotic state remains stable
for the duration of the simulation [1]. Based on the study of SH35 described in lecture 8 we
interpret this transition as passage from outside to inside of the pinning region. Of course
the present system yields an eighth order dynamical system for steady states so one needs
to be careful with this type of argument but here it appears as if the additional dimensions
do not play a role.

It is important to observe that when the localized structure is present the waves in
the background disappear, creating a localized state embedded in a quiescent background
conduction state. At first sight this is surprising since, as already mentioned, the conduction
state is unstable to oscillations. Batiste et al. [1] show that in the regime where waves are
absent the conduction state is only convectively unstable. This means that a localized
disturbance propagates faster than it grows4 and so interacts with the localized structure
before it has had a chance to develop. The collision with the localized structure reduces
locally the length scales and hence enhances dissipation. In fact, in the convectively unstable
regime the presence of nonperiodic boundaries always leads to eventual decay [15] and this
is the case here as well. To get sustained waves in the background one must raise the
Rayleigh number R past the threshold for absolute instability (Fig. 9); this threshold can
be computed by solving a linear boundary value problem [1]. The solution determines the
dispersion relation ω(k) as a function of R. At the absolute instability threshold R = R∗

this relation has a double root ω(k), provided a certain pinching condition holds. However,
the double root is usually located in the complex k plane and hence the boundary value
problem that has to be solved is in fact complex-valued. This requirement together with the
condition of marginal stability (i.e., the requirement that ω is real) yields four conditions
which suffice to determine ω, k = kr + iki and R∗. Figure 11 shows ki and ω as functions
of kr at R < R∗ and R > R∗, demonstrating the presence of a double root at R = R∗.

Figure 9 summarizes the results in the form of a bifurcation diagram showing the (time-
averaged) convective heat flux N − 1 as a function of R for the parameters used. The
figure shows the branch of traveling waves (TW) and indicates that steady overturning
convection (SOC) remains unstable past the fold on the left and only acquires stability
at a higher amplitude, where the TW branch terminates on the SOC branch in a parity-
breaking bifurcation. Near this bifurcation the phase speed of the TW decreases to zero
as the square root of the distance from the termination point. Stationary convectons are
present in a parameter regime where the SOC are stable and it is this fact that is ultimately
responsible for their stability. After all, long convectons resemble a long interval of the
periodic state and so tend to inherit the stability properties of the coexisting periodic state.

To construct the unstable SOC and TW solutions (dashed lines) we have employed
numerical continuation. The ability to perform such computations is key for understanding
the behavior of flows of this complexity. Numerical continuation is of course particularly
helpful for constructing the convecton branches. Here the fact that some of these states are
stable is of great help since they can be found by direct numerical simulation. Once one
even and one odd state is found in this way the equilibrated solution can be inserted into
the continuation code and the whole snaking diagram constructed (Fig. 9). We mention

4Recall that standing waves are unstable to traveling waves.
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Figure 11: Spatial branches of zero growth rate modes in the complex k plane showing the
pinching process that occurs at R = R∗ ≈ 1786.4, when S = −0.021, σ = 6.22, τ = 0.009.
From [1].

Figure 12: Branches of (a) odd- and (b) even-parity convectons in a Γ = 60 domain as a
function of the Rayleigh number R. Both branches exhibit snaking. From [1].

that in the present problem the asymmetric states on the rungs of the snakes-and-ladders
structure generically drift, i.e., they take the form of drifting (and unstable) convectons.
Such states can be computed by looking for steady solutions in a moving frame, with the
speed c of the frame determined as a nonlinear eigenvalue, much as in lecture 8. These
states, like the standing waves SW created in the primary Hopf bifurcation, are not shown
in the figure.

Figure 12(a) shows a detail of the snaking branch of odd parity convectons while
Fig. 12(b) shows the corresponding even parity convectons. As in SH35 the solutions lying
on the segments above the left folds and below the right folds correspond to stable solutions,
indicating that the pinning or snaking region is populated by a large number of coexisting
stable localized states (as well as periodic convection). Figure 13 shows sample convecton
profiles near the folds on each branch in Fig. 12 at the points indicated. These indicate
that each convecton acquires a pair of rolls between corresponding folds, one on each side,
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Figure 13: Convecton profiles on (a) the odd-parity branch, and (b) the even-parity branch
at the turning points indicated in Fig. 12(a,b) in terms of contours of constant C. Each
wavelength contains a pair of rolls. From [1].

as one goes up each snaking branch. Once again, this is exactly as in SH35. However, there
is one new effect that is absent from SH35. The structure of even convectons is affected by
the rolls at either end: a counter-clockwise rotating roll at the right end entrains fluid of
higher concentration into the convecton, while a clockwise roll at the left does the same,
thereby enhancing the mean concentration within the structure (point a in Fig. 12(b)). The
opposite occurs at point c in Fig. 12(b) since the direction of rotation of outermost rolls
is now opposite to that at point a. Thus at point c the structure entrains lower concen-
tration fluid from above at both ends resulting in lower than average concentration within
the structure. The effect is yet more interesting for odd parity convectons. For these states
both outermost rolls rotate in the same direction, implying that at point a in Fig. 12(a)
the structure entrain higher concentration fluid from the right while rejecting it on the left.
This results in a pronounced concentration gradient within the structure. The net effect is
that an odd parity convecton acts like a pump: at point a it pumps concentration from right
to left, while at point c it pumps concentration from left to right. This effect is visible in
the slight tilt of the constant concentration contours outside of the convecton (Fig. 13(a)).

3 Snaking in periodic and finite domains

We now look at snaking occuring in domains with different boundary conditions. To illus-
trate what happens when the lateral boundary conditions are changed from PBC to ICCBC
we show in Fig. 14(a) the snaking diagram in a periodic domain of length Γ = 14. This is
qualitatively similar to Fig. 9 except that here the whole snaking diagram has been com-
puted. In particular we see that, when the localized structure fills almost the whole domain,
snaking ceases and the snaking branches exit the pinning region and terminate on a branch
of periodic states, here P7, consisting of 7 pairs of rolls. Except for the difference in the
widths of the pinning regions for even and odd states (discussed further below) the picture
is as expected on the basis of SH35.

Figure 14(b) shows the corresponding result in a Γ = 14 domain with ICCBC and the
same parameter values. The picture is dramatically different. The widths of the snaking
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Figure 14: Binary fluid convection with Γ = 14: S = −0.1, σ = 7, and τ = 0.01. (a)
Periodic boundary conditions (PBC). (b) Insulating closed container boundary conditions
(ICCBC). From [12].

Figure 15: Convectons with PBC, Γ = 14. Profiles (a)-(c) have even parity while (d)-(f)
have odd parity. From [12].

regions for the two convecton types are now identical, and the convecton branches no longer
terminate on a branch of periodic states. This is, of course, because no periodic states
exist with ICCBC. Instead the snaking branches continuously change into large amplitude
branches of spatially extended states that fill the domain – except for defects at the lateral
boundaries where the vertical velocity is required to vanish.

The fact that the ICCBC have such a large effect on odd parity convectons is a conse-
quence of the interaction between concentration pumping and the lateral boundaries. The
presence of a lateral wall in the pumping direction results in concentration build-up. As a
result the convecton no longer sits in a homogeneous background, and is instead confined
between two different concentrations. Such a convecton is best thought of as half of a bound
state of two back-to-back odd parity convectons on a domain Γ = 28 but with PBC. This
construction is in fact exact with NBC instead of ICCBC but the ICCBC results are actually
quite close to the NBC results except for the vicinity of the lateral walls. Since such bound
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Figure 16: Convectons and holes with PBC, Γ = 14. Profiles (a)-(c) have even parity while
(d)-(f) have odd parity. From [12].

states occupy the same pinning region as the one-pulse even convectons it follows that the
width of odd parity states with ICCBC will be the same as the width of even parity states
with ICCBC, in contrast to the PBC case.

3.1 Periodic boundary conditions (PBC)

To understand the above argument in more detail we revisit the PBC case and note that
we can shift each solution horizontally by half the domain width and/or reflect it in the
horizontal midplane. Consider, for example, Fig. 16. In Fig. 16(a), we see an even parity
convecton inside the pinning region at R = 1950; to get to Fig. 16(b), we shift Fig. 16(a)
by half the domain width and reflect the result in the midplane. Although there is now a
hole present in the middle of the container, it is the same solution and hence falls on the
same solution branch in Fig. 14. Moreover, Figs. 16(a) and (b) are phase-matched with the
periodic state shown in Fig. 16(c), and in fact bifurcate from it at R = 1795.

We repeat this process for the odd parity states in Figs. 16(d)–(f). In this case,
Figs. 16(d) and 16(e) bifurcate from the periodic state in Fig. 16(f) and do so again at
R = 1795. This is because the periodic states in Figs. 16(c) and (f) are related by trans-
lation by half a wavelength, i.e. they are the same solutions. The even and odd parity
convectons are of course different solutions. We see therefore that the bifurcation from
the branch of periodic states that leads to localized states produces simultaneously two
branches of such states, of even and odd parity (Fig. 14(a)). This is a generally property
of Eckhaus bifurcations from a period wavetrain and can be demonstrated using Floquet
theory together with weakly nonlinear theory.

However, secondary bifurcations of Eckhaus type do not always generate spatially mod-
ulated states that snake. Figure 17 shows an example of a secondary bifurcation on the
branch P6, consisting of 6 pairs of rolls within Γ, that leads to the simultaneous branching
of a pair of nonsnaking branches. Close to the bifurcation these states, hereafter mixed
mode states Meven and Modd, take the form of large scale, small amplitude modulation of a

144



Figure 17: Mixed modes Meven and Modd with PBC and Γ = 14. (a) Bifurcation diagram
showing that both modes bifurcate from P6 but do not snake. (b) Profiles of Meven (top
panels) and Modd (bottom panels) showing the presence of a defect at either side.

periodic wavetrain and hence resemble the hole states states discussed above. However, as
one follows the hole branches away from the bifurcation point the hole deepens and broad-
ens, and as this happens, snaking sets in. When Γ is finite the resulting states are nothing
by the usual convectons, and the hole states therefore reconnect to the primary branch of
periodic states when these are still of very small amplitude. In contrast, the small dip in the
states Meven and Modd does not broaden as one moves away from the bifurcation, although
it deepens forming a defect in an otherwise periodic wavetrain (see Fig. 17). On the real
line states of this type describe a periodic array of defects in a periodic wavetrain, with
defect period Γ.

3.2 Neumann Boundary Conditions (NBC)

Neumann boundary conditions require that the lateral walls are free-slip and no-flux but
translation invariance is now absent. All solutions with NBC on a domain Γ can be con-
structed from the set of PBC solutions with period 2Γ simply by translating the PBC
solutions and keeping those that satisfy NBC on the smaller domain. This construction
works because of the presence of “hidden” symmetry [5]. Observe that even solutions with
NBC set in via a pitchfork bifurcation from the conduction state but set in via a transcrit-
ical bifurcation with other boundary conditions respecting reflection symmetry. Moreover,
solutions with NBC have a well-defined mode number that specifies the number of “wave-
lengths” in the domain; in contrast, with generic boundary conditions the number of cells
is not fixed, and will in general change as parameters are varied. All this is a consequence
of hidden symmetry inherited from the translation invariance of the PBC problem within
which the NBC problem is embedded.

In Fig. 18(a) we show an even solution at R = 1920 satisfying NBC with Γ = 14. The
location of this solution is indicated in Fig. 18(b) using a solid dot. The solution satisfies
PBC with period 2Γ, and terminates on a branch labeled SOC14 consisting of 14 cells
within Γ. Of course SOC14 is the same as (a segment of) P7 but we no longer have periodic
boundary conditions and cannot therefore refer to SOC14 as a periodic state. Figure 18(a)
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Figure 18: Even parity states with NBC and Γ = 14. (a) Convecton (top panels) and hole
(bottom panel) states at R = 1920. These solutions are related by a hidden translation.
(b) The corresponding bifurcation diagram showing a single branch of localized states LC
(convectons). The dot indicates the location of both profiles in (a).

Figure 19: Wall states with NBC and Γ = 14. (a) Two different wall states LW at points
indicated in the bifurcation diagram in (b). The wall states snake with double the frequency
of the LC states in Fig. 18, superposed for comparison.

also shows that despite NBC (which destroy translations) we can still construct a hole state
from a convecton state by embedding the problem in the PBC problem with 2Γ, performing
the translations there, and reimposing NBC. It follows that there should only be one branch
of localized solutions in Fig. 18(b) despite the fact that the convecton and hole states in
Fig. 18(a) are not related by any of the reflection symmetries respected by NBC! All this
is a consequence of the fact that with NBC one can reflect a solution in the lateral wall
without introducing discontinuities (“cusps”) in derivatives – a fact that guarantees that the
solution with its reflection solves the partial differential equation in the doubled domain.

We can use the above procedure to construct a “wall-attached localized state,” i.e., a
nonlinear wall mode, as shown in Fig. 19(a). This solution also satisfies NBC with Γ = 14
and PBC with Γ = 28 and resembles the type of state computed by Ghorayeb & Mojtabi
[6]. These wall modes also snake, as indicated by blue dashed lines in Fig. 19(b). The figure
shows, moreover, that the snaking occurs with twice the frequency of the LC states shown
in Fig. 18(a). This is because these states are really states with period 2Γ, because of the
hidden symmetry, instead of the period Γ of the LC state. Because of this each back-and-
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Figure 20: Odd parity states with NBC and Γ = 14. (a) Localized convectons LC termi-
nate on SOC13. (b) Localized holes LH terminate on SOC15. Each termination point is
accompanied by branch of even parity mixed modes labeled M.

forth oscillation on the snaking branch results in the addition of two cells to LC (one on
either side) but only one cell to LW. Thus twice as many oscillations are required in order
to fill the domain. Note that the larger intrinsic period 2Γ implies that the LW terminate
closer to the fold on SOC14 than the LC branch as this distance decreases with increasing
aspect ratio of the system [2].

We can also apply the above procedure to odd parity states, as shown in Fig. 20. The
result is now different because convectons and holes are no longer related by a hidden
symmetry. As a result the LC states terminate on the branch SOC13 of 13 rolls in the
domain while the LH states terminate on the branch SOC15 of 15 rolls in the domain. Note
that both SOC13 and SOC15 have odd parity. Since LC and LH now terminate on different
branches it follows that each termination point must involve a second branch of modulated
states as well. These missing states must have even parity since each Eckhaus bifurcation
generates states of either type, and these take the form of the nonsnaking mixed modes
already described (Fig. 20).

3.3 Insulating closed container boundary conditions (ICCBC)

The above construction does not work as soon as the boundary conditions differ from NBC.
Nonetheless, the procedure suggests the type of states that may be present with the more
realistic ICCBC. All such solutions will necessarily have defects at the boundaries owing
to the no-slip velocity boundary condition. Figure 21 shows examples of even localized
structures at two locations in the bifurcation diagram. As already mentioned the branch
undergoes a smooth transition from snaking to a large amplitude domain-filling state with
a defect at either lateral wall. This is also the case for odd parity localized structures as
shown in Fig. 22. Similar bifurcation diagrams are encountered in the Swift-Hohenberg
model with mixed (Robin) boundary conditions where the details of the breakup of the
NBC bifurcation diagrams as the boundary conditions are changed and the transition to
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Figure 21: (a) Two different even parity convectons with ICCBC and Γ = 14. (b) The
corresponding solution branch with dots denoting the location of the states in (a).

Figure 22: (a) Two different odd parity convectons with ICCBC and Γ = 14. (b) The
corresponding solution branch with dots denoting the location of the states in (a).

“snaking without bistability” can be investigated [8].
Finally, we can also find examples of the wall-attached modes predicted by the NBC

construction. Figure 23(a) shows two such states while Fig. 23(b) shows the corresponding
solution branch (dashed), with the branch of even parity LC states superposed for com-
parison. We see that the LW branch oscillates back-and-forth with twice the frequency of
the LC branch, exactly as in the NBC case, and for the same reason. However, once the
domain is almost full the LW branch terminates on the LC branch – in the ICCBC case this
is possible since the defect at the right wall can broaden sufficiently to resemble the partly
filled vicinity of the left wall (or vice versa), thereby restoring reflection symmetry to the
solution.

It remains to mention that the stability properties of these states have not been inves-
tigated in detail.
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Lecture 10: More applications

Edgar Knobloch: notes by Duncan Hewitt and Pedram Hassanzadeh
with substantial editing by Edgar Knobloch

January 9, 2013

1 The Swift-Hohenberg Equation as a Model

The Swift-Hohenberg equation has proved to be a very useful model system for studying
the properties of spatially localized structures in physical systems. This is because of the
following properties:

• The equation is fourth order in the spatial variables

• The equation has an intrinsic length scale 2π/qc

• The equation is spatially reversible

• The equation exhibits bistability due to competing nonlinear terms

• The equation is relatively easy to analyze, at least in one dimension.

The main reason the equation can be understood in such detail is a consequence of the
spatial reversibility and the fact that it can be written as a variational problem,

ut = −δF
δu

where F =

∫ ∞
−∞

dx

[
−1

2
ru2 +

1

2

[(
q2c +

∂2

∂x2

)
u

]2
−
∫ u

0
f(v)dv

]
. (1)

In this section we consider the symmetries of the Swift-Hohenberg equation in one spatial
dimension, and examine the effects of breaking some of these symmetries. In the following
sections we will use these results as a basis for examination of more complex systems, such
as those arising in fluid mechanics.

1.1 Two Cases: SH23 and SH35

We first look at two cases of the Swift-Hohenberg equation with different nonlinear terms,
and different corresponding symmetries, namely, SH23 and SH35.

SH23 has f(u) = b2u
2 − u3 and the following reflection and translational symmetries:

• R1 : x −→ −x, u −→ u

• T : x −→ x+ d, u −→ u.

151



(a) SH23 (b) SH35

Figure 1: Growth along the L0 branch of states with even symmetry. The pinning region
is shaded. (a) SH23. (b) SH35. From [3].

As a result there are two types of localized solutions, those fixed by R1 (even states L0,
Lπ), and asymmetric “rung” states with no symmetry, together with their translates.

SH35 has f(u) = b3u
3 − u5 and the following reflection and translational symmetries:

• R1 : x −→ −x, u −→ u

• R2 : x −→ x, u −→ −u

• T : x −→ x+ d, u −→ u.

As a result there are three types of localized solutions: those fixed by R1 (even states L0,
Lπ) and their translates; those fixed by R1oR2 (odd states Lπ/2, L3π/2) and their translates,
and asymmetric “rung” states. It is important to observe that L0 and Lπ are related by R2,
and likewise for Lπ/2, L3π/2. Consequently the bifurcation diagram in Fig. 1(b) contains
only a single branch of even states and a single branch of odd states.

Figure 1 compares the growth along the L0 branches in SH23 and SH35 and shows that
SH35 has twice as many turns compared to SH23. It is therefore of interest to explore what
happens when the symmetry R2 of SH35 is progressively broken. How does the snaking
branch in Fig. 1(b) deform into the snaking branch in Fig. 1(a)? What are the consequences
of this process?

1.1.1 Variational case

To study the effect of breaking the R2 symmetry in SH35, we add a term εu2 to the right-
hand side SH35,

ut = ru− (1 + ∂2/∂x2)2u+ b3u
3 − u5 + εu2. (2)

When ε 6= 0 this equation, like SH23, possesses only R1 and T symmetries, and hence the
only symmetric states are L0, Lπ. The odd parity states Lπ/2, L3π/2 become states with no
symmetry and reconnect with the rung states forming two different types of branches: S
branches and Z branches [8]. Figure 2 shows the effect of breaking the R2 symmetry (for
ε = 0.03).
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Figure 2: The snakes-and-ladders structure in the variational case with ε = 0.03 and b3 = 2.
The solution branches for ε = 0 are shown dashed. For ε 6= 0 the even parity branch splits
into two distinct even parity states L0 and Lπ, while the odd parity states reconnect with
original “rung” states forming pairs of disconnected branches of asymmetric states referred
to as S and Z branches. The solutions u(x) at the saddle nodes: (a)–(d) are from the Lπ
branch, and (a’)–(d’) are from the L0 branch. (i)–(iv) are solutions at the saddle-nodes on
the S branches, and (i’)–(iv’) are from the Z branches. From [8].

Figure 3 shows the effect of increasing ε for the variational case (2). Both symmetric
and asymmetric states are stationary, and the Z branches are stretched by increasing ε.

1.1.2 Nonvariational case

We can also break the R2 symmetry by adding the term ε(∂u/∂x)2 to SH35. The new
equation, i.e.,

ut = ru− (1 + ∂2/∂x2)2u+ b3u
3 − u5 + ε(∂u/∂x)2, (3)

is not variational, i.e., it cannot be written in the form (1). The effect of increasing ε in this
case is qualitatively similar to the variational case. However, here the asymmetric states
are no longer stationary, as shown in Fig. 4.

Because (asymmetric) states are now nonstationary, we can consider the effect of colli-
sions between two such states. Figure 5(a) shows a collision between two identical localized
states drifting in opposite direction. The result is a symmetric (and, therefore, stationary)
state. In contrast, Figs. 5(b)–5(e) show that collisions of nonidentical states can lead to
other types of behavior. The collisions result in either stationary (symmetric) states or
moving (asymmetric) states. The outcome of the collision is determined in general by the
shape of the approaching fronts – whether these are like (in phase) or unlike (out of phase).
See Figs. 5(b)–5(e) and [8] for more details.
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Figure 3: The effect of increasing ε in the variational case, with b3 = 2: only one S and one
Z branch is shown. In (b) the S branch has vanished and the Z branch has straightened
out. From [8].
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Figure 4: (a) The S and Z branches in the nonvariational case when ε = 0.01 and b3 = 2.
(b) The corresponding drift speed c; when ε 6= 0 c is generically nonzero although it can
vanish at isolated values of the bifurcation parameter r. From [8].
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Figure 5: Space-time diagrams showing the collision of different states, for r = −0.65,
b3 = 2 and ε = 0.1: (a) two identical states, resulting in a symmetric state; (b)–(e) noniden-
tical collisions, resulting in either symmetric (stationary) or asymmetric (moving) localized
states. Time increases upward. From [8].

In all cases the collisions are inelastic and the length of the final state exceeds the
combined length of the colliding states. This is a consequence of the fact that additional
nucleation events take place just before the collision.

2 Applications

We now briefly consider the relevance of the Swift–Hohenberg results to several physical sys-
tems. Specifically we consider (1) collisions between convectons, and (2) ‘multipulse’ states
(multiple localized states in the domain) in systems which share the symmetry properties
of the Swift-Hohenberg equation, but not its variational behavior.

2.1 Binary fluid convection

Two-dimensional binary-fluid convection was discussed in lecture 9. In particular lecture 9
described in some detail the properties of spatially localized solutions termed convectons.
We use this same system now to generate moving convectons. To do so we relax the
midplane symmetry of the system that was imposed through the use of the Boussinesq
approximation and of identical boundary conditions at top and bottom. In the following we
retain the Boussinesq approximation and imagine the top and bottom boundaries in contact
with appropriate heat baths, of temperature TU and TL, respectively, with flux boundary
conditions

dT−
dz

= −B−
d

(TL − T−) at z = 0, (4)

dT+
dz

= −B+

d
(T+ − TU ) at z = l, (5)

where l is the depth of the layer, T+ and T− are the temperatures immediately outside
the upper and lower heat baths (which vary in time), and B± are the Biot numbers of the
boundaries: B = 0 corresponds to insulating boundaries, while B =∞ corresponds to pure
conducting boundaries. The key observation here is that, if B+ 6= B−, these boundary
conditions mark a departure from the symmetric conditions imposed in lecture 9.

The system is characterized by cross-diffusion such that the concentration field is coupled
to the temperature field: the effects of this coupling are described by a separation ratio S.
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Binary fluid convection with β = 1

Newton’s law of cooling:

(1 − β)θz + βθ = 0 on z = 1, θ = 0 on z = 0.
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(a) (b)

Figure 6: (a) Bifurcation diagram for β = 1 showing odd (blue curve) and even (red curve)
states together with the asymmetric states (black curves). (b) Contours of constant temper-
ature fluctuation (upper panels) and concentration (lower panels) for traveling convectons
on the rungs of the snakes-and ladders bifurcation diagram. The location of each state is
indicated by dots in (a). Parameters: S = −0.1, σ = 7, and τ = 0.01. From [12].

Here (as in lecture 9) we assume that S < 0, such that the heavier molecular weight fluid
migrates up the temperature gradient, towards the hotter bottom boundary. As a result
we have bistability between the background conduction state and the periodic convecting
state. The brief overview that follows is based on [12], where further details may be found.

In order to characterize the amplitude of convection and construct a bifurcation diagram
we must define a parameter that characterizes the system, i.e., we need a parameter that
remains fixed even during time-dependent evolution of the system. The usual Rayleigh
number, defined in terms of the temperature drop ∆T across the fluid layer, is inappropriate
as soon as the temperature of the boundaries can change in response to the heat deposited
by flow, in other words, as soon as the boundaries fail to be perfectly conducting. For
this purpose we define the Rayleigh number Ra in terms of the temperature difference ∆T ′

across the layer in the conduction state [12]. When the boundaries are perfectly thermally
conducting this definition reduces to the usual definition. We also define the Prandtl number
σ = ν/κ, the ratio of viscosity to thermal diffusivity, and the Lewis number τ = D/κ,
the ratio of compositional to thermal diffusivity. In the following we assume that the
lower boundary is perfectly conducting (B− = ∞) and suppose that the upper boundary
is characterized by a finite Biot number B+. Under these conditions the thermal boundary
conditions (4) and (5), written in terms of dimensionless variables, become

(1− β) θz + βθ = 0 on z = 1, θ = 0 on z = 0, (6)

where θ is the dimensionless departure of the temperature from its conduction profile. Here
β is the effective Biot number of the upper boundary and is given by β ≡ B+/(1+B+). We
also impose no-slip impenetrable boundary conditions on the upper and lower boundaries.
It follows that β = 1 implies that the system is symmetric, with a perfectly conducting
boundary at z = 1 as well as z = 0. If instead β = 0, the upper boundary is perfectly
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Binary fluid convection with heat loss: β = 0.95
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Binary fluid convection with heat loss: β = 0.50
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Binary fluid convection with heat loss: β = 0.30
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Binary fluid convection with heat loss: β = 0
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(a) β = 0.95 (b) β = 0.5

(c) β = 0.3 (d) β = 0

Figure 7: Left panels: bifurcation diagrams showing the even parity states generated by
splitting of the β = 1 even states and the S and Z states resulting from the reconnection
between the β = 1 odd states and the asymmetric rung states, for different values of β.
Right panels: velocity c of the S and Z states. The parameter values are given in Fig. 6.
From [12].

Binary fluid convection with heat loss: β = 0.9
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Binary fluid convection with heat loss: β = 0.9
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(b)

Figure 8: Space-time plots showing two different collisions of two states, with S =-0.5,
β = 0.9, σ = 0.6, τ = 0.03, and Ra = 2750. The collisions result in complex dynamics and
the generation of waves, and ultimately end up in a symmetric state higher up the snaking
branch than either of the initial states. From [12].
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insulating. Thus the departure of β from β = 1 provides a measure of the magnitude of the
breaking of the midplane reflection symmetry in this system.

It follows that when β = 1, the system has a midplane symmetry, and we then expect
that both odd and even solutions are present and stationary. Figure 6(a) shows the re-
sulting snakes-and-ladders bifurcation diagram and reveals that the asymmetric rung states
now drift (Fig. 6(a)). This is a consequence of the absence of variational structure of the
equations. Three of the resulting drifting convectons are shown in Fig. 6(b).

When β < 1 the midplane symmetry is absent, and the snakes-and-ladders structure of
the pinning region breaks up. The odd parity solutions and the rung states become drifting
S and Z states, just as in the case of SH35 with a nonvariational R2 symmetry-breaking
term. Figure 7 shows the bifurcation diagrams for a sequence of different values of β < 1
as specified below each pair of panels. The even parity solutions have split into two, and
the new S and Z states now drift. One can check [12] that the Z branch connects the two
even parity branches produced by the splitting of the even parity states while the S branch
connects an even parity branch to itself. The corresponding speeds of the S and Z states
are shown in Fig. 7(b).

Since some of states now move we can study collisions between them by direct numer-
ical integration in time, just as in the Swift-Hohenberg equation. The nice thing about
generating moving convection by breaking the midplane symmetry is that in principle one
has access to multiple drifting states of different lengths, all of which are simultaneously
stable. However, it turns out that for the parameter values used in lecture 9 the drifting
convectons are unstable. This is no longer so for the parameter values characteristic of liq-
uid 3He-4He mixtures and in Fig. 8 we show two of the resulting collisions [12]. Unlike the
Swift-Hohenberg equation, this system supports waves, and the collisions result in complex
dynamics. However, ultimately a new symmetric state is formed with a greater width than
either of the incident convectons, just as in the Swift-Hohenberg equation.

The correspondence between the behavior of this complex physical system and the cor-
responding behavior in the Swift-Hohenberg equation is striking. The reason that the Swift-
Hohenberg equation is so successful at describing complex systems of this type is ultimately
due to the presence of a tangency between the unstable manifold of a homogeneous state
and the stable manifold of a periodic orbit. Once these manifolds intersect transversely as
described in lecture 8 the intersections are robust and hence insensitive to (small) changes
in parameter values, and indeed in the equations and boundary conditions themselves.

2.2 Binary fluid convection in a porous medium

Next we consider binary fluid convection in a two-dimensional fluid-saturated porous layer,
characterized by porosity ε and a separation ratio S, which controls the separation between
lighter and heavier components. Again, if S < 0 the heavier component migrates toward
the hotter boundary. As in the bulk binary fluid convection case discussed in lecture 9,
the competing effects of composition and temperature on the density lead to bistability
between the background conduction state and a periodic convecting state. The discussion
of the section is based on [10], to which the reader is referred for more information.

The flow u = (u,w) in the porous medium is described by Darcy’s law and is incompress-
ible, while the temperature T and concentration C satisfy advection-diffusion equations.
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Figure 9: (a) Bifurcation diagram showing secondary branches of localized states connecting
different periodic states. The inset shows enlargements of the behavior near the onset and
termination of the secondary branches. The snaking region is not resolved on this plot.
(b) The snaking region from (a), showing (i) examples of even (solid) and odd (dashed)
single-pulse states, and (ii) equally spaced two-pulse states. The parameters are τ = 0.5
and S = −0.1. From [10].
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Figure 10: Line plots of the midplane vertical velocity w (i) and the streamfunction (ii) up
the snaking region, for τ = 0.5 and S = −0.1: (a) even parity state; (b) odd parity state;
(c) even and odd states for two convectons. From [10].
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These equations are given in dimensionless form by

u = −∇p+Ra (T + SC) ez, ∇ · u = 0, (7)

∂tT = − (u · ∇)T +∇2T, (8)

ε∂tC = − (u · ∇)C + τ
(
∇2C −∇2T

)
. (9)

To obtain these equations we have used a linear equation of state ρ = ρ0(1 − α(T − T0) +
β(C−C0), where α > 0 and β > 0 are the constant coefficients of thermal and compositional
expansion, respectively. The dimensionless parameters are the Lewis number τ = D/κ, the
Rayleigh number Ra = gα∆T l/λκ, and the separation ratio S = Ssoretβ/α < 0. Here λ is
the Darcy friction coefficient and l is the layer depth.

The boundary conditions are given by

w = T − 1 = (C − T )z = 0 at z = 0, (10)

w = T = (C − T )z = 0 at z = 1, (11)

and are periodic in the x direction with period Γ. We consider the departure from the base
(conduction) state T = 1 − z, C = 1 − z, u = 0, given by the variables (θ,Σ,u). The
equations for these variables have important symmetry properties:

• Invariance under translations in x;

• Invariance under reflection with respect to x = 0 (R1);

• Invariance under reflection with respect to z = 1/2 (R2).

With periodic boundary conditions in the horizontal, these operations generate the sym-
metry group O(2)× Z2, and as a consequence we expect the equations to exhibit behavior
that is qualitatively similar to that already described for SH35. Figure 9(a) demonstrates
that this is indeed the case. The figure reveals the presence of several subcritical branches
of periodic states of which the branch P20 sets in first. This is a consequence of choosing
a periodic domain Γ = 20 for the computations. The figure also shows three pairs of sec-
ondary branches of localized states, all of which snake. In particular, the branches labeled
L1±
20 bifurcate together from P20 at smallest amplitude and terminate together on P17. The

reason why on finite periodic domains the snaking branches may terminate on a different
periodic state than the one they bifurcate from (or indeed on two different branches) can be
traced to the Rayleigh number dependence of the wavelength within the localized structure
as discussed in detail in [2]. Figure 10(a) shows the even parity states L1+

20 at successive
left saddle-nodes proceeding up the snaking diagram while Fig. 10(b) shows similar results
for the odd parity states L1−

20 . Both are single-pulse states in the sense that as Γ → ∞
the phase space trajectory returns to the conduction after a single visit to a neighborhood
of the limit cycle corresponding to the periodic state. In contrast, the branches L2±

20 bi-
furcate from P20 at larger amplitude (and terminate on P18) because they are branches of
equidistant two-pulse states (Fig. 10(c)). The states L2+

20 consist of a bound state of two
identical even parity pulses in the domain Γ, while L2−

20 consists of a bound state of two
identical odd parity pulses in Γ. Since the pulses are equidistant they behave exactly like
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single-pulse states in a domain Γ/2 as seen in Fig. 9(a). As mentioned in lecture 7 this is no
longer the case for unequally spaced two-pulse states which are located on isolas within the
snaking region. In contrast, the two-pulse states L1+

21 bifurcating from the second primary
branch P21 consist of a bound states of opposite even parity states, i.e., equidistant bound
states of a pulse with a maximum in the middle and a pulse with a minimum in the middle.
Similarly, L1−

21 are equidistant bound states of two opposite odd parity states (with opposite
slopes on their centerline).

Lo Jacono et al [10] also study the various tertiary branches analogous to the rung states
in standard homoclinic snaking but this time connecting the branches of two-pulse states.
Related results based on SH23 are described in [9].

2.3 Rotating convection

For a different application, we look at the classical problem of rotating Rayleigh-Bénard
convection in two dimensions [13]. For this problem, the governing equations are

Raθx − Ta vz +∇4ψ = σ−1 [∇2ψt + J(ψ,∇2ψ)] (12)

ψx +∇2θ = θt + J(ψ, θ) (13)

Taψz +∇2v = σ−1 [vt + J(ψ, θ)], (14)

where the three-dimensional velocity field in the rotating frame is u = (−ψz, v, ψx) with
poloidal streamfunction ψ, and J(f, g) ≡ fxgz − fzgx. Here v(x, z, t) is the zonal velocity,
θ is the departure of the temperature from the pure conduction profile T = 1 − z, σ ≡
ν/κ is the Prandtl number and Ra ≡ gα∆T l3/νκ is the Rayleigh number, where ∆T is
the temperature difference across a fluid layer of height l. The importance of rotation
is measured by the Taylor number Ta = 2Ωl2/ν (inverse Ekman number), where Ω is
the (constant) rotation rate about the vertical axis. Following [13], we use the stress-free
boundary conditions at z = 0, 1,

ψ = ψzz = θ = vz = 0. (15)

With these boundary conditions

dV̄

dt
= 0, where V̄ ≡

∫
D
v(x, z, t)dxdz , (16)

where D refers to the domain [−Γ/2,Γ/2]× [0, 1]. Thus the total zonal momentum V̄ is a
conserved quantity. See [1] for further details. The vertically averaged zonal momentum,
V (x) ≡

∫ 1
0 v(x, z)dz, satisfies

σ
dV

dx
= −

∫ 1

0
ψzvdz , (17)

implying that in steady states a horizontal zonal shear is balanced by the Reynolds stress
on the right side of the equation. In the following we introduce the quantity ∆V ≡ V (x =
L/2)−V (x = −L/2) that measures the zonal velocity difference across a convecton of length
L. This is always anticyclonic, i.e., ∆V < 0 (see Fig. 12 and 13).

Figure 11 shows the bifurcation diagrams for the average poloidal kinetic energy E ≡
1/(2Γ)

∫
D(ψ2

x + ψ2
y)dxdy as a function of Ra in the subcritical and supercritical regimes.
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Figure 11: The average poloidal kinetic energy as a function of Ra showing slanted snaking.
(a) The subcritical case with Ta = 20, σ = 0.1. (b) The supercritical case with Ta = 40,
σ = 0.6. The label Pn refers the periodic solutions with n wavelengths within the domain
Γ = 10λc; P10 bifurcates subcritically in (a) and supercritically in (b). From [1].

The behavior of the snaking region is notably different from that of the Swift–Hohenberg
equation that we have seen before: Fig. 11(a) (subcritical) shows that the snaking exists
beyond the bistability region, and Fig. 11(b) shows that the presence of snaking even in
the supercritical case. In both cases, the two intertwined branches form slanted snaking [1].
The dramatic change in the snaking scenario is a result of the finite period Γ of the domain
together with the conservation of zonal momentum, cf. [5, 11]. In the limit that Γ → ∞
or if the free-slip boundary condition is replaced with no-slip boundary conditions, the flux
conservation will be lost and snaking is expected to become vertical as in the standard
snaking scenario (cf. the Swift-Hohenberg equation).

Figures 12 and 13 present the solution profiles corresponding to Figs. 11(a,b), respec-
tively. These results show that cyclonic shear in the convecton-free zones compensates the
anticyclonic shear produced by the convectons and is a consequence of periodic boundary
conditions with finite period Γ. The solutions in both cases grow in the same manner as one
proceeds up the snaking branches despite the fact that in Fig. 11(b) no distinct nucleation
events take place, i.e., no saddle-nodes are present. This type of snaking has been called
“smooth snaking” [6].

Slanted snaking is a consequence of the expulsion of shear from the convecton – negative
shear implies that the structure rotates more slowly than the frame. Conservation of zonal
momentum now implies that the flow outside the convecton must rotate faster, i.e., that the
resulting convecton is embedded in a shear layer that it generates for itself. To understand
this process in a little more detail we write Ra = Rac + ε2r, where r = O(1), ε � 1, and
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introduce slow scales X = εx and T2 = ε2t. We look for solutions in the form [4]

ψ =
ε

2

(
a(X,T2)e

ikx + c.c.
)

sin(πz) + h.o.t., (18)

θ =
εk

2p

(
ia(X,T2)e

ikx + c.c.
)

sin(πz) + h.o.t., (19)

v = εV (X,T2) +
εTπ

2p

(
a(X,T2)e

ikx + c.c.
)

cos(πz) + h.o.t. (20)

The large scale zonal velocity V is necessary to capture the shear that builds up across a
convecton and enters at O(ε); its inclusion is a consequence of the phase-like quality of the
variable v, i.e., the invariance of Eqs. (12)–(14) with the boundary conditions (15) with
respect to v → v + c, where c is a constant. At third order we obtain the equations [4]

p(3k2σ − k2 + 2π2)

σk2
aT2 = ra+ 12paXX −

3pk2

8
(1− ξ2)|a|2a− Tπ2

σk2
aVX , (21)

VT2 = σVXX +
Tπ2

4p

(
|a|2
)
X
, (22)

where ξ ≡ Tπ2√
3pk2σ

> 0. In rescaled form these equations become

ηAT2 = rA+AXX −
1− ξ2

2
|A|2A− ξAVX , (23)

VT2 = VXX + ξ
(
|A|2

)
X
, (24)

where η ≡ 3k2σ−k2+2π2

12k2
. The quantity η vanishes at the Takens-Bogdanov point RaH = Rac

where RaH is the critical Rayleigh number for the onset of a Hopf mode with the same
wavenumber k. In the present work we are interested in the case in which the conduction
state loses stability at a steady state bifurcation, i.e., a Hopf bifurcation is absent. In this
case η > 0.

In the stationary case with PBC on the large scale X Eq. (24) implies that

VX = ξ
(〈
|A|2

〉
− |A|2

)
, (25)

where 〈·〉 represents a spatial average over the domain. Thus VX > 0 if |A|2 <
〈
|A|2

〉
, i.e.,

outside the convecton, while VX < 0 if |A|2 >
〈
|A|2

〉
, i.e., inside the convecton, exactly as

found in Figs. 12 and 13. Moreover, using Eq. (25) to eliminate VX from Eq. (23) we obtain
the nonlocal equation [4]

rA+AXX −
1

2
(1− 3ξ2)|A|2A− ξ2

〈
|A|2

〉
A = 0. (26)

If follows that there are four possible scenarios for the primary–secondary bifurcations with
PBC: (1) both bifurcations are subcritical (ξ2 > 1), (2) the primary bifurcation is super-
critical while the secondary bifurcation is subcritical (3/7 < ξ2 < 1), (3) both bifurcations
are supercritical (1/3 < ξ2 < 3/7), and (4) the primary bifurcation is supercritical but no
secondary bifurcation is present (ξ2 < 1/3) [1, 7]. When the domain period Γ is sufficiently
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Convectons in a Rotating Fluid Layer 13
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Figure 13: Solution profiles at successive saddle-nodes on (a) L−10, (b) L+
10 in Fig. 11(b)

(supercritical case). Upper panels show the contours of the streamfunction ψ(x, z), and the
lower panels show V (x). From [1].
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Supercritical case: Γ = 10λc , σ = 0.6

Ra/Rac

T

Beaume et al., J. Fluid Mech., submitted (2012)Edgar Knobloch (UC Berkeley) Localized patterns June 2012 55 / 58

Ta

Figure 14: The existence region of convectons in the (Ra, Ta) plane when σ = 0.6, with the
onset of periodic convection marked as a vertical line. From [1].

large the secondary bifurcations that form convectons occur at small enough amplitude that
the transitions are captured wall by the abobe asymptotic analysis.

The range of existence of localised states in Ra depends on both the Taylor number
Ta and the Prandtl number. For sufficiently large values of Ta, or for values of Ta that
are too small, there are no localized states, as shown in Fig. 14. For small values of Ta,
there are no localized states because the rotation is too weak for shear expulsion to take
place. For Ta & 60, the wavelength of the localized states decreases significantly, due to
the requirements of the Taylor-Proudman theorem and for Ta & 110 the convectons are
sheared out and the average poloidal kinetic energy of the states decreases to zero. Further
details and discussion of the effect of changing Ta can be found in [1].
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Thixotropic gravity currents
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1 Introduction

Fluids that undergo reversible and time-dependent changes to their internal structure as a
result of flow are called thixotropic. Specifically, the internal structure of a thixotropic fluid
is broken down by the presence of flow, while in the absence of flow, the structure rebuilds,
and the fluid is said to ‘heal’ over time. Typically, the break-down of structure is relatively
rapid, while the rebuilding of structure is slow.

Thixotropic behaviour has been reported in a wide range of fluids [6, 18]. Industrial
drilling fluids and cements, printing inks and paints, oils and grease, biological fluids (e.g.
blood), and food products such as mayonnaise, yoghurt, and ketchup have all been shown to
exhibit elements of thixotropy. More complex fluids, such as dry foams and granular media,
also exhibit many of the same phenomena as thixotropic fluids [12]. In nature, mineral
slurries and certain mud and clay suspensions are thixotropic: part of the motivation for
this study comes from mudslides, in which large volumes of mud can suddenly become
‘de-structured’ and catastrophically fail.

Thixotropic fluids are most commonly colloidal suspensions, with a microstructure that
exhibits weak attractive forces between particles: this leads to flocculation and ‘structuring’
in the fluid at rest, while flow-induced mechanical stresses can break down this structure.
On a macro-scale, this behaviour can be described by variations in the fluid viscosity.
Thixotropic fluids are, therefore, typically modelled with a non-Newtonian variable viscosity,
which decreases dramatically in the presence of shear, but increases slowly when the fluid is
at rest. This rheology gives rise to a variety of phenomena: variable yield-stress behaviour,
hysteresis in the constitutive relationship, and ‘jamming’ or ‘avalanching’ in the fluid (see,
e.g. [1, 7, 10, 19]). We will examine these features in this report.

There has been a relatively wide range of work presenting rheological measurements
and models for thixotropic fluids (see section 2). However, there have been very few studies
that incorporate this rheology into a physical scenario. In this report, we consider the flow
of a finite shallow layer of thixotropic fluid down an inclined plane under the action of
gravity. Such a system has been well studied in the case of a Newtonian fluid [15, 16], and
an ideal yield-stress (e.g. Bingham) fluid [4, 14, 17]. A previous study of a ‘dam-break’
of thixotropic fluid [8] has explored the gravity-driven flow of a (non-shallow) thixotropic
fluid by tracking characteristics. There are, however, currently no systematic studies of the
shallow thixotropic gravity current on a slope. Brief experimental observations of such a
system by Coussot et al. [10], using bentonite clay, have suggested that this system can
exhibit dramatic ‘avalanche’ behaviour: they found that fluid inclined at a certain angle
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will not move at all, while fluid inclined at a slightly larger angle will dramatically collapse
and flow rapidly down the inclined plate. In the latter case, they observed that a structured
‘horseshoe’ of fluid at the back of the current remained immobile, while the front of the
current flowed down the slope. In the present study, we attempt to reproduce and explore
such behaviour experimentally, and to describe it theoretically and numerically.

The report is structured as follows. In section 2, we discuss the rheological model of
thixotropy that we will employ, including our simplifying ‘rapid-transit’ approximation. In
section 3, we outline the governing equations for flow in a shallow layer (directly following
[2]). In section 4, we present numerical results of the system, in both two and three dimen-
sions, and discuss the main qualitative features of the flow. In section 5, we examine the
stability of the system, and show that the flow is unstable to a form of interfacial instability.
In general, this instability is relatively benign, in that it does not significantly destabilise the
flow. Finally, in section 6 we present experimental results of the system using two different
thixotropic fluids: a bentonite clay solution, and Heinz tomato ketchup. Broadly speaking,
the experimental results show good qualitative agreement both with previously published
observations [10], and with our numerical simulations.

2 Thixotropic model

2.1 Basic rheological model

A range of rheological models that describe the effects of thixotropy have been proposed
(see, e.g. [6, 18]). Many of these models employ a time-dependent structure parameter λ(t)
to describe the amount of internal structure in the fluid [1, 10, 13, 19, 21]. The viscosity
µ(λ) is then given as a prescribed function of the structure parameter. The constitutive
equation for such a fluid, which relates the deviatoric stress tensor τij to the rate of strain
tensor γ̇ij , is given by the generalised Newtonian form,

τij = µ[λ(t)] γ̇ij . (1)

In this report, we use a rheological model of this form, which is outlined and discussed
below. Our model is adapted from models presented by Coussot et al. [10, 11] and by
Moller et al. [19, 20]. The main difference in our model is the (implicit) inclusion of an
‘absolute yield stress’, above which the fluid will flow irrespective of its structure: this
removes an unphysical feature of the previous models, namely that infinite-viscosity fluid
remains so for arbitrarily large stresses.

The structure parameter lies in the range 0 6 λ 6 1: λ = 1 corresponds to fully
structured fluid, and λ < 1 corresponds to fluid that is de-structured to some degree. The
structure parameter is assumed to satisfy an evolution equation of the form

Dλ

Dt
=

1− λ
T
− αλγ̇, (2)

where γ̇ =
√
γ̇ij γ̇ij/2 is the second invariant of the rate of strain tensor γ̇ij , T > 0 is

the constant ‘healing timescale’ for the fluid, and α > 0 is a constant that controls the de-
structuring of the fluid by the flow. The two terms on the right-hand side of (2) correspond,
respectively, to the rebuilding or ‘healing’ of the fluid structure at rest, and the destruction
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Figure 1: Phase diagram for λ, given by (4), for Γ = 20, β = 0.9, and increasing values of
the stress τ as marked. There is a bifurcation at the critical value τC = 4β/Γ: below this
stress, the only fixed point is at λ = 1, which is stable, and corresponds to the structured
state; above this stress there are two additional fixed points λ1 < λ2 < 1, the lower of which
is stable. At a higher stress τ = τA = 1/Γ(1 − β), the unstable fixed point (λ2) reaches
λ = 1, and the fixed point at λ = 1 becomes unstable.

of structure by gradients in the flow. Empirical measurements [1, 7, 11, 20] suggest that
both T and α are typically large, such that destruction of structure is fairly rapid, while
regeneration of structure is very slow.

The structure parameter is related to the viscosity through an equation of the form

µ =
µ0γ̇

n−1

(1− λ)m (1− βλ)
, (3)

where µ0 is a constant reference viscosity, and m > 1, n, and 0.5 < β < 1 are constant
parameters. The viscosity increases with the structure λ, and diverges as the fluid becomes
fully structured (λ→ 1). Therefore, if the fluid is fully structured, the constitutive equation
(1) implies that the strain rate γ̇ is zero.

Throughout this report, for simplicity, we take the parameters m = n = 1, such that the
viscosity does not explicitly depend on the rate of strain γ̇. The model can be generalised to
give shear thinning or thickening behaviour (by changing n), or to give a different sensitivity
of the viscosity on the structure (by changing m).

The evolution equation for λ (2) can be re-written in terms of the second invariant of
the stress τ =

√
τijτij/2, using the constitutive equation (1) and the viscosity equation (3)

(here with n = m = 1), which gives

T
Dλ

Dt
= (1− λ) [1− Γλ (1− βλ) τ ] , (4)

where Γ = αT/µ0.
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Figure 2: Constitutive relationships (1), showing the stress τ against the rate of strain γ̇:
(a) schematic of the model relationship at the steady-state solutions of (4) (thick blue),
where dashed lines correspond to unstable fixed points, and the thin red arrows signify
the ‘rapid-transit’ (see section 2.3) hysteresis behaviour that might be expected in a stress-
ramp test; (b) measurements of 10 wt% bentonite clay under an increasing and decreasing
stress-ramp test, taken from [19].

2.2 Implications of the model

The phase diagram for λ from (4) is shown in figure 1. For sufficiently small values of the
stress, there is only one fixed point in the range 0 6 λ 6 1, which is stable, and located
at λ = 1. Therefore, if the stress is sufficiently small, the fluid always evolves towards the
fully structured state. However, at the critical stress τ = τC = 4β/Γ, there is a bifurcation
at λ = λC = 1/2β, and two additional fixed points λ1,2 are created:

λ1,2 =
1

2β

[
1∓

(
1− 4β

Γτ

)1/2
]
. (5)

The lower value, λ1, is a stable fixed point, which decreases as τ increases, while λ2 is
unstable and increases with τ . As the stress is increased further and reaches the absolute
stress τ = τA = 1/Γ(1− β), this unstable fixed point λ2 reaches λ = 1, and so, for τ > τA ,
the fixed point at λ = 1 becomes unstable. Therefore, if the applied stress is very large, the
fluid always evolves towards a de-structured state, corresponding to a small value of λ.

For a given value of the structure λ, there is a corresponding viscosity µ(λ), given by
(3), which defines a relationship between the stress τ and the rate of strain γ̇, given by the
constitutive equation (1). This relationship is plotted schematically for the fixed points of
(4) in figure 2(a). As discussed above, we can see that for small values of the stress τ < τC ,
the fluid will evolve to the structured state with γ̇ = 0 (λ = 1). For large stress τ > τA , the
fluid will evolve to a de-structured state, with γ̇ > 0 (λ� 1).

For intermediate values of the stress τC < τ < τA , the behaviour of the fluid will depend
on the stress history of the sample: in other words, it will depend on which side of the
unstable fixed point the structure parameter currently lies. The system therefore exhibits
hysteresis, as can be seen by considering a simple stress-ramp experiment. Suppose the
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fluid is initially fully structured, and a gradually increasing stress is applied. The shear
rate will remain zero until the stress exceeds the absolute stress, τ > τA . At this point,
the fluid will ‘de-structure’, λ will decrease towards the small stable fixed point, and γ̇
will increase towards the stable branch. If the stress is then decreased, the strain rate will
remain on the stable (non-zero) branch until the stress falls below τC , at which point the
structure parameter will evolve back towards λ = 1, and the shear rate will decay to zero.
Experimental results of such a test on bentonite clay are shown in figure 2(b).

It should be noted that if the fluid is not initially fully structured, such that λ < 1, then
the corresponding initial viscosity µI has some finite value. Alternatively, the viscosity of
a real fluid is unlikely to be unbounded, in which case µI represents the upper bound that
can be attained. In either case, we would not expect the rate of strain to remain zero as
the stress is increased: instead it should follow the linear constitutive relationship τ = µI γ̇.
The corresponding stress at which the fluid evolves to the ‘de-structured’ small-λ stable
branch would then be smaller than τA , and the effects of hysteresis would be smaller. This
behaviour can be seen in the experimental measurements of figure 2(b), where the initial
slope of the curve is not vertical.

The extent of hysteresis in the system is controlled by the parameter β. As the value of
β is increased towards 1, the value of τA increases towards ∞, while τC remains finite: the
size of the hysteresis loop therefore increases. Alternatively, as β is decreased towards 1/2,
τA → τC , and there is no hysteresis in the system. On setting β = 0 and ignoring the time
derivative in (4), this thixotropic rheology reduces to that for an ideal Bingham yield-stress
fluid, with yield stress 1/Γ.

It is worth, at this point, drawing a comparison between this thixotropic model (for non-
zero β) and models for ideal yield-stress fluids (i.e. Bingham or Herschel–Buckley models
[3]). The thixotropic model does incorporate the idea of a yield stress, as for stresses below
τC the strain rate always evolves to zero. However, there are some significant differences.
Firstly, in the thixotropic model the value of the ‘yield stress’ is dependent on the stress
history of the particular fluid element: the system exhibits hysteresis, and the extent of the
hysteresis loop in the constitutive relationship is given by the extent to which the fluid is
structured at that particular time. In contrast, in an ideal yield-stress fluid the yield stress
is constant. Secondly, in the thixotropic model there is a discontinuity in the steady-state
rate of strain at the ‘yield stress’, which has been described as a ‘viscosity bifurcation’
[11]: the viscosity, which is infinite for smaller stresses, discontinuously becomes finite and
relatively small as the stress is increased past the ‘yield stress’. In an ideal yield-stress fluid,
however, the viscosity varies continuously away from infinity as the stress is increased past
the yield stress. A more detailed discussion of the differences between thixotropic models of
this form and yield-stress models can be found in [20]. In sections 4 and 6, we will compare
the behaviour of thixotropic and ideal yield-stress fluids numerically and experimentally,
and show that there are significant phenomenological differences between the two types of
fluid.

2.3 Rapid-transit

Rheological measurements and observations of a variety of thixotropic fluids [1, 7, 11, 20]
have shown that there is a significant separation of timescales between the ‘healing’ time T ,
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Figure 3: Schematic showing the system under consideration: fluid of aspect ratio ε =
H/L� 1 on a slope of angle θ, in two dimensions.

which is typically large, and the timescale over which the fluid evolves to the steady state
under stress, which is often much smaller. Motivated by these observations, we make a
simplifying ‘rapid-transit’ approximation to the evolution equation for λ (4): the evolution
to the steady state is assumed to be instantaneous, and the material derivative is replaced
by zero. Equation (4) therefore becomes

(1− λ) [1− Γλ (1− βλ) τ ] = 0. (6)

The relevant root λ of (6) for a given stress τ is determined by the stability of the full
time-dependent equation (4).

The constitutive relationship (1) is then given exactly by the steady-state curve plotted
in figure 2(a). At the bifurcation points τ = τC and τ = τA , the structure parameter jumps
to the structured (λ = 1, γ̇ = 0) or de-structured (λ� 1, γ̇ > 0) branches, as shown by the
arrows in figure 2(a). For intermediate values of the stress τC < τ < τA , the corresponding
value of λ depends on the stress history of the fluid.

3 Gravity driven flow in a shallow layer

In this study, we incorporate the rheological ‘rapid-transit’ thixotropic model into the prob-
lem of shallow fluid flow on an inclined plane. In order to distinguish between dimensional
and dimensionless variables, in this section we denote all dimensional quantities with a ∗.
The problem formulation is independent of the rheology, and exactly follows that given in
[2].

3.1 Dimensional formulation

We consider the flow (u∗, w∗) of a finite volume of fluid of density ρ, in two dimensions
(x∗, z∗), where the x∗-axis is aligned along a slope inclined at a constant angle θ to the
horizontal. The fluid lies in a shallow layer, such that the typical depth scale H is much
smaller than the typical along-slope scale L. We define their ratio to be ε = H/L� 1. The
fluid has depth z∗ = h∗(x∗, t∗), as shown in figure 3.

The flow is incompressible,
∂u∗

∂x∗
+
∂w∗

∂z∗
= 0, (7)

173



and satisfies the Cauchy momentum equations,

ρ

(
∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ w∗∂u

∗

∂z∗

)
= ρg sin θ − ∂p∗

∂x∗
+
∂τ∗xz
∂z∗

+
∂τ∗xx
∂x∗

, (8)

ρ

(
∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ w∗∂w

∗

∂z∗

)
= −ρg cos θ − ∂p∗

∂z∗
+
∂τ∗xz
∂x∗

+
∂τ∗zz
∂z∗

. (9)

The deviatoric stress tensor τ∗ij is related to the rate of strain tensor γ̇∗ij by the constitutive
equation (1). The boundary conditions are given by no normal or tangential flow at the
base,

u∗ = w∗ = 0 at z∗ = 0, (10)

no normal stress at the upper boundary,(
τ∗ij − p∗δij

)
nj = 0 at z∗ = h∗(x∗, t∗), (11)

and the kinematic condition at the upper boundary,

∂h∗

∂t∗
+ u∗

∂h∗

∂x∗
− w∗ = 0 at z∗ = h∗(x∗, t∗), (12)

where n ∝ (−h∗x∗ , 1) is a vector that is normal to the surface z∗ = h∗. The kinematic
condition (12), combined with the continuity equation (7), gives

∂h∗

∂t∗
+

∂

∂x∗

∫ h∗

0
u∗ dz∗ = 0. (13)

3.2 Dimensionless formulation

We scale x∗ with L, z∗ with H, and the pressure p∗ with ρgH cos θ. We take a constant
velocity scale U , and scale u∗ with U , w∗ with HU/L, and time t∗ with L/U . The stress
τ∗ij is scaled with µ0U/H. We assume that the horizontal pressure gradients balance the

vertical gradients of the shear stress, and thus identify U = H3g cos θ/Lµ0.
As discussed above, we define the ratio H/L = ε � 1. With respect to dimensionless

variables, (8), (9), and (13) are given by

ε2Re

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= S − ∂p

∂x
+
∂τxz
∂z

+ ε
∂τxx
∂x

, (14)

ε4Re

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −1− ∂p

∂z
+ ε2

∂τxz
∂x

+ ε
∂τzz
∂z

, (15)

∂h

∂t
+

∂

∂x

∫ h

0
u dz = 0, (16)

where S = ε−1 tan θ, and the Reynolds number Re is given by Re = ρUL/µ0. The compo-
nents of the rate of strain tensor are given by

γ̇xx = −γ̇zz = 2ε
∂u

∂x
, γ̇xz =

∂u

∂z
+ ε2

∂w

∂x
. (17)

The stress boundary condition (11) becomes(
ετxx − p ετxz
ετxz −ετxx − p

)(
−ε∂h/∂x

1

)
= 0 at z = h(x, t); (18)
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3.3 Leading order equations

Under the assumption that S ∼ O(1) and Re is no larger than O(1/ε), the leading order
terms in ε from (14) and (15) give

0 = S − ∂p

∂x
+ µ

∂2u

∂z2
, (19)

0 = −1− ∂p

∂z
. (20)

Together with the leading order boundary conditions from (11), equations (19) and (20)
give

p = h− z, (21)

τxz = µ
∂u

∂z
=

(
S − ∂h

∂x

)
(h− z) . (22)

If the viscosity µ is a constant, (16) and (22) can be combined, and reduce to the usual
governing equation for a Newtonian viscous gravity current on a slope [16]. Here, instead,
the viscosity is given as a function of the structure parameter λ (3), and the structure
parameter λ(τ) is given by the rapid transit model, discussed in section 2.3. These equations
are given here in dimensionless form:

µ(λ) =
1

(1− λ) (1− βλ)
, (23)

(1− λ) [1− Γλ (1− βλ) |τxz|] = 0, (24)

where we have set the parameters n = m = 1, rescaled the parameter Γ as Γ = αT/ε, and
replaced the stress τ by |τxz| following (17). Since we expect α and T to be large, we also
typically consider Γ to be large.

3.4 Anatomy of the flow

Before we present our numerical results, it will be helpful to examine the anatomy of
the flow, which is shown schematically in figure 4. From the rheological model, and the
hysteresis behaviour shown in figure 2, we should expect changes in the fluid structure, and
thus changes in the flow, at the bifurcation stresses: that is, at the critical and absolute
values of the stress, τC and τA . In the shallow-layer formulation, the stress is dominated by
the shear stress τxz, which is given by (22), and is a linearly decreasing function of z. The
contour τ = τC therefore defines a surface z(τC ) 6 h. Above this surface, the stress is less
than the critical value, and, as such, the fluid is structured: λ = 1, and γ̇ = ∂u/∂z = 0.

Similarly, the contour τ = τA defines a surface z(τA) 6 z(τC ). Below this surface, the
stress is greater than the absolute value, and the fluid is de-structured: therefore λ � 1,
and ∂u/∂z > 0.

Between the two stress surfaces, z(τC ) < z < z(τA), the structure of the flow depends
on the history of each fluid element. Suppose that the fluid is initially fully structured.
Then, when the fluid is inclined, the de-structured fluid will be exactly bounded above by
the absolute stress surface z = z(τA). However, as the flow evolves, de-structured fluid
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Figure 4: Schematic showing the flow of thixotropic fluid down a slope of angle θ. The
height h(x, t) is shown in red. Lines of constant shear stress τ=τA and τ=τC are shown
dashed. Above the line τ = τC , the fluid is fully structured and λ = 1, while below the line
τ = τA , the fluid is de-structured and λ � 1. The yield surface z = Y (x, t) (green), which
separates structured and de-structured flow, is bounded by these stress contours. Between
the two contours, the structure of the flow is determined by the local stress history: in this
region the yield surface is a material curve which satisfies (26). The inset shows a typical
velocity profile u(z) through a slice of the flow as marked: u(z) increases from zero at the
base up to the yield surface, at which point there is a discontinuity in ∂u/∂z, and plug flow
in the structured region above the yield surface.

elements will remain de-structured until the stress falls below the critical stress τC . These
fluid elements will also move with the flow, and so there is a material curve which runs
between the two stress contours, and separates the structured and de-structured fluid.

We can, therefore, define a yield surface z = Y (x, t) which runs throughout the current
and separates the structured fluid above from the de-structured fluid below (figure 4). At
points in the flow where the absolute stress surface z(τA) is moving up into structured fluid,
the yield surface lies along this stress surface. Similarly, at points in the flow where the
critical stress surface is moving down into de-structured fluid, the yield surface lies along
this stress surface. Between the two stress surfaces, the yield surface is a material curve,
as discussed above. Therefore, in this region z(τC ) < z < z(τA) the yield surface satisfies a
kinematic condition,

∂Y

∂t
+ u

∂Y

∂x
− w = 0 on z = Y (x, t), (25)

which, together with incompressibility (7), reduces to an evolution equation for Y in this
region:

∂Y

∂t
+

∂

∂x

∫ Y

0
u dz = 0. (26)

For clarity, a summary of our complete model is given here. The leading-order stress
contribution (22) and the rheological model (23), (24), are given by

τxz = µ(λ)
∂u

∂z
=

(
S − ∂h

∂x

)
(h− z) , (27)
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µ(λ) =
1

(1− λ) (1− βλ)
, (28)

(1− λ) [1− Γλ (1− βλ) |τxz|] = 0. (29)

The relevant root 0 6 λ 6 1 of (29) is given by the stability of the full time-dependent
equation (4). Equations (27)—(29) are solved together with the evolution equation (16) for
the height of the current h(x, t),

∂h

∂t
+

∂

∂x

∫ h

0
u dz =

∂h

∂t
+

∂

∂x

∫ Y

0
(h− z) ∂u

∂z
dz = 0. (30)

The location of the yield surface Y (x, t) depends on the stress history of the fluid. In
regions where the absolute stress surface z(τA) is moving up into structured fluid, or where
the critical stress surface z(τC ) is moving down into de-structured fluid, the yield surface
Y (x, t) lies along the respective stress surface (figure 4). Otherwise, the yield surface lies
between the two stress surfaces and evolves as a material curve (26):

∂Y

∂t
+

∂

∂x

∫ Y

0
u dz =

∂Y

∂t
+

∂

∂x

∫ Y

0
(Y − z) ∂u

∂z
dz = 0. (31)

4 Numerical results

4.1 Initial conditions

The initial height profile h(x, t = 0) for our numerical calculations is given by the final rest
state of a finite volume of fluid that has slumped under gravity on a horizontal plate. This
state corresponds to one in which the stress in the current has fallen below the critical stress
τC at all points: the fluid then becomes structured and stops flowing.

Applying this stress condition at z = 0, (27) (with S = 0) gives a simple differential
equation for the height of the final state on a horizontal plate,∣∣∣∣h∂h∂x

∣∣∣∣ = τC =
4β

Γ
. (32)

Equation (32) can be combined with a volume-conservation condition, and solved to give a
profile (centred on x = 0)

h(x) =

[(
6βV

Γ

)2/3

− 8β

Γ
|x|
]1/2

, (33)

where V is the constant volume of fluid. Equation (33) is identical to the final state obtained
for an ideal yield-stress fluid with yield stress τC . This final state is then used as an initial
condition in the numerical calculations. In addition, in these simulations we assume that
the fluid which has attained this initial condition has then been left to rest on the horizontal
plane for sufficient time that the initial structure has fully healed throughout the fluid, and
is uniformly given by λ = 1.
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4.2 Two-dimensional results

We have solved the governing equations (30)-(31) numerically. The calculations were signifi-
cantly simplified by analytically integrating over the vertical component z in these equations
using (27)-(29), and thus reducing the system to a one-dimensional model (these calculations
result in fairly involved analytic expressions, which are not shown here). The resulting one-
dimensional equations were solved numerically, using second-order centred finite differences
in space, and a second-order midpoint method in time.

Numerical results for Γ = 20, β = 0.95, and S = 1.5 are shown in figure 5. In addition
to the height of the interface h(x, t), this figure shows the two stress surfaces and the yield
surface that were discussed in section 3.4.

The initial stress on the fluid is greatest at the base, below the highest point of the
current. Therefore, as fluid begins to move, the most significant de-structuring occurs
there, and leads to a partial collapse of the fluid column above. This process results in the
formation of a ‘nose’ at the front of the current (figures 5c and d). There is a local minimum
in the height profile in the interior of the current, and, most notably, at the back of the
current there is a raised remnant of structured fluid that remains immobile. In contrast,
figure 5(e) also shows the evolution of an ideal Bingham yield-stress fluid, with a yield
stress given by τA , and the same initial profile. Here, the height of the current has quite
a different profile, being highest at the front, not having a height minimum in the middle
of the current, and not leaving a raised remnant at the back, at least for the length of the
computation shown.

Some notable oscillations can be observed in the results of figure 5. These features
appear to take the form of high-wavenumber travelling waves, which are typically first
observed on the material part of the yield surface z = Y near to one of the stress contours.
The waves are independent of the temporal resolution of the simulations, but do exhibit
some dependence on the spatial resolution. However, the macro-scale features of the flow
remain almost unaltered, as the waves move with the flow and are rapidly damped when
the yield surface joins one of the two stress contours. In section 5, we rationalize these
waves in the form of an instability of the material part of the yield surface.

4.2.1 Critical angle

The stress on the fluid increases with the slope S (27). If the slope is not sufficiently high,
the stress will be below the absolute value τA throughout the fluid. The fluid will therefore
remain structured, and there will be no flow. However, if any of the fluid is de-stabilised,
then it will remain destabilised until the stress on that fluid parcel falls below the critical
value τC . We therefore find that there is a critical vale of S, corresponding to a critical
angle, below which there is no flow, and above which the fluid will de-structure and flow.
This behaviour agrees with the ‘avalanching’ above a critical angle, which was reported in
[10].

The critical angle can be calculated analytically. The initial condition for the height of
the current is given by |h∂h/∂x| = τC (see section 4.1). For a given inclination angle, and
thus a given value of S, the new stress along the base of the current is given by

τ =

∣∣∣∣S − ∂h

∂x

∣∣∣∣h = τC + Sh. (34)
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Figure 5: Numerical results of the two-dimensional system, for Γ = 20, β = 0.95, S = 1.5,
and an initial volume of fluid V = 4. The lines show the height of the current h(x, t) (red),
the yield surface Y (x, t) (green), the critical stress contour (purple), and the absolute stress
contour (blue), at times: (a) t = 0; (b) t = 5; (c) t = 50; and (d) t = 200. For comparison,
(e) shows the height of an ideal Bingham yield-stress fluid, with yield stress (Bingham
number) τA , slope S = 2, and the same initial conditions as (a). The height profile in (e)
is printed every 10 time units.
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The fluid will de-structure if this stress exceeds the absolute value τA . Therefore, for a given
initial height profile, the critical angle Θ is given by

S =
tan Θ

ε
=
τA − τC
maxx h

=
(1− 2β)2

(6βΓ2V )1/3 (1− β)
, (35)

where maxx h signifies the maximum value of h over all values of x, which we have substi-
tuted from the initial height profile (33), for a given constant volume of fluid V . We have
also substituted the expressions for τA = 1/Γ(1− β) and τC = 4β/Γ from section 2.2.

4.2.2 Final rest state

As in the case on a horizontal plate (section 4.1), the final rest state for the current is given
by the height profile that corresponds to the stress on the base falling below the critical
value everywhere. After this point, the fluid re-structures and there is no further flow.
Therefore the final state is identical to that for an ideal yield-stress fluid with a yield stress
τC [14], and is given by ∣∣∣∣S − ∂h

∂x

∣∣∣∣h = τC . (36)

Equation (36) has a solution h(x) that is given implicitly by

log

(
1− S

τC
h

)
+
S

τC
h =

S2

τC
(x− xF ) , (37)

where xF is a constant of integration corresponding to the final position of the nose of
the current. If the back of the current has not moved from the initial state, then (37)
is matched with the initial condition there, in such a way as to conserve volume. This
matching determines xF . Equation (37) gives profiles for the height that are almost flat,
with a localised steep drop at the nose. Therefore, perhaps surprisingly, the theory predicts
that the raised structured remnant at the back of the current (figure 5) will eventually
collapse to give a roughly flat end state. This end state is not attained until the stress
on the fluid is everywhere below the critical stress, and numerical results suggest that the
approach to this state is extremely slow compared with the initial rate of spreading of the
current.

4.3 Three-dimensional results

We can also perform the analysis of section 3 for three-dimensional flow, which includes the
cross-slope co-ordinate y and velocity v. The leading order equations (c.f. (27) and (30) in
two dimensions) reduce to

∂h

∂t
+

∂

∂x

∫ h

0
u dz +

∂

∂y

∫ h

0
v dz = 0, (38)

τxz = µ(λ)
∂u

∂z
=

(
S − ∂h

∂x

)
(h− z) , τyz = µ(λ)

∂v

∂z
= −∂h

∂y
(h− z) , (39)
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Figure 6: Numerical results of the three-dimensional system, for Γ = 20, β = 0.9, S = 1,
and an initial volume of fluid V = 2: (a) the height of the current h(x, y, t) visualised in
three dimensions, for t = 0 and t = 300; (b) colour maps of the height of the current,
viewed from above, for t = 0, t = 50, t = 150, and t = 300 as marked. A clear ‘horseshoe’
of structured fluid can be seen at the back of the current.
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τ =
√
τ2xz + τ2yz = (h− z)

√(
S − ∂h

∂x

)2

+

(
∂h

∂y

)2

, (40)

and the rapid-transit rheological model is the same as previously (28), (29).
As mentioned in section 4.2, we can calculate the integrals in the vertical component

of (38) analytically (not shown here), and thus reduce the system to a two-dimensional
model in x and y. We have solved (38)–(40) numerically, using a modification of the one-
dimensional routine discussed in section 4.2.

Figure 6 shows solutions of the height h(x, y, t) at different times, for Γ = 20, β = 0.9,
and S = 1. Similar qualitative features to the two-dimensional model can be seen. Firstly,
the fluid appears to collapse most rapidly in the centre. Secondly, a distinct remnant of
structured fluid is left behind at the back of the current, which persists as the nose flows
away down the slope. This structured remnant appears to be very similar to the observations
of a ‘horseshoe’ that were reported in [10]. There is less of a distinct raised nose in these
simulations as in the one-dimensional results (figure 5); this appears to be due to the lower
value of β used here, which corresponds to a smaller hysteresis loop in the constitutive
equation. At values of β closer to 1, the calculations show noticeable high-wavenumber
oscillations in the material part of the yield surface z = Y , which are also visible as ripples
in the free surface z = h: these are analogous to the features seen in the two-dimensional
results, and are discussed in the following section. Their possible physical relevance is
considered in the context of our experimental results with ketchup (section 6.2).

5 Stability

It has been shown that two inclined shallow layers of Newtonian [9] or non-Newtonian
power-law [5] fluid with differing viscosities can be unstable to an interfacial instability,
even in the absence of inertia, due to the additional degrees of freedom given by the ma-
terial surface between the layers. We might, therefore, expect to find a similar interfacial
instability in the shallow thixotropic layer, when the yield surface is a material curve which
separates infinite-viscosity structured fluid above from relatively low-viscosity de-structured
fluid below. Indeed, as mentioned in section 4, we can observe instabilities forming on the
material yield surface in our numerical simulations.

In this section we consider the linear stability of an idealised two-dimensional system,
in which the background height z = h and yield surface z = Y are both constant. The
yield surface is a material curve lying between the two stress contours τ = τA and τ = τC ,
as shown in figure 7(a). This study is limited to times before the yield surface touches
either of these stress contours. We begin this section by performing a theoretical stability
analysis, which shows that the system is always weakly unstable to perturbations at any
wavenumber. We then present numerical simulations of the system, which reveal that the
instability results in the generation of travelling shocks on the yield surface.

5.1 Theoretical stability analysis

The system is governed by continuity below and above the yield surface, and by the kine-
matic condition at both z = Y and z = h. These conditions give governing equations (30)
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Figure 7: (a) The system under consideration in the linear stability analysis: the background
height and yield surface are given by the constants h0 and Y0 respectively, and, for the
numerical calculations, the boundaries are periodic. (b) The two roots of the growth rate,
for Γ = 20, β = 0.95, S = 2, h0 = 1, Y0 = 0.25. One root (blue) decays like −k2; the other
(red) tends to a small positive constant for large values of k.

and (31), which can be written in the form

∂h

∂t
+

∂

∂x
F (h, Y ) = 0,

∂Y

∂t
+

∂

∂x
G(h, Y ) = 0. (41)

The functions F and G are the fluxes of h and Y respectively, given by

F =

∫ h

0
u dz =

∫ Y

0
(h− z) ∂u

∂z
dz, (42)

G =

∫ Y

0
u dz =

∫ Y

0
(Y − z) ∂u

∂z
dz. (43)

The rate of strain ∂u/∂z (27) depends on the structure parameter λ, which itself is a function
of the shear stress (29), and thus a function of z. The fluxes (42), (43) can therefore be
written as

F (h, hx, Y ) = (S − hx)

∫ Y

0
(h− z)2 (1− λ) (1− βλ) dz, (44)

G(h, hx, Y ) = (S − hx)

∫ Y

0
(h− z) (Y − z) (1− λ) (1− βλ) dz, (45)

where hx is the partial derivative of h with respect to x, and, from (29), the structure
parameter is given by

λ(z, h, hx) =
1

2β

[
1−

(
1− 4β

Γ (h− z) (S − hx)

)1/2
]
. (46)
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These integrals (44) and (45) can be calculated analytically (not shown here).
We perform a linear stability analysis of (41) by looking for normal modes, with growth

rate σ and wavenumber k:

h = h0 + h̃eσt+ikx, Y = Y0 + Ỹ eσt+ikx, (47)

where h0 and Y0 are the constant background values of the height and the yield surface,
and h̃ and Ỹ are small perturbations which satisfy h̃, Ỹ � h0, Y0. Neglecting terms that
are non-linear in the perturbation quantities, we find that the growth rate σ satisfies a
dispersion relationship of the form

σ2 + σ
(
Ak2 +Bik

)
+ Cik3 +Dk2 = 0 (48)

where A, B, C, and D are real functions of the governing parameters of the problem, Γ, β,
S, h0, and Y0, and are given in terms of the fluxes F and G by

A =
∂F

∂hx
, B =

∂F

∂h
+
∂G

∂Y
, C = − ∂G

∂hx

∂F

∂Y
, D =

∂G

∂h

∂F

∂Y
− ∂G

∂Y

∂F

∂h
, (49)

all evaluated at h = h0, Y = Y0, and hx = 0.
Unstable modes k correspond to a positive real part of the growth rate Re[σ], and

marginally stable wavenumbers are obtained when Re[σ] = 0. Equation (48) gives marginal
stability only at k = 0, which means that any unstable (or stable) solutions will be unstable
(or stable) for all wavenumbers k. In the limit of large k, (48) gives two roots σ1,2 with
leading order real parts given by

Re[σ1] = −Ak2 +O(1), Re[σ2] =
C2 −ABC −A2B

A3
+O(k−1). (50)

The algebra for this problem is significantly simplified if we consider the limit of large
Γ, and expand the coefficients in powers of 1/Γ. For ease of notation we also define the
quantity Θ0 = h0 − Y0. To leading order in 1/Γ, we find that A = [h30 −Θ3

0]/3 > 0, and

C2 −ABC −A2B

A3
=

3h30Θ
3
0 (h0 −Θ0)

4 (h0 + 2Θ0)
2 S2

4
(
h30 −Θ3

0

)3 > 0. (51)

Therefore, in the limit of large Γ, the first root σ1 has a negative real part, with a magnitude
that grows like k2. However, the second root σ2 has a positive real part, that is a constant
to leading order for large values of k. We can also show that for small k the unstable mode
grows like k2, and then increases monotonically to this constant value for large k. The
system is therefore unstable to perturbations of any wavenumber. For parameter settings
relevant to the full slump problem, the positive growth rate is typically extremely small in
magnitude.

We have also shown numerically that this behaviour is generic for arbitrary values of
Γ: that is, there is always one negative root that decays like k2, and one positive root that
grows monotonically from zero at k = 0 to a (typically very small) constant for large k.
Therefore all wavenumbers are unstable. An example of the two roots is plotted in figure
7(b).
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Figure 8: Numerical stability results for an initial perturbation of amplitude 10−5 and
wavenumber k = 8π, for Γ = 20, β = 0.95, S = 2, h0 = 1, and Y0 = 0.25: (a) the
perturbations to the yield surface Y −Y0 (blue, solid) and to the height h−h0 (red, dashed),
at time t = 50, showing the formation of shocks in the yield surface; and (b) the measured
root-mean-squared yield surface (blue) and height (red), scaled by the initial perturbation
amplitude, and compared to the theoretical unstable growth rate

∣∣eσt∣∣ (dashed) for large k,
calculated from (50).

5.2 Numerical stability analysis

We can simulate the setup shown in figure 7(a) directly, with periodic boundary conditions
in the x-direction. The height h and the yield surface Y are both subjected to the same small
single-mode perturbation, which then evolves according to (41). Figure 8 shows the results
of such a simulation, for an initial perturbation with wavenumber k = 8π, corresponding to
4 waves. The resulting perturbation to the height and to the yield surface (figure 8a) are
observed to grow extremely slowly in comparison with the advection time of the background
velocity. The instability is more prominent on the yield surface than on the height of the
current. In the non-linear regime, the instability appears to lead to the formation of shocks
on the material yield surface, with the same wavenumber as the original perturbation.
We find that these shocks drive the initiation of high wavenumber oscillations, and this
behaviour is perhaps a feature of our numerical scheme. The corresponding deformation of
the height of the current takes the form of travelling waves. The measured amplitude of
the perturbations gives the same growth rate as the theoretical prediction (50) for large k
(figure 8b).

The analysis of this section shows that the idealised system is unstable to an interfacial
instability at all wavenumbers, in the regions where the yield surface is a material curve.
This result has important implications for our numerical simulations of the full slump prob-
lem, as instabilities with length scales down to the gird scale might be expected to form,
and the results will likely vary with the spatial resolution of the computation. However, it
should be remembered that the full system is not periodic in x, but rather the material part
of the yield surface is bounded at each end by either critical or absolute stress contours,
which limit the development and propagation of the instability. Furthermore, because the
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(a) (b)

Figure 9: Snapshots of a typical experiment in progress, with 10% by volume bentonite
solution, Tage = 240 minutes, and an angle of 20◦: (a) after t = 5 seconds; (b) after t = 50
seconds. For scale, the tattered white paper below the sample in each picture is 20 cm long.

growth rate is (typically) extremely small, the background advection of the flow is much
faster than the growth of instabilities, and we expect them to be rapidly transported along
the yield surface until they reach one of the stress contours. This behaviour is observed
in the numerical results of section 4, where the instabilities are typically quashed by the
absolute or critical stress contours before they significantly destabilise the flow and cause
any noticeable deformation to the height z = h of the current. It should, however, be noted
that this is not always the case: particularly at smaller values of Γ and larger values of β,
we find that instabilities on the yield surface can result in wave generation and deformation
of the height of the current.

6 Experimental results

We have carried out a series of experiments to compare with the numerical simulations of
our model. Our experimental setup consisted of a ≈ 1 m2 glass plate, which was hinged at
one end, and could be tilted and held at a desired angle using a pulley system. The plate
was joined to a frame, which allowed for a laser pointer and a camera to be held in the
same frame of reference as the plate. Samples of fluid were placed on the plate, which was
then lifted to a given angle (details of the preparation of the fluid and the initialisation of
the experiment are discussed below). A laser line was projected onto the fluid surface from
directly above, facing down the slope, which allowed for measurements of the height of the
current along the midplane (see figure 9 for typical photographs of the system during an
experiment).

We performed experiments with two different thixotropic fluids: bentonite clay solution
(10% by volume, Quik-Gel sodium bentonite, Baroid drilling fluids), and tomato ketchup
(Heinz ). Each of these fluids have been observed to exhibit thixotropy [6, 18]: in particular,
there have been a variety of rheological measurements of bentonite [11, 19], which suggest
that it exhibits many of the features of our rapid-transit rheological model (section 2). In
order to ensure reproducibility in the results, all the fluid samples were initially subjected
to vigorous shear for at least 30 minutes. This shear was intended to remove any initial
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Figure 10: Schematic of the steady-state constitutive relationship (thick blue), as in figure
2, together with the local linear relationship between τ and γ̇ for increasing ageing times
Tage as marked (thin red dashed). The time-dependent ‘effective yield stress’, above which
the fluid de-structures, is given by the intersection between the curves. For Tage = 0, the
effective yield stress is equal to the critical stress τC , and there is no hysteresis in the system.
As Tage →∞, the effective yield stress tends towards the absolute stress τA , and λ→ 1.

structure in the fluid. A fixed volume (150 ml) of the fluid was then slumped on a horizontal
plate, by pouring into a hollow cylindrical (5 cm radius) mould, which was then lifted.
In this way, the fluid attained its rest state on a flat plate, which corresponds to the
initial condition of the numerical simulations (section 4). Samples were then left to age
for different periods of time Tage. During this time, the samples were kept under airtight
covers to limit the effects of evaporation. The substrate for the experiments was made of
sanded perspex, in order to avid any slip at the base of the current. There is an important
phenomenological distinction between this ‘genuine’ slip, in which the whole fluid column
slides on the substrate, and the apparent slipping of structured fluid which is actually due
to lubrication from a de-structured layer at the base of the current. The latter effect, which
results in a thin layer of fluid being left behind on the substrate, is consistent with the
theoretical ‘no-slip’ boundary condition on the base of the current (10), and was observed
in many of our experiments.

Before presenting our experimental results, we briefly consider how we expect the be-
haviour of the fluid to vary with different ageing times Tage, based on the theoretical model
that was discussed in section 2. While the fluid sample is at rest, the structure should
evolve according to (2), with γ̇ = u = 0: i.e.

∂λ

∂t
=

1− λ
T

. (52)

For a given ageing time Tage, there is a corresponding value of λ, given by (52). This
value of λ corresponds to a viscosity, µ(λ), and thus to a linear constitutive relationship
τ = µ(λ)γ̇. The local value of the stress at which the fluid becomes de-structured (the
‘effective yield stress’) is then given by the intersection between this linear constitutive
relationship and the steady state hysteresis loop (shown schematically in figure 10). If the
ageing time Tage is small, this effective yield stress will be very close to the critical stress τC ,
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and we would therefore expect the sample to behave rather like a simple yield-stress fluid.
As Tage increases, the sample should increasingly exhibit the features that we observed in
our numerical simulations (section 4), as the effective yield stress increases towards τA , and
the extent of hysteresis in the system increases. Moreover, the discontinuity in γ̇ at the
effective yield stress will also increase with Tage, and the system should exhibit increasingly
dramatic ‘avalanche’ behaviour.

6.1 Bentonite

We examined the behaviour of different bentonite solutions with filtered water: 7.5%, 10%,
and 12.5% bentonite by volume. The 12.5% solution was very viscous, and so suffered
from slipping on the substrate, while the 7.5% solution had a relatively low viscosity, which
appeared to result in some inertial effects, and caused the fluid to flow too rapidly for
accurate measurements. Here, therefore, results are presented only for the 10% bentonite
solution.

Figure 11 shows measurements of the height profiles over time, for different ageing
times Tage, at a fixed angle of 20◦. Figure 12 shows the height profiles at different ageing
times for a slightly larger inclination angle of 24◦. As a comparison, we also carried out
some experiments with a ‘joint compound’ solution (Sheetrock all-purpose joint compound),
which, over the timescale of an experiment, appeared very like an ideal yield-stress fluid.
Measurements of the height of the joint compound are shown in figure 11(a).

These measurements show that the behaviour of bentonite is strongly dependent upon
the ageing time. Consider, for example, the results on a 20◦ slope (figures 11b-d). For
very small ageing times, the behaviour is similar to the joint compound (yield-stress fluid,
figure 11a), although the formation of a nose at the front of the downward-moving current
is more pronounced: there is no raised ‘horseshoe’ at the back of the current, and the fluid
evolves rapidly after the experiment starts. However, as the ageing time Tage increases, the
samples display behaviour that is more similar to the numerical simulations of section 4:
there is an increasingly pronounced residual ‘horseshoe’ of fluid left behind at the back of
the current, and the thinnest part of the current for late times is in the middle, between
the horseshoe and the nose. These features are even more striking if the slope is increased
by 4◦ (figure 12). Here, the sample thins very dramatically in the interior, which results
in an extremely pronounced nose at the head of the current and residual horseshoe at the
rear. This behaviour is more dramatic than is predicted by the theoretical model, possibly
because of the destructuring effects of extensional stresses in the current, which the model
does not take into account. This issue is discussed in section 7. It is important to highlight
that, even in the most extreme examples (e.g. figure 12c), the nose did not appear to be
slipping on the substrate as it moved down the slope, but rather there was always a thin
lubricating layer of de-structured fluid along the base.

Figure 13(a) shows the final position of the nose of the current, xF , as a function of the
inclination angle, for different ageing times Tage. As discussed above, we anticipate that for
larger ageing times, the stress (and hence the angle) at which the fluid de-structures (and
evolves to the small-λ stable branch of the constitutive relationship), should increase, and
the corresponding flow after de-structuring should be increasingly dramatic (as the value
of γ̇ on the small-λ stable branch will be larger). Both of these features can be observed in
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Figure 11: Snapshots of the height of the midplane over time, measured using a laser line,
for (a) a joint compound solution on a 34◦ slope, which behaves very like an ideal yield-
stress fluid [14, 17], and for (b) – (d) 10% (by volume) bentonite solution on a 20◦ slope, for
different ageing times Tage as marked. The x axis gives the distance from the back of the
current. Lines are plotted every ≈ 2 seconds, except in (b), where lines are plotted every
≈ 0.5 seconds. Red and blue lines signify the initial and final profiles, respectively. As
Tage increases, the response of the bentonite increasingly differs from the ideal yield-stress
behaviour in (a), as discussed in the text, and in the caption to figure 12.
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Figure 12: Snapshots of the height of the midplane over time for 10% (by volume) bentonite
solution on a 24◦ slope, for different ageing times Tage as marked.. Lines are plotted every
≈ 2 seconds, except in (a), where lines are plotted every ≈ 0.5 seconds. Red and blue lines
signify the initial and final profiles, respectively. In (b) and (c), the nose of the current
eventually moves off the end of the plate. For the larger values of Tage, the same qualitative
features that were observed in the numerical results (section 4) can be seen: the back of the
current remains fixed (the ‘horseshoe’), and there is a ‘nose’ of fluid which moves rapidly
down the slope. The sample in (d), which is aged for 1080 minutes, does not move on a
20◦ slope, which exemplifies the increasingly dramatic ‘avalanche’ behaviour of the fluid for
large Tage.
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Figure 13: Position of the nose of the current for 10% (by volume) bentonite solution: (a)
the final distance travelled by the nose xF , for different ageing times Tage, showing the
increasingly narrow band of angles over which the de-structuring of the fluid becomes more
dramatic; (b) the distance travelled by the nose xN (t) on a 20◦ slope; and (c) the distance
travelled by the nose xN (t) on a 24◦ slope. Notice the change in curvature of the lines in
(b) and (c) for longer ageing times. Measurements which appear above the top of the graph
signify that the current reached the end of the plate.
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figure 13(a): for small values of Tage, the final distance of the nose xF steadily increases with
the angle of inclination, while for larger Tage, there is an increasingly thin band of angles
over which xF changes dramatically. This ‘avalanche’ behaviour is most clearly observed in
the samples that were left to age for Tage = 1080 minutes, where the fluid remains stationary
on a 20◦ slope, but fails dramatically and flows off the bottom of the plate at 24◦.

The transient behaviour of the nose of the current xN (t) is shown for two different angles
in figures 13(b) and (c), again for different values of Tage. These figures reveal a change
in the evolution of the current for larger ageing times. For small values of Tage, the nose
of the current moves most rapidly at t = 0, as in the case of an ideal yield-stress fluid.
However, as Tage increases the nose of the current takes increasingly long to move, and then
gradually accelerates. This behaviour agrees with previous observations made by Coussot
et al. [10]. We anticipate that this slow acceleration is a result of the gradual breakdown
of structure in the fluid, which mathematically corresponds to the slow evolution of the
structure parameter λ towards the steady state, as modelled by time derivative in (2). This
behaviour is not, therefore, captured by the rapid-transit model, and thus is not observed
in our numerical results.

Figures 13(b) and (c) also show that the current comes to an abrupt halt after flowing
down the plane. The shape of this final profile is much like the profile during the flow: the
immobile current has a clear raised horseshoe at the back and a raised nose at the front.
This behaviour is quite unlike that predicted by the numerical simulations (section 4.2.2),
which suggest that the flow should slowly evolve towards a final profile that is approximately
flat. The reasons for this difference are unclear.

6.2 Ketchup

We have also carried out experiments using Heinz tomato ketchup. Ketchup is an interesting
and complex multicomponent fluid, and is difficult to use experimentally due to its tendency
to separate over time. In particular, ketchup readily expels vinegar, which gathers around
the base of the sample if it is left at rest for more than a few minutes. Despite these
difficulties, which suggest caution is needed in analysing these results, it is still possible
to observe clear thixotropic behaviour, and to draw qualitative comparisons both with the
measurements for bentonite and with our theoretical model. While we gathered a range
of measurements using ketchup, we will only briefly discuss the qualitative behaviour here,
because of this separation problem.

Figure 14 shows snapshots of the height of the current over time, for different ageing
times Tage. Although the dependence on Tage seems much less dramatic than with bentonite
(figure 11), we still observe the development of a structured horseshoe of fluid at the rear
of the current for large ageing times, which is absent for smaller ageing times. We found
that ketchup does not exhibit the same catastrophic failure at a particular angle that we
observed in fully structured bentonite (e.g. figure 12c), except at much larger angles, when
the fluid starts to slip on the base (see the discussion of slip above), so that the nature of
the experiment changes.

A photograph of the ketchup current (figure 15a) shows the structured horseshoe rem-
nant, and the gravity current extruding down the slope. This picture highlights the complex
structure of the surface of the current: the evident surface structure is perhaps the result
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Figure 14: Snapshots of the height of the midplane over time for Heinz tomato ketchup on a
14◦ slope, for different ageing times Tage as marked.. Lines are plotted every ≈ 10 seconds.
Red lines signify the initial profiles: in contrast to bentonite, the samples continue to move
slowly down the slope for very long times, and thus the final position of the slump is not
necessarily attained. For larger values of Tage there is a clear structured horseshoe at the
rear of the current.

193



0 50 100 150 2000

1

2

3

4

5 mins
60 mins
240 mins
1080 mins

(a) (b)

x
N

(cm)

t (s)

Figure 15: Results with Heinz tomato ketchup: (a) a photograph from above of a ketchup
current after an experiment (downslope is to the right), showing a structured horseshoe
at the back (left), and significant surface texture on the rest of the current; and (b) the
evolution of the nose of the current xN (t) on a 14◦ slope, showing the same change in
curvature that was observed with bentonite (figure 13b and c). Unlike bentonite, the
current continued to flow throughout the experiment, rather than coming to a halt.

of an instability, such as the interfacial instability that was analysed in section 5.
Figure 15(b) shows the evolution of the position of the nose xN (t) for different values

of Tage. As in the case of bentonite (figure 13b and c), the current gradually accelerates
for longer ageing times, in contrast to the behaviour at small values of Tage. Interestingly,
the ketchup current continued to flow throughout the experiment, rather than coming to
an abrupt halt like the bentonite.

7 Conclusions

As discussed in section 1, despite a range of rheological studies of thixotropy there has
been relatively little work that couples the rheology to the flow in a physical system. In
this report we have presented and discussed a rheological model for thixotropic fluids, and
applied it in the context of gravity-driven flow on a slope. We modelled this system both
numerically and experimentally, and, despite some intriguing differences, on the whole we
found broad qualitative agreement between the results.

In section 2, we presented a rheological model that we use to describe the effects of
thixotropy. This model is based on a selection of previous models (e.g. [11, 19]), but
also includes the concept of an absolute stress τA , above which even fully structured fluid
will de-structure and begin to flow. In addition, based on previous empirical observations
[1, 7, 11, 20], we introduced the simplifying ‘rapid-transit’ approximation, which assumes
that λ evolves instantaneously to its steady-state value.

In sections 3 and 4, we applied our rapid-transit rheological model to the problem of
a finite shallow current on a slope, and presented numerical results of the flow in two and
three dimensions. For these theoretical results, we assumed that the fluid was initially fully
structured. We found that the flow is characterized by a raised ‘horseshoe’ of structured
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fluid at the back of the current, in agreement with previous experimental observations [10].
The model also shows that there is a critical angle, above which the current will flow (in
some cases, dramatically), and below which the current will not move.

Motivated by the presence of high-wavenumber fluctuations in these numerical results,
in section 5 we explored the stability of an idealised shallow-layer system. We found that the
internal interface (yield surface) between the structured and de-structured fluid is always
weakly unstable to perturbations at any wavelength. Within this idealised system, we
numerically followed the instability into the non-linear regime, and found that the instability
develops into travelling shocks on the material part of the yield surface. However, the growth
rate of the instability is typically extremely small compared to the rate of propagation of
the current, and, in the full (non-idealised) system, the material part of the yield surface
is always bounded by a constant stress contour at either end, which damp any oscillations.
On the whole, therefore, this instability does not appear to have a significant effect on the
propagating current.

Finally, in section 6, we presented experimental results of the same shallow-layer inclined
system, with two thixotropic fluids: bentonite clay solution, and tomato ketchup. We
observed that, as the ageing time Tage increased, the bentonite solution evolved in qualitative
agreement with the theoretical predictions: from simple yield-stress-fluid behaviour for small
Tage, to increasingly dramatic ‘avalanche’ behaviour for larger Tage. The shape of the current
for larger Tage is similar to that predicted by the numerical simulations: a notable structured
horseshoe of fluid at the back of the current; a thinner region in the interior; and a nose at
the front. However, unlike the numerical predictions, which suggest that the current should
evolve slowly to a relatively flat final profile, the bentonite always came to an abrupt halt
after flowing some way down the plane, leaving a pronounced horseshoe and nose at the
back and front of the current respectively. The reasons for this different behaviour are not
clear, although perhaps the neglect of extensional stresses in the theoretical model could be
relevant (see the discussion below).

The results for ketchup are more difficult to analyse, due to the material separating into
its constituent fluid components. However, we again observe that the shape of the current
increasingly resembles the numerical solutions for larger ageing times, with a structured
horseshoe at the back of the current. The ketchup current also undergoes an instability
or deformation of the free surface as it flows down the slope, which may be related to
the instability process in the theoretical model (section 5). The evolution of the nose of
the current for both ketchup and bentonite solution undergoes a qualitative change for
different values of Tage (as in [10]), from initial gradual deceleration for small Tage, to initial
gradual acceleration for larger Tage. This behaviour is not captured by the numerical results,
presumably because of the rapid-transit approximation.

While many of the main phenomenological features of the experimental results agree
well with both the numerical and theoretical models, we find that bentonite can undergo
even more dramatic de-structuring than the numerical solutions suggest. This difference
is perhaps due to the details of the rheological model, in which, for example, the viscosity
may have a more sensitive dependence on the strain rate. However, the difference could also
be explained by the neglect of extensional stresses from the theoretical shallow-layer model
(section 3). Flow in a de-structured layer may induce significant extensional stresses in the
structured (and therefore much more viscous) layer above, which are not included in the
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model. If the upper layer is sufficiently viscous, these extensional stresses can contribute to
the stress invariant τ at the same order of ε as the shear stress. The inclusion of extensional
stresses would lead to more of the current becoming de-structured, which would result in
an increased thinning of the interior of the current, as is observed experimentally. It has
proved somewhat complicated to develop a consistent model that incorporates extensional
and shear stresses throughout the current, and this remains an intriguing avenue for further
study.
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Smoothing out sandpiles: rotational bulldozing of granular

material

Alban Sauret

October 3, 2012

1 Introduction

1.1 Dense granular flow

Predicting the dynamics of dense granular flow plays an important role in engineering and
geophysical flow which involve the transport of granular materials such as for instance
cereals, rocks or sand. In the past decade, most of the studies have focused on the flow of
granular material on inclined surface due to the obvious applications in rock avalanches,
landslides and pyroclastics flows [14, 7] (for a review, see e.g. [6]). However, the bulldozing
of granular materials, i.e. the action to push the granular material with a blade on a flat
plane, has not received so much attention. Indeed, it is not straightforward to build an
experimental setup which allows the study of the steady dynamics of bulldozing granular
material in a reproducible way. Moreover, the theoretical description of such flow remains
complicated as the rheology of dense granular flow is difficult to capture and until quite
recently there was no acceptable continuum model for a granular material [9].

In this project, we explore a problem of granular flow on a plane layer: the rotating bull-
dozing of a sandpile. Starting from an initial sandpile, we use a rotating blade to transport
this sandpile and characterize the motion of the granular materials and the shape of the
dune built against the blade. The use of a rotating blade instead of a straight blade with a
rectilinear motion allows the system to be recirculated and thereby observing the dynamics
over long times. In addition, the variation of speed along the blade potentially allows for
richer dynamics. Therefore, the aim of this work is to provide the first experimental results
with a rotating bulldozer and characterize the key features of the dynamics.

1.2 Bulldozer-related problems

Surprisingly, there are relatively few previous experimental modeling studies of problems
of bulldozing sands. The earliest study by Bagnold [2] considers a 2D situation of a plate
immersed in a layer of sand of given thickness. Then the plate is pulled at a given force
and the amount of material in the dune keeps increasing at the same rate (see figure 1.a).
During the build-up of the dune, the velocity of the blade pulled at a given force exhibits
some oscillations due to the episodic avalanching of the dune. From laboratory experiments
Bagnold, [2] provided a qualitative picture of the shape and the flow in the dune during the
build-up (figure 1.b). However, none of these experiments consider the steady regime where
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the amount of granular material in the dune does not change. In addition, no quantitative
measurement of the shape of the dune or the velocity of the sand has been provided. More
recently, some studies focused on the “song of dunes” problem [5, 1]. A possible experimental
setup to measure the loud sound emitted by the motion of an avalanche is based on a rotating
blade pushing a layer of sand. Here, the dynamics is also non-steady and the quantitative
shape of the dune built by the motion of the blade has not been characterized. Another
relevant situation which has been studied over the past few years is a wheel or an inclined
plow blade with a given angle of attack. The wheel or the blade is free to move vertically
in response to the granular material and after few passages on the granular bed a pattern
develops on the road which are called washboard ripples [15, 13]. Note that this situation is
not used to push or drag granular materials contrary to the bulldozer problem and therefore
the dynamics of the sand remains different.

However, none of these studies provide quantitative experimental results of the shape of
the dune carried by a bulldozer and especially in a rotating bulldozer where the rotation is
susceptible to bring an interesting new dynamics because of the difference of normal velocity
along the blade. Here, in addition to our experiments and the quantitative description of
the shape of the dune, we will consider the “µ(I)” rheology to describe the dense granular
flow as an incompressible liquid with no variation of volume fraction during the dense flow
[9]. Such a rheology has been used with success to describe the flow of granular layers on
inclined surfaces [6]. In this paper, we will also use a shallow water model as it may allow
us to describe the dynamics observed.

1.3 Constitutive law for dense granular flow: the µ(I)-rheology

The description of dense granular flow through the conservation of momentum and mass
requires a continuum description of the material. When granular material flows like a liquid,
the local tangential stress τ and the local normal stress p are found to satisfy

τ = µ(I) p with I =
γ̇ d√
p/ρ

(1)

where µ(I) is an analogue to a coefficient of friction, while ρ and d are the particle density
and diameter. Note that I is the inertial number and represents the ratio of an inertial time
scale

√
d2 p/ρ and the shear deformation time scale γ̇−1 [4, 12]. A constitutive relation, the

so-called µ(I)-rheology, has been suggested based on experimental and numerical results
(see e.g. GdR Midi [12]):

µ(I) = µ1 +
(µ2 − µ1) I
I + I0

. (2)

This coefficient interpolates a friction coefficient between µ1 at I = 0 and µ→ µ2 for I →∞.
I0, µ1 and µ2 depend on the material considered (see table 1). Jop et al. have provided
a 3D generalization of this constitutive law and successfully compared it to experiments
on granular flows on a pile between rough sidewalls [8, 9]. The granular material is still
consider as an incompresible fluid with an internal stress tensor σij given by:

σij = −p δij + τij . (3)
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Glass beads Sand

µ1 0.38 0.51
µ2 0.64 0.93
I0 0.279 0.8

Table 1: Typical values from the literature for the coefficients to use in the µ(I)-rheology
[9].

(a) (b)

Figure 1: Schematic of a bulldozed sand heap: (a) shear over a basal shear plane; (b)
internal flow (from [2]).

τ is the shear stress which satisfies:

τij = η(|γ̇|, p) γ̇ij (4)

where γ̇ij is the strain rate tensor given by γ̇ij = ∂ui/∂xj + ∂uj/∂xi and |γ̇| =
√
γ̇ij γ̇ij/2

is the second invariant of γ̇ij . Here p is an isotropic pressure and η(|γ̇|, p) is an effective
viscosity. µ(I) is given by the relation (2).

The µ(I)-rheology is purely phenomenological but has shown very good agreement with
experiments and numerical simulations in different configurations. This model has been
implemented in numerical simulations and a good prediction of transient situations such as
the granular column collapse has been found [10, 11]. Thoughout this report, we will thus
use the µ(I)-rheology in the analytical study.

The remainder of this report is organized as follows: in section 2 we describe the exper-
imental apparatus and in section 3 the phenomenology of the problem. Experiments in a
rotating bulldozer exhibits a dynamics which can be separated into two effects: a build-up
of the dune perpendicular to the blade over short time-scales and a non-symmetric lateral
spreading of the dune over longer time scales. Thus, in section 4 we present the experi-
mental results for the shape of the dune at a given radial position and a simple model is
proposed to account for the observed profile. Section 5 is devoted to the lateral spreading
of the dune. The final section 6 contains a general discussion and conclusions.
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Figure 2: (a) Schematic illustration and (b) photo and of the experimental setup.

2 Experimental setup

2.1 The rotating bulldozer

The experimental apparatus, shown in Fig. 2, consists of a rotating table of 2.2 m diameter
which rotates around its axis at an angular velocity Ω. The rotation rate of the table lies
in the range 0.05 to 2 rad.s−1.

The surface of the rotating table is coated with sandpaper to suppress slipping of par-
ticles on the surface of the table. In the absence of sandpaper, the particles slip on the
surface of the table and the structure of the flow is different: the avalanching dune becom-
ing buffered from the upstream static layer by a compressing, sliding layer of grain (see
appendix A). In this report, we only focus on the no-slip boundary conditions.

A blade consisting of a flat vertical board, and fixed in the laboratory frame, is secured
above the rotating table and acts as a rotating bulldozer (see figure 2(a) & 2(b)). The blade
consists of a 1.50 m long and 40 cm height wood plate to which we attach a plywood plate
coated with sandpaper to ensure no-slip boundary conditions on the blade. The blade is
perpendicular to the surface of the rotating table and is held at a given height around 1
cm. It leads to the presence of an underlying layer of granular materials with a constant
thickness. Prior to any experiments, we add granular material on the table which is set in
rotation. The granular material build up a bed atop the table. It fills up the gap and its
surface is smoothed out by the blade. After a sufficiently long time, we obtain a layer of
constant thickness with compaction which does not vary appreciably between two successive
experiments. Then, a sandpile is formed by slowly pouring grains onto a selected point on
the surface of the existing uniform bed, producing a nearly conical mound with a slope
given by the static angle measured previously. We define the initial position of the sandpile
as the coordinate of its center, i.e. the radius r0 from the center of the table where the
height of the sandpile is maximum (see figure 2(a)). In the present study, we have used
r0 = 15, 25 or 35 cm. Typical parameters used in this study are summarized in table 2.
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(a) (b)

Figure 3: (a) Photograph of the four granular materials. From left clockwise; aquarium
sand (d = 0.9 mm), fine glass beads (d = 0.1 mm), coarse grit (d = 3 mm) and spherical
glass beads (d = 1 mm). Only results for aquarium sand and spherical glass beads are
presented in this report. (b) Size distribution of the coarse grit (white) and the aquarium
sand (grey).

Note that in the present bulldozer experiment, because the blade is held at a constant
height, no washboard instability is observed [3, 13, 15].

Rotation rate 0.05− 2 rad.s−1

Radius of the blade 0.7 m

Diameter of the particles 0.1 mm - 3 mm

Mass of the dune 0.1 – 1 kg

Initial position of the dune 15, 25
(radially from the center of the table) & 35 cm

Table 2: Range of parameters used in the experiments.

2.2 Granular materials

In this report we present results of bulldozer experiments for different granular media as
shown in figure 3(a):
(i) Aquarium sand, of irregular shape, but overall mean diameter of approximately 0.9 mm.
(ii) Spherical fine glass beads (ballotini) of mean diameter 0.1 mm.
(ii) Spherical glass beads (ballotini) of mean diameter 1 mm.
(iv) Coarse grit, of irregular shape, but overall mean diameter of approximately 3 mm.
The size of the aquarium sand and coarse grit particles have been estimated by direct
visualization and postprocessing of the picture. Their resulting size distribution is given in
figure 3(b). Assuming that the distribution of the particle size can be fitted by a gaussian
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distribution, we obtain a distribution of the equivalent radius r =
√
A/π given by

N = N0 exp

[
−(r − rmoy)2

2σ2

]
. (5)

For example, for the aquarium sand the mean radius of the particle is rmoy ' 0.46 mm and
the mean deviation around σ ' 0.075 cm (figure 3(b)). The size distribution of the glass
beads were directly obtained from the manufacturer: the size of the fine glass beads1 ranges
in d = 0.09− 0.15 mm and the other glass beads2 (ballotini) have a size d = 0.8− 1.2 mm.

Then, we can characterize, for the two granular media used in this report, the angle of
repose, θr, which measures how layers of the medium slide over one another. To estimate a
static angle of friction, we make a sandpile of a granular material and measure the typical
slope. Rough estimates give an angle of θr = 22 ± 2̊ for the 1 mm glass beads and
θr = 44 ± 4̊ for the aquarium sand . Note that all the experiments were performed in
an air-conditioned laboratory maintained at 21̊ C with humidity controlled. The granular
materials were kept dry as moistening the materials, even by a small amount, may have
lead to different results.

3 Initial conditions and phenomenology

The initial sandpile is set on the table as described in section 2.1. For each granular material,
different initial mass in the sandpile had been considered which leads to different radius and
height of the initial sandpile. In addition, the slope of the sandpile is given by a static angle
of friction estimated previoulsy. Thus, knowing r0 the initial radial position of the center of
the sandpile and m the mass of granular material in the sandpile allow us to define entirely
the system.

The table is then set in rotation, accelerating to a prescribed rotation rate, Ω, or rotation
period, Trot, in typically less than 2 seconds (well before the sandpile hits the blade). Thus,
the collision of the sandpile and the subsequent dynamics take place at constant rotation
velocity. The collision forces a rearrangement of the sandpile into an avalanching dune that
is pushed forwards by the blade (figure 4.b). The rearrangement typically takes place in
two phases. First, there is a relatively rapid phase (spanning times of order 0.1Trot) in
which the dune builds up perpendicular to the blade and adjusts into a quasi-steady shape
in that direction (figure 4.c). Thereafter, a slower phase ensues (lasting times of order Trot)
in which the dune spreads laterally and shifts radially outwards (figure 4.d).

In the following, we define our system using the coordinate system (x, y, z) (see figure
5.a). The plane (xz) is the plane perpendicular to the blade (see figures 5.a and b). The
plane (yz) denotes the plane defined by the blade (see figures 5.a and c). When the table
is set in rotation, the center of the sandpile r0 will hit the blade at the coordinate r0 = y0.
Thus in the following we only refer to y0 which is the location along the blade where the
center of the sandpile hits the blade. In all experiments presented in this report, the height
measurement of the dune were done at a distance y which corresponds to the location where
the maximum of the dune hits the blade, i.e. y = y0. Experimental observations show that

1#8 from Kramer Industries
2A-100 from Potters Industries
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Figure 4: Four successive pictures of the bulldozing sandpile (a) Initial sandpile showing
the direction of the underlying layer (red arrow) while the blade is fixed in the laboratory
frame. (b) Collision of the sandpile against the blade and quick organization of the dune.
(c) Build-up of a quasi-steady structure at a given radius in a short timescale and lateral
spreading of the dune (direction indicated by the blue arrow). (d) The slope of the dune
at a given radius remains similar but the dune is still subject to lateral spreading. In all
pictures, the red laser line is at a constant radius and shows the topography of the dune at
this radius.
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the time scale Tx ∼ 0.1Trot to build-up the dune perpendicularly to the blade, i.e. in the
plane (xz), is shorter than the typical time scale Ty ∼ Trot for the lateral spreading of the
dune in the (yz) plane. Therefore, we split our discussion of the dynamics into two parts.
In the next section, we will consider the build-up of a dune perpendicular to the plane and
study the typical profile of the dune in the quasi-steady regime that results. Then, we will
consider the lateral spreading of the dune using an approximate model for the slope of the
dune.
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Figure 5: (a) Schematic of the bulldozed dune with the system of coordinates (x, y, z). (b)
2D perpendicular slice in the (xz) plane at a given y-value defining the height h(x, y, t),
which reaches a maximum H(y, t) near the bulldozer blade. (c) Front view of the dune in
the plane (yz), showing a typical profile of the dune height on the bulldozer blade H(y, t).
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4 Dynamics of the dune perpendiculary to the blade

In this section, we consider the profile of the dune in a (xz) plane perpendicular to the
bulldozer blade. The non-intrusive method to measure the profile of the dune as a function
of the distance to the blade is described in appendix B.

4.1 Experimental observations

Prior to any systematic study, we verify that our experiments are fairly reproducible. Us-
ing the aquarium sand, we run two experiments with the same initial conditions, y0 = 25,
m = 1 kg and the same rotation rate Ω = 0.05 rad/s. Then, we measure the profile of
the dune every 5 seconds at a given radial position. The results for two different experi-
ments are illustrated in figure 6 and confirm that the shape of the dune at a given time
is fairly reproducible even if the agreement is not perfect. There are two main sources of

!"#$

Figure 6: Profile of the dune in a (xz) plane perpendicular to the blade at y = 25 cm
for y0 = 25, m = 1 kg, Ω = 0.05 rad/s. The profiles are taken every 5 seconds (and the
direction of time is given by the arrow). The red line and the blue square are two different
experiments.

disagreement: the measurement method presented in appendix B has uncertainties around
±2 mm which already leads to a slight mismatch. In addition to this uncertainties, other
disagreement arise because of direct experimental error. For example, the mass of particles
to build an initial sandpile is fixed, but the way the particles are packed into the sandpile
can be different. Furthermore, the exact position of the initial sandpile can also slightly
vary by a few millimeters. Nervertheless, the comparison of two experiments shows that
the errors measuring the profile at a given time is much smaller than the profile itself. For a
dune against the blade of typical size between 5 and 10 cm, an estimate of the uncertainties
would be of the order of a few millimeters. However, we have to notice that the measure-
ment of the profile of the dune for the first few millimeters against the blade is difficult to
achieve and therefore the description of the shape of the dune is better along the slope and
in the junction with the underlying layer.

Experiments varying the initial mass of aquarium sand in the sandpile for a given initial
position y0 = 25 and rotation rate Ω = 0.05 rad/s are shown in figures 7(a), (b), (c) &
(d). The size of the initial sandpile depends on the amount of granular material. After a
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sufficiently long time to obtain a quasi-steady regime, the dune has a shape similar to a
triangle. The size of the dunes are different between all these experiments but their shape
seem to remain the same for all mass. It is confirmed by a rescaling of the profile: for all
experiments (figure 7(a), (b), (c) & (d)) we rescale the distance by the maximum height
H(y, t) (for given y) of the dune at the time considered (which height naturally changes with
time). It leads to a nice collapse on a single curve at long time (see figure 7(e)). Therefore,
the shape of the dune in the (xz) plane, for low rotation rates seems to be independent of
the size of the dune at the scale of our experimental setup.

Note that the results presented in figure 6 and 7 are typical of all the granular material
considered in this study. In addition, the gap thicknesses or the low rotation rate does not
have a noticeable influence on this shape.

From the rescaled profile, one can consider that the slope will be well fitted by a straight
line with an angle equals to the dynamic angle. However figure 7(f) shows that although
the shape looks like a dune with a straight slope, there is a slight deviation at the tip (i.e.
the furthest distance from the bulldozer blade) of the dune.

4.2 Simple model

4.2.1 Mathematical formulation

We consider granular flow in a slice perpendicular to the bulldozer blade at a given radial
position y (see figure 5(b)). Because the time-scale of the motion in the x and in the
y directions are different, we assume that in a quasi-steady regime the flow remains two-
dimensional in the x direction. We denote (u(x, z, t), w(x, z, t)) as the velocity field, p(x, z, t)
is the isotropic pressure and τ is the deviatoric stress tensor. The fluid is assumed to be
incompressible. The conservation of mass and momentum leads to the governing equations
in cartesian coordinates:

ux + wz = 0, (6)

ρ (ut + uux + w uz) = −px + ∂x τxx + ∂z τxz, (7)

ρ (wt + uwx + wwz) = −pz − ρ g + ∂x τxz + ∂z τzz. (8)

We use the µ(I) rheology [9] as a constitutive law for the granular material. For the present
2D situation it writes:

τ = p µ(I)
γ̇

|γ̇|
, γ̇ =

(
2ux uz + wx

uz + wx 2wz

)
, |γ̇| =

√
4ux2 + (uz + wx)2, (9)

with

µ(I) = µ1 +
(µ2 − µ1) I
I + I0

, I =
|γ̇| d√
p/ρ

(10)

In addition, the granular material has to satisfy a no-slip condition on the bottom, at z = 0:

u(x, 0, t) = w(x, 0, t) = 0, (11)
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Figure 7: Topography of the bulldozed dune at the radial position y = 25 cm for Ω = 0.05
rad/s, y0 = 25 cm and (a) m = 1000 g; (b) m = 750 g; (c) m = 500 g; (d) m = 250 g; (e)
Rescaled topography of the dune for all the mass considered in (a), (b), (c) and (d). (f)
Close-up view of the shape of the dune; the black dotted-line is a straight line. Time go
from the right to the left and are taken every 10 seconds.

and is stress-free at its surface, z = h(x, t), leading to:

1√
1 + hx

2

(
τxx − p τxz
τxz τzz − p

) (
−hx

1

)
=

(
0
0

)
. (12)

Note that the continuity equation (16) can be averaged over the depth of the dune to obtain

ht +
∂

∂x

(∫ h

0
udz

)
= 0. (13)
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4.2.2 Dimensionless equations

Considering the different variables of the problem, we can make the equations dimensionless
by introducing the new variables:

x = L x̂, z = H ẑ, h = H ĥ, u = U û, w =
H

L
Uŵ, t =

L

U
t̂, (14)

p = ρ g H p̂, τij = ρ g
H2

L
τ̂ij (15)

where L and H denote the characteristic fluid extension and depths respectively (see figure
5(b)). U is a velocity scale, typically the speed of the bulldozer. Then, dropping the hat,
the previous equations (6)-(8) can be rewritten as

ux + wz = 0, (16)

ε F 2 (ut + uux + w uz) = −ε px + ε2 ∂x τxx + ε ∂z τxz, (17)

ε2 F 2 (wt + uwx + wwz) = −pz − 1 + ε2 ∂x τxz + ε ∂z τzz, (18)

where ε = H/L is the aspect ratio of the dune and F = U/
√
g H is the Froude number.

The constitutive model of the granular material is given by

τ = p µ(I)
γ̇

|γ̇|
, γ̇ =

(
2 ε ux uz + ε2wx

uz + ε2wx 2 εwz

)
, |γ̇| =

√
4 ε2 ux2 + (uz + ε2wx)2 (19)

with

µ(I) = µ1 +
(µ2 − µ1)

1 + I
, I =

|γ̇|
√
p
U , U =

U d

I0H
√
g H

. (20)

Note also that µ1 and µ2 which are directly related to the slope of the dune are also of order
ε:

µ̂j =
µj
ε

j = 1, 2. (21)

The boundary conditions now writes:

u(x, 0, t) = w(x, 0, t) = 0 (22)

and
(1 + ε2 hx

2) τxz − 2 ε hx τxx = (1 + ε2 hx
2) p− (1− ε2 hx2) ε τzz, (23)

4.2.3 Long-wave model

To be able to obtain a simple qualitative shape of the dune, we need to introduce a shallow-
slope approximation. In this approximation, the ratio of the vertical and horizontal scale
of the dune is ε = H/L � 1. This assumption is quite strong regarding the experimental
shape of the dune where ε ∼ 0.2 − 0.5, however it constitutes a simple way to provide a
qualitative shape from analytical studies.

209



4.3 Quasi-steady case without inertia

In the experiments shown in figure 7, the Froude number is typically of order F ∼ 0.02.
Thus, a first step is to assume that the deviation from a straight slope can be understood
assuming that F � 1 in the equations (17) and (18). Physically, it means that we neglect
the inertia of the granular material. This assumption leads to the governing equations:

ux + wz = 0, (24)

−ε px + ε2 ∂x τxx + ε ∂z τxz = 0, (25)

−pz − 1 + ε2 ∂x τxz + ε ∂z τzz = 0. (26)

Equations (25-26) at the leading-order give:

p = (h− z), (27)

τxz = −hx (h− z). (28)

Then, from the constitutive equation given by the µ(I)-rheology (20), we can write

τxz = pµ(I)
uz
|uz|

(29)

which leads to
hx = −µ(I). (30)

Then, using the constitutive relation given by (20), we obtain

hx = −µ1 −
(µ2 − µ1)

1 + I
with I =

|γ̇| d√
p/ρ
U =

uz√
(h− z)

U . (31)

This relation leads to an expression for the z-derivative of u:

uz =

√
h− z
U

(
µ1 − hx
hx − µ2

)
. (32)

Then, integration of the relation (32) with the boundary condition u(z = 0) = 0 leads to a
Bagnold-like profile (see for instance [11]):

u =
2

3U

(
µ1 − hx
hx − µ2

)
[h3/2 − (h− z)3/2], (33)

We use the continuity equation averaged over the height of the dune (13) for the steady
state (∂t = 0) to evaluate the height of the dune h(x):

∂

∂x

(∫ h

0
udz

)
= 0. (34)

We integrate this relation with respect to x with the boundary condition u(x = 0) = ÛB

where ÛB = UB/U is the dimensionless velocity of the blade with respect to the underlying
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layer. Because the table is rotating, this velocity at a given radial position y is UB = Ω y.
It leads to ∫ h

0
udz = h ÛB. (35)

Then with the expression (33) we finally obtain

ÛB =
1

h

∫ h

0
udz =

2

5U

(
µ1 − hx
hx − µ2

)
h3/2, (36)

From this relation, we obtain an equation for the height of the dune at a given distance
from the blade h(x) in the limit where the inertial effects are neglected, i.e. at F � 1:

hx =
µ1 h

3/2 + F2 µ2

h3/2 + F2
, (37)

where F2 is defined by

F2 =
5

2
ÛB U . (38)

Coming back to the dimensional expression, the coefficient F2 writes:

F2 =
5

2

UB d

I0H
√
g H

. (39)

We consider the aquarium sand with typical experimental parameters Ω = 0.05 rad/s,
y = y0 = 25 cm, UB = Ω y, H = 5 cm, d = 1 mm, and for I0, µ1 and µ2 the value
provided by Jop et al. [9]. The resulting profiles are plotted in figure 8. We can see that
the shape of the dune shows some qualitative agreement with the experiments. The profile
of the dune is close to a straight slope except when the dune meet the underlying layer
where the profile becomes concave as observed in the experiments. However, the analytical
theory depends on F2 which is inversly proportional to H3/2. Thus, when the dune becomes
smaller, the value of F2 increases and the profile should change. However, the experiments
seem to show the same profile all the time. It may be due that experiments were typically
performed with a height of the dune in the range H ∼ 3− 10 cm. For smaller height of the
dune, the experimental measurements are not sufficiently accurate. Thus, the range of F2

performed for a given rotation rate does not allow to see a huge variation of F2. The only
way to increase its value is a larger value of the velocity of the blade which will be the point
of the next section.

4.4 Influence of the different parameters

The shape observed for aquarium sand, i.e. a straight slope and a curvature near the tip
of the dune should be valid for different granular materials in the limit F → 0. Indeed,
the analytical model presented in the previous section relies on the µ(I) rheology which is
valid for sand as well as for glass beads. Figure 9(a) illustrates the profile of the dune for
1 mm spherical glass beads and the same parameters as shown in figure 6 after the initial
build-up of the dune in the (xz) plane (i.e. approximately after 0.1Trot). Again we can
see that the shape of the dune exhibits a curvature near the tip explained by our simple
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Figure 8: Analytical profile of the dune. The blue continuous line is for the experimental
parameters: H = 6 cm, Ω = 0.05 rad/s, y = y0 = 25 cm, UB = Ω y, d = 1 mm leading to
F2 = 8.5 × 10−4. The red dashed lines indicate the slope given by µ1 and µ2.

model. We can also study the influence of the different parameters: the mass (figure 9(b))
or various initial position (figure 9(c)) always in the limit of vanishing Froude number. The
profile of the dune seems not to change with these different parameters. Note that with the
glass beads the profiles look slightly more curved everywhere. It may be due the shape of
the particles which are spherical contrary to the aquarium sand. In this case the p article
will be likely incline to roll and the speeds at the surface will increase. This effect is not
yet totally understood.

4.5 What about inertia?

We have previously focused on the shape of the dune in the limit where the inertial effects are
neglected, i.e. for a Froude number F � 1. However, experimental observations suggests
that the shape of the dune can be modified by inertial effects as illustrated in figure (10)
when we increase the rotation rate of the bulldozer. Instead of having an inclined and nearly-
flat profile as observed in the previous section, we have a transition to a profile where a
significant curvature appears. The profile observed when increasing the Froude number is
similar to the “S-shape” observed in rotating drums (see for instance [16]). In figure (10) the
Froude number ranges from 0.4 to 1 and its influence has now to be considered to account
for the curvature of the profile.

To study the effect of inertia, we consider the leading-order version of (17) with F =
O(1). We depth-integrated this equation and use the first order profile (33) obtained pre-
viously. It leads to:

F 2

[
∂

∂t
(hU) +

∂

∂x

(∫ h

0
u2 dz

)]
= −hx − τxz(x, 0, t) (40)

where

U =
1

h

∫ h

0
udz (41)
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Figure 9: Profile of the dune for the 1 mm spherical glass beads (a) Ω = 0.05 rad/s, m = 1
kg, y = 25 cm; (b) for the same parameters and various mass: m=1000 g (red), m=750 g
(blue), m=500 g (green), m=250 g (black); (c) for various initial radial position: y0 = 15
cm (red), y0 = 25 cm (blue), y0 = 35 cm (green). In all these figures, the time is taken
every 10 seconds after the build-up of the dune is achieved.

is the vertical average of the velocity u. To evaluate the inertial terms on the left of this
equation and the basal drag, we consider the steady state with constant flux, (hU)x = 0,
and exploit the velocity profile of the inertia-less problem, namely

u =
5U

3h3/2
[h3/2 − (h− z)3/2] (42)

After a little algebra, we arrive at

hx

(
1 +

5U2

4 g h

)
= −µ(Ib). (43)

where

Ib =
5U d

2H
√
gH

(44)
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Figure 10: Profile of the dune for different rotation rates Ω = 0.8 rad/s (red), Ω = 1 rad/s
(blue), Ω = 1.25 rad/s (green), Ω = 1.5 rad/s (cyan), Ω = 1.75 rad/s (magenta) and Ω = 2
rad/s (black) with m = 1000 g, y0 = y = 35 cm and the granular material is the aquarium
sand of diameter d = 0.9 mm. Profiles are taken at arbitrary times after the build-up of
the dune.
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Figure 11: (a) Analytical profile of the dune for the aquarium sand, y0 = y = 25 cm, d = 1
mm, H0 = 5 cm and Ω = 0.05 rad/s. (b) Analytical profile of the dune for the aquarium
sand, y0 = y = 40 cm, d = 1 mm, H0 = 5 cm and Ω = 1 rad/s leading to a larger Froude
number. In both figures the black continuous line are obtained with the relation (43) and
the black dotted-line are obtained with the relation (37).

Note that this relation is exactly the relation (31) in the limit of vanishing Froude
number, i.e. for vanishing velocity U . The term 5U2/(4 g h) accounts for the inertial
effects. Resulting profiles calculated with this model are shown in figure 11(a) and (b).
Figure 11(a) is plotted for a small rotation rate, Ω = 0.05 rad/s. In this case, we see that
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Figure 12: 2D profile of the dune in the plane (yz) for Ω = 0.05 rad/s, y0 = 25 cm, m = 1000
g. The granular material used is the 0.9 mm aquarium sand. The red line corresponds to
an initial condition where the sand is initially put against the blade whereas the black line
indicates the initial condition where a sandpile is set at a distance y0 = 25 cm from the
center. The arrows indicate the time-direction.

the profile is similar to the results of the previous section: the Froude number is small.
However, for larger velocity, i.e. larger Froude number, the tail of the dune is modified as
illustrated by the figure 11(b). The curvature of the profile is more important, as observed
experimentally. However, even if the shape of the tail is captured qualitatively, the profile
of the dune closer to the blade remains straight in our analytical model whereas in the
experiments the curvature is also important in this region.

5 Lateral spreading of the dune

In section 3, we have seen that the motion of the dune can be decomposed into a build-up
of the dune perpendicular to the blade and a lateral spreading of the dune along the blade.
This lateral spreading effect is present for a rotating blade where the normal velocity to the
blade depends on the distance to the center y through the relation U⊥ = yΩ. Furthermore,
because the front of the blade is position slightly ahead of the centre of the rotating table,
there is a tangential velocity along the blade, U‖, that advects the dune radially outwards
(see below in 5.1.1).

Figure 12 illustrates the two-dimensional dynamics against the blade. Starting from
a symmetric sandpile, the dune spreads along the blade and breaks its symmetry: the
spreading is faster in this direction where the velocity of the blade is larger.

5.1 Mathematical modelling

5.1.1 Velocity of the bulldozer

First, we calculate the velocity induced by the rotating table at the velocity Ω in the frame
of the blade. We use cartesian coordinates where the axis of rotation is at the position
(x = −δ, y = 0) (see figure 13). Introducing r, the distance from the rotating axis, and θ,
the angle between the y-axis and (OBM), one can write the coordinates of a point M as
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Figure 13: Schematic and coordinates in the (xy) plane. δ is the thickness of the blade.
x = 0 is taken at the surface of the blade.

(xM = r sin θ − δ, yM = r cos θ). Thus the velocity field (U, V ) is given by

U = −Ω r cos θ = −Ω y, (45a)

V = Ω r sin θ = Ω (x+ δ). (45b)

5.1.2 Conservation of mass

Let us express the conservation of mass averaged over z:

∂h

∂t
+

∂

∂x

(∫ h

0
udz

)
+

∂

∂y

(∫ h

0
vdz

)
= 0, (46)

which can be rewritten as

∂h

∂t
+

∂

∂x
(hU + Fx) +

∂

∂y
(hV + Fy) = 0, (47)

where U (resp. V ) accounts for the x-velocity (resp. y-velocity) of the underlying layer in
the reference frame of the blade and Fx (resp. Fy) is the flux along the x-direction (resp.
y-direction).

5.1.3 Modelling the shape of the dune perpendicularly to the blade

We want to build a simple model of evolution of the shape of the bulldozed dune in the (yz)
plane (Fig. 14(a)), thus we need an estimation of the shape of the dune in the direction
perpendicular to the blade. From the experimental observations, at low rotation rate, we
can assume that for all positions y the slope can be approximated as straight line slope µ
which is a parameter of the granular material and height H(y, t) (see Fig. 14(b)). Thus,
the equation of the dune in the xz plane can be written as

h(x, y, t) = H(y, t)− µx (48)

This is a rough estimation of the shape but largely simplifies the problem from three di-
mensions to two dimensions.
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Figure 14: Schematic of the approximated shape of the 2D profile in the plane (xz).

5.1.4 Advection-diffusion equation

Following the experimental observations, our main idea is that adjustments to the granular
flow in the x-direction take place relatively quickly, and so the dune is in a quasi-steady
state in this direction. This demands that the net horizontal flux in (47), namely hU +Fx,
must be small, with any residual matching the slow time variation of h and weak flux along
the blade. That is, Fx ∼ −hU . To explore the slower lateral spreading and time evolution,
we integrate (47) over the x-direction to obtain the relation:

∂

∂t

(∫ X

0
hdx

)
+ [hU + Fx]X0 +

∂

∂y

(∫ X

0
hV + Fy dx

)
= 0. (49)

We evaluate all the terms of this relation with X = H(y, t)/µ. The first term leads to

∂

∂t

(∫ X

0
hdx

)
=

∂

∂t

(
H2

2µ

)
(50)

Then, due to the presence of the blade, there is a no-normal flow condition at x = 0 which
implies that H(y, t)U(x = 0) + Fx(x = 0) = 0. At the end of the dune, at X = H(y, t)/µ,
by definition the flux drops to zero, i.e. Fx(x = X) = 0 and the height of the dune h(x=X)
also vanishes. This, the second term of the relation (49) vanishes:

[hU + Fx]X0 = 0. (51)

We can separate the last term of the relation (49), and we have:

∂

∂y

(∫ X

0
hV dx

)
=

∂

∂y

(∫ X

0
hΩ (x+ δ)dx

)
,

=
∂

∂y

(
Ω δ H2

2µ2
+

ΩH3

6µ2

)
.

For a free-surface gravity-driven flow, one expects that the flux, F = (Fx, Fy), is proportional
to the surface slope. That is, F ≈ −Γ∇h, where the factor Γ encapsulates the detailed
physics of the granular flow. For example, for the shallow, inertia-less flow described by the
µ(I) law in section 4, one can generalize the analysis and find

Γ =
2 I0
√
g

5 d

h5/2

|∇h|

µ2 −
√
hx

2 + hy
2√

hx
2 + hy

2 − µ1

 (52)
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Hence,

Fy ≈ Fx
hy
hx
≈ −hU Hy

µ
(53)

given our assumptions on the quasi-steady profile in x (Fx ≈ −hU and (48)). After inte-
gration we obtain

∂

∂y

(∫ X

0
Fy dx

)
=

∂

∂y

(
H2Hy

2µ2
Ω y

)
. (54)

In conclusion, the relation (49) leads finally to the evolution equation for H(y, t):

∂H2

∂t
+

∂

∂y

(
Ω δ H2 +

ΩH3

3µ

)
+

∂

∂y

(
H2Hy

µ
Ω y

)
= 0. (55)

Note that this equation is an advection-diffusion equation which can be solved using a
defined initial condition. The initial height will be choosen to fit with the initial sandpile.

5.2 Time-evolution of the dune

We can solve the partial differential equation (55) numerically. An example of the profile
obtained is plotted in figure (15.a). This profile is plotted for the parameter used in the
experimental results shown in figure (15.b). First, the thickness of the blade, δ = 1 cm, is
directly measure on the experimental setup. The slope of the dune perpendicularly to the
blade is obtained from experiments done in section 4: µ ' tan(40π/180) for the aquarium
sand. In addition, note that the diffusivity in (55) vanishes in the limit H → 0. To avoid
the implied singularity, the computation also includes a pre-wetted layer everywhere, i.e.
the initial condition are:

H(y, t = 0) = max(H0 − µ |y − y0|) + γ0, (56)

where γ0 is the thickness of the pre-wetted layer and max(H0 − µ |y − y0|) is a triangular
function centered in y0 of height H0. H0 is chosen as an adjustement parameter.

We can see that the spreading of the dune is non-symmetric and the maximum height of
the dune travels outward with time. Although the agreement is not quantitative, the quali-
tative feature of the lateral spreading is well captured by our simple toy-model. In addition
this maximum height decreases during the spreading in a qualitative good agreement.

6 Conclusion

In this project, we have studied the dynamics of bulldozed sand using experimental charac-
terizations and some qualitative modelling with granular rheology. The experiments were
performed with a rotating bulldozer which allows us to demonstrate that the dynamics of
the dune built against the blade can be split into two phases. A first adjustment takes
place transverse to the blade, with the dune adopting a quasi-steady profile with almost
constant slope. The profile can be qualitatively reproduced with a shallow 2D flow model
incorporating the so-called µ(I)-rheology. The transverse adjustment is followed by a second
phase of lateral spreading. A crude model of this second phase reproduces the asymmetrical
spreading of the dune along the blade and its gradual outward migration.
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Figure 15: (a) Analytical profile with Ω = 0.05 rad/s, y0 = 20 cm, µ = tan(40π/180), δ = 1
cm, H0 = 9 cm, γ0 = 0.01 cm. (b) Experimental profile obtained with the aquarium sand
for Ω = 0.05 rad/s, y = y0 = 20 cm. The profiles are taken every 5 seconds.

We have outlined in this report results based on experiments and suggested analytical
modeling of the observed flow. However, one can notice that it exists some discrepancies
between the theory and experiments. It may be due to some strong assumptions: the flow
perpendicular to the blade was assumed to be shallow which is not totally satisfied. In
addition, we used a quasi-steady assumption to split the dynamics into two phases and
study them separately, but there may be some interplay between the 2D dynamic and the
lateral spreading.

To further understand the dynamic of bulldozed material, extensions of the theory can
be done by considering a fully 2D modeling of fluid with a µ(I)-rheology, i.e. without
shallow-water approximations. We will carry 2D particle dyamics with a DEM code to
study the flow without lateral spreading. Numerical simulations allow us to have access
to various physical quantities such as the velocity inside the dune or the transient shape
during the build-up of the dune. Numerical simulation with a µ(I) rheology [11] can also be
compared to DEM simulation to study if the dynamic of the dune can be indeed captured
by the µ(I) rheology.

We will also extend the experiments by performing PIV measurement to obtain the
velocity field at the surface of the dune. Some experiments to see if there is any particle
exchange between the dune and underlying bed are also needed. We outlined that the
sandpaper allow no-slip boundary condition, but examining effects of slip by removing
sandpaper would also be interesting as well as studying slower speeds and other materials
to look for unsteady avalanching.
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Figure 16: Photo and schematic of bulldozed sand by a blade at velocity UB for no-slip (a,b)
and slip (c,d) boundary conditions at the bottom. I, II and III denotes the three distinct
regions which are visible: (I) a dune, (II) a horizontal layer of sand far from the blade, (III)
a region where the granular materials is squeezed in a wrinkled layer before being bulldozed.

A Slipping or not slipping?

Depending on the coating of the rotating table, two different regimes can be observed for
the bulldozed sand (see figure 16). If the table is coated with sandpaper, the boundary
condition at the bottom are no-slip boundary condition. In this case, we observed two
different zones: a zone where the sand is bulldozed and a zone far from the blade where
the granular material is stationary (see figure 16a.b). This is this situation we study in this
report.

However, in the absence of sandpaper on the bottom, the boundary condition on the
table is less obvious. There is likely a sliding layer of grain. In this case, the avalanching
dune is buffered from the upstream static bed by a compressing, sliding layer of grains.
In some exploratory experiments, this layer appeared to lose stability towards a type of
buckling instability, rendering the free surface into a wavy pattern (region III on figure
16c.d). This situation is more complicated to describe as the characteristic of the surface
becomes really important. This new situation would deserved a proper study in the future
but is beyond the scope of this report.
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Figure 17: Laser sheet projected on the table (red line). (a) For a flat topography the line
remains straight, the height is equal to h = 0. (b) When the dune is present, the deviation
of the line from a straight line leads to the value of h(x) after initial calibration.

B Diagnostic method: calibration and topography of the
dune

In addition to the qualitative visualization of the bulldozing phenomenon, we need to have
access to quantitative features. Here, we want to obtain the shape of the dune at an arbitrary
radius. However, we need a non intrusive method. We have used a method developed during
the summer which relies on the deformation of a laser line projected on a topography. For
this method, we project a sheet at a given radius. In the absence of topography, a straight
line is observed (see figure 17(a)). However, as soon as a topography is present, the sheet
is deformed (see figure 17(b)) and we can measure the distance between the deformed and
non-deformed line to have access to the height.

Note that the movie has to be recorded by a camera located in a position such that we
can see the whole topography of the dune. Figures 17(a) & 17(b) show a typical example
of view to study the entire topography of the dune. However, as can be seen on these two
figures, it leads to some problems to describe the topography of the dune as a function of the
variables (x, y, z). Indeed the view is 3D, thus the axis (Ox) and (Oz) are not perpendicular,
in addition the length scales change with the position. Therefore, before postprocessing the
movies, we need to calibrate the position of the camera to obtain a direct correspondence
between the location of a pixel (xp, zp) and the physical values (x, y, z).

We use a squared board at a given radial position y. One calibration will be valid only
for a given value of y which will be the position of our laser sheet (note that in figure 18, y
is known from the scale on the top of the blade). Then, we obtain the direction of the axis
(Ox) and (Oz) from the edges of the board. Because the axis are not perpendicular, we need
to determine the vanishing points which allow us to correct the effects of the perspective.
It corresponds to the intersection of the red dashed line in figure 18). Then, we determine
the length scales along y and z with the graduation on the grid. In a first approximation,
direct measurements show that the correspondence between the measured distance on the
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Figure 18: Photo of the calibration process. The board is used to define the direction of
the axis, the vanishing points and the lengthscales.

picture and the real distance is linear. After this calibration, we consider a pixel at a known
location (xp, zp) in our movie, then we project this point on the (Ox) and (Oz). Using the
length scales determine during the calibration process, we obtain the location (x, z) for a
given y.
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Spin down of a stellar interior

Rosalind Oglethorpe
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1 Introduction

Helioseismology has revealed a lot of information about the structure and dynamics of the
solar interior, and we expect astroseismology from the Kepler probe to soon reveal similar
information about other solar-type stars. The Sun and solar-type stars have two regions:
a convective outer zone and a radiative inner zone [3, 10]. The radiative zone is stably
stratified and energy transport is dominated by photon radiation.

Helioseismology has revealed that the convection zone is differentially rotating, as shown
in Figure 1. At the equator, the rotation is fast with a period of about 25 days. The period
increases with latitude, reaching about 30 days near the poles. The reason for this differen-
tial rotation is not yet completely understood. It is known that the turbulence in rotating
convection is strongly anisotropic and causes a net flux of angular momentum towards
the equator, but there are also many other processes involved in driving the differential
rotation [8].

The radiative zone, by contrast, is in uniform rotation, as shown in Figure 1, with a
period of about 27 days (the same as at approximately 30 degrees latitude in the convec-
tion zone). The two regions are separated by a rotational shear layer, which is called the
tachocline [13]. Observations (for example, see Figure 1) reveal that the tachocline is very
thin. This is surprising, because (as shown by [13]) the rotational shear should propagate
into the interior on a relatively fast timescale, advected by meridional flows associated with
the so-called ‘thermal-spreading’ process.

1.1 Thermal spreading

To understand thermal spreading, let’s consider a thought-experiment in which, at time
t = 0, the outer convection zone is differentially rotating and the inner radiative zone is
uniformly rotating. Isobars in the uniformly rotating radiative zone are approximately
spherical at first. As the differential rotation propagates into the top of the radiative zone,
the Coriolis force due to the perturbation of the angular velocity must be compensated by
a pressure perturbation, P̂ (see Figure 2(a)). In hydrostatic equilibrium, the latter must
be compensated by a change in the local density, and ultimately induces a temperature
perturbation T̂ . The sign of the Coriolis force is such that the polar tachocline becomes
somewhat hotter than the regions below, while the equatorial tachocline is somewhat cooler.

If the system is also in thermal equilibrium, advective and diffusive heat transport must
compensate each other. As the temperature perturbation diffuses outwards, inward flows are
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Figure 1: A graph of the angular velocity in the solar interior, from [3]. The outer convective
zone is differentially rotating, and the inner radiative zone is uniformly rotating. The dashed
line indicates the boundary between the convection zone and the radiative zone.

Figure 2: A schematic of the thermal spreading process. (a) Isobars are perturbed by
the propagation of the differential rotation into the radiative zone (colour shows angular
velocity and grey lines show isobars). (b) This pressure perturbation causes a temperature
perturbation, and the diffusion of this temperature perturbation is balanced by inward flows
to maintain thermal equilibrium (colour shows temperature perturbation and grey arrows
show flows). (c) These inward flows advect the differential rotation further into the interior
(third picture).
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generated to balance the thermal diffusion (see Figure 2(b)). The latter transport angular
momentum, so the differential rotation spreads into the radiative zone (see Figure 2(c)).
Spiegel and Zahn [13] studied this process in detail. They found that the depth h of the
tachocline grows via thermal spreading as

h ≈ r0

(
t

tES

)1/4

, (1)

where r0 is the radius of the radiative zone, t is time and

tES =

(
N

2Ω

)2 r2
0

κ
(2)

is the global Eddington-Sweet timescale. It is important to note here that viscosity plays no
role in the process. By thermal spreading alone, Spiegel and Zahn argued that the thickness
of the tachocline by now should be about a third of the total depth of the radiative zone.
This is clearly at odds with observations from helioseismology (Figure 1). They concluded
that there must be some other mechanism to stop the growth of the tachocline and the
propagation of meridional flows into the interior.

1.2 The effect of an interior magnetic field: the Gough and McIntyre
model

One mechanism that could impose a uniform rotation in the radiative zone is a primordial
magnetic field, confined to the radiative zone [7]. The induction equation for a magnetic
field is

∂B

∂t
= ∇× (u×B− η∇×B), (3)

where u is the velocity of the flow, B is the magnetic field and η is the magnetic diffusivity.
For a steady axisymmetric magnetic field with negligible meridional flows and magnetic
diffusivity, (3) simply becomes

∇× (u×B) = (B.∇)u− (u.∇)B = 0, (4)

using the solenoidal condition ∇.B = 0. If we rewrite u as

u = (0, 0, r sin θΩ), (5)

in spherical coordinates (where Ω is the rotation rate), (4) yields Ferraro’s law of isorota-
tion [4],

B.∇Ω = 0, (6)

which states that angular velocity is constant on magnetic field lines. Hence, as long as the
magnetic field is confined to the radiative zone then (6) can enforce a uniform rotation in
the interior. If the magnetic field lines are anchored in the convection zone, by contrast,
(6) would promote the propagation of the differential rotation into the interior.

Unfortunately, by (3), magnetic fields diffuse over long timescales, so that any initially
confined field slowly expands into the convection zone. Thus, differential rotation in the
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Figure 3: A schematic of the current tachocline paradigm, from [6]. The purple region
is the magnetically dominated interior, with magnetic field lines shown in red. The blue
region is the tachopause (thickness exaggerated by a factor of 50) and the green region is
the tachocline (thickness exaggerated by a factor of 5). The arrows represent meridional
flows in the tachocline. The yellow region is the convection zone.

radiative zone is expected unless there is a mechanism to keep the field actively confined
against diffusion [2, 14]. Gough and McIntyre [6] showed that one way of keeping the field
confined within the radiative zone is for the downwelling flows associated with the tachocline
thermal spreading to balance the outward diffusion of the magnetic field.

A schematic of the current tachocline paradigm is shown in Figure 3, from [6]. In
this model, the interior is magnetically dominated and in rigid rotation. Between this
interior and the outer convection zone, there is a magnetic-free, stably stratified tachocline
with thermally driven downwelling flows which confine the magnetic field. A thin magnetic
boundary layer, called the tachopause, separates the tachocline from the rest of the interior.

1.3 The effect of spin down

The Gough and McIntyre model assumes that the system is in a steady state. However,
there are several different possible sources of time-dependence in the problem, including the
very slow (and complicated) timescale of the stellar evolution, the time for the diffusion of
the magnetic field, the timescale of the decrease in rotation rate, and many others. We will
focus on the effect of the decreasing rotation rate.

In addition to the internal primordial field, solar-type stars also host a distinct ‘dynamo
field’ generated in the convection zone by turbulent fluid motions. In the Gough and McIn-
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Figure 4: A photograph of the solar wind during the 11 July 2010 Solar eclipse, from [9].

tyre model, this magnetic field is assumed to be spatially separated from the primordial field
by the magnetic-free tachocline. This dynamo field emerges at the surface and eventually
becomes part of the solar wind. Figure 4 shows a photo of the solar wind during a solar
eclipse. Charged particles travel along the field lines out from the star, and their angular
velocity slows down by conservation of angular momentum. However, by Ferraro’s law of
isorotation, the angular velocity must be constant along field lines. This exerts a magnetic
torque on the outer layers of the star, causing them to slow down.

Skumanich [11] looked at the rotation rates of several clusters of solar-type stars, and
found that the mean stellar rotation rate decays as a power law with time, as

Ω ∼ t−1/2. (7)

This project aims to look at the effect of spin down on the model by [6]. In what
follows, we first study how spin down propagates into a non-magnetic interior, and then
look at what happens if a magnetic field is included in the radiative zone.

2 Stratified, non-magnetic spin down

We first consider the spin down of a stratified, non-magnetic star. We build upon the work
of Bretherton and Spiegel [1], which is now discussed for clarity and completeness.

2.1 Spin-down of an unstratified, non-magnetic star

Bretherton and Spiegel [1] were the first to study the spin down of an unstratified star.
They consider a star with an outer convection zone and an inner radiative zone, and model
it as an unstratified sphere of fluid (which represents the radiative zone) surrounded by a
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spherical shell of porous medium (the convection zone). The interior region has radius a,
and the total radius of the star is b. Since Pr � 1, the viscosity is negligible.

The porous medium is rotating with an angular velocity Ω(t), which slows down over
time as

Ω(t) = Ω0 exp(−kt), (8)

where Ω0 is the initial rotation rate and k is the spin down rate. The spin down is assumed
to be slow, so that k � Ω0. Bretherton and Spiegel look for a ‘steady state’, where the
Du/Dt term is negligible in the momentum equation expressed in a frame rotating with
angular velocity Ω(t). The ‘steady state’ equations of motion in the porous medium are
Darcy’s law and the incompressibility condition:

1

τ
u = −1

ρ
∇P̂ , ∇.u = 0, (9)

where τ is the Darcy friction timescale and P̂ is the pressure perturbation away from
hydrostatic equilibrium. The equations of motion in the interior are

2Ω× u− kΩ× r = −1

ρ
∇P̂ , ∇.u = 0. (10)

The first term in (10) is the Coriolis force, and the second is Euler’s force which is due to
the deceleration of the frame. Solving these equations, then matching P̂ and the normal
velocity at the interface between the interior and the porous medium, r = a, yields for
instance the angular velocity perturbation Ω̂(r, θ, t) everywhere in the star. The angular
velocity in the interior turns out to be uniform, with value

Ω̂c =
3a5 + 2b5

b5 − a5

k

4Ωτ
, (11)

in the rotating frame. Since Ω̂c > 0, there is a constant lag in the propagation of the spin
down into the interior.

In short, the porous medium and the interior are each uniformly rotating, but the interior
is always rotating faster, since Ω̂c is always positive. The lag depends on the rate of spin
down, k, the rotation rate of the porous medium, Ω, and the Darcy relaxation time scale of
the porous medium, τ .

2.2 Spin down of a stratified non-magnetic star (cylindrical model)

2.2.1 The model

We now consider a similar model to [1], but with a stratified interior and with differential
rotation in the convection zone. Because of the added complexity, we have to model a
cylinder instead of a full sphere, with gravity parallel to the rotation axis. This adds a
geometrical error, but on the other hand allows for a fully analytical solution. This cylinder
can be viewed as the polar regions of the star. The lower part is filled with stratified fluid,
with constant buoyancy frequency N and negligible viscosity ν, from z = 0 to z = zcz, and
with a porous medium from z = zcz to z = 1. Figure 5 is a diagram of the model set up.
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Figure 5: A diagram of the cylindrical model set up. The region from z = 0 to z = zcz is
filled with a stably stratified fluid, with constant buoyancy frequency N , and the viscosity ν
is negligible. The region from z = zcz to z = 1 (yellow) is filled with a differentially rotating
porous medium.

The porous medium is rotating with angular velocity Ω(t), and following [1] we work in a
frame rotating with angular velocity Ω(t). The cylinder has radius R and unit height. We
use cylindrical coordinates (s, φ, z) in the rotating frame, and assume axisymmetry with
respect to the axis of rotation (which is in the vertical z direction) so that ∂/∂φ = 0. In
these coordinates, we write the velocity relative to the rotating frame as u = (u, v, w).

The real dynamics of a stellar convection zone are very complicated. Our main goal here
is to model rapid momentum transport from the surface down to the top of the radiative
zone. The simplest possible model that has such a property is one with a Darcy friction
term, as in [1, 5]. We replace the effect of the Reynolds stresses with a Darcy forcing term
in the convection zone (z > zcz), so that in this region the velocity of the fluid relaxes to
the assumed velocity of the porous medium on a timescale τ . In the rotating frame, we
consider that the porous medium may be also differentially rotating, with velocity vcz(s)êφ.
We require the net angular momentum of the porous medium in the rotating frame to be
zero, so the differential rotation does not apply any torque to the system. The porous
medium represents the convection zone, where N ≈ 0, and (for simplicity) we also take its
thermal diffusivity to be effectively infinite1, so that the temperature perturbation T̂ = 0
for z > zcz. The momentum equation for the fluid in the porous medium is then

∂u

∂t
+ 2Ω× u + Ω̇× r +

u− vcz(s)eφ
τ

= −1

ρ
∇P̂ . (12)

In the ‘bulk’ of the fluid (z < zcz) we make several assumptions to simplify the equa-
tions (as in, for example, [1], [6] and [13]). We use the Boussinesq approximation (for

1This assumption gives the solution to lowest order in κb/κp, where κp and κb are the thermal diffusivities
in the porous medium and the plug, respectively, and κp � κb
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example, [12]) and assume that the fluid is incompressible everywhere. We assume that
the Rossby number, which is the ratio of the Coriolis acceleration to the advective term,
is small. Under this assumption, flows are sufficiently slow that we can neglect the non-
linear advective term in the momentum equation. We assume the flow is hydrostatic and
geostrophic, so viscous forces are much less important than Coriolis forces. We also assume
that the flows are sufficiently steady and slow for the system to be in thermal equilibrium,
with heat diffusion being balanced by the advection of the background entropy.

The momentum equation in the bulk is then

∂u

∂t
+ 2Ω× u + Ω̇× r = −1

ρ
∇P̂ +

g

T
T̂ êz, (13)

where T is the mean temperature and ρ is the mean density.
We choose the boundary conditions to have zero temperature perturbation, T̂ , and

vertical velocity, w, at z = 0 and z = 1. We solve the equations separately for z > zcz and
z < zcz, and match T̂ , w and pressure perturbation P̂ at the radiative-convective interface
zcz. In short,

T̂ = 0 at z = 0, z = 1, (14)

w = 0 at z = 0, z = 1, (15)

T̂ (z = z−cz) = T̂ (z = z+
cz), (16)

P̂ (z = z−cz) = P̂ (z = z+
cz), (17)

w(z = z−cz) = w(z = z+
cz). (18)

Boundary conditions at the side wall s = R are more difficult to choose, as we want them
to have as little influence as possible on the flow inside the cylinder. We choose

T̂ = 0 at s = R. (19)

This boundary condition allows a radial flow across the side wall, which by conservation of
mass must be zero overall. We assume that the flow into and out of the cylinder through
the side walls has negligible influence on the flow in the cylinder. From (13) the radial and
vertical momentum equations in the bulk are

1

ρ

∂P̂

∂z
=
g

T
T̂ , (20)

2Ωv =
1

ρ

∂P̂

∂s
. (21)

Using the side wall boundary condition (19) in (20) gives P̂ = 0 at s = R. Combining (20)
and (21) yields the thermal wind equation

2Ω
∂v

∂z
=
g

T

∂T̂

∂s
. (22)

We also have the equations for thermal equilibrium,

N2T

g
w = κ∇2T̂ , (23)
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where κ is the thermal diffusivity in the bulk, and incompressibility

1

s

∂

∂s
(su) +

∂w

∂z
= 0. (24)

Combining (22), (23) and (24) gives an equation relating u and v

−N2 ∂

∂s

(
1

s

∂

∂s
(su)

)
= 2Ωκ

(
∂4v

∂z4
+

∂

∂z

∂

∂s

(
1

s

∂

∂s
(sv)

))
. (25)

The first term on the right hand side is equivalent to the thermal spreading term found
in [13], and indicates that there is transport of angular momentum by downwelling merid-
ional flows. A second equation for u and v comes from the φ-component of the angular
momentum equation (13),

∂v

∂t
+ 2Ωu+ Ω̇s = 0. (26)

We then combine (25) and (26) to find v.

2.2.2 ‘Steady state’ solution

Following [1] we first look for a ‘steady state’ solution, where (26) becomes

2Ωu+ Ω̇s = 0. (27)

This immediately gives

u = −s
2

Ω̇

Ω
, (28)

and conservation of mass, with the boundary condition (15), gives

w =
Ω̇

Ω
z. (29)

Note that the frame is slowing down, so Ω̇ < 0. Solving (23) with boundary conditions (19)
then gives

T̂ =
∑
n

J0

(
λn

s

R

)[
αn sinhλn

z

R
− CnzR

2

λ2
n

]
, (30)

with λn the zeros of the Bessel function J0(x) and

Cn =
N2T

gκ

Ω̇

Ω

2

λnJ1(λn)
. (31)

The unknown coefficients αn can be related to Cn using the boundary condition (16). Since
T̂ = 0 in the porous medium:

αn =
CnzczR

2

λ2
n

1

sinhλn
zcz
R

. (32)
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Equations (20) and (21) then give P̂ and v, up to the unknown set of integration constant
{pn}:

1

ρ
P̂ =

g

T

∑
n

J0(λn
s

R
)

[
αnR

λn
coshλn

z

R
− Cnz

2R2

2λ2
n

+ pn

]
, (33)

v =
g

2ΩT

∑
n

dJ0(λn
s
R)

ds

[
αnR

λn
coshλn

z

R
− Cnz

2R2

2λ2
n

+ pn

]
. (34)

To find v, by finding pn, we also need to solve the equations in the porous medium.
In the porous medium, T̂ = 0, and the φ-component of the momentum equation (12) in

steady state reduces to

2Ωu+ Ω̇s = −v − vcz(s)
τ

, (35)

where τ is the time scale of the Darcy force. For ease of algebra, we assume that τ is
sufficiently small that, to the lowest order2 in τ , and

v u vcz(s). (36)

From (12), the radial and vertical momentum equations are

1

ρ

∂P̂

∂z
= −w

τ
, (37)

1

ρ

∂P̂

∂s
= −u

τ
+ 2Ωvcz(s). (38)

Combining these with incompressibility ∇.u = 0 gives

∇2w = 0. (39)

Using the boundary condition (15), we can write w as

w =
∑
n

Bn sinh

[
λn

(
z

R
− 1

R

)]
J0

(
λn

s

R

)
, (40)

for some constants Bn and λn. Equation (37) then gives

1

ρ
P̂ =

∑
n

J0

(
λn

s

R

)[
−Bn
τ

R

λn
cosh

[
λn

(
z

R
− 1

R

)]
+ Pn

]
, (41)

and using the boundary condition (17) at s = R gives that λn are the zeros of J0(x) as in
the bulk solution. Incompressibility also gives

u =
∑
n

dJ0(λn
s
R)

ds

R

λn
Bn cosh

[
λn

(
z

R
− 1

R

)]
, (42)

2This expansion is not necessary, and the calculation can be done without it. However, the solutions are
not as simple and lose clarity.
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so that (38) becomes

1

ρ

∂P̂

∂s
+
u

τ
=
∑
n

dJ0(λn
s
R)

ds
Pn = 2Ω(t)vcz(s), (43)

which uniquely defines Pn,

Pn = − 4Ω(t)

λnJ2
1 (λn)

∫ R

0

s

R
vcz(s)λnJ1

(
λn

s

R

)
ds. (44)

Matching w and P̂ at z = zcz gives

Bn =
Ω̇

Ω

2zcz

λnJ1(λn) sinhλn
(
zcz
R −

1
R

) , (45)

and

pn =
T

g
Pn −

T

g

BnR

τλn
cosh

[
λn

(
zcz
R
− 1

R

)]
− αnR

λn
cosh

(
λn
zcz
R

)
+
Cnz

2R2

2λ2
n

, (46)

so that the azimuthal velocity (34) becomes

v =− 1

Ω

∑
n

J1(λn
s
R)

λnJ1(λn)

Ω̇

Ω

[
N2

κ

zczR
2

λ2
n

(
coshλn

z
R − coshλn

zcz
R

sinhλn
zcz
R

− λn
2zczR

(z2 − z2
cz)

)

−1

τ

zcz

tanhλn( zczR −
1
R)

]
+ vcz(s). (47)

2.2.3 Physical interpretation of the ‘steady-state’ solution

In order to understand this solution more physically, let’s define the different time scales in
this problem as

tsd = −Ω

Ω̇
, tES =

(
N

2Ω

)2 R2

κ
, tΩ =

1

Ω
, tτ = τ, (48)

where tsd is the spin down timescale, tES is the global Eddington-Sweet timescale, which
is the timescale for thermal spreading [13], tΩ is the rotation timescale and tτ is the Darcy
friction timescale. We re-write (47) in terms of these timescales,

v =
1

tsd

∑
n

J1(λn
s
R)

λnJ1(λn)

[
tES
tΩ

4zcz
λ2
n

(
coshλn

z
R − coshλn

zcz
R

sinhλn
zcz
R

− λn
2zczR

(
z2 − z2

cz

))

− tΩ
tτ

zcz

tanhλn( zczR −
1
R)

]
+ vcz(s). (49)

This expression shows that v has two separate parts, one which depends on the spin
down and one which depends on the differential rotation. We first consider the case with no
differential rotation, vcz(s) = 0, to isolate the effect of the spin down. Equation (49) shows
that v depends on tsd as well as ratios of the other three timescales, tES/tΩ and tΩ/tτ .

234



(a) (b)

Figure 6: Contour plots of Ω̂ in the ‘steady state’ solution. (a) Unstratified case. Ω̂ is
constant with depth and strictly positive everywhere. (b) Stratified case. Ω̂ is strictly
positive everywhere, and increases with depth and cylindrical radius.

If there is no stratification in the bulk, tES = 0 and v(s, z = 0) = v(s, z = zcz) =
v(s) > 0. This implies that the azimuthal velocity is independent of depth, as expected
from the Taylor-Proudman constraint, and that there is a lag in the interior with respect
to the porous medium. The angular velocity perturbation, Ω̂ = v/s, is

Ω̂ =
tΩ
tτ tsd

∑
n

J1(λn
s
R)

sλnJ1(λn)

zcz

tanhλn( 1
R −

zcz
R )

, (50)

which is similar to the result from [1]. Indeed, Ω̂ contains the same ratio of timescales as
in [1] but with a different geometrical factor, which is naturally expected since we are using
a cylinder rather than a sphere.

If the bulk is stratified, tES > 0, then v(s, z = 0) > v(s, z = zcz) > 0, showing that the
lag increases with depth. This can be interpreted in two ways. On the one hand, one may
view that the spin down is propagated more quickly to the top of the bulk, near the porous
medium, than to the bottom which is further away. Alternatively one may also consider
that as the stratification increases, the thermal wind (22) can support more vertical shear,
so the lag at the bottom increases. Figure 6 shows contour plots of Ω̂ in the bulk for
tES = 0 and tES > 0. For tES = 0, Figure 6(a) shows an approximately uniform lag, which
is constant with depth. For tES > 0, Figure 6(b) shows that the lag increases with both
depth and with s.

2.2.4 Time-dependent solution

Having found the ‘steady state’ solution, we now return to the time-dependent equations
to find when this ‘steady state’ is valid. We expand v again on the same basis of Bessel
functions, as

v =
∑
n

dJ0(λn
s
R)

ds
ṽn(z, t). (51)
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Combining (25) and (26) with this ansatz gives

∂ṽn
∂t

+

(
2Ω(t)R

Nλn

)2

κ
∂4ṽn
∂z4

−
(

2Ω(t)

N

)2

κ
∂2ṽn
∂z2

=
Ω̇R2

λ2
n

4

λnJ1(λn)
. (52)

The first and second terms on the left hand side recover the equation found by [13] for
the thermal spreading of differential rotation into the interior using a boundary layer ap-
proximation, and the third term on the right hand side completes the full expression for
thermal spreading in the absence of a boundary layer approximation. The right hand side
contains the global forcing term arising from Euler’s force. Thus the evolution of the angu-
lar momentum in the bulk has two contributions: a transport by meridional flows, which is
the thermal spreading found by [13], and a global extraction of angular momentum by the
spinning down of the frame.

To solve (52), we need to express all boundary conditions in terms of vn(z). The bound-
ary conditions at z = 0 are

T̂ = 0⇒ ∂ṽn
∂z

= 0, (53)

w = 0⇒ ∂3ṽn
∂z3

= 0. (54)

In the porous medium, by contrast, we assume that the dynamics always relax to the steady
state on a very rapid timescale. Hence (40), (41) and (42) hold. The boundary conditions
at z = zcz are then

T̂ continuous⇒ T̂ = 0⇒ ∂ṽn
∂z

= 0, (55)

P̂ continuous⇒ ∂P̂

∂s
continuous⇒ 2Ωṽn = −BnR

τλn
cosh

[
λn

(
zcz
R
− 1

R

)]
+ Pn, (56)

w continuous⇒ 2Ωκ

N2

∂3ṽn
∂z3

= Bn sinh

[
λn

(
zcz
R
− 1

R

)]
, (57)

using (55). Equations (56) and (57) combine to give

ṽn +
R

τλn

1

tanh[λn( zczR −
1
R)]

κ

N2

∂3ṽn
∂z3

=
Pn

2Ω(t)
, (58)

where the right hand side is independent of time if vcz(s) is independent of time in the
spinning down frame, from (41). The true steady state solution with these inhomogeneous
boundary conditions is

v = vcz(s), (59)

so that, if the differential rotation remains constant while the rotation rate of the frame
decays, eventually the forcing from the spin down is negligible compared to the forcing from
the differential rotation, and the angular velocity in the bulk is the same as in the porous
medium. We write

v =
∑
n

dJ0(λn
s
R)

ds
ṽn(z, t) =

∑
n

dJ0(λn
s
R)

ds
v̂n(z, t) + vcz(s), (60)
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where v̂n obeys (52) with homogeneous boundary conditions

∂v̂n
∂z

= 0 at z = 0, z = zcz, (61)

∂3v̂n
∂z3

= 0 at z = 0, (62)

∂3v̂n
∂z3

= −N
2

κ

τλn
R

tanh

[
λn

(
zcz
R
− 1

R

)]
v̂n at z = zcz, (63)

from (53), (54), (55) and (58).
Equation (52) is separable, so we can write

v̂n =
∑
m

Tnm(t)Znm(z), (64)

where the eigenfunctions Znm(z) satisfy

∂2

∂z2

((
λn
R

)2

− ∂2

∂z2

)
Znm(z) = −

(µnm
R2

)2
Znm(z) (65)

for some constants µnm. The operator on the left hand side is self-adjoint with the boundary
conditions (61) - (63). As with the horizontal modes, we can project onto the vertical modes
to find an evolution equation for Tnm(t). Since (65) is an equation with constant coefficients,
we seek solutions of the form

Znm(z) = eσnmz, (66)

and find four solutions for σnm: ±σ1,nm and ±iσ2,nm, where

σ1,nm =
1

R

[
λ2
n

2
+

√
µ2
nm +

λ4
n

4

]1/2

, σ2,nm =
1

R

[√
µ2
nm +

λ4
n

4
− λ2

n

2

]1/2

, (67)

and where µnm can be determined using (63). Applying the boundary conditions (61) -
(63) we finally find

Znm(z) =

[
σ2,nm

σ1,nm

sinσ2,nmzcz
sinhσ1,nmzcz

coshσ1,nmz + cosσ2,nmz

]
. (68)

Projecting (52) onto these eigenfunctions Znm(z) gives

Ṫnm(t) +

(
2Ω(t)µnm
NRλn

)2

κTnm(t) =
Ω̇R2

λ2
n

4

λnJn(λn)

∫ zcz
0 Znm(z)dz∫ zcz
0 Z2

nm(z)dz
≡ Gnm(t), (69)

where Gnm(t) is the projection of the global forcing term in (52) onto the vertical modes.
Equation (69) can be solved using an integrating factor method to give

Tnm(t) = exp

(
−
(

2µnm
NRλn

)2

κ

∫ t

Ω2(t′)dt′

)
× (70)[∫ t

t0

Gnm(t′) exp

((
2µnm
NRλn

)2

κ

∫ t′

Ω2(t′′)dt′′

)
dt′ + T0,nm

]
, (71)
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with

T0,nm = exp

((
2µnm
NRλn

)2

κ

∫ t0

Ω2(t)dt

) ∫ zcz
0 v(t = t0)Zn(z)dz∫ zcz

0 Z2
n(z)dz

. (72)

2.2.5 Physical interpretation of the solutions

As discussed in section 1, there is strong observational and theoretical evidence suggesting
that Ω(t) decays as a power law, with Ω(t) = Ω0(t/t0)−α for some α > 0. In this case,∫ t

Ω2(t′)dt′ =

{
Ω2(t)t
1−2α (α 6= 1

2),

Ω2(t)t log(t) (α = 1
2),

(73)

so we expect fundamentally different behaviour for α 6= 1/2 and α = 1/2. As in (48), the
spin down timescale and the global Eddington-Sweet timescale are

tsd(t) = −Ω(t)

Ω̇(t)
=

t

α
, tES(t) =

(
NR

2Ω(t)

)2 1

κ
=

(
NR

2Ω0

)2 t2α

κt2α0
, (74)

where each of them now explicitly depends on time. We also define the local Eddington-
Sweet time of each mode as

tnmES (t) =

(
NR

2Ω(t)

)2 λ2
n

µ2
nmκ

. (75)

Writing Tnm(t) in terms of these timescales yields,

Tnm(t) =


exp

(
− α

1−2α
tsd
tnm
ES

)[
Gnm(t)tα+1

∫ t
t0
t′−α−1 exp

(
α

1−2α

(
tsd
tnm
ES

)′)
+ T0,nm

]
(α 6= 1

2),

t−tsd/2t
nm
ES

[
Gnm(t)t3/2

∫ t
t0
t′(tsd/2t

nm
ES )

′−3/2 + T0,nm

]
(α = 1

2).

(76)
We see that the behaviour of each mode Tnm(t) depends on both α and the ratio of

timescales
tsd(t)

tnmES (t)
=

1

α

(
2Ω0

NR

)2 µ2
nmκ

λ2
n

t2α0 t1−2α, (77)

which itself changes over time for α 6= 1/2.
If α > 1/2, which corresponds to rapid spin down, (76) shows that the effect of the initial

conditions exponentially increases on a timescale of tsd/t
nm
ES . Although the latter decreases

over time, it remains strictly positive so the solution always blows up. This suggests that
our original assumptions, for example that u.∇u is negligible, must break down in the case
of rapid spin down, and our solution is not valid. If α < 1/2, which corresponds to slow
spin down, the initial conditions always decay exponentially and the system relaxes to a
‘steady’ state, where only the global forcing term and the differential rotation influence the
system.

Finally, if α = 1/2, as suggested by Skumanich’s law [11], we can write

Tnm(t) =
gnmΩ(t)

tsd/2t
nm
ES − 1/2

+ t−tsd/2t
nm
ES

[
T0,nm −

gnmΩ0

tsd/2t
nm
ES − 1/2

t
tsd/2t

nm
ES

0

]
, (78)
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with gnm defined as

gnm ≡
Gnm(t)t

Ω(t)
, (79)

which is independent of time. In this case, tsd/t
nm
ES is also independent of time as seen

from (77), so the initial ratio of these two timescales determines the behaviour. The initial
conditions decay on a timescale of tsd/2t

nm
ES for each mode. Since

tnmES < tES ∀n,m, (80)

then if
tsd
tES
� 1, (81)

we also have
tsd
tnmES
� 1 ∀µnm, λn. (82)

In other words, if tsd � tES then the time dependent solution decays to our previous ‘steady
state’ solution, which is equivalent to

Tnm(t) =
gnmΩ(t)

tsd/2t
nm
ES

. (83)

If, on the other hand, tsd/tES � 1 then there are two classes of modes: small-scale modes
for which tsd/t

nm
ES > 1 and large-scale modes for which tsd/t

nm
ES < 1. When tsd/t

nm
ES > 1,

(78) shows that the initial conditions decay faster than the global forcing term, so that
after some time these small-scale modes are governed only by the global forcing and the
differential rotation. However, when tsd/t

nm
ES < 1, the global forcing term in (78) decays

faster than the initial conditions, so the initial conditions continue to influence the system
even after a long time and the ‘steady state’ solution found in 2.2.2 is not as relevant.

Up to this point in our model, the radiative interior has played no role in the angular
momentum transport, and shear propagates to the centre of the star. However, in the
magnetized model of a stellar interior by [6] (see Figure 3), the shear only propagates
through the tachocline as far as the tachopause, and there interacts with the magnetic
field which keeps the interior in solid body rotation. We now want to incorporate the
angular momentum transport between the tachocline and the interior into our model, to
find out how spin down affects the rotation of the interior below the tachocline. We return
to our cylindrical model of a stellar interior, where the porous medium at the top of the
cylinder still corresponds to the convection zone, where the ‘bulk of the fluid’ corresponds
to the stably stratified, non-magnetic tachocline only, and where we now add an additional
‘ingredient’ to model the interior.

3 Unstratified Ekman layer spin down

In the model by [6], angular momentum transport between the tachocline and the interior
is caused by magnetic stresses within a thin boundary layer (the tachopause). There, the
primordial magnetic field interacts with the flows in the tachocline, and helps transmit
the spin-down information from the outer layers downward. Since magnetic torques are
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w = 0
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Ω(t)

s = R

z = 0

z = zcz

z = 1

N = 0, κ = ∞

N = 0
ν = 0

Porous
v = 0

z

z = z0δE

Ωb(t) Ωb(t)

Figure 7: A diagram of the adjusted cylindrical model set up. The region from z = 0 to
z = z0 (light blue) is a solid base which is free to rotate at angular velocity Ω̂b(t) in the
rotating frame. The region from z = z0 to z = zcz is filled with unstratified fluid, and
the viscosity ν is negligible except for near the base. There is a thin boundary layer above
the base, with thickness δE , where the viscous forces become dominant. The region from
z = zcz to z = 1 (yellow) is filled with a porous medium which has zero angular velocity in
the rotating frame.

intrinsically nonlinear, to aid our conceptual understanding, we first consider the case of
viscous torques.

Our model set up is very similar to the model investigated in the previous section. The
bottom of the cylinder now hosts a solid inner cylinder of radius R and thickness z0, see
Figure 7, shaped like a hockey-puck. The density of the ‘hockey-puck’ is same as the density
of the fluid, and it is free to rotate at an angular velocity Ω̂b(t) in the rotating frame. Our
goal is to find Ω̂b(t).

We consider as a first simplified system the unstratified case, where the bulk (from
z = z0 to z = zcz) is filled with unstratified fluid. For simplicity we assume that there
is no differential rotation of the porous medium, although the differential rotation can be
included without altering the steps of the calculation significantly. The torque between
the fluid and the hockey-puck is communicated through a thin (Ekman) boundary layer of
thickness δE at z = z0. In this layer viscosity becomes important, and we can no longer
neglect the viscous terms in the momentum equation.

In the bulk (z0 < z < zcz), we look for a ‘steady state’ solution as in section 2.2.2,
which is now known to be a valid approximate solution as long as the spin down rate is slow
enough. For z > z0 + δE , the equations of motion are the same as in section 2.2.2, setting
T̂ = 0 since the bulk is unstratified. Equation (20) becomes

∂P̂

∂z
= 0⇒ P̂ = P̂0(s)⇒ v = v0(s), (84)
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and, as in the previous ‘steady state’ solution,

u = − Ω̇

2Ω
s⇒ w = w0(s) +

Ω̇

Ω
(z − (z0 + δE)), (85)

where w0(s) is the vertical velocity at the top of the viscous boundary layer (at z = z0 +δE).
To find an evolution equation for Ω̂b(t), we begin by writing the complete angular

momentum conservation equation as

∂

∂t
(sv + s2Ω) +∇.(uΩs2 + viscous terms) = 0. (86)

Assuming that the tachocline (i.e. the bulk) is in ‘steady’ state while retaining the time
dependence of the interior implies that the thermal spreading across the bulk is faster than
angular momentum transport across the interior, which we will check a posteriori.

We then integrate (86) over the volume of the hockey-puck and the boundary layer. The
viscous terms are negligible at the top of the boundary layer, and we assume that they are
also negligible at the side wall in the boundary layer:∫ 2π

0

∫ z0+δE

0

∫ R

0

∂

∂t
(sv + s2Ω) +∇.(uΩs2 + viscous terms)dV = 0, (87)

⇒ z0
R4

4

(
dΩ̂b

dt
+ Ω̇

)
+

∫ R

0
w0(s)Ωs3ds+R

∫ z0+δE

z0

u(s = R)ΩR2dz = 0, (88)

using the fact that δE � z0 (see section 3.1).
There is no flow into the hockey-puck, so the amount of fluid going into the boundary

layer through the surface z = z0 + δE must be the same as the amount of fluid coming out
through the side, by conservation of mass

2π

∫ R

0
w0(s)sds = −2πR

∫ z0+δE

z0

u(s = R)dz. (89)

Combining this with (88) gives

dΩ̂b

dt
= −Ω̇ +

4Ω

R4z0

(
R2

∫ R

0
w0(s)sds−

∫ R

0
w0(s)s3ds

)
. (90)

In order to proceed, we need to determine w0(s). In order to do this, we now investigate
the dynamics of the boundary layer in more detail.

3.1 Boundary layer thickness

In the boundary layer, the viscous term cannot be neglected and becomes an integral part
of the momentum balance. Assuming that the boundary layer is thin, so that ∂/∂z � ∂/∂s,
and assuming a ‘steady state’, we have

2Ω× u + Ω̇× r = −1

ρ
∇P̂ + ν

∂2u

∂z2
. (91)
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The three components of the momentum equation (91) are

−2Ωv = −1

ρ

∂P̂

∂s
+ ν

∂2u

∂z2
, (92)

2Ωu+ Ω̇s = ν
∂2v

∂z2
, (93)

0 = −1

ρ

∂P̂

∂z
+ ν

∂2w

∂z2
. (94)

Combining these three equations with conservation of mass gives

−∂v
∂z

=
ν2

4Ω2

∂5v

∂z5
. (95)

Let δE =
√
ν/2Ω and Z = (z − z0)/δE = O(1) in the boundary layer. Then

∂v

∂Z
+
∂5v

∂Z5
= 0 (96)

⇒ v = v0(s) +

3∑
n=0

bn(s)eλnZ , λn = e(2n+1)iπ/4. (97)

v → v0(s) as Z →∞, where v0(s) is the azimuthal velocity in the bulk, so b3 = b4 = 0, and
v ∈ R, so b1 = b2. Finally, at Z = 0, which is the top of the hockey-puck, v = sΩ̂b(t). Using
all this information uniquely specifies the boundary layer solution to be:

v(s, Z) = v0(s) + (Ω̂bs− v0(s))e−Z/
√

2 cos

(
Z√
2

)
. (98)

3.2 Jump condition

The hockey-puck rotates with angular velocity Ω̂b(t) in the rotating frame, which is as yet
unknown. Integrating the angular momentum equation (93) across the viscous boundary
layer gives∫ z0+δE

z0

sudz +
Ω̇

2Ω
s2δE =

ν

2Ω

[
∂v

∂z

]z0+δE

z0

=
ν

2Ω

1

δE

[
∂v

∂Z

]Z→∞
Z=0

=
δE√

2
(Ωbs− v0(s)). (99)

Using conservation of mass and the boundary condition w = 0 at z = z0, we find

1

s

∂

∂s

∫ z0+δE

z0

sudz = −
∫ z0+δE

z0

∂w

∂z
dz = −w(z0 + δE) ≡ −w0(s), (100)

so that, combining (99) and (100),

w0(s) =
Ω̇

Ω
δE −

δE√
2

1

s

∂

∂s
(Ωbs

2 − sv0(s)). (101)

We now know the vertical velocity profile w0(s) in terms of the differential rotation v0(s)
in the bulk of the fluid. The latter still remains to be determined, by matching the bulk
solution to the porous medium.
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The solutions in the porous medium are found exactly as in section 2, and we consider
the case where vcz(s) = 0,

w =
∑
n

J0

(
λn

s

R

)
Bn sinh

[
λn

(
z

R
− 1

R

)]
, (102)

u =
∑
n

dJ0(λn
s
R)

ds

BnR

λn
cosh

[
λn

(
z

R
− 1

R

)]
, (103)

1

ρ
P̂ =

∑
n

J0

(
λn

s

R

)[
−BnR
τλn

cosh

[
λn

(
z

R
− 1

R

)]]
. (104)

We can then match w and P̂ at z = zcz to find the solutions for w0(s), P̂0(s) and v0(s) in
the bulk:

1

ρ
P̂0(s) =

∑
n

J0

(
λn

s

R

)[
−BnR
τλn

cosh

[
λn

(
zcz
R
− 1

R

)]]
(105)

⇒ v0(s) =
1

2Ω

∑
n

dJ0(λn
s
R)

ds

[
−BnR
τλn

cosh

[
λn

(
zcz
R
− 1

R

)]]
, (106)

∑
n

J0

(
λn

s

R

)
Bn sinh

[
λn

(
zcz
R
− 1

R

)]
= w0(s) +

Ω̇

Ω
(zcz − (z0 + δE)), (107)

from (85). Combining these equations with the jump condition (101) gives an equation for
v0(s),

v0(s) =
∑
n

2J1(λn
s
R)

λnJ1(λn)

[
2δEΩ̂b −

√
2 Ω̇

Ω(zcz − z0)

2
√

2Ωτ tanhλn( 1
R −

zcz
R ) + δE

R λn

]
, (108)

which is similar to (47) in section 2, with no stratification (N = 0), but now with two extra
terms which depend on δE and Ω̂b. Using (108) in (101) to find w0(s), (90) finally yields
the desired evolution equation for Ω̂b(t):

dΩ̂b

dt
= −Ω̇

zcz
z0
− 32

∑
n

1

λ4
n

−Ω̇
(
zcz
z0
− 1
)

+
√

2δE
Ω̂bΩ
z0

1 + δEλn
2
√

2RΩτ tanhλn( 1
R
− zcz

R
)

 , (109)

Note that if there is no viscous boundary layer, so δE = 0, it can be shown using the
identity 32

∑
n 1/λ4

n = 1 that dΩ̂b/dt = −Ω̇. In other words, the hockey-puck continues to
rotate at its initial angular velocity as the frame slows down, since the fluid cannot exert
any torque on it. However, if δE > 0 then the evolution of Ω̂b is affected by the boundary
layer. Figure 8 shows a plot of Ω̂b/Ω with time for arbitrary parameters, starting with initial
condition Ω̂b(t0) = 0 and assuming that the frame is spinning down as Ω(t) = Ω0

√
t0/t.

The ‘steady’ solution, where dΩ̂b/dt is neglected, is also plotted. We see that Ω̂b relaxes to
the ‘steady’ solution on the Ekman timescale across the thickness of the hockey-puck,

tν =
z0√
νΩ

. (110)

This is consistent with assuming a ‘steady’ state for both the hockey-puck and the bulk, so
in fact we did not need to consider the time-dependence of the interior in (86)-(88). The
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Figure 8: A plot of Ω̂b with time (blue solid line) and the corresponding ‘steady’ solution
(red dashed line), for arbitrary parameters, with initial condition Ω̂b(t0) = 0 and with a
spin-down rate of the frame Ω(t) = Ω0

√
t0/t. Ω̂b relaxes to the ‘steady’ state on the Ekman

timescale.

‘steady’ solution decays with time so that the rotation rate of the base (relative to that of
the frame) decreases with time as Ω(t) decreases. In other words, the lag between the two,
given by Ω̂b, also decreases over time.

4 Unstratified magnetic spin down

4.1 Solution in the tachocline and tachopause

In a solar-type star, we expect that the torque acting on the interior is due to magnetic
stresses rather than viscous friction. We now consider a similar set up to that of section 3
where the hockey-puck is replaced by a fluid held in rigid rotation by a confined large-scale
magnetic field, in the region from z = 0 to z = z0, and where the Ekman boundary layer is
replaced by a magnetic ‘tachopause’ at z = z0. Assuming that the magnetic field does not
exert a torque at the side wall of the cylinder in the boundary layer and that the thickness of
the magnetic boundary layer δ is small compared with zcz−z0 or z0, the evolution equation
for Ω̂b is the same as with the viscous boundary layer (90). The difference between the
magnetic and the viscous cases comes from the angular momentum transport across the
boundary layer, which we now discuss.

Wood et al. [15] studied a system very similar to the Gough and McIntyre model [6], but
in Cartesian coordinates. They found that the thickness of the magnetic boundary layer is
given by

δ =

√
2πρηΩR2

B2
0

, (111)

assuming a horizontal magnetic field with strength B0 at the bottom of the magnetic bound-
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ary layer. They also found a jump condition relating the vertical and ‘azimuthal’ velocities
in the tachocline. This jump condition takes exactly the same form as the Ekman jump
condition in Cartesian coordinates, namely:

w0(x) =
1√
2
δE
∂v0(x)

∂x
(Ekman) and w0(x) =

π

4
δ
∂v0(x)

∂x
(magnetic), (112)

where x is the latitudinal direction and v0 is the azimuthal velocity, and where Ω̇ = Ω̂b = 0
in the Wood et al. model. Hence, by analogy with the way the Cartesian Ekman jump con-
dition can be transformed into cylindrical coordinates, it can be shown that, in cylindrical
coordinates, the tachopause jump conditions including the effect of spin-down are:

w0(s) =
Ω̇

Ω
δ +

π

4
δ

1

s

∂

∂s

(
sv0(s)− Ω̂bs

2
)
. (113)

From section 3, we have the solutions in the bulk and in the porous medium, and using this
jump condition, we now find

v0(s) =
∑
n

2J1(λn
s
R)

λnJ1(λn)

[
2πδΩ̂b − 4 Ω̇

Ω(zcz − z0)

8Ωτ tanhλn( 1
R −

zcz
R ) + π δ

Rλn

]
, (114)

which, as in the case with a viscous boundary layer, is similar to (47) with N = 0, but now
with two extra terms which depend on δ and Ω̂b. Equation (90) becomes

dΩ̂b

dt
= −Ω̇

zcz
z0
− 32

∑
n

1

λ4
n

−Ω̇
(
zcz
z0
− 1
)

+ π
2 δ

Ω̂bΩ
z0

1 + πδλn
8RΩτ tanhλn( 1

R
− zcz

R
)

 . (115)

This evolution equation for Ω̂b depends on δ, z0 and B0. If we assume that z0 and B0 are
known, we get δ from (111) and can then evolve Ω̂b(t) as in section 3.

4.2 Where is the tachopause?

Unfortunately, by contrast with section 3, z0 is not actually known a priori - it results from
the nonlinear interaction of the field and the downwelling flows. However, while the full
solution needs fully nonlinear calculations, we can make an order of magnitude estimate
using the magnetic induction equation as in [6] and [15].

The steady magnetic induction equation is, from (3),

0 = ∇× (u×B− η∇×B), (116)

where B is the magnetic field and η is the magnetic diffusivity. We need the vertical velocity
at the top of the magnetic boundary layer to balance the magnetic field diffusion for the
magnetic field to remain confined. This implies w ≈ η/δ. We cannot choose w0(s) = η/δ ∀ s,
as the s-dependence of w0(s) is determined by the solutions above the boundary layer.
Instead, we set the average of w to be η/δ, so that∫ R

0
sw0(s)ds =

R2

2

η

δ
. (117)
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(a) (b)

Figure 9: (a) A plot of Ω̂b with time and (b) a plot of z0 with time, with ρ = 1 and
B2

0 = 100π.

Equation (113) becomes

η

δ
= − Ω̇

Ω
(zcz − (z0 + δ)) +

∑
n

32

λ2
n

 Ω̇(zcz − z0)− π
2 δΩ̂bΩ

8Ω + πδλn
Rτ tanhλn( 1

R
− zcz

R
)

 . (118)

Equations (115) and (118) are two equations for the two unknowns, Ω̂b and z0, so the
system is now fully determined in terms of the internal field strength B0. Figure 9(a) shows
a plot of Ω̂b with time, assuming a constant B0. As in Figure 8, Ω̂b initially increases
rapidly from zero, as in section 3, then starts to decrease with time, so that the lag in
the angular velocity between the magnetically dominated region (z < z0) and the porous
medium decreases over time. The corresponding depth of the magnetically dominated
region, z0 (shown in Figure 9(b)), increases with time as Ω̂b and Ω decrease. However, to
find the long-time behaviour of Ω̂b and z0, we would also need to consider how B0 changes
with time, as this will also affect how z0 and δ, and therefore also Ω̂b, change with time.

5 Summary and future work

We have proposed a solution for the spin down of a stratified star. Although we have
modelled it as a cylinder with a porous medium at the top, we now discuss our results in
the context of real stellar interiors. We first looked at non-magnetic stellar radiative zones.
We found that there exists a ‘steady state’ solution. As in Bretherton and Spiegel, these
solutions exhibit a lag in the angular velocity between the convection zone and radiative
zone below, with the latter always rotating faster than the former. If stratification is very
weak, this lag is uniform with depth and agrees with the result from the spherical model
found by [1], up to a geometrical factor. When the radiative zone is strongly stratified, the
lag increases with depth because the thermal wind can maintain a larger vertical shear.

We have also found time-dependent solutions. The evolution of the angular momentum
in the radiative zone has contributions from both transport by meridional flows, through the
thermal spreading found by [13] for the propagation of differential rotation into the interior
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of a star, and global angular momentum extraction by the spin down of the frame. We have
found that Ω(t) ∼ t−1/2, which is the case for solar-type stars (see [11]), is a special case
for the time-dependent solution. A more rapid spin-down rate cannot be accommodated
by a laminar solution, while a slower spin-down rate implies that the system can rapidly
converge to the ‘steady state’ solution described above. For Ω ∼ t−1/2, the initial conditions
decay with time as a power law, rather than the exponential decay found for Ω(t) ∼ t−α

with α < 1/2.
We then studied the spin down of an unstratified magnetic star. We assume that the

radiative interior is held in rigid rotation by a large-scale magnetic field, separated by a
non-magnetic tachocline. We found that the spin-down of the frame is transmitted to
the magnetically dominated region due to magnetic friction in a magnetic boundary layer
separating the tachocline from the interior. The lag between the convection zone and the
interior decreases with time, and our solutions are consistent with a ‘steady’ state in both
the bulk of the fluid and the interior.

The next step is to combine the stratified and magnetic solutions to find a solution,
in our cylindrical model, for the spin down of a stratified, magnetic star. In addition, we
need to model the interior magnetic field in more detail and to look at how the magnetic
field decays with time, and how this affects and is affected by the depths of the tachocline
and magnetic boundary layer. It would also be interesting to solve an equivalent spherical
model (as in [1] but with a stratified interior) numerically, which would represent the whole
star, and compare this solution to our solution for a cylinder which represents the polar
regions of the star.
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Abstract

In this study, motion of slender swimmers, which propel themselves by generating travelling
surface waves, is investigated. In the first approach, slender-body theory (SBT) is used to
calculate the propulsion speed. The mathematical machinery used is based on the SBT by
Keller & Rubinow [1]. The object considered is of arbitrary cross-section, and the surface
waves considered are axisymmetric. The object is modelled using Stokeslet and source dis-
tributions along its axis. The propulsion speed is obtained by imposing the condition that
the net force on the swimmer, as inertia is absent, is zero.

In the second approach, the object is assumed to be filled with a viscous incompressible
fluid and its surface is assumed elastic, and the propulsion speed due to the peristaltic motion
of fluid inside is calculated. Also, an improved definition of swimmer efficiency, which takes
internal dissipation into account, is introduced.

1 Introduction

A swimmer is defined as “a creature or an object that moves by deforming its body in a
periodic way” [2]. The way macroscopic organisms propel themselves is by using inertia of the
surrounding fluid. Propulsion in the forward direction is generated due to the intermittent
forces acting on the object by the surrounding fluid as a reaction to its pushing the fluid
backwards [3]. The typical Reynolds number (Re), which is defined as:

Re ≡ Fi
Fv

=
UL

ν
, (1)

where Fi and Fv are inertial and viscous forces, U is the velocity scale, L is the length scale
and ν is the kinematic viscosity of the fluid, in the inertial (or Eulerian) regime is 102 − 106

for different organisms. Swimming in the Eulerian regime can be broken into components
of propulsion and drag; the former is due to some specialized organs which push the fluid
backwards, thereby generating a thrust force in the opposite direction, and the latter is
because of the forces encountered due to the moving object in a viscous fluid [4]. However, in
the Stokes regime (Re ≈ 0) there is no inertia, and the organisms at those small length scales
have to exploit viscous stresses to generate propulsion. Typical range of Re for swimmers in
this regime is 10−4 − 10−1.
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The study of swimming microorganisms began with Taylor’s study of propulsion speed
induced on a transversely oscillating two-dimensional sheet in the Stokes regime [4]. Taylor
showed that propulsion in a highly viscous environment is possible when an object deforms
itself in a way that would generate propulsive forces in the surrounding fluid. He pointed out
that separation of swimming into propulsive and drag components in the Stokes regime would
lead to Stokes paradox, and that the propulsion is due to exploiting the viscous stresses due
to surface deformation. Taylor’s analysis has been extended by Lighthill [5] and Blake [6] to
study the motion of spheres and cylinders with travelling surface waves respectively.

Stokesian swimmers (swimmers in the Stokes regime) are broadly classified into ciliates
and flagellates [3]. The former set have small cilia on their surfaces, which are used for
propulsion. Some of the microorganisms which fall into this category are: Paramecium
(figure 1) and Opalina. The latter have flagella at the ends which rotate in a helical fashion,
or oscillate in the transverse direction to generate propulsion. Spermatozoa (figure 2) and E.
Coli are examples of microorganisms in this category.

Figure 1: Pictures showing paramecium. The fine cilia around the surfaces can be clearly
seen. Paramecium uses these cilia to propel itself at a top speed of 500µm/s.

Figure 2: Picture showing spermatozoa. Each cell has a flagellum down which the cell sends
bending waves to propel itself.
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2 Creeping Flow Limit (Re ≈ 0)

The equation of motion for a viscous fluid are the Navier-Stokes equation:

∂u′

∂t′
+ u′.∇′u′ = −1

ρ
∇′P ′ + ν∇′2u′, (2)

∇.u′ = 0. (3)

Here, u′ ≡ u′(x′, t) is the velocity field, P ′ ≡ P ′(x′, t) is the pressure field, ρ is the density
of the fluid, and ν is the kinematic viscosity of the fluid. Equation 3 results when the flow is
assumed incompressible.

In the Stokes regime, the pressure has to be scaled with viscosity, so that the viscous term
is balanced by it. To non-dimensionalize equation 2, the following scales are used: u = u′/U ,
x = x′/L, and P = P ′/(µU/L), where U and L are some velocity and length scales. Once
equation 2 is scaled this way, the resulting equation is:

Re

(
∂u

∂t
+ u.∇u

)
= −∇P +∇2u. (4)

Substituting Re = 0 gives the Stokes equations:

∇P = ∇2u; ∇.u = 0. (5)

Equations 5 are linear, and remain unchanged if the following transformations are effected:
u → −u and x → −x. This implies that the equations are reversible if the velocity and
displacement vectors are reversed. One more implication of the linearity is that flow depends
instantaneously on the boundary conditions. If the boundary ceases to move then there would
be no fluid motion at all. This is a consequence of inertia being absent from the system. This
places a strong constraint on the Stokesian swimmers as to how they can deform their bodies
to generate propulsive forces.

Purcell summed these effects in his famous scallop theorem, which states that an object
in the Re ≈ 0 regime cannot swim by executing strokes that are “reciprocal” in time [7]. A
good example of such a creature is a scallop, which is a swimmer in the Eulerian regime, but
has only one degree of freedom. It generates propulsion by quickly closing its shell, thereby
pushing the fluid out through its hinge at a high speed, resulting in thrust. Re for this motion
is O(105) [3]. It then opens its shell very slowly, thereby transferring negligible momentum
to the fluid. In the Stokes regime this mechanism would not work, as there is no time in the
equations. The scallop’s net displacement would be zero [3].

3 Motivation

As mentioned in the previous section, the propulsion mechanisms of ciliates and flagellates
have been well studied for the past 62 years; but there are certain organisms like Synechococ-
cus (a type of Cyanobacteria) which neither possess cilia nor flagella on their surface, yet
they manage to move at around 25µm/s [8]. Ehlers et al. [8] studied the motion of this
bacterium and suspected that the motion might be due to travelling surface waves. However,
the bacterium was modelled as a sphere, though it has an aspect ratio, ε = a/L, where a is

251



the diameter and L is the length of the bacterium, ε < 1. These bacteria are abundant in the
oceans and are a primary source of nutrients to the organisms lying above them in the food
chain [9]. Using slender-body theory to find the propulsion speed, so as to take the small
aspect ratio into account, is one of the aims of this study.

Figure 3: Synechococcus, a type of Cyanobacteria. It neither has cilia nor flagella to propel
itself, and is suspected to use travelling surface waves [8].

Collective motion of microorganisms has been studied in various contexts, and recently
it has been speculated that these organisms might be involved in the large scale mixing of
oceans – called biogenic mixing of ocean [10]. Hence, a study of the motion of individual
cells, which can be used to construct a continuum model for this species, becomes important.

4 Slender-Body Theory

Slender-body theory was developed to exploit the small aspect ratio of objects in calculating
the disturbance flow field set up by them in the Stokes regime (Re ≈ 0). SBT has been able
to resolve the Stokes paradox for the case of cylinder, where the governing equations in the
two-dimensional form have a logarithmic singularity at infinity. The scale dependence of drag
on the cylinder on the aspect ratio can be found using SBT.

In the following analysis, velocities have been scaled by the travelling surface wave speed
(c), distances have been scaled with the length of the slender body (L), and time by L/c.

The following are the different regions around the slender object, where different equations
are solved:

• Inner region: This is the region where the distance from the cylinder, ρ, is such
that ρ << L. One would sense the object to be two-dimensional in this limit, so the
governing equation for the fluid flow would be the two-dimensional Stokes equations.
The object is assumed to move only along its axis, which is taken to be the z-axis. The
velocity field set up due to this can be written down as:

uinner(x) ∼ kβ(z) log
(ρ
a

)
+ er

1

2ρ

∂a2

∂t
, (6)
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where β(z) is some function of z and a(z, t) is the radius of the object. β(z) is unknown,
and has to be found by matching this solution to the outer solution.

• Outer region: In this limit, |r|>> a. The flow senses the three-dimensional body.
However, owing to the small aspect ratio, the object appears to be a singular line from
far, and hence can be modelled using singular distributions of force and source densities.
The velocity field in this region can be written as:

uouter(x) = W +

∫ 1

0

(
αk

R
+

RR.kα

R3
+
δR

R3

)
, (7)

where α(z)k is the Stokeslet distribution, and δ(z) is the source distribution along
the slender body, W is the far-field velocity of the fluid, and R = R0 + (z − z′)k is
the position vector of the point under consideration from the point z′ on the centre-
line of the object. α(z) is the singular force distribution and δ(z) is the singular source
distribution. The velocity field due to these distributions automatically satisfies the far-
field boundary condition of u(x) →W as |x|→ ∞. Both α(z) and δ(z) are unknown,
and have to be found by matching this solution to the inner solution.

• Matching region In this region, both the inner and outer solutions are valid. The
unknown terms in both these velocity fields are obtained by equating the two velocity
fields in the following limits:

lim
ρ→∞

uinner(x) = lim
R0→0

uouter(x). (8)

Both sides of equation 8 have singularities (logarithmic and algebraic), which balance
each other.

4.1 Evaluation of the Outer Velocity Field

The outer velocity field is partially evaluated to separate out the singularities and to explicitly
find their forms. Guided by our knowledge of the inner velocity field we should have log(R0)
and 1/R0 singularities hidden in the uouter(x) term too. To do this we separate the right
hand side (RHS) of equation 7 as in the following:

uz,outer(x) = W +

∫ 1

0

α(z′)− α(z)

R
dz′ +

∫ 1

0

α(z′)− α(z)

R3
(z − z′)2dz′

+

∫ 1

0

δ(z′)− δ(z)− δz(z)(z′ − z)
R3

(z − z′)dz′ +
∫ 1

0

α(z)

R
dz′

+

∫ 1

0

α(z)

R3
(z − z′)2dz +

∫ 1

0

δ(z) + δz(z)(z
′ − z)

R3
(z − z′)dz′. (9)

Except for the last three integrals in equation 9 the remaining integrals are well behaved.
One can take the limit of R0 → 0 in the regular integrals, which on simplification give
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uz,outer(x) = W + 2

∫ 1

0

α(z′)− α(z)

|z − z′|
dz′ +

∫ 1

0

δ(z′)− δ(z)− δz(z)(z′ − z)
|z − z′|(z − z′)

dz′

+2

∫ 1

0

α(z)

R
dz′ +

∫ 1

0

δ(z) + δz(z)(z
′ − z)

R3
dz′. (10)

The singular integrals can be further evaluated by substituting (z′ − z) = R0 tan θ, and
these, after some algebra and further simplification, give the following:∫ 1

0

α(z)

R
dz′ = α(z) {−2 log(R0) + α(z) log [4z(1− z)]} ; (11)

∫ 1

0

α(z)

R
(z − z′)2dz′ = α(z) {−2 log(R0) + α(z) log [4z(1− z)]− 2} ; (12)

and,

∫ 1

0

δ(z) + δz(z)(z
′ − z)

R3
(z − z′)dz′ = δ(z)

2z − 1

z(1− z)
+ δz(z) {2 log(R0)− log [4z(1− z)] + 2} .

(13)
Combining equations 10, 11, 12 and 13 and equating it to the z-component of the inner

velocity field, we get

β(z)log
(ρ
a

)
= W + 2

∫ 1

0

α(z′)− α(z)

|z − z′|
dz′ +

∫ 1

0

δ(z′)− δ(z)− δz(z)(z′ − z)
|z − z′|(z − z′)

dz′

−4α(z) log(R0) + 2α(z) log [4z(1− z)] + δ(z)
1− 2z

z(1− z)
− 2α(z)

+2δz(z) log(R0)− δz(z) log [4z(1− z)] + 2δz(z).

Equating the terms having the logarithmic singularity gives:

β(z) = −4α(z) + 2δz(z);

and the remaining terms give an integral equation for α(z):

α(z) =
δz(z)

2
+

1

4 log a

{
W + 2

∫ 1

0

α(z′)− α(z)

|z − z′|
dz′ +∫ 1

0

δ(z′)− δ(z)− δz(z)(z′ − z)
|z − z′|(z − z′)

dz′ + 2α(z) log [4z(1− z)]

+δ(z)
2z − 1

z(1− z)
+ δz(z) {2− log [4z(1− z)]}

}
. (14)

Carrying out a similar analysis for the integral in the radial direction gives:

δ =
1

4

∂a(z, t)2

∂t
. (15)
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The integral equation for α(z) can be solved iteratively, as done by Keller & Rubinow or
by using asymptotic series for α and W in powers of 1/log(ε), where ε = A/L is the aspect
ratio, which according to the slender body approximation is ε << 1. We choose to solve the
integral equation using the latter method. From 15, δ ∼ ε2. So, the leading order terms for
α and W are ∼ ε2. Canceling this common factor from equation 14, and using the following
asymptotic series:

α = α0 +
α1

log ε
+

α2

(log ε)2
+O

[
1

(log ε)3

]
W = W0 +

W1

log ε
+

W2

(log ε)2
+O

[
1

(log ε)3

]
in the integral equation 14, and equating terms of the same order we get:

• O(1)

α0 =
∆z

2
,

where ∆z = δz/ε
2. Provided a(z, t) vanishes at the ends, the requirement that the force

on the object at this order vanishes is automatically satisfied, i.e.,
∫ 1
0 α0dz = 0.

• O(1/log ε)

α1 =
W0

4
+
α0

2
+

1

2

∫ 1

0

α(z′)− α(z)

|z − z′|
dz′+

1

4

∫ 1

0

∆(z′)−∆(z)−∆z(z)(z
′ − z)

|z − z′|(z − z′)
dz′+∆(z)

2z − 1

z(1− z)
.

Imposing the same condition, i.e.,
∫ 1
0 α1dz = 0, we find the swimming velocity at the

leading order to be:

W0 = −2

∫ 1

0
α0dz − 2

∫ 1

0

∫ 1

0

α(z′)− α(z)

|z − z′|
dz′dz

−
∫ 1

0

∫ 1

0

∆(z′)−∆(z)−∆z(z)(z
′ − z)

|z − z′|(z − z′)
dz′dz −

∫ 1

0
∆(z)

2z − 1

z(1− z)
dz

However, after some calculation, it turns out the speed at this order is zero. So, the
speed at the next order has to be considered.

• O(1/(log ε)2)

α2 = −W0

8
logA2 − 1

4

∫ 1

0

α(z′)− α(z)

|z − z′|
logA2dz′

−1

8

∫ 1

0

(∆(z′)−∆(z)−∆z(z)(z
′ − z))

|z − z′|(z − z′)
logA2dz′ − 1

4
α0 logA2

After imposing the condition
∫ 1
0 α2 = 0, and some algebra, we obtain the general form

of the propulsion speed to be:

W1 = −1

8

∫ 1

0

∂2A2

∂t∂z
logA2dz. (16)
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Equation 16 is the general form of the propulsion speed for a slender body with an
arbitrary cross-section. Taking the time average of this equation gives:

W1 =
1

8

k

2π

∫ 1

0

∫ 2π/k

0

∂A2

∂z

1

A2

∂A2

∂t
dtdz. (17)

The general form of the time-averaged propulsion speed of a slender swimmer at the
leading order is 17. One needs the information about the way the swimmer is deforming its
surface to determine its speed, i.e., the form of the travelling surface waves. Two models
are considered in the next section, which lead to propulsion speeds specific to the models of
surface deformation considered.

5 Models for Surface Deformation

5.1 Model - 1

Assuming the surface deforms as: A2 = f(z)2 [1 + θ sin(kz − kt)], and using this in equation
16 gives the propulsion speed as:

W =
ε2

log 1/ε

k2

8
S(θ)

∫ 1

0
f(z)2dz, (18)

where S(θ) =
[
1−

(
1− θ2

)1/2] ≈ θ2
(
1
2 + θ2

8 + ...
)

, and f(z) represents the undeformed

radius of the object. A schematic of the model for f(z)2 = 4z(1− z) is shown in figure 4.

Figure 4: A schematic for model-1, which is A2 = f(z)2 [1 + θ sin(kz − kt)], where f(z)2 =
4z(1− z).

At the leading order, the solution obtained resembles one obtained by Taylor [4]. To test
the correctness of the solution, we consider the solution obtained by Setter et al. [12] for the
case of an infinite cylinder moving due to travelling surface waves. Propulsion speed in that
case is:

WSetter = −k
2ε2(θ/2)2

2

β
[
K0(β)2 −K1(β)2

]
βK1(β)2 − 2K1(β)K0(β)− βK0(β)2

,

where β = ka is their non-dimensional radius, K0(β) and K1(β) are modified Bessel functions
of second kind of order zero and one respectively. In the limit β → 0, the above solution
reduces to:

WSetter =
k2ε2θ2

16 log(β)
,

256



which is exactly what we get at the leading order when we substitute f(z) = 1 in equation
18.

5.2 Model-2

If one considers the peristaltic motion of fluid inside the organism, assuming that it is com-
pletely filled with a viscous incompressible fluid, then model-1 would not be suitable as it
does not conserve volume. Hence, a second model for surface area, which conserves volume
and vanishes at the ends, is introduced. It is given by:

A2 =
∂

∂z

[
2z2

(
1− 2z

3

)
+ 4θz2(1− z)2 cos(kz − kt)

]
. (19)

The undeformed object is a prolate spheroid, which is f(z)2 = 4z(1 − z) in this case. A
schematic of the model is shown in 5.

Figure 5: A schematic for model-2, which is A2 =
∂
∂z

[
2z2

(
1− 2z

3

)
+ 4θz2(1− z)2 cos(kz − kt)

]
.

Using equation 19 in expression 17, we get the propulsion speed as:

W =
16k2θ2ε2

log 1/ε

1

2π

∫ 1

0

∫ 2π

0

2G′2 sin2 φ−G cos2 φ
(
G′′ − k2G

)
F + 4θ (G′ cosφ−Gk sinφ)

dφdz, (20)

where F = 4z(1− z), G = z2(1− z)2 and the primes denote the derivatives. Solving equation
20 for ε = 0.2 and θ = 0.1 for 1 ≤ k ≤ 20, we get the propulsion speed as shown in figure 6.
It can be shown by curve fitting that for this model W ∼ k3.

This model will be used when we re-define efficiency based on internal dissipation.

6 Efficiency

Efficiency of swimmers can be calculated based on the power input to the swimmer by the
surrounding fluid, and energy lost due to drag forces during its motion [13]. The calculations
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Figure 6: W vs. k for ε = 0.2 and θ = 0.1. From this model, W ∼ k3.

in this section are for model-1 only, and it will be shown in the next section that when one
considers the flow inside the organism, the energy spent in moving the fluid inside is far
greater than the energy input outside, and hence it should be taken into account – at least
when considering slender swimmers.

From SBT, the velocity field in the inner region can be written as:

u = β(z) log
(ρ
a

)
k +

1

2ρ

∂a2

∂t
er.

The deviatoric stress tensor is given by:

σ′ =

σρρ 0 σρz
0 σθθ 0
σzρ 0 σzz


The unit vector at any point on the deformed surface of the object is given by:

n =
1√

1 +
(
∂a
∂z

)2
 1

0
∂a
∂z


The power input to the object is given by: P = −

∫
S (σ.n) .udS, where σ (= −pI + σ′) is

the stress acting on the body, p is the pressure field, and I is the identity tensor. p can be
calculated from the momentum equation, and it turns out to be O(ε2). For the calculation
of the term (σ.n) .u, we have:

(σ.n) .u ≈
(
σρρ +

∂a

∂z
σρz

)
uρ +

(
σzρ +

∂a

∂z
σzz

)
uz.
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uz vanishes on the surface of the object, hence the second term in the above equation does
not contribute to the power input. On calculating the stresses, we get:

σρρ = − µ
ρ2
∂a2

∂t
= O(1);

σρz = µ

(
∂uρ
∂z

+
∂uz
∂ρ

)
.

The first term in σρz is O(ε) and the second term is O(1/log ε), hence σρz and p can be
neglected in comparison to σρρ. A little algebra gives the time-averaged power to be:

P = −πµk2ε2S(θ)

∫ 1

0
f(z)2dz.

Considering the body is moving with a constant speed W , the drag force exerted on it by
the viscous fluid in the slender-body limit is [1]:

Fd =
2πµ

log 1/ε
W ;

and the dissipation due to this is:

D = − 2πµ

log 1/ε
W 2;

So, the efficiency, η = D/P , is:

η =
k2ε2

32 (log 1/ε)3
S(θ)

∫ 1

0
f(z)2dz. (21)

As can be seen from expression 21, the efficiency of the slender swimmer is O
[
ε2/(log 1/ε)3

]
.

This shows that the efficiency of these swimmers, like others, is not large.

7 Tube Dynamics

In this section, we consider the Stokes flow inside of the object. The object is supposed to
be made of a viscous incompressible fluid, with its wall (cell wall) being elastic. The aim of
doing this is to see if the definition of efficiency could be improved by including terms which
are more dominant in the denominator.

Exploiting the small aspect ratio, one could write the equations of motion for the inside
fluid to be (lubrication theory):

1

r

∂(ur)

∂r
+
∂w

∂z
= 0; (22)

∂p

∂r
= 0,

∂p

∂z
=

1

r

∂

∂r

(
r
∂w

∂r

)
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[11] & [14]. It can be seen that pressure is only a function of the axial co-ordinate. The last
equation can be integrated to give:

w(r) =
1

4

∂p

∂z

(
r2 − a2

)
.

Now, the flux of mass across a cross-section is given by: F =
∫ a
0 w2πrdr, which turns out to

be

F = −π
8

∂p

∂z
a4. (23)

Assuming a(z, t) is known, one can solve for the pressure by integrating the continuity equa-
tion, giving

∂p

∂z
=

8

a4

∫
∂a2

∂t
dz = O

(
1

ε2

)
. (24)

The above result tells us that the pressure inside the body is far higher than the stresses
outside. As has been seen earlier, the viscous normal stress and the pressure outside are O(1)
and O(ε) respectively, which are much smaller than the internal pressure which is O(1/ε2).
Calculating the power input from the inside, we get

Pinside =

∫ 1

0

∫ a

0
r

(
∂w

∂r

)2

drdz =
1

16

∫ 1

0

(
∂p

∂z

)2

a4dz = O(1). (25)

The above expression shows that the power spent in moving the inside fluid is far greater
than the power being imparted by the outside fluid for a small ε. Hence, the efficiency is
re-defined as η = D/Pinside, and the input from the outside fluid is neglected.

To include the dissipation term from the inside of the organism, model-1 for the radius
cannot be used as it does not conserve volume. A naive substitution of model-1 in to 24
leads to blowing up of pressure at the ends. For this reason model-2 is suitable as it both
conserves volume and vanishes at the ends. As has been calculated previously, the propulsion
speed generated using model-2 is given by expression 20. Hence, carrying out a similar
calculation as has been done for model-1, one finds that the efficiency for model-2 would be

O
[(
ε2/log 1/ε

)2]
, which is much smaller than the model-1 efficiency.

From this, it can be concluded that if one considers the internal flow, the dissipation is
much higher than the dissipation outside, and that the internal dissipation would have to be
taken into account in the expression for the efficiency, which would lead to a much smaller
value than obtained from just considering the outside dissipation.

8 Solving for the propulsion speed by considering peristaltic
motion of the inside fluid

The analysis considered in this section is done by taking a completely different approach
from what has been done in the previous sections. The organism is considered to be made up
of a viscous incompressible fluid, and its surface is assumed elastic. One could think of the
organism using some kind of actuators to exert a force in the radial direction in a particular
sequence along its body. This would be responsible for the movement of fluid, as it would
generate additional pressure inside. There would be two sources of resistance to this force:
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pressure of the fluid and hoop stress. This is schematically shown in figure 7. The resistance
due to the wall is modelled as a spring force, and the ‘actuator’ force is modelled as sinusoidal
travelling wave down the body. As the pressure inside is O(1/ε2) times larger than the viscous
normal stress from the outside fluid, one can neglect the outside stresses and write the force
balance on the surface as:

P︸︷︷︸
Pressure

= D [A(z, t)− f(z)]︸ ︷︷ ︸
Spring−like

+ Θf(z) sin(kz − kt)︸ ︷︷ ︸
Muscles

, (26)

where D is the ‘spring constant’, Θ is the amplitude of actuator force, A(z, t) is the deformed
radius and f(z) is the undeformed radius.

FMuscleFSpring + P

Figure 7: Force balance in the radial direction at a cross-section.

One can solve equation 26 for P , use this to determine A(z, t) and use it in expression
17 to calculate the propulsion speed. The important point to note is that the flow inside is
de-coupled from the flow outside, as the pressure is much larger in the inside, and outside
stresses do not appreciably affect the flow inside. For this reason, one can make use of the
result (equation 17) from slender-body analysis.

The integral form of equation 22 can be shown to be:

∂
(
πa2
)

∂t
+
∂F

∂z
= 0, (27)

where F is given by the expression 23. Equations 26 and 27 have to be solved in a time loop.
To solve for a(z, t), the initial condition chosen is the undeformed surface, which is f(z). The
following steps will lead to the mean propulsion speed:

13
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Figure 8: The radius of the organism at different time instances. The vertical axis has been
magnified. Here, t1 < t2 < t3 < t4.

1. Solve for P using equation 26, and then calculate ∂P
∂z .

2. Solve equation 27 numerically to obtain a(z, t).

3. Compute ∂2a(z,t)
∂t∂z and use it in expression 17 to calculate the propulsion speed.

The time evolution of the radius is shown in figure 8. This solution can now be used to
compute the propulsion velocity and its mean. The solution for D = 0.5, Θ = 0.05, k = 20
and ε = 0.05 is shown in figure 9. It can be seen that W quickly settles into a periodic
state due to the travelling surface waves shown in figure 8. From this the mean propulsion
speed can be calculated. The same procedure can be used to compute for different ε, with
the remaining parameters fixed to the values used in the plot 9. This is shown in figure 10.
By curve fitting it can be shown that W ∼ ε2/log (1/ε).

Carrying out a similar set of calculations with ε, D and Θ fixed to 0.02, 0.5 and 0.05
respectively, and varying k from 5 − 25, we find a quadratic trend in the propulsion speed,
viz., W ∼ k2. This is shown in figure 11.

From the above results it is seen that the propulsion speed scales as W ∼ k2ε2/log (1/ε),
as was found for model-1. Hence, model-1 and force-balance approach differ from model-2,
which was constructed to re-define the efficiency of the swimmer.

9 Summary and conclusions

In this study we have found the propulsion speed for a slender body with arbitrary cross-
section, with the only condition that its radius vanishes at both ends. This study was partly
motivated by the possible propulsion mechanism of cyanobacterium Synechococcus and by
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Figure 10: W vs. ε for D = 0.5, Θ = 0.05 and k = 20. It can be shown that W ∼ ε2/log (1/ε).
Here, C is the speed of the travelling surface wave.
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Figure 11: W vs. k for D = 0.5, Θ = 0.05, ε = 0.02. It is easily seen that W ∼ k2.

the study of propulsion of an infinite cylinder using travelling surface waves by Setter et
al. [12]. The present study is a generalization of their problem, but restricted to slender
geometries. This model can also be used to study the motion of other microrganisms like
Paramecium, which moves by using the cilia on its surface, which again can be modelled as
axisymmetric travelling surface waves.

From this study, it was found that the swimming speed of a slender object scales as
W ∼ k2ε2θ2/log (1/ε) at the leading order. In the vanishing limit of the cylinder radius,
the propulsion speed of Setter et al. [12] was shown to be the same as obtained by us
using the SBT. When one considered the internal flow, the internal dissipation was shown
to be much larger than the external dissipation, and was used to re-define the efficiency of
the swimmer using an improved model (model-2) for the deformation of surface area. The
resulting efficiency was found to be much smaller than the efficiency found for a previous
model (model-1). Considering the pressure in the internal and external flows, it was shown
that the former is much higher than the latter, and as a result the two flows could be
considered to be de-coupled.

Finally, we studied the problem by considering the forces acting at a cross-section, to
determine the pressure which is responsible for the fluid motion along the organism’s axis,
which in turn leads to the generation of travelling surface waves. The fact that the fluid
motions are decoupled was used to calculate the propulsion speed using the expression from
SBT once the surface deformation was determined. The resulting propulsion speed was found
to scale like the propulsion speed from model-1.

10 Future work

An immediate extension of the present slender-body analysis will be to study the interac-
tion of two slender swimmers, and to look for possibilities for generalization to more than
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two swimmers. This would help in the construction of models, which would require the
disturbance velocity fields as input, to study the large scale motion of these organisms.

In this study the internal fluid was considered to be Newtonian, which is generally not
true, as the internal fluid in cells, the cytoplasm, is a suspension, and the stress-strain-rate
relationship is not linear. An extension of this study would be to consider a non-Newtonian
model for cytoplasm and solve for the resulting flow-field and then integrate it with the SBT.

The mathematical machinery used in this problem will be applied to the study of erosion
from a cylindrical body placed in Stokes flow. Geometry of the body corresponding to times
t = 0 and t → ∞ serves as two limits of the SBT, however these two limits are separated
in time, not space. To investigate this problem, one would have to consider the temporal
evolution of the SBT analysis.
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Scattering of internal waves over random topography

Yuan Guo

September 30, 2012

1 Introduction

Internal waves are initially generated as the barotropic tides (described by U(t) = x̂U0 cosωt)
flow over undulating sea-floor topography. They are an important component in ocean dy-
namics such as small-scale mixing and dissipation. Internal waves generated by barotropic
tides are usually of low mode number so they are of large-scale. Where are those small-scale
waves come from? One possible way of generating these small-scale waves is scattering (See
Figure 1). Scattering is a linear interaction between the propagating waves and the sea-floor

Figure 1: Snapshot at t = 0 of ReΨ(x, z)e−it for topography h(x) = 0.1 sinx. It is clear
from the graph that the width of white or black region (represent the scale of the waves)
changes from large to small. This Figure is taken from Bühler & Holmes-Cerfon, 2011

topography. The rugged bottom topography scatters the incoming waves into other spectral
modes and redistributes energy flux in the waves number space. Figure 2 is an example of
scattering. The incoming waves we use is of mode-one and we can see that by scattering we
obtain waves with high-wave number. Details of this redistribution process depend on the
shape of the topography, i.e. whether it is subcritical or supercritical (see definition below
Equation (7)).

Scattering problem is studied for determined topography by Mülcer & Liu (1999) and
subcritical random topography (Section 2.2 ) by Bühler & Holmes-Cerfon (2011). Here we
want to know what will happen when we allow random topography to have supercritical
part.
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Figure 2: An example of scattering of internal waves. The incoming waves are of mode-one
and with energy flux rescaled to unity. We only plot energy flux of the first 40 modes.

In this paper, we study two-dimensional (2D) scattering problem for ocean with finite
depth by using linearized two-dimensional (2D) rotating Boussinesq system. Linearization
is justified if the tidal excursion is much less than the scale of the topography. For simplicity,
the Coriolis frequency f and the buoyancy frequency N are taken to be constants, though
N is a function of depth z in real ocean. However, previous experience with variable N
indicated that usually allowing for variable N slightly modifies but does not change in
a fundamental way the results for constant N . Moreover, a recent study by Grimshaw,
Pelinovsky & Talipova (2010) shows that for some profiles of N(z), WKB theory gives
exactly the right answer. But, of course our results will be more useful if we can extend them
to realistic profile of N . Also we limit our problem to finite topography. The topography
may have arbitrary shape but it must be localized, i.e. we assume the bottom is flat in the
far field.

The paper is organized as follows. In Section 2, we give the governing equations of our
problem and specified what we mean by random topography. In Section 3, we derive a
formal solution to the scattering problem. An special geometric structure—wave attractor
is studied in details in Section 4. And in Section 5 we present our numerical results of the
decay of the expected energy flux and compare them with some know results. Conclusions
and some discussions are in Section 6.

2 Mathematical formulation

2.1 Govering equations

Our model is two-dimensional (2D) rotating linear Boussinesq system, in which all fields
depend on x (horizontal) and z (vertical) only. This does not prevent a non-zero velocity in
y-direction due to the Coriolis force. The equations for velocity field v = (u, v, w), buoyancy
b and pressure P are

ut − fv + Px = 0, vt + fu = 0, wt + Pz = b, bt +N2w = 0, (1)

and we also need incompressible constraint ux+wz = 0. For simplicity, assume the Coriolis
frequency f and the buoyancy frequency N are constants.
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Introducing the stream function ψ(x, z, t) such that u = ∂zψ, w = −∂xψ, we can write
Equation (1) as

(N2 + ∂tt)∂xxψ + (∂tt + f2)∂zzψ = 0 (2)

For boundary conditions, we use rigid top and bottom boundaries at the ocean surface
z = H and the bottom z = h(x)

ψ(x,H, t) = ψ(x, h(x), t) = 0, (3)

It is worth mentioning here that the rigid boundary condition on the bottom is not trial
and is essential in solving the scattering problem. We focus our attention to the compact
region x ∈ [−Lx/2, Lx/2], and assume the ocean bottom is flat in the far field, i.e. bottom
topography z = h(x) is taken to be zero outside the compact region x ∈ [−Lx/2, Lx/2].
For left and right boundaries, we use group velocity to describe the direction of waves, the
transmitted waves on the right and reflected waves on the left must obey horizontal radiation
condition: energy flux is directed away from the topography. And the incoming waves that
enter the region on the left are specified in advance. The geometry of the problem together
with the boundary conditions are summarized in Figure 3.

Figure 3: Geometry of the problem and the boundary conditions.

We are interested in time-periodic solutions with given frequency such as the semi-
diurnal M2 tides. And in real ocean N/f ≈ 10 and ω/f ≈ 2 for M2 tides, hence we assume
f < ω < N and look for solutions of the form

ψ(x, z, t) = ReΨ(x, z)e−iωt (4)

where the complex-valued function Ψ(x, z) is to be solved. Then the system is

(N2 − ω2)∂xxΨ− (ω2 − f2)∂zzΨ = 0, Ψ(x,H) = Ψ(x, h(x)) = 0 (5)

This is one-dimension (1D) wave equation without time-like variable. But we can still solve
it by the method of characteristics.

The slope of the characteristics of all internal waves with the same value of frequency
ω is at some fixed angle with the vertical, which we rescale to 45o. In addition, we rescale
the ocean depth over the flat bottom to be π and write the non-dimensional variables with
a prime as

z =
H

π
z′, h =

H

π
h′, x =

1

µ

H

π
x′, µ =

√
ω2 − f2
N2 − w2

(6)
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After dropping the prime the non-dimensional equation for Ψ becomes,

Ψxx −Ψzz = 0, Ψ(x, π) = Ψ(x, h(x)) = 0. (7)

The bottom topography is called subcritical, critical or supercritical if the non-dimensional
topography slope satisfies |dh(x)/dx| < 1, |dh(x)/dx| = 1 or |dh(x)/dx| > 1.

2.2 Random topography

We consider the simplest case of random topography by choosing h(x) for our considered
region x ∈ [−Lx/2, Lx/2] a section of zero-mean stationary Gaussian process defined on the
real line by stationary covariance function C(x) such that

Eh(x) = 0 and Eh(y)h(x+ y) = C(x), (8)

where E is the probabilistic expectation. It is easy to generate a complex-valued stationary
scalar Gaussian random field H(x) with covariance function C(x) in Fourier space by

Ĥ(k) =

√
LxĈ(k)

2
(Ak + iBk) (9)

where Ak and Bk are independent Gaussian random variables with mean 0 and variance 1.
Then H = FT−1(Ĥ) is a complex Gaussian random field satisfying (Yaglom 1962)

EH(y)H(x+ y) = C(x). (10)

Real-valued field can be generated from complex-valued one by taking real or imaginary
part. From our definition, we know if H = h1+ih2 is a complex Gaussian random field with
covariance function C(x), then h1 and h2 are independent, real-valued Gaussian random
fields with covariance function C(x)/2 (Hida & Hitsuda 1993). This leads to a nice way of
obtaining samples of real-valued fields with covariance function C(x), since we only need
to generate complex-valued samples with covariance function 2C(x) and take their real or
imaginary parts.

In Fourier space, we can also compute the covariance function of h′(x) by

Eh(y)h(x+ y) = C(x) ⇐⇒ Eh′(y)h′(x+ y) = −C ′′(x). (11)

The covariance function C(x) we use for our numerical experiments and its corresponding
Fourier transform Ĉ(k) are

C(x) = σ2 exp

(
− x2

2α2

)
and Ĉ(k) =

√
2πσ2α exp

(
−k

2α2

2

)
(12)

hence we have
Eh2 = C(0) = σ2 and Eh

′2 = −C ′′(0) = σ2/α2 (13)
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3 Solving the wave equation

3.1 The method of characteristics and spectrum scheme

In order to solve the wave equation for Ψ,

Ψxx −Ψzz = 0, Ψ(x, π) = Ψ(x, h(x)) = 0, (14)

one approach is to follow Muller & Liu (2000a) that use the method of characteristics plus
a spectral scheme to satisfy the horizontal radiation condition for scattering waves. This
method will fail when characteristic paths converge onto some localized geometric structures
that are called wave attractors (see Section 4). Another attractive numerical scheme is
using a Green’s function approach in which we distribute suitable sources with certain
density γ(x) along the bottom topography (Echeverri et al 2010). Though the method of
characteristics has some limitations, we still choose it since it is easy to understand and
has a clear physical meaning. And we come out of situations that have wave attractors by
discarding such samples in our numerical experiment.

The characteristics of Equation (14) are lines with slope ±1, i.e. lines along which
x ± (π − z)are constants. Use the homogeneous boundary condition on the surface z = π,
the general solution is

Ψ(x, z) = f(x+ z − π)− f(x− z + π), (15)

and the solution is determined if we can solve for the complex-valued function f(x) for all
x ∈ R. It is helpful to think f(x) is defined at every point along the surface and the value
of Ψ(x, z) at any interior point can be easily found by tracing both characteristics back to
the ocean surface. The non-trial boundary condition Ψ = 0 at the bottom z = h(x) implies
that for all x ∈ R, f should satisfy

f(x+ h(x)− π) = f(x− h(x) + π). (16)

Physically, this means f(x) have the same value at any two points on the surface that can
be connected by the characteristics (Figure 4). And f(x) is a periodic function of period
2π in the far field where h(x) = 0.

Figure 4: P1, P2, P3 and P4 are connected by charscteristics so the function f have the
same value at these four surface points.
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According to the definition from Muller & Liu (2000a), T (ξ) is the surface distance
between two characteristics emanating from the same bottom point ξ. The function T (ξ)
is called T-period and reflects the shape of the bottom topography. For flat bottom, T is
2π. Consider two T-periods T+ and T− on each side of the topography in the far field. If
we trace a characteristic from one T-period, say T+, we will end up in either T+ or T− in
the far field. Hence we can construct a map between T+ and T− by tracing a number of
characteristics from each period. Since we allow our topography to have supercritical part,
T+ contains a part T

′
+ which is mapped to T− and the other part T

′′
+ that is mapped to

itself. The same happens to T−. Therefore T+ = T
′
+

⋃
T
′′
+, and T− = T

′
−
⋃
T
′′
− such that

T
′
+ is mapped onto T

′
−, T

′′
+ onto itself, T

′
− onto T

′
+ and T

′′
− onto itself. And we denote the

map from T+ byM and the map from T− byM−1. To be more explanatory, we depict the
situation in Figure 5.

Figure 5: This graph shows how we define T+, T−, T ′+ and T ′′+. Similar definition applies
to M−1 except that characteristics start from T−. Characteristic can be reflected back by
supercritical part of the bottom (compare with Figure 4). Bottom topography is 2e−x

2/2.

The top and bottom boundary conditions imply that

f(M(x)) = f(x) if x ∈ T+, f(M−1(x)) = f(x) if x ∈ T−. (17)

And to be more physical, we decompose the complete wave fields in the far field by

f(x) = f0(x) + f r(x), x ∈ T+, f(x) = f t(x), x ∈ T− (18)

where f0(x) for incoming waves, f r(x) for backward reflected waves and f t(x) for forward
transmitted waves. More specifically, with the periodic condition (17) we have

f0(x) + f r(x) =

{
f t(M(x)) x ∈ T ′+, M(x) ∈ T ′−
f0(M(x)) + f r(M(x)) x ∈ T ′′+, M(x) ∈ T ′′+

(19)

f t(x) =

{
f0(M−1(x)) + f r(M−1(x)) x ∈ T ′−, M−1(x) ∈ T ′+
f t(M−1(x)) x ∈ T ′′−, M−1(x) ∈ T ′′−.

(20)

As mentioned earlier, in the far field over zero bottom topography, f0, f r and f t are
periodic functions with period 2π. Hence we can expand them as Fourier series and because
of the radiation condition they have the form

f0(x) =

∞∑
k=1

a0ke
ikx, f r(x) =

∞∑
k=0

arke
−ikx, f t(x) =

∞∑
k=1

atke
ikx. (21)
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Without loss of generality, we can set at0 = 0, since the two constant terms ar0 and at0 enter
our problem in the form ar0 − at0. If we substitute the Fourier representation (21) into the
periodic condition and project onto the mth Fourier mode , we obtain a linear system

ar = Bat + Ta0 +Aar, (22)

at = Sa0 +Dar + Cat. (23)

where the coefficient matrices are given by

Bmk =
1

2π

∫
T
′
+

eikM(x)eimxdx m = 0, 1, 2, · · · k = 1, 2, 3, · · ·

Tmk =
1

2π

∫
T
′′
+

eikM(x)eimxdx m = 0, 1, 2, · · · k = 1, 2, 3, · · ·

Amk =
1

2π

∫
T
′′
+

e−ikM(x)eimxdx m = 0, 1, 2, · · · k = 1, 2, 3, · · ·

Smk =
1

2π

∫
T
′
−

eikM
−1(x)e−imxdx m = 1, 2, 3, · · · k = 1, 2, 3, · · ·

Dmk =
1

2π

∫
T
′
−

e−ikM
−1(x)e−imxdx m = 1, 2, 3, · · · k = 1, 2, 3, · · ·

Cmk =
1

2π

∫
T
′′
−

eikM
−1(x)e−imxdx m = 1, 2, 3, · · · k = 1, 2, 3, · · ·

We can solve this linear system by truncating at a certain number of modes, and find the
solution once the mapping functions M and M−1 are known.

3.2 Checkerboard map

In order to construct the mapping function M and M−1, we only need to know how to
decide the ’next’ point xk+1 if given a point xk on the surface. We can do this by tracing
characteristics. However, there are two characteristics start from every surface point. This
leads us to an ambiguous situation that we have two candidates for xk+1. Figure 6 illustrates
the double-valued situation for a chosen bottom topography h(x) = 2e−x

2/2. We need a
way to get rid of the double-valued mapping.

Manually we can distinguish these two candidates once we know the starting direction of
the characteristic we need to follow. On a computer, we adopt the checkerboard construction
by Balmforth et al. (1995) to track the direction of the characteristic. To be specific, we
focus our attention on the bottom region −L < x < L containing the random topography
(L > Lx/2). For right-going and left-going characteristics define the new mapping variable
as x′ = x+L and x′ = x−L, respectively. Therefore, the new mapping variable for reflection
points of right-going characteristics are positive while negative for left-going characteristics.
So we have a way that automatically keep track of the characteristics’ directions. Figure 7
shows the checkerboard map for Gaussian bump h(x) = 2e−x

2/2. Comparing with Figure 6,
we can see that by introducing the new shifted variable we get the desired 1 : 1 map.

We can see from Figure 7, the checkerboard map for topography with supercritical part
is discontinuous. The discontinuities come from critical points where the absolute value
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Figure 6: Double-valued map for bottom h(x) = 2e−x
2/2.

Figure 7: Checkerboard map for bottom h(x) = 2e−x
2/2.

of topography slope change from bigger than 1 to smaller than 1. Figure 8 shows how
discontinuities occur when characteristics hit critical points.

Figure 8: Three cases that can lead to discontinuities for critical points with positive deriva-
tives. Similar cases for critical points with negative derivatives.
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It is much more difficult to build the checkerboard map with supercritical topography.
Unlike the purely subcritical situation in which characteristic can only go forward and only
hits the bottom once between neighboring surface points, characteristic can be reflected
back by the supercritical part of the bottom topography and hits several bottom points
before it reaches the surface again. Hence we are in a rather complicated situation in
letting the computer know which characteristic to follow while also need to solve for the
intersections of characteristics and the bottom (this is the most time-consuming part in
numerical experiments). We need to switch to another characteristic at these intersection
points. Figure 9 shows all the eight cases that could happen when characteristics intersect
with the bottom and indicates the characteristic we should choose.

Figure 9: Eight Cases that could happen when characteristics intersect with the bottom.

Allowing the bottom topography to have supercritical part makes the problem more
complicated. Can we only consider subcritical case? Some models have been built to
describe the shape of the bottom topography. One of them is the analytic spectrum created
by Bell (1975). This is an estimate of the power spectrum based primarily on topographic
data from the abyssal hill region of the ocean basin in the eastern central North Pacific.
And the bottom topography is modeled as a random distribution of statistically independent
hills. The spectrum is defined such that the variance of the dimensional height h̃(x, y) is

Eh̃2 =
π

2

∫ kc

0

F0k

(k2 + k20)3/2
dk ≈ (125m)2 (24)

where F0 = 250m2 cycles km−1, k0 = 0.025 cycles km−1 and the effective cut-off wave
number kc = 2.5 cycle km−1. The variance of the slope is

E|∇h̃|2 ≈ (125m)2k0kc ≈ 0.22. (25)

This is the spectrum for 2D topography. In order to apply it to our 1D topography, we need
to assume the topography is isotropic, i.e. assuming each of the two parts of the derivative
|∇h̃|2 = h̃2x + h̃2y has the same expected value. Therefore, the 1D model topography has

E|h̃′ |2 ≈ (125m)2k0kc/2 ≈ 0.142. (26)
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The typical value of the slope of characteristics before non-dimensionalization is µ = 0.17.
So if we assume the bottom is modeled as a zero-mean stationary Gaussian process, the
supercritical part takes up about 22.5% of the ocean bottom, which implies that the super-
critical part shouldn’t be neglected.

Although there is evidence that the ocean topography is not strictly isotropic, measure-
ments of eastern central North Pacific may not be able to represent the whole sea topography
and more recent models are proposed by Goff & Jordan (1988) and Nikurashin & Ferrari
(2010), our consideration of supercritical part is still reasonable. As we mentioned earlier,
the supercritical part of the topography makes the checkerboard map discontinuous. The
discontinuities could probably lead to significant differences. And we will see in Section 4
that even when the topography contains only a small part of supercritical bottom, say about
5%, there can be wave attractors especially for long topography, which can never happen
for purely subcritical bottom.

4 Wave Attractors

In this section, we look at a special geometric structure of the characteristics. As the char-
acteristic can be reflected back by the supercritical part of the bottom, it is possible that the
characteristic forms some closed orbits, what is called wave attractors. One reason we want
to look at wave attractors is that if there are attractors, our method of tracing characteris-
tics to get the map M and M−1 will fail. Since our path following the characteristics will
probably converge onto the closed orbit and can never reach either T-period in this case.
We certainly can use other numerical methods such as the Green’s function to solve our
1D wave equation. But the wave attractors are still of great interest since their existence
can lead to significant different behavior of internal waves. Figure 10 (from Echeverri et al.
2011) describes such a situation. The horizontal axis is a parameter value that describes
the bottom topography and the vertical axis is the conversion rate that measures how much
energy in the barotropic tides is converted to the energy of internal waves. This is related
to our problem because this conversion of energy provides a way of realizing the incoming
waves. And we can see that the existence of attractors even leads to an ill-posed problem
because the numerical results do not converge when increasing the resolution.

4.1 Example of wave attractors

We can have different kinds of wave attractors. And we classify them by the number of
reflection points of the closed orbit on the surface. The simplest case is 1-point attractor as
shown in Figure 11. The bottom topography is given by h(x) = B

(
1− cos

(
2πx
A

))
, |X| 6 A

and 0 elsewhere. The parameter values are B = 1.15 and A = 1.6π. We can also consider
the stability of these closed orbits, i.e. whether the characteristic paths converge onto
them. Since our problem involves mapping from both directions and the characteristic path
is reversible, these closed orbits must be stable from one direction and unstable from the
other. For 1-point attractor, the stability can be easily determined by examine whether the
fixed point of the map Xk+1 = F (Xk) is stable or not. As shown in Figure 11, the stable
orbit for clockwise characteristic path is indicated by arrows, whereas the other is unstable.
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Figure 10: Conversion rates for h(x) = B
(
1− cos

(
2πx
A

))
, |X| 6 A and 0 elsewhere.

The parameter values are B = 1.15 and A = 1.6π. And three truncations are shown:
K = N = 1000, 2000 and 4000. This Figure is taken from P. Echeverri et al, 2011.

Because of the symmetry of the topography, there are two corresponding closed orbits for
counterclockwise characteristic path, and the stability of the two orbits is interchanged.

Figure 11: The bottom topography is given by h(x) = B
(
1− cos

(
2πx
A

))
, |X| 6 A and 0

elsewhere, where B = 1.15 and A = 1.6π. Stable orbit for clockwise characteristic path is
indicated by arrows. This Figure is taken from P. Echeverri et al, 2011.

We can also have 2-point wave attractor, actually this is the most common kind of
attractors we find in our numerical simulations (see Section 4.3). Figure 12 is a 2-point
wave attractor. Red dots on the surface indicate the location of reflection points of the
characteristic path while the black line is the corresponding closed orbit. The stability of
multi-point wave attractors is geometrically more complicated since we need to consider all
surface points. So we do not go into details here. We can have more than two reflection
points on the surface, Figure 13 is an example of 4-point wave attractor founded in our
numerical simulations.
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Figure 12: (a) A sample that has 2-point wave attractor in numerical simulations with pa-
rameter value σ = 0.25, α = 0.5 for zero-mean stationary Gaussian random field generated
by covariance function in Equation (12). S1 and S2 are two supercritical points, while other
points are subcritical. The whole plot of the random bottom topography is shown in (b).
The length of random bottom is 10π.

Figure 13: A sample that has 4-point wave attractor in numerical simulations with param-
eter value σ = 0.25, α = 0.5 for zero-mean stationary Gaussian random field generated by
covariance function in Equation (12). S1 and S2 are two supercritical points, while other
points are subcritical. The whole plot of the random bottom topography is shown in (b).
The length of random bottom is 10π.

4.2 Method to detect attractors

Finding 1-point wave attractor is just finding the fixed point for the checkerboard map.
To find the fixed point, we only need to check whether the checkerboard map and the
straight line xk = xk+1 have any intersection. In Figure 14, we find 4 intersections, and
they correspond to the two closed orbits (in Figure 11) in both directions.

To find 2-point attractor, a natural way is to apply the checkerboard map forward two
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Figure 14: Checkerboard map for topography h(x) = B
(
1− cos

(
2πx
A

))
, |X| 6 A, with

parameter value B = 1.15 and A = 1.6π. Two magnifications show the structure near the
two fixed points

times and then find the fixed points of the map Xk+2 = F (Xk). However, this method
has some shortcomings. Since it is impossible to build checkerboard map for every single
point on the surface, we actually build the checkerboard map by discretizing the bottom
and then tracing characteristics emanating from every discretized point until they reach the
surface. For arbitrary surface point we find its checkerboard map by linear interpolation
while keeping an eye on the discontinuities. This process unavoidably leads to some numer-
ical error. Since attractors are delicate structures that are sensitive to errors, this is not the
best idea. An alternative way is to find the intersection points of the checkerboard map with
the backward checkerboard map Xk−1 = G(Xk). This method is better because we do not
need to find the discontinuities of the map Xk+2 = F (Xk) and apply linear interpolation,
both time saving and with less numerical error. Backward checkerboard map can be easily
obtained by just reversing the order of the two coordinates. We use this method to find
2-point wave attractors in our numerical experiments and Figure 15 is the checkerboard
map for one particular sample.

Similar ways can be used to find wave attractors involving more reflection points on the
surface. Just as the situation for 2-point wave attractor, we don’t apply the checkerboard
map four times to find the fixed points of the map Xk+4 = F (Xk) due to potential numerical
errors. Instead, we apply the checkerboard map twice and seek the intersection points of
the map Xk+2 = F1(Xk) with Xk−2 = F2(Xk). Again, the map Xk−2 = F2(Xk) can be
easily found by interchanging the two coordinates of the map Xk+2 = F1(Xk). Figure 16
shows the checkerboard map for a sample that have 4-point wave attractor in our numerical
simulations.
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Figure 15: One sample that has 2-point wave attractor with parameter value σ = 0.25 and
α = 0.5 for zero-mean stationary Gaussian random field generated by covariance function
in Equation (12). The length of random topography is 10π. Magnifications are used to
show the structure near the intersection points.

Figure 16: One sample that has 4-point attractor with parameter value σ = 0.25 and
α = 0.5 for zero-mean stationary Gaussian random field generated by covariance function
in Equation (12). The length of random topography is 10π. Magnifications show the
structure near the intersection points.

4.3 Probability of having attractors

In order to get an idea of the probability of having wave attractors, we do several numerical
experiments. Here we only look at wave attractors that involving 1 ∼ 4 reflection points.
More complicated attractors are possible but because of the finite length of the random
topography we use (10π in our numerical simulations) and their more complicate structures,
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these attractors are of very low probability.
We choose the parameter σ = 0.06, 0.10, 0.13, 0.17, 0.21 and 0.25 while keeping σ/α =

1/2 fixed. For this fixed value we can easily estimate the probability of supercritical bottom.
Since we model the bottom topography as a section of zero mean stationary Gaussian
process, the absolute value of the slope of the bottom is bigger than 1 if and only if it is
larger than two standard deviations of the slope, which is σ/α by Equation (13). Therefore
about 4.55% of the bottom is supercritical. We plot the results in Figure 17(a), and the
probability is calculated for 1000 simulations.

Figure 17: (a) Probability of having attractors for parameter σ = 0.06, 0.10, 0.13, 0.17,
0.21 and 0.25 with fixed σ/α = 0.5 in 1000 simulations. (b) Probability of having 2-
point attractors for σ/α = 1/2 (1000 simulations) and σ/α = 5/7 (100 simulations). The
supercritical part is about 4.55% and 16.15% of the random topography, which is of length
10π.

From the graph, we can see there is no 1-point or 3-point attractor. Here is a simple
explanation for this. Let 4 = max |h(x)| the largest deviation of height, then the distance
from P1, P2 and B to the surface are given by HP1 = π + α4, HP2 = π + β4 and
HB = π + γ4 while α, β and γ are parameters that varying between −1 and 1. From
Figure 18, these three distances have a very nice relation,

HP1 +HP2 = HB.

By simple algebra, we have 34 > (γ − α− β)4 = π, which leads to

4 > π/3 or correspondingly σ > π/9 ≈ 0.35

since we model the topography by Gaussian process. Similar argument suggests we need
4 > π/5 or σ > π/15 ≈ 0.21 to have 3-point attractor. Hence for small-amplitude topog-
raphy we are interested in, there is no 1-point or 3-point attractor.

The probability of having 2-point attractors increases as the value of σ decreases. This
is because when we reduce the value of σ, the width of each bump also decreases. So we
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Figure 18: Showing the relation between HP1 , HP2 and HB. P1 and P2 are two supercritical
points, B is usually but not necessarily a point on the bottom while S is the surface reflection
point.

tend to have more intervals and therefore more supercritical intervals. By examining the
structure of 2-point attractor as in Figure 12(a), we can see that we need two supercritical
points S1 and S2 to form the closed orbit. And they must belong to different supercritical
intervals. The length of each supercritical interval may be an issue, but since what we need
is only supercritical points S1 and S2, we can assume the length do not have a significant
effect on the probability. So if we have more supercritical intervals we tend to have a higher
probability of finding 2-point attractors.

Similar arguments can also apply to 4-point attractor, because in order to form 4-
point attractor, we also need two supercritical points S1 and S2 in different supercritical
intervals. This implies the probability should increase when we reduce σ. However, from
Figure 18, the probability of 4-point attractors does not show the expected increase. Two
reason might account for this. One is the statistical error. From the graph, the existence
of 4-point attractors is a rare event, we only get roughly 2 or 3 4-point attractors in 1000
simulations. So the probability of 4-point attractors in these 1000 samples is not convincing.
We need more simulations to know how the probability changes with σ. Numerical errors
may also have an effect on the total number of 4-point attractors. Although we only apply
the checkerboard map twice, there is still some numerical error due to linear interpolation.
And attractors are delicate structures and sensitive to numerical errors.

By Figure 17(a), the probability of having 4-point attractors is much less than that
of 2-point attractors. Finite length of the topography is one reason, since if considered
small amplitude topography the distance between the two supercritical points S1 and S2
is roughly 2π for 2-point attractor and 4π for 4-point attractor. And also to form 4-point
attractor, we need 6 points in the right place while we only need 4 for 2-point attractor.

We fix σ/α = 5/7 which will increase the probability of supercritical part to about
16.15%, and only look at the probability of 2-point attractors for parameter value σ =
0.10, 0.13, 0.17, 0.21 and 0.25 within 100 simulations. According to our arguments that
more supercritical intervals leads to higher probability of having 2-point attractors, we
expect higher probability of 2-point attractors than the case for σ/α = 1/2, about 4.55%
supercritical part of the topography. This is confirmed in Figure 17(b). Also from the
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graph, the relation between the value of σ and the probability is roughly linear. But we do
not have an explanation for this so far.

5 Energy Decay

The problem we are aiming for in this project is the energy decay of internal waves caused
by scattering over rugged sea-floor topography, i.e. if given mode-one incoming waves, we
want to know how much energy is left in the first mode of the transmitted waves. Due
to the existence of wave attractors, we only study samples without attractors by throwing
away samples that contain attractors.

For random subcritical topography, there is clear evidence that the expected energy flux
has exponential decay (Bühler & Holmes-Cerfon 2011) and the decay rate is defined as

E1(n) = E|at1|2 = e−λ1n. (27)

where n is the number of bounces on the bottom. Though not being able to derive a rigorous
formula for the decay rate λ1, they suggest an expression for λ1 of the form

λ1 =
+∞∑
k=1

kĈ(k), (28)

where Ĉ(k) is the Fourier transform of the covariance function C(x). And a simpler form
is valid for uncorrelated (|C(x)| � C(0) for x > 2π) topography

λ1 = Γ0

√
E|h|2E|h′|2 = Γ0σ

2/α, (29)

with Γ0 = 2.5 for Gaussian covariance function.
Our guess is that we still have exponential decay of energy flux for topography with

supercritical part. To test our guess, we fix
√

E|h|2E|h′|2 = σ2/α since for small α, the
correlation length, which is proportional to α, is small so our topography remains roughly
uncorrelated. And we use n = Lx/2π as our variable, where Lx is the length of the random
bottom topography. The parameter value we use is summarized in Table 1 and the results
is given in Figure 19. The logarithmic plot clearly indicates decay of expect energy flux.
(a) gives a better result than (b) mainly because the parameter α is smaller, which mean
smaller correlation length and better approximation of formula (29).

σ2/α σ α supercritical part

1/22 0.10 0.22 2.79%
1/22 0.09 0.1782 4.77%

5/48 0.25 0.60 1.64%
5/48 0.20 0.384 5.49%
5/48 0.17 0.27744 10.27%

Table 1: The parameter value we use for numerical simulations.
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Figure 19: σ2/α = 1/22 and 5/48, respectively. σ = 0.10, 0.09, 0.25, 0.20 and 0.17. The
expectation at each point is taken to be the average over N = 50 topography samples
without attractors.

We can use least square method to linearly fit (Figure 20) our data points, for
√
E|h|2E|h′|2 =

σ2/α = 1/22 and 5/48, we get λ1 ≈ 0.132 and 0.275, respectively. And we can compare
the decay rate we get from numerical simulations with theoretical prediction given by for-
mula (29). The results are collected in Table 2.

Figure 20: Linearly fit the data points by least square method.

6 Conclusion and discussions

In this project, we find a way to build checkerboard map for arbitrary smooth topography.
After being able to obtain the checkerboard map we look at a spacial geometric structure–
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σ2/α λ1 λ∗1 = Γ0σ
2/α (λ1 − λ∗1)/λ1 × 100%

1/22 0.132 5/44 13.9%
5/48 0.275 25/96 5.30%

Table 2: λ1 is the decay rate we get from numerical simulations. λ∗1 is the predicted decay
rate taken from formula (29). The last column is the relative error.

wave attractor. We find some factors that can influence the probability of having attractors
and give qualitatively explanation of them. But rigorous explanation is still missing. The
geometric structure of the closed orbits, especially those involving more than one surface
reflection points is complicated. So coming up with exact formula for the probability of
multi-point attractor is difficult when the topography is generated randomly.

Also our method of finding attractors relies heavily on the checkerboard map. As men-
tioned in Section 3.2, obtaining the checkerboard map for supercritical topography is not
easy and time consuming, so we are limited to rather short topography length (10π in our
numerical simulations). Can we find a way to detect wave attractor without using the
checkerboard map? After all, the topography is totally determined by its Fourier coeffi-
cients ĥ(k). So ĥ(k) should have some special properties to put several points in the exactly
right place to form closed orbit.

We also look at decay of energy flux by using the simplest formula (29) because we
can clearly see how our parameter σ and α relate to the decay rate λ1. Also due to the
difficulties in building checkerboard map, we only look at rather short topography length,
say Lx < 9 ·2π. Numerical error is still an issue, since for finding the mapsM andM−1, we
need to interpolate the checkerboard map several times. The existence of wave attractors
forces us to discard samples that have attractors, since our current method can not deal
with cases that have attractors. We need other numerical schemes, such as the Green’s
function to include sample with attractors. And we also need to add a little viscosity to
put forward a well-posed problem. Another reason that we do not consider sample with
attractors is that the existence of attractors might lead to significant different energy decay
mechanism, just like what happens in Figure 10. And we can’t explain the exponential
decay rigorously.
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The effect of upwelling and downwelling on turbulent

entrainment in a surface stress-driven flow

Vamsi K Chalamalla

September 30, 2012

1 Introduction

Turbulent entrainment and mixing is an important phenomenon in many geophysical flows.
The study that we consider here is relevant to the deepening of the oceanic mixed layer
due to the turbulent motions created and sustained by various external processes such as
wind, convection due to surface cooling and heating, breaking waves and tides. Ekman
transport is a phenomenon observed in the ocean [1], where the balance between the drag
due to the surface winds and the coriolis force results in a net transport 90◦ to the direction
of wind. The direction of transport i.e towards the coast or away from the coast depends
on the direction of wind and the direction of coriolis force. Coastal upwelling occurs when
Ekman transport moves surface waters away from the coast. Surface waters are replaced by
cooler and denser water from below. Similarly when Ekman transport moves surface waters
towards the coast, water piles up near the coast and sinks resulting in downwelling.

The primary objective of this experimental study is to understand the effect of upwelling
and downwelling on the shear driven turbulent entrainment. We consider an idealized study,
with a two-layer fluid of different initial densities forced by a rotating disc . There has been
many studies in the past exploring the turbulent entrainment and mixing process due to
some external forcing in the absence of upwelling/downwelling. The most relevant to the
present study are Shravat et al.[2], Boyer et al.[3] and Davies et al. [4]. [3] studied the
evolution of a mixed layer in a two-layered fluid forced by a rotating disc at the bottom of
a cylindrical tank. The basic assumption made in this study is that the rate of work done
at the interface is proportional to the rate of increase of potential energy of the system.
Another core assumption made in [3] is that the characteristic velocity in the mixed layer
remains constant, leading to a conclusion that the depth of the mixed layer increases with
time. A primarily experimental study of evolution of two-layer stratified fluid in a cylindrical
tank forced at the surface by a horizontal rotating disc has been considered in [2]. They
proposed two-theoretical models

1. Constant-velocity ‘V’ model, based on the assumption made by [3]

2. Constant power ‘P’ model , based on the energetics of the system.

The experimental observations from this study are compared with both the theoretical mod-
els and concluded that the rate of increase of mixed layer depth decrease with time, which
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is in variance with the assumptions made in [3] .

The theoretical models proposed in [2] are taken as reference to compare our experimental
results in the present study. A detailed discussion of these theoretical models will be taken
up in subsequent sections below. The experimental setup is discussed in section 2 followed
by observations in section 3 and finally the concluding remarks in section 4.

2 Experimental setup

Figure 1: Experimental setup: Cylindrical tank with radius RT = 15 cm and rotating disc
of radius R = 12 cm.

Figure 1 shows the experimental setup. It has a cylindrical tank of radius 15 cm and a
circular disc of radius 12 cm. The total height of the tank H is 30 cm. The tank is filled
with two layers of fluid with densities ρU0 (upper layer) and ρL (lower layer) with ρL > ρU0.
The initial density difference between the two layers ρL − ρU0 = ∆ρ0 << ρL so that the
Boussinesq approximation is valid. The initial depth of the upper layer is denoted by h0.
The conductivity probe moves up and down within the thin gap between the rotating disc
and the edge of the cylinder. The probe moves down by 33 cm from its initial position
stopping at 1 cm above the bottom of the tank. The conductivity probe takes a total of
3300 measurements with 100 measurements per each cm, moving vertically with a speed
of 5 mm/s. Conductivity measurements are taken only during the downward movement of
the probe to avoid contamination of the data by the wake created due to the motion of the
probe. The probe takes approximately 1 minute for the downward pass and 1 minute for the
upward return pass to the initial position and the wait time between each pass is slightly
less than 1 minute. So, the conductivity profiles are available with an interval of 3 minutes
at every point in the path of the probe. Density is computed based on these conductivity
measurements. The rotating disk is controlled by a motor, shown in figure 1. The vertical
position of the disc is adjusted before the experiment such that it is just below the surface
of upper layer. The lower and upper layer fluids are dyed with different colors to visualize
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the interface between the two layers. All the fluids used in the experiment were stored
for couple of days before the experiment to ensure that there is no temperature difference
between the fluids, which may result in unnecessary convective motions. To calibrate the
probe, the conductivity of upper layer, the lower layer and an equal mixture of lower and
upper layer fluids has been measured before and after the experiment. There is little drift in
the probe measurements for the experiments which lasted for shorter duration ( 2 hours).
For experiments which lasted more than 3 hours, there is some considerable drift in the probe
measurements and the profiles has been corrected keeping the lower layer density constant
(i.e ρL measured at a later time has been corrected to match with the ρL measured at t=0).
The disc starts rotating as soon as the conductivity probe starts it second profile. Since
it takes some time for the rotating disc to spinup the upper layer, we define the zero time
for our experiments as 3 minutes after the disc starts rotating. Three different scenarios
has been considered in our experiments. Firstly, a standard no-flux experiment with no
upwelling or downwelling is considered i.e QB = 0. The second scenario is the upwelling
experiment. Denser fluid is pumped into the tank using a micropump at a volumetric
rate QB > 0 from bottom of the tank. As fluid starts filling up from below, it pushes up
the entire fluid in the tank with an average upward velocity given by QB/A, where A is
the cross-section of the tank given by πR2

T . The excess water in the tank overflows from
above, which is collected into a tray in which the cylindrical tank is placed as shown in the
schematic of the experiment. The third scenario is the downwelling experiment, where the
lower layer (denser) fluid is sucked out the tank at a rate QB < 0 by reversing the direction
of the micropump. Simultaneously, fluid of density ρU0 is pumped into the upper layer at
the same rate, resulting in a downward velocity (QB/A) for the entire volume of the fluid.

3 Experimental results

Table 1 shows the list of different experiments done in our present study. The parameters
which are varied in this study are initial density difference between two layers ∆ρ0, rotation
rate of the disc Ω and the initial upper layer depth h0. A positive value of QB represents
an upwelling experiment and negative values of QB represents downwelling experiments.
When QB = 0, there is no upwelling or downwelling, we refer to this experiment as no-flux
experiment in the following sections.

We observe that the rotating disc at the surface sets the upper layer into turbulent mo-
tion, since the Reynolds number in the flow defined by Re = UR/ν ≡ ΩR2/ν is of the
order of 20,000. We do not measure fluid velocities in our experiments, so we do not have
quantitative details of the velocity field in the upper layer. But, from previous studies and
also the direct observation by looking at the experiment, there is an evidence of large scale
circulation in the upper layer as shown schematically in figure 2. There is a mean flow
in the upper layer with velocities in the azimuthal and radial directions apart from the
turbulent velocities. Fluid particles near the surface are pushed away towards the walls,
due to the rotation of the disc. Also, shadowgraph images (which we discuss in more detail
below) shows that there is a dome-like structure near the center of the tank at the interface,
showing the upward motion of denser fluid as discussed in [3] and [2]. So the fluid particles
which are pushed towards the walls at the center come down along the wall, setting up a
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Experiment QB(cc/s) ∆ρ0(g/cc) Ω rad/s h0(cm) H(cm) Symbol

DL∆ρ01Ω2h01 -0.59 0.01782 2 10 30 4
DH∆ρ02Ω2h01 -1.18 0.02382 2 10 30 +
DL∆ρ02Ω2h01 -0.59 0.02382 2 10 30 +
DL∆ρ02Ω3h01 -0.59 0.02382 3 10 30 +
N∆ρ02Ω2h01 0 0.02382 2 10 30 +
N∆ρ03Ω2h01 0 0.03782 2 10 30 ◦
N∆ρ04Ω2h01 0 0.05082 2 10 30 �
N∆ρ03Ω3h01 0 0.03782 3 10 30 ◦
N∆ρ02Ω2h02 0 0.02382 2 13.5 27 +
UL∆ρ01Ω2h01 0.59 0.01782 2 10 30 4
UL∆ρ02Ω2h01 0.59 0.02382 2 10 30 +
UL∆ρ04Ω2h01 0.59 0.05082 2 10 30 �
UL∆ρ03Ω2h01 0.59 0.03782 2 10 30 ◦
UL∆ρ04Ω3h01 0.59 0.05082 3 10 30 �
UL∆ρ02Ω2h03 0.59 0.02382 2 15 30 +
UH∆ρ02Ω2h01 1.18 0.02382 2 10 30 +
UH∆ρ04Ω2h01 1.18 0.05082 2 10 30 �
UH∆ρ03Ω2h01 1.18 0.03782 2 10 30 ◦

Table 1: Dimensional parameters of the experiments.

return circulation.

The turbulent motions in the upper layer ensure that the fluid in the upper layer is well
mixed. As time progresses, the density difference between the two layers decreases as the
denser fluid in the lower layer is lifted up against gravity and mixed into the upper layer.
Meanwhile, the upper mixed layer grows deeper with time, with a sharp interface between
the two layers. All these turbulent motions and the circulation are confined to the upper
layer, while the lower layer remains quiescent during the experiment, since the density jump
across the interface suppresses the fluid motion to be penetrated into the lower layer. We
show the characteristic thickness of the interface dI in figure 2. The variation in the interfa-
cial thickness is observed to be very little between different experiments, so it is assumed to
be a constant in our calculations. An important non-dimensional parameter in this study
is the bulk Richardson number given by

RiB =
g′UhU
Ω2R2

, (1)

where hU is the depth of the upper layer, g′U = g(1 − ρ̄U/ρL) is the reduced gravity of
the upper layer. Another non-dimensional parameter which is relevant to this study is the
interfacial Richardson number defined as,
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RiI =
g′UdI
uU 2

≡ g′UhU
uU 2hU

dI , (2)

where uU is the characteristic velocity of the upper layer.

The bulk Richardson number RiB is a measure of balance between the strength of overall
stratification and the external forcing. While the interfacial Richardson number RiI repre-
sents the balance between a local measure of stratification and shear across the interface.
We are particularly interested in how the entrainment depends on the local and bulk pa-
rameters of the flow. We define layer richardson number for the mixed layer RiL as

RiL =
g′UhU
uU 2

, (3)

which is based on the mixed (upper) layer depth and the characteristic velocity of the upper
layer.

Figure 2: Schematic showing the flow in the upper mixed layer

The blue solid line in the figure 3 shows a typical density profile from the experiment. Nor-
malized density ρ̂ is plotted against depth,

ρ̂ =
ρ− ρU0

ρL − ρU0
, (4)

Where ρU0 is the initial upper layer density and ρL is the density of lower layer, which
doesn’t change during the experiment. The average of the upper layer and lower layer
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densities is calculated and the depth corresponding to the averaged density is considered
as the upper(mixed) layer measured from the surface. The red dot shown in the figure
represents this interface location. An important assumption made to calculate the interface
depth is that the density in the lower layer , i.e below the interface is ρL. Actually, it is not
exactly true as evident from the density profile (solid line). Due to the secondary mixed
layer (as discussed in more detail by [6]) formed just below the interface the average density
of the lower layer is slightly below ρL, which results in some error which can be quantified
from the experimental and the theoretical density profiles.
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Figure 3: Figure showing the typical density profile from the experimental data. The red
dot represents the interface density which is obtained by averaging the density of the upper
layer ρU and lower layer ρL

3.1 Previous theoretical models

As discussed in the introduction of this report, two models were proposed by [2] to study
the evolution of mixed layer in a initial two-layered fluid forced by a rotating disc at the
surface of mixed layer. The power supplied at the interface in terms of the interfacial stress
is given by

P = πR2cDρLuU
3, (5)

where cD is an emperically determined drag coefficient, uU is the characteristic-velocity of
the upper mixed layer and R is the radius of the disc.

The potential energy of the system defined in [2] is given by,

PE = πR2(−g
∫ hU

0
ρUzdz − g

∫ H

hU

ρLzdz +
gρLH

2

2
) ≡ πR2ρL

g′UhU
2

2
(6)
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According to the assumption that, d
dtPE ∝ P, we obtain

d

dt
hU ∝

uU
3

g′UhU
, (7)

Defining d
dthU as the entrainment velocity uE as discussed in [2]. It is important to remem-

ber that [2] discussed no-flux experiments i.e when QB = 0. More generalized formula for
the entrainment velocity will be defined in the later section.

uE ∝
uU

3

g′UhU
. (8)

Now defining the entrainment parameter as uE/uU , the entrainment parameter scales with
richardson number as

uE
uU
∝ 1

RiL
. (9)

From the above equation , the entrainment parameter scales with the inverse of Richardson
number for no-flux experiments. In the subsequent sections, we will try to fit our experimen-
tal data with this scaling, to check if the data for upwelling and downwelling experiments
agrees with it.

To compare the experimental data with the theoretical models, a rescaled time variable was
defined in [2] as

τ∗ =
R

h0

cV
RiB

τ, (10)

where τ is the non-dimensional time given by τ = Ωt, cV is an empirically determined
constant.

V-model is based on the assumption made by [3], that the characteristic velocity in the
upper layer remains constant and it scales with the velocity induced by the rotating disc
which RΩ. Based on these arguments, the non-dimensional mixed layer depth ĥU = hU/h0

varies with τ∗ as

ĥU = 1 + τ∗ (11)

However, P-model proposed by [2] argue that the constant power input from the rotating
disc cannot maintain a constant velocity in the upper layer considering the energetics of
the system. They propose that, as the mixed layer deepens more volume of fluid needs
to be energized continuously by the rotating disc. The power input from the disc should
be balanced by a rate of increase of kinetic energy, the viscous dissipation and the power
required to mix the fluid. If a constant velocity in the mixed layer is assumed, then the
kinetic energy of the upper layer (discussed in more detail by [2]) given by

KE =
1

2
ρLπR

2hUuU
2, (12)
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increases continuosly, so the dissipation of kinetic energy also increases. This is not possi-
ble to maintain with a constant power input from the disc, leading to an assumption that
the kinetic energy of the upper layer remains constant. Using this assumption , the time
evolution of the mixed layer depth ĥU is given by,

ĥU = (1 + 5τ∗/2)2/5 (13)

Figure 4 shows the evolution of interface depth for one of the no-flux experiments with
∆ρ = 0.03782g/cc and Ω = 2s−1, h0 = 10 cm. The non-dimensional depth ĥU = hU/h0

is plotted against τ∗. The black line represents the P model, the red line represents the
experimental data and the blue line represents the V model. Intially, the non-dimensional
mixed layer depth increases linearly with time. Since for small τ∗, the P-model reduces to
V-model (by neglecting the higher order terms in the expansion), it is difficult to distinguish
between P-model and V-model during the initial times. But as time progresses the rate of
increase of mixed layer depth is not constant but clearly decreases following the P model.
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Figure 4: Time evolution of upper layer depth: ĥU plotted against τ∗. Comparison of
experimental data with the theoretical models.

3.2 Equations for upwelling experiment(QB > 0)

In general, the equation for the rate of mass change in the cylinder is given by,

πR2
T

d

dt

(
ρ̄UhU + ρL(H − hU )

)
= ρLQB − ρ̄UQB (14)

=⇒ πR2
T

d

dt

(
g(
ρL − ρ̄U
ρL

)hU

)
= −g(

ρL − ρ̄U
ρL

)QB (15)

=⇒ πR2
T

d(g′UhU )

dt
= −g′UQB. (16)
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The equation for the rate of volume change of the upper layer is given by,

πR2
T

dhU
dt

= QE −QB (17)

where QE is the volumetric entrainment rate across the interface.

Substituting (17) into (16), we obtain an expression for volumetric entrainment rate across
the interface QE , given by

QE = −πR2
ThU

1

g′U

dg′U
dt

≡ πR2
T

dhU
dt

+QB (18)

Now, generalizing the definition of entrainment velocity uE as the volumetric entrainment
flux QE divided by the cross-section area of the tank,

uE =
dhU
dt

+QB/(πR
2
T ). (19)

It is important to note that this definition of the entrainment velocity is valid for no-flux
(QB = 0) , upwelling (QB > 0) and downwelling (QB < 0) experiments.

3.3 Equations for downwelling experiment (QB < 0)

The equation for the rate of mass change in the cylinder is given as,

πR2
T

d

dt

(
ρ̄UhU + ρL(H − hU )

)
= ρLQB − ρ̄U0QB (20)

=⇒ πR2
T

d

dt

(
g(
ρL − ρ̄U
ρL

)hU

)
= −g(

ρL − ρ̄U0

ρL
)QB (21)

=⇒ πR2
T

d(g′UhU )

dt
= −g′U0QB. (22)

As already noted by [2], for no-flux experiments where QB = 0, g′UhU remains constant (
mass conservation) i.e the bulk richardson number defined in (1) remains constant. How-
ever for upwelling and downwelling experiments mass is not conserved since we are adding
external fluid into the tank, and so the bulk Richardson number RiB changes during the ex-
periment thus giving us a scope to study the entrainment process over a range of Richardson
numbers by performing a single experiment. Specifically, for upwelling experiments since
QB > 0, g′UhU decreases and so the bulk Richardson number RiB decreases whereas for
downwelling experiments, RiB increases during the experiment.

It is important to note that for downwelling experiments, fresh water of density ρU0 is
added continuously from the top. Mathematical representation of this addition is given by
the second term on the R.H.S of (20). Whereas in upwelling experiments the volume of
fluid flowing out of the tank has density ρU ( density of the mixed upper layer), as evident
from the second term in R.H.S of (14).
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Substituting (17) into (22), we obtain the expression for volumetric entrainment rate across
the interface QE , given by

QE = QB

(
1− g′U0

g′U

)
− πR2

ThU
1

g′U

dg′U
dt

≡ πR2
T

dhU
dt

+QB (23)
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Figure 5: Plots of ρ̂ against z/H for an experiment with Ω = 2 rad s−1 , ∆ρ = 0.02382g/cc,
QB = 0 Starting with t=0, profiles are shown with a time interval of 9 minutes. Experiment
N∆ρ02Ω2h01 shown in table 1
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Figure 6: Plots of ρ̂ against z/H for an experiment with Ω = 2 rad s−1 , ∆ρ = 0.02382g/cc,
QB = 0.59 cc/s . Starting with t=0, profiles are shown with a time interval of 9 minutes.
Experiment UL∆ρ02Ω2h01 shown in table 1
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Figure 7: Plots of ρ̂ against z/H for an experiment with Ω = 2 rad s−1 , ∆ρ = 0.02382g/cc,
Q=1.18 cc/s . Starting with t=0, profiles are shown with a time interval of 9 minutes.
Experiment UH∆ρ02Ω2h01 shown in table 1

Figure 8: Shadowgraph images of the upwelling and no-flux experiments at a particular
time.
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Figure 5 shows plots of normalized density profiles of a no-flux experiment with Ω = 2 rad
s−1 , ∆ρ = 0.02382g/cc, QB = 0 . Density profiles are shown at different time instances
starting with t=0 (3 minutes from the time disc started rotating) . Time goes from left
to right in this figure i.e the left most profile is time t=0. The time interval between each
profile is 9 minutes ( every 3 profiles). Red square shaped dots shown in the figure represent
the location of interface. As time progresses, the interface moves down, and the density
difference between the two layers decreases.

There are four important things to note here,

1. The interface between the two layers is sharp, similar to ‘scouring’ observed by Woods
et al. (2000) [5],

2. the upper layer is well homogenized (mixed),

3. The interface depth is clearly not varying linearly with time,

4. A secondary relatively thin mixed layer is observed just below the interface, with the
density closer to the lower layer density.

Overturning is observed near the interface at certain times indicating a possibility of Kelvin-
Helmholtz instability at the interface. Figure 6 shows density profiles for an upwelling ex-
periment with QB = 0.59cc/s. The important qualitative difference between the no-flux
and upwelling experiment profiles is that the magnitude of density fluctuations in the mixed
layer seems to be higher in the upwelling experiment and also the density overturnings at the
interface seems to be more frequent in the upwelling experiment. Similarly, figure 7 shows
density profiles for an upwelling experiment with QB = 1.18cc/s. The density fluctuations
seems to be even higher and also the density overturnings are more frequent and intense.
Also, the density difference between the two layers is dropping quickly in the case of up-
welling experiments compared to the no-flux experiment. Quantitative discussion of these
differences will be discussed in the sections below. Figure 8 show the shadowgraph images
of the upwelling and no-flux experiments at a particular time instant. Though the images
are not very clear, it is apparent that there is more turbulent activity in the upper layer of
upwelling experiment, confirming the qualitative differences observed in the density profiles.

Similar comparison between the no-flux and upwelling experiments for different density
differences (∆ρ = 0.03782, 0.05082g/cc) show the identical qualitative differences observed
above, suggesting that this phenomenon is a feature of any upwelling flow irrespective of
the range of Richardson numbers. However, there will be quantitative differences in the
entrainment rate and the rate of increase of mixed layer depth as the density difference
get higher, due to the fact that the entrainment becomes difficult as the stratification
grows stronger. A detailed quantitative analysis is required to determine whether this
phenomenon is observed independent of the Richardson number. Quantitive comparison of
density variance and the entrainment rate is discussed in detail in the following sections.

298



0 1000 2000 3000 4000 5000 6000 7000 8000

10

15

20

25

time (s)

D
ep

th
 (

cm
)

Depth of the interface measured from the surface

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.01

0.02

0.03

time (s)

D
en

si
ty

 d
if

fe
re

n
ce

 (
g

/c
c) Density difference across the interface

0 1000 2000 3000 4000 5000 6000 7000 8000
0

2

4

time (s)

E
n

tr
ai

n
m

en
t 

fl
u

x
 (

cc
/s

) Entrainment flux across the interface

NF (Medium ∆ ρ)

UW (Q=0.59 cc/s)

UW (Q=1.18 cc/s)

Figure 9: Plots showing the quantitative comparison of no-flux and upwelling experiments
Ω = 2 rad s−1 , ∆ρ = 0.03782g/cc, QB = (0, 0, 59, 1.18) cc/s. (a) Time evolution of upper
layer depth (b) Time evolution of density difference between the upper and lower layer. (c)
Time evolution of volumetric entrainment flux QE across the interface as defined in (18).

Figure 9 is shown here to explain the quantitative differences between the no-flux and up-
welling experiments. Figure 9(a) shows the interface depth plotted against time. Figure
9(b) shows the density difference between the two layers plotted against time and finally
figure 9(c) shows the volumetric entrainment rate (defined in (18) ) plotted against time.
The black line represents the no-flux experiment. Red and blue lines represent upwelling
experiments with different upwelling rates QB. Initially, the rate at which the depth of the
mixed layer increases is slower for upwelling experiments when compared with the no-flux
experiment. This is due to the fact that QB > 0 for upwelling experiments and from equa-
tion (17), since QB appears with a negative sign on the R.H.S of the evolution equation
for mixed layer depth, it decreases the growth rate of mixed layer depth. When QB = 1.18
cc/s, i.e when the upwelling rate is higher, the initial evolution of mixed layer depth shows
that dhU

dt < 0 because the upwelling rate QB dominates the volumetric entrainment flux QE
across the interface. But, at a later time, the entrainment flux increases and is higher in
upwelling experiments when compared with the no-flux experiment as shown in figure 9(c).
As a result, the rate of increase of mixed layer depth is higher for upwelling experiments
when compared with the no-flux experiment, as evident from the later time evolution shown
in figure 9(a).
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Another important quantitative difference to note between the upwelling and no-flux exper-
iment is the rate at which the density difference between two layers drops. For upwelling
experiments, the rate of decrease of density difference is higher and it increases with QB.
This can be attributed to the higher entrainment rate in the upwelling experiments, because
more entrainment occurs when the density difference across the interface is relatively weak.
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Figure 10: Plots showing the quantitative comparison of no-flux and downwelling experi-
ments Ω = 2 rad s−1 , ∆ρ = 0.02382g/cc, QB = (0,−0, 59,−1.18) cc/s. (a) Time evolution
of upper layer depth (b) Time evolution of density difference between the upper and lower
layer. (c) Time evolution of volumetric entrainment flux QE across the interface as defined
in (23).

Figure 10 is shown here to explain the quantitative differences between the no-flux and
downwelling experiments. Figure 10(a) shows the interface depth plotted against time,
figure 10(b) shows the density difference between the two layers plotted against time and
finally figure 10(c) shows the volumetric entrainment rate (defined in equation 11) plotted
against time. The black line represents the no-flux experiment. Red and blue lines represent
downwelling experiments with different QB. Here, the time evolution of mixed layer depth
shows that the higher the value of QB, higher the rate of increase of mixed layer depth as
evident from figure 10(a). Since QB < 0 for downwelling experiments, from equation (17),
it is evident that this term increases the rate of increase of mixed layer depth. Figure 10(b)
shows that the rate at which the density difference between two layers drops is slower com-
pared to the upwelling experiments shown in figure 9(b). Also, the volumetric entrainment
rate shown in figure 10(c), suggest a reverse trend as compared to the upwelling experi-
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ments i.e higher the downwelling rate, lower the volumetric entrainment flux QE . However,
difference between volumetric entrainment rates of no-flux and downwelling experiments is
not as significant as observed in the upwelling experiments. The quantitative analysis of
upwelling and downwelling entrainment rates will be discussed in detail in the subsequent
sections.

Figure 11 shows the time averaged density variance in a semi log plot plotted against QB.
Time averaged density variance is given by,

Time averaged density variance 〈〈ρ′2〉z〉t =
1

T

1

(hU − 2)

∫ T

t=0

∫ hU−1

1
[ρ′(z, t)]2 (24)

where ρ′(z, t) = ρ(z, t) − ρ̄U (z) is the fluctuating component of the density field , ρ̄U (z)
represents the time average density of the upper (mixed) layer. T is the duration of the
experiment. Spatial averaging is done in the upper layer, starting at a depth 1 cm below the
surface and stopping at 1 cm above the interface. ‘∆’ symbol represents the lowest ∆ρ con-
sidered in our experiments which is 0.01782 g/cc , ‘+’ symbol represents ∆ρ = 0.02382g/cc,
‘◦’ represents ∆ρ = 0.03782g/cc and ‘�’ represents the highest density difference which is
0.05082 g/cc. Black and grey color represents no-flux experiments , red and magenta rep-
resents downwelling experiments, blue and cyan represent upwelling experiments. As dis-
cussed in the previous sections, turbulent fluctuations appear to be higher in the upwelling
experiments. The density variance plot shown here quantify the turbulent fluctuations.
Clearly, there seems to be a trend in the density variance when plotted against QB. It is
important to remember that QB > 0 represents upwelling experiments , QB < 0 represents
downwelling experiments and QB = 0 represents no-flux experiments. As QB goes from
negative to positive values, in general the density variance increases significantly. Clearly,
the density variance is highest for upwelling experiments with higher QB, which suggests
that the turbulent fluctuations increase with increasing upwelling rate. However there are
two exceptions in the figure with red colored ‘∆’ and magenta colored ‘+’. High density
variance is observed in these experiments because of the fact the initial density difference
is low in these experiments (see table 1)and also the rotation rate is higher in one of these
experiments(magenta colored ‘+’).

The reason for higher turbulent fluctuations in upwelling experiments can be explained
using the reynolds stress terms. For example, considering a fluid particle in an upwelling
experiment. The fluid particle which is below the interface, due to the vertical velocity
induced by the upwelling is moving from static flow field into a turbulent (mixed layer)
flow field. As a result, the fluid particle tends to resist the motion resulting in negative
u′ (fluctuating horizontal velocity), which makes the product −u′w′ > 0 , increasing the
reynolds stresses. Evolution equation for turbulent kinetic energy is given by

d(TKE)

dt
= P − ε+B − ∂T ′i

∂xj
(25)

where P is the turbulent production term given by −〈u′w′〉dŪdz . Since the mean flow gradi-
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ent dŪ
dz > 0 the turbulent production term is positive, thus increasing the turbulent kinetic

energy.

Now considering the evolution equation for density variance

d(〈ρ′2〉)
dt

= Pρ − ερ −
∂T ′ρi
∂xj

(26)

where Pρ is the scalar production term given by −〈ρ′w′〉dρ̄dz . Since the mean density gradient

across the interface dρ̄
dz < 0, fluctuating vertical velocity w′ > 0 (discussed above) and the

density fluctuation ρ′ is observed to be positive, the scalar production term is positive,
contributing to the increase in density variance.
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Figure 11: Plot showing the time-averaged density variance for all the experiments.

Figure 12 shows the entrainment parameter defined in (9) plotted against τ∗. Thick solid
blue colored lines represent upwelling experiments with QB = 1.18 cc/s, thin blue/cyan col-
ored lines represent upwelling experiments with QB = 0.59 cc/s. Red/magenta colored lines
represent downwelling experiments. Black/grey colored lines represent no-flux experiments.
For all the downwelling and no-flux experiments , the entrainment parameter increases and
reaches almost a steady value at a later time. For upwelling experiments with QB = 0.59
cc/s, the entrainment parameter increases initially and appears to reach a steady value
at a later time which is greater than the time taken for no-flux experiments. However at
QB = 1.18 cc/s, the time span for which we have the experimental data, the entrainment
hasn’t reached a steady value. Another important thing to notice in this figure is that,
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for all the downwelling and no-flux experiments, the entrainment parameter appears to be
reaching an approximately same steady value irrespective of the initial density difference.
Similarly, for upwelling experiments with QB = 0.59 cc/s , the entrainment parameter
seems to be reaching a steady value of approximately 1. For all upwelling experiments with
QB = 1.18 cc/s, the entrainment parameter seems to be reaching a steady value of approx-
imately 2 ×10−4, which is double the steady value for QB = 0.59 cc/s. This suggests that,
the entrainment parameter may scale with the upwelling rate QB, irrespective of the initial
density difference. However, due to the large scatter in the data presented in this figure,
it is difficult to come to a conclusion regarding the scaling of entrainment parameter with
QB.
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Figure 12: Plots of entrainment parameter plotted against τ∗ for all the experiments.

Figurer 13 shows the entrainment parameter for all the downwelling and no-flux experi-
ments plotted against 1/RiL which is defined as

1/RiL =
uU

2

g′UhU
≡ uU

2hU

g′UhU
2 ∝

KE
PE

, (27)

For no-flux experiments, since the denser fluid is continuously lifted up and mixed, the
potential energy is expected to increase. Also for downwelling experiments, lighter fluid
is added at a greater height and heavier fluid which is at lower height is taken out and
also there is entrainment process where the work is done to lift the heavy parcel up. The
net change in potential energy of the system during this process is observed to be posi-
tive resulting in an increase of potential energy of the system for downwelling and no-flux
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experiments. So from figure 13, since x-axis represent the ratio of kinetic energy to the
potential energy, time goes from right to left. The experimental data shown in figure 13
seems to fit well with the black solid straight line shown in the same figure, suggesting that
the scaling law derived above is valid i.e entrainment parameter is proportional to 1/RiL.
So, the entrainment dynamics is dependent on the bulk parameters of flow rather than the
local flow dynamics.

In upwelling experiments, the heavier fluid is added into the tank at a lower height (which
increases potential energy), where as the mixed layer fluid overflows out of the tank at a
greater height (which reduces potential energy), and also there is an increase in potential
energy due to the turbulent entrainment. The net change in potential energy observed
in upwelling experiments is negative, thus reducing the potential energy of the system.
Figure 14 shows the data from upwelling experiments plotted along with the no-flux and
downwelling experiments. For upwelling experiments, since the potential energy of the
system is observed to decrease, time goes from left to right in figure 14, whereas the time
goes from right to left for all downwelling and no-flux experiments. It is evident from the
figure that the entrainment parameter for the upwelling experiments does not obey the
same scaling as the downwelling and no-flux experiments, since there is clear deviation as
the time progresses. The reason for this deviation from the standard scaling is probably due
to the fact the turbulent fluctuations in the upwelling experiments are higher , resulting in
different entrainment and interfacial dynamics.
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Figure 13: Plots of entrainment parameter plotted against 1/RiL for all the downwelling
and no-flux experiments.
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Figure 14: Plots of entrainment parameter plotted against 1/RiL for all the experiments.

4 Conclusions

We have conducted an experimental study to consider the effect of upwelling and down-
welling on the shear-driven turbulent entrainment. Different controlling parameters involved
in this study are disc rotation rate Ω, initial upper layer depth h0, initial density difference
∆ρ0. Upwelling and downwelling experiments were performed considering two different flow
rates QB = 0.59, 1.18 cc/s. The layer Richardson number RiL as defined in (3) varies from
0.3 to 2. The density profiles for standard no-flux experiments shows that the mixed layer
depth does not vary linearly with time, rather its rate of increase drops at later time fol-
lowing the P-model. Qualitative and quantitative analysis of our experimental results show
that the upwelling experiments are observed to be qualitatively different with measurably
enhanced turbulent fluctuations leading to new and increased entrainment rate. This in-
crease in entrainment rate is probably due to the higher turbulent fluctuations and density
variance. A clear trend is observed for time averaged density variance when plotted against
QB, i.e density variance increases monotonically as QB increases. The increase in turbulent
fluctuations in upwelling experiments is due to the enhanced reynolds stresses induced by
the upwelling. As explained in section 3 above, the upwelling results in the increased scalar
and turbulent production terms thus increasing the turbulence and net transport across the
interface. Monotonic increase in density variance with QB is because the vertical velocity
w′ increases with QB resulting in higher scalar production term.

The entrainment parameter uE/uU as defined in (9) for upwelling experiments does not
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obey the standard scaling law, which states that the entrainment parameter uE/uU is pro-
portional to 1/RiL. Standard scaling suggests that the entrainment rate across the interface
is dependent solely on the bulk parameters of the upper layer, rather than the interfacial
Richardson number which is the measure of ratio of the local stratification strength and the
velocity drop across the interface. Since, for upwelling experiments the entrainment rate is
not a function of the layer Richardson number and also the density variance is dependent
on the upwelling rate QB, more detailed analysis is needed consider the upwelling rate QB
along with the Richardson number to come up with a scaling law.

Downwelling does not seem to influence the entrainment dynamics significantly. It is evident
from the fact that the density variance is low, when compared with the no-flux experiments
and also the entrainment parameter obeys the standard scaling law. Since the experiments
are performed in lab (small) scale, the relevance of these experimental results in oceanic
scales is not clear and needs better understanding through numerical simulations and ob-
servational studies in the ocean.
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Equatorial Quasi-Geostrophy
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1 Introduction

The changing sign of the Coriolis force across the equator causes the dynamics of equatorial
waves to be quite different from that of the mid- to high-latitudes. The waves that are
found in this region play an important role in the El Niño - Southern Oscillation (ENSO)
[23; 24; 29], the Madden-Julian Oscillation [17; 30], and in the exchange of energy from
the equatorial region to the midlatitudes. Hence, it is important that their dynamics and
evolution are well understood. The inviscid, linearized shallow water equations on an equa-
torial β-plane have been used to study equatorially trapped Kelvin, inertio-gravity and
Rossby waves [1; 8; 19; 21]. Furthermore, the effect of nonlinearity on equatorial waves
in the context of the shallow water equations has been described by Boyd, in a series of
papers in the 1980s [2; 3; 4; 5]. Boyd found solitary wave solutions for the weakly dis-
persive long Rossby modes as well as for the strongly dispersive Rossby, inertio-gravity
and mixed Rossby-gravity modes and also characterized the effect of nonlinearity on the
weakly-dispersive (where the effects of nonlinearity dominate over dispersion) Kelvin mode.

While the shallow water equations have been quite successful in understanding the dy-
namics of the equatorial region, they are nonetheless an approximation to the full nonlinear
primitive equations and neglect some physics that are potentially important in the equa-
torial region. In the present work, we investigate a nonlinear, equatorial quasi-geostrophic
model that includes the vertical component of momentum as well as the non-hydrostatic
effect, with the aim of extending the work of Boyd in understanding the dynamics and
evolution of nonlinear equatorial waves.

The quasi-geostrophic approximation [6; 7] is useful for studying flows with characteris-
tic timescales of a day or more, thus filtering out high-frequency motions. One underlying
assumption of the quasi-geostrophic approximation is that the Rossby number, which mea-
sures the relative importance of inertial to rotational motion in the momentum equations,
is small. The Rossby number is defined as Ro = U/2ΩL, where U and L are characteristic
velocities and lengths, respectively. In the “traditional approximation”, the rotation vector
Ω is assumed to depend only on the local vertical component, namely the Coriolis param-
eter f = 2Ω sin θ, where θ is the latitude. However, in the “traditional approximation”,
the Rossby number is infinite at the equator due to the vanishing of the Coriolis parameter
there, rendering the quasi-geostrophic approximation invalid. While the “traditional ap-
proximation” is justifiable for problems based in the mid-latitudes [8; 28], the contribution
of the local horizontal component of rotation, 2Ω cos θ, is important in applications in the
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tropics [26; 28] and may be necessary for the simulation of some equatorial phenomena [10]
(e.g. the Madden-Julian Oscillation).

[13] derived a nonlinear quasi-geostrophic model of the equatorial region, which takes
into account the local horizontal component of rotation. Their model, denoted SNH-QGE III
(Sideways Non-Hydrostatic Quasi-Geostrophic Equations type III), differs from the classical
quasi-geostrophic model of fluid that is thin in the vertical, by assuming the meridional (y-
direction) length scale is large compared to the zonal (x-direction) and vertical (z-direction)
length scales. It follows that the leading balance in this model is between the zonal and
vertical components of momentum, rather than the zonal and meridional components in
the thin layer approach.

In the following section, we examine the linearized primitive equations on an equatorial
β-plane and the equatorial waves they describe. Section 3 outlines the derivation of the
quasi-geostrophic model SNH-QGE III from [13]. Section 4 treats the linearized version
of this model, comparing to the results of the linearized primitive equations. Finally, in
section 5, the nonlinear version of this quasi-geostrophic model is analyzed, following a
similar procedure to that of [3]. In the case when the Brunt-Väisälä frequency is constant
the waves are found to behave according to a generalized Swift-Hohenberg equation. By
contrast, when the Brunt-Väisälä frequency varies with height, the waves behave according
to a generalized Kadomtsev-Petviashvili equation.

2 Primitive equations

2.1 Equatorial waves

Consider the linearized, primitive equations in the following form:

∂tu
′ − βyv′ + 2Ωw′ = −∂xp′, (1)

∂tv
′ + βyu′ = −∂yp′, (2)

∂tw
′ − 2Ωu′ = −∂zp′ −

ρ′g

ρr
, (3)

∂xu
′ + ∂yv

′ + ∂zw
′ = 0, (4)

∂tρ
′ + ∂zρw

′ = 0, (5)

where x is in the zonal direction, y is in the latitudinal direction, z is in the vertical direction,
ρr is the reference density, ρ is the mean density field and ρ′ is the perturbation of the density
about the mean field. The zonal, latitudinal (or meridional) and vertical components of the
3-dimensional velocity field u are u′, v′, and w′, respectively and p′ is pressure. Apostrophes
denote variables that are a function of x, y, z and t, and subscripts denote partial derivatives.
The earth’s rotation vector Ω is assumed to depend on both the vertical and horizontal
components, namely the Coriolis parameter f = 2Ω sin θ and fh = 2Ω cos θ, respectively.
In Eqs. (1) - (5), we have assumed that the horizontal component is constant, fh = 2Ω,
and f varies with latitude, f ≈ βy, for constant β (this is known as the rational β-plane
approximation [9]). Eqs. (3) and (5) can be combined by differentiating the former with
respect to t. Taking the square of the Brunt-Väisälä frequency, N2 = −g∂zρ/ρr, to be
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constant and assuming solutions of the form u′ = u(y)eikx+i`z−iωt, and similarly for v′, w′

and p′, Eqs. (1) - (5) can be simplified to

−iωu− βyv + 2Ωw = −ikp, (6)

−iωv + βyu = −∂yp, (7)

−iωw − 2Ωu = −i`p+
N2w

iω
, (8)

iku+ ∂yv + i`w = 0. (9)

In this section we are interested in waves with frequencies less than the Brunt-Väisälä
frequency, |ω| < N . We proceed by eliminating u, w and p in Eqs. (6) - (9), to derive the
following equation for v

(ω2−N2−4Ω2)
d2v

dy2
−4Ωi`βy

dv

dy
−k2

(
ω2

[
1 +

`2

k2

]
−N2

)
v+`2β2y2v−kβ

ω

(
ω2 −N2 +

2Ωωi`

k

)
v = 0.

(10)
The standard transformation v(y) = V (y)e−λy

2/2 is employed, with λ = − 2Ωi`β
ω2−N2−4Ω2 , to

eliminate the first-order derivative, and by rescaling y with ŷ = y
√
N2 − ω2 + 4Ω2, the

following simplified expression for the y-dependent component of the meridional velocity is
obtained, namely

d2V

dŷ2
− `2β2(N2 − ω2)ŷ2V + σV = 0, (11)

where σ = `2ω2 − (N2 − ω2)
(
k2 + kβ

ω

)
. If σ is defined as

σ = σn = (2n+ 1)`β
√
N2 − ω2, for n = 0, 1, 2, ..., (12)

then the solutions to Eq. (11) are given by parabolic cylinder functions of order n that
decay exponentially as |y| → ∞, namely

Vn((β/α)1/2ŷ) = 2−n/2e−βŷ
2/2αHn((β/α)1/2ŷ), (13)

where Hn is the nth physicists Hermite polynomial and α2 = 1
`2(N2−ω2)

. It is worth noting

that the local horizontal component of the earth’s rotation vector has no effect on the
dispersion relation Eq. (12). Once Vn(y) is known, the solutions for u, w and p are easily
found

u(y) =
i

k

(N2 − ω2 + 2Ωiω`
k

N2 − ω2(1 + `2

k2
)

)
dVn
dy
− βω`2y

k
(
N2 − ω2(1 + `2

k2
)
)Vn

 , (14)

w(y) =
ω

k

 2Ω− iω`
k(

N2 − ω2(1 + `2

k2
)
) dVn
dy

+
i`βy(

N2 − ω2(1 + `2

k2
)
)Vn

 , (15)

p(y) =
i

k

[
ω

k

(
N2 − ω2 + 4Ω2

N2 − ω2(1 + `2

k2
)

)
dVn
dy
−

(
N2 − ω2 − 2Ωiω`

k

N2 − ω2(1 + `2

k2
)

)
βyVn

]
. (16)
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The surface height is contoured in figure 1 for the n = 1 mode and is overlaid with the
horizontal velocity field (the u′, v′ field). The zonal velocities for the modes n = 1, 2, 3, 4
are compared in figure 2. The direction of propagation of waves is consistent with [8] and
[19]. Surfaces of constant phase for this system are given by

kx+ `z +
2Ω`βŷ2/2

ω2 −N2 − 4Ω2
= constant. (17)

It is clear that these constant phase surfaces are curved in the y, z plane, which differs
from the planar phase surfaces in the x, y plane of the shallow water equations. This is due
to the introduction of an imaginary component in the solutions from the local horizontal
component of the Coriolis force, a result consistent with that of [22].

2.2 Kelvin waves

We consider the unique case in which the meridional component of the velocity vanishes -
the analog of the equatorial Kelvin wave in the shallow water model. First, setting v = 0
in Eqs. (6) - (9), we proceed to eliminate u, w and p from these equations and solve for ω
algebraically, obtaining

ω2 =
N2k2

k2 + `2
, (18)

which yields a non-trivial solution provided ω 6= 2Ωik/`. The solutions u(y) and w(y)
expressed as functions of p(y) are

u(y) =
i`
(
2Ω− iω`

k

)
4Ω2 + N2`2

k2+`2

p(y), w(y) = −
ik
(
2Ω− iω`

k

)
4Ω2 + N2`2

k2+`2

p(y). (19)

Finally, p(y) is found by solving the following equation

dp(y)

dy
+ byp(y) = 0, where b = i`β

(
2Ω− iω`

k

)
4Ω2 + N2`2

k2+`2

. (20)

It is then clear that p(y) = ae−by
2/2, where a is a complex constant amplitude. The p′ is

contoured in figure 3, with overlay of a purely zonal velocity field in arrows. Note that the
meridional velocity is zero. Since we require that the waves decay meridionally north and
south of the equator, the real part of b must be positive. That is,

Re{b} =
ω`2β

k(4Ω2 + N2`2

k2+`2
)
> 0. (21)

A consequence of this restriction is that ω is positive, namely

ω =
Nk√
k2 + `2

. (22)

Defining the phase speed as cpx = ω/k and the group velocity as cgx = ∂ω/∂k, we find
that this Kelvin wave has a positive zonal phase speed and a positive group velocity, and
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(a) A westwards propagating Rossby wave with
small positive ω, k = −1.
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(b) An eastwards propagating inertio-gravity wave
with large positive ω, k = 1.
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(c) A westwards propagating inertio-gravity wave
with large positive ω, k = −1.

Figure 1: Pressure (surface height) in contours with overlay of the horizontal (u and v)
velocity field in arrows, for n = 1 modes (Rossby and inertio-gravity modes) and |ω| < N .
The values for the constants are ` = 1, β = 1, N = 3 and 2Ω = 1.
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(d) n = 4

Figure 2: Pressure (surface height) in contours with overlay of the horizontal (u and v)
velocity field in arrows, for a westwards propagating Rossby wave with increasing values of
n, |ω| < N and k = −1. The values for the constants are ` = 1, β = 1, N = 3 and 2Ω = 1.
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hence propagates eastwards. However, the phase speed and group velocity are not equal,
which means that the wave is dispersive; its shape is not conserved as the wave travels. By
contrast, in the shallow water case, Kelvin waves of equivalent height H are non-dispersive;
they all travel eastward with the phase speed c =

√
gH, which is equal to the group velocity.

We deduce that the additional effects of vertical propagation and stratification, which are
not present in the shallow water case, cause the Kelvin wave described by the dispersion
relation in Eq. (22) to be dispersive. This result was also found by [12]. As in section 2.1,
the local horizontal component of the Coriolis force has no effect on the dispersion relation
for the Kelvin wave.
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Figure 3: Pressure (surface height) in contours with overlay of the zonal velocity u field in
arrows, for the “Kelvin”-like solution, for which |ω| < N . The values for the constants are
k = 1, ` = 1, β = 1, N = 3 and 2Ω = 1.

2.3 Dispersion relation

The dispersion curves from Eqs. (12) and (22) are plotted in figure 4(a). The Kelvin wave
is often denoted the n = −1 mode, although its dispersion relation comes from Eq. (22)
rather than Eq. (12), as it corresponds to the unique case in which the meridional velocity
is equal to zero. For the case when n = 0 in Eq. (12), known as the mixed Rossby-gravity
mode or “Yanai” mode, two of the four solutions to the dispersion relation in Eq. (12)
are ω = ± Nk√

k2+`2
. In fact, these solutions are not permitted as in deriving the solution we

assumed that ω2(1 + `2/k2)−N2 6= 0. There are two other roots of the dispersion relation
when n = 0: one is positive and corresponds to an eastwards propagating equatorial inertio-
gravity wave, which resembles a Kelvin mode for large zonal scales; the other is negative
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and corresponds to a westwards propagating wave, which resembles a Rossby wave for small
zonal scales (see figure 4). The key differences between the Kelvin n = −1 and the eastwards
propagating inertio-gravity wave n = 0 is that the Kelvin wave is centered on the equator
and has no westwards-propagating component. In the shallow water case, an atmospheric
Kelvin wave has an eastwards phase speed of 10-20 m s−1, whereas an atmospheric inertio-
gravity wave has a typical eastwards phase speed of 25-50 m s−1 [27].

An analog to each of the waves found in figure 4(a) exists in the hydrostatic shallow
water equations [8; 19]. For the Kelvin mode, the shallow water dispersion relation is

ω = ck, (23)

where c =
√
gH is the gravity phase speed. When the primitive system in Eqs. (6) - (9) is

strongly stratified (i.e. |ω| � N), the dispersion relation in Eq. (12) reduces to the shallow
water dispersion relation for the higher order modes, namely,

ω2

c2
− k2 − βk

ω
= (2n+ 1)

β

c
, (24)

where c2 = N2/`2 is the analog of the shallow water phase speed. It is well known (e.g.
[8; 11]) that for the n = 0 mode the dispersion relation in Eq. (24) produces a root, ω = −ck,
which is spurious (this relation is assumed not to be true in the derivation of the solution).
This root corresponds to a westwards propagating gravity wave; if it were valid, the solution
for the meridional component of the velocity would no longer be equatorially-constrained.
The key difference between the shallow water dispersion relations and those of Eqs. (12)
and (22) is the presence of N2 in the latter, which is the upper limit of the inertio-gravity,
gravity and mixed Rossby-gravity mode frequencies. This is clearly illustrated in figures
4(a) and (b).

2.4 Evanescent waves

The results in the previous sections were obtained by assuming a traveling wave in the
vertical direction, ei`z. If we instead assume that waves decay exponentially from the height
z = 0 so that the vertical component of u′, v′, w′ and p′ is given by e−`z, and this time
assume that |ω| > N , we obtain the following solution also in terms of parabolic cylinder
functions

u(y) =
i

k

 ω2 −N2 + 2Ωω`
k

ω2
(

1− `2

k2

)
−N2

 dVn
dy
− βωl2y

k
(
ω2
(

1− `2

k2

)
−N2

)Vn
 , (25)

w(y) =
ω

k

− 2Ω + ω`
k(

ω2
(

1− `2

k2

)
−N2

) dVn
dy

+
β`y(

ω2
(

1− `2

k2

)
−N2

)Vn
 , (26)

p(y) =
i

k

[
ω

k

(
ω2 −N2 − 4Ω2

ω2(1− `2

k2
)−N2

)
dVn
dy
−

(
ω2 −N2 − 2Ωω`

k

ω2(1− `2

k2
)−N2

)
βyVn

]
, (27)

where

Vn(ŷ) =
2−n/2√

ω2 −N2 − 4Ω2
e−βŷ

2/2αHn((β/α)1/2ŷ)e−λŷ
2/2.
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Figure 4: Dispersion curves for: (a) the non-hydrostatic primitive system; and (b) for the
shallow water equations. In each figure, the red line is the Kelvin (n = −1) mode, refer to
Eqs. (22) and (23), respectively, the blue lines are the mixed Rossby-gravity (n = 0) mode,
refer to Eqs. (12) and (24), respectively, and the black lines are the Rossby (low-frequency)
and inertio-gravity (higher-frequency) (n = 1, 2, ...) modes, refer to Eqs. (12) and (24),
respectively. Values for the constants are N = 3, β = 1 and c = 2.

Here, y has been scaled such that ŷ = y
√
ω2 −N2 + 4Ω2 and the constants λ and α are

defined by

λ =
`β

ω2 −N2 − 4Ω2
, α2 =

1

`2(ω2 −N2)
.

The dispersion curve for this system is

ω2`2 − (ω2 −N2)(k2 − kβ

ω
)− (2n+ 1)β`

√
ω2 −N2 = 0, (28)

which is plotted in figure 5.

2.5 Evanescent Kelvin waves

Proceeding as in section 2.4 for the case in which the meridional component of the velocity
vanishes, we find that

ω2 =
N2k2

k2 − `2
, (29)

which is true provided ω 6= 2Ωk/` (otherwise, as previously, we obtain the trivial solution
for each of u′, w′ and p′). The solution for p(y) is

p(y) = µe−γy
2/2, where, γ = −

β`
(
2Ω + ω`

k

)
4Ω2 − N2`2

k2−`2
, (30)
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Figure 5: Dispersion curve for evanescent waves (|ω| > N). The red line is the Kelvin mode,
the blue lines are the n = 0 modes, and the black lines are the n = 1, 2, .. modes.

and µ is a complex constant. Since we require that the waves decay meridionally north and
south of the equator, we must have γ < 0. Then,

ω =
Nk√
k2 − `2

, (31)

which is plotted in figure 5, and we assume that k > ` > 0, in which case the waves
propagate eastwards and vertically upwards. The solutions u and w are

u(y) = −
`
(
2Ω + ω`

k

)
4Ω2 − N2`2

k2−`2
p(y), w(y) = −

ik
(
2Ω + ω`

k

)
4Ω2 − N2`2

k2−`2
p(y). (32)

2.6 Remarks on the primitive equations

There are some clear distinctions between our results and those obtained from the hy-
drostatic shallow water equations on an equatorial β-plane: (i) the addition of the local
horizontal component of the Coriolis force introduces an imaginary component in the solu-
tions to the primitive equations, adds curvature to the y, z phase planes in the case when
v′ 6= 0, and adds a phase shift to the wave structure in the case when v′ = 0; (ii) when a
traveling wave is assumed in the vertical, non-hydrostatic effects modify the behavior of the
inertio-gravity, gravity and mixed Rossby-gravity modes such that their frequencies are nec-
essarily less than the Brunt-Väisälä frequency and the converse is true for evanescent waves
in the vertical; and, (iii) the Kelvin mode no longer obeys the gravity phase speed c =

√
gH,

but becomes dispersive under non-hydrostatic effects. This concludes investigation of the
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linearized primitive equations; we now turn to the SNH-QGE III model, comparing the
linearized version of the model with the results from this section.

3 Quasi-geostrophic Model

We briefly outline the procedure used to derive the SNH-QGE III model analyzed in the
following sections. Readers are directed to [13] for a more comprehensive derivation. First,
consider the Boussinesq form of the dimensional Navier-Stokes equations in the following
form:

Dtu
∗ + 2Ωη̂̂η̂η × u∗ = − 1

ρr
∇∇∇p∗ + b∗ẑ, (33)

Dtb
∗ − g

ρr
w∗∂zp = 0, (34)

∇∇∇ · u∗ = 0. (35)

Here, Dt = ∂t + u · ∇∇∇ is the material derivative, u is the 3-dimensional velocity vector
u = (u, v, w), and b = −gρ′/ρr is the buoyancy anomaly field of density perturbations,
ρ′, about the mean density field ρ, where ρr is the reference density. The total planetary
rotation vector is 2Ωη̂̂η̂η. We consider only motions at the equator and invoke the β-plane
approximation with η̂̂η̂η = η̂̂η̂η0 − (y/R)η̂̂η̂η1, for planetary radius R, where η̂̂η̂η0 = (0, 1, 0) and
η̂̂η̂η1 = (0, 0,−1). The asterisk notation in the equations above denotes a dimensional quantity.
Let L be a characteristic length scale, and U a characteristic velocity and suppose that
T = L/U (we are interested in synoptic scale disturbances where typical values for L and U
are 50−100km and 0.4−1m s−1, respectively). We introduce the following non-dimensional
numbers

Rossby number: Ro =
U

2ΩL
, Reynolds number: Re =

UL

ν
,

Euler number: P =
δp

U2ρr
, Peclet number: Pe =

LU

κ
,

Froude number: Fr =
U

N0L
, Buoyancy number: Γ =

BL

U2
= g

∣∣∣∣δρρr
∣∣∣∣ LU2

,

Buoyancy anomaly: B = g

∣∣∣∣δρρr
∣∣∣∣ , Reference stratification: N0 =

√
g

Hρ
,

Reference density height: H−1
ρ =

|(∂zρ)r|
ρr

,

where δp is a dynamic pressure scale, N0 is a reference stratification, δρ is a density scale,
(∂zρ)r is a reference density gradient, ν is viscosity and κ is thermal diffusivity.

The system is non-dimensionalized and then scaled in the y-direction by introducing
the modulation scale y = AY Y . The β-effect also operates on this scale, so Aβy ∼ AβAY Y
and AβAY = O(Ro). We define ∇∇∇ → ∇∇∇⊥ + A−1

Y y∂Y , where ∇∇∇⊥ = x̂∂x + ẑ∂z. We are
interested in flows with characteristic time scales greater than a day, and as such, consider
small Rossby numbers (Ro ∼ 1/10). Write Ro ≡ ε� 1 and choose the spatial scales

AY = ε−1, Aβ = βε2, P = ε−1, Γ = 1,
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assuming that β ∼ O(1). Introducing asymptotic expansions of the form

u = u0 + εu1 + ε2u2 + ..., (36)

v = v0 + εv1 + ε2v2 + ..., (37)

w = w0 + εw1 + ε2w2 + ..., (38)

p = p0 + εp1 + ε2p2 + ..., (39)

b = b0 + εb1 + ε2b2 + ..., (40)

the leading order set yields geostrophic balance and continuity on the x, z plane, given by

η̂̂η̂η × u0 = −∇∇∇⊥p0, and, ∇∇∇⊥u = 0, (41)

respectively. The next order set is

D0
tu0 − βY η̂̂η̂η1 × u0 + η̂̂η̂η0 × u1 = −∇∇∇⊥p1 − ∂Y p0ŷ + b0ẑ, (42)

D0
t

(
b0 −

1

F2
ρ(z)

)
= 0, (43)

∇∇∇⊥ · u1 + ∂Y v0 = 0. (44)

Note that D0
t = ∂t+u ·∇∇∇⊥ and F2 = ΓFr2. For a closed system, we require that F = O(1).

Applying η̂̂η̂η0· and ∇∇∇× to Eq. (42), we find that

η̂̂η̂η0 · ∇∇∇p1 = η̂̂η̂η0 ·
(
−D0

tu0 + βY η̂̂η̂η1 × u0 − ∂Y p0ŷ + b0ẑ
)
, (45)

η̂̂η̂η0 · ∇∇∇u1 = D0
tωωω0 −ωωω0 · ∇∇∇⊥u0 − η̂̂η̂η0∂Y v0 −∇∇∇× (βY η̂̂η̂η1 × u0 − ∂Y poŷ + bzẑ) , (46)

the latter being the equation for the vorticity ωωω. We have introduced the large spatial
variable Y , which means that Eqs. (45) and (46) contain secular terms that grow with the
small variable y. Hence, we require a solvability condition that ensures the terms in Eqs.
(45) and (46) balance. In this case, the solvability conditions are obtained by averaging the
equations over η and forcing the right-hand sides to equal 0. Then, projecting Eq. (46) onto
η̂̂η̂η0, we obtain the following closed system that can be written in terms of the geostrophic
and ageostrophic streamfunctions, Ψ and Φ, respectively,

u0 = −∇∇∇× (Ψ0ŷ +∇∇∇× Φ0ŷ), p0 = Ψ0, (47)

D0
t∇∇∇2
⊥Ψ0 − (∂y + βy∂z)∇∇∇2

⊥Φ0 = −∂xb0, (48)

D0
t∇∇∇2
⊥Φ0 + (∂y + βy∂z)Ψ0 = 0, (49)

D0
t

(
b0 −

ρ(z)

F2

)
= 0. (50)

This is the SNH-QGE III model. The linearized version of this system is analyzed in the
following section and compared to the linearized primitive equations of section 2. In partic-
ular, we are interested in whether the system describes the same equatorially constrained
waves as the linearized primitive equations (the Kelvin, Rossby, mixed Rossby-gravity and
inertio-gravity modes).
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4 Investigation of the linearized quasi-geostrophic equations

The linearized reduced quasi-geostrophic model from Eqs. (48) - (50) can be written

∂0
t∇∇∇2
⊥Ψ− (∂y + βy∂z)∇∇∇2

⊥Φ = −∂xb, (51)

∂0
t∇∇∇2
⊥Φ + (∂y + βy∂z)Ψ = 0, (52)

∂0
t b− w

ρz(z)

F2
= 0. (53)

Eqs. (51) and (53) are combined by differentiating the former with respect to t. We write
the Brunt-Väisälä frequency as N2 = −ρz(z)/F2 and assume that it is constant. Consider
first the case when v =∇∇∇2

⊥Φ = 0 (from Eq. (47)). Ψ is found by solving ∂yΨ + βy∂zΨ = 0.
Assuming a solution of the form

Ψ(x, y, z, t) = Ψ̃(y)eikx+i`z−iωt, (54)

the y-dependent part of the solution is given by Ψ̃ = ae−i`βy
2/2, where a is a complex

constant. Note that this wave is not equatorially constrained; the solution Ψ does not
decay to 0 as y → ∞. The dispersion relation for this wave is similar to that in the
primitive equations for the case when |ω| < N , namely,

ω = ± Nk√
k2 + `2

, (55)

except that now there are two roots to the equation, representing eastwards and westwards
traveling waves.

We next consider the higher order mode waves, where the meridional velocity is no
longer zero. From Eq. (47), the zonal and vertical components of the velocity are u = ∂zΨ
and w = −∂xΨ, so that Eqs. (51) - (53) can be written as one equation in terms of the
variable Ψ, namely

∂tt∇2
⊥Ψ +N2∂xxΨ + ∂yyΨ + β2y2∂zzΨ + β∂zΨ + 2βy∂yzΨ = 0. (56)

We again assume a solution of the form given in Eq. (54), which yields the following
equation for Ψ

d2Ψ̃

dy2
+ 2i`βy

dΨ̃

dy
− β2`2y2Ψ̃ + i`βΨ̃ + k2

(
ω2

[
1 +

`2

k2

]
−N2

)
Ψ̃ = 0. (57)

Using the standard transformation Ψ̃(y) = ψ(y)e−λy
2/2, where λ = i`β, we obtain the

simplified equation

d2ψ

dy2
+ k2

(
ω2

[
1 +

`2

k2

]
−N2

)
ψ = 0. (58)

The waveguide solution that existed in the primitive equations using an equivalent ansatz -
traveling wave structures in the zonal and vertical directions - is not apparent in the reduced
quasi-geostrophic model. That is, the solution to Eq. (56), for both the Kelvin mode and
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the higher order modes, is no longer given in terms of a parabolic cylinder function that
decays exponentially north and south of the equator. What happens if we choose a different
ansatz? In particular, how does the solution change if we assume a standing wave form in
the vertical, rather than a traveling wave? We will run into difficulties if we simply use this
ansatz in form of the system given in Eq. (56), hence to proceed, we rescale Eq. (56) in y
and perform an asymptotic expansion about the small parameter β.

Recall that the y coordinate in Eq. (56) was scaled in section 3 such that y = A−1
y y∗,

where y∗ was the unscaled meridional variable, and with Ay = 1/Ro. In what follows, we
introduce a new scaling y = β−1/2Y , where β is assumed to be small enough such that the
distinguished limits in the asymptotic expansion of section 3 are unchanged. This yields
the following rescaled equation for Ψ

(∂tt∇2
⊥ +N2∂xx)Ψ + β

(
∂Y Y + Y 2∂zz

)
Ψ + β (∂z + 2Y ∂Y z) Ψ = 0. (59)

The slow time τ = βt is introduced along with the expansion

Ψ(x, Y, z, t, τ) = Ψ0 + βΨ1 + ... (60)

Note that because we have both a fast and a slow time in the system now, we expect
the dispersion relation to involve both a fast and a slow frequency, denoted ωf and ωs,
respectively. This time we assume a standing wave form in the vertical

Ψ0(x, Y, z, t, τ) ∝ ψ0(Y, τ)eikx−iωf t sin (`z), (61)

with the boundary conditions w = 0 at z = 0, H. At leading order, O(β0), this expansion
yields [

∂tt∇2
⊥ +N2∂xx

]
Ψ0 = 0, (62)

from which we derive an expression for the fast frequency,

ωf = ± Nk√
k2 + `2

. (63)

This is the leading order frequency of the linearized system. At next order, O(β), we obtain[
∂tt∇2

⊥ +N2∂xx
]

Ψ1 = −2∂tτ∇2
⊥Ψ0 −

(
∂Y Y + Y 2∂zz

)
Ψ0 − (∂z + 2Y ∂Y z) Ψ0. (64)

The linear operator L = ∂tt∇2
⊥ + N2∂xx is self-adjoint, and, by orthogonality of sin `z

and cos `z, the last two terms involving first derivatives with respect to z vanish from the
solvability condition, leaving

〈Ψ0,
[
−2∂t,τ∇2

⊥ − (∂Y Y + Y 2∂zz)
]

Ψ0〉 = 0. (65)

Taking into account the ansatz from Eq. (61), and assuming that ψ0 is separable in τ and
Y such that ψ0(Y, τ) = ψ̃0(Y )eiωsτ , we obtain the following expression for ψ̃0

d2ψ̃0(Y )

dY 2
− `2Y 2ψ̃0(Y ) + 2ωfωs(k

2 + `2)ψ̃0(Y ) = 0. (66)
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Eq. (66) can be solved with parabolic cylinder functions, and is equatorially constrained
when

2ωfωs(k
2 + `2) = (2n+ 1)`, for n = 0, 1, 2, ..., (67)

where ωf is the fast frequency defined in Eq. (63). The dispersion relation for the reduced
system can be written as ω = ωf + βωs, leading to the following expression for ω in terms
of the horizontal and vertical wavelengths

ω =
Nk√
k2 + `2

+
β(2n+ 1)`

2Nk
√
k2 + `2

. (68)

How does Eq. (68) compare to the dispersion relations of the primitive equations,
namely Eqs. (12) and (22)? Substituting ω = ωf + βωs into Eq. (12), we expand in terms
of the small parameter β. Then, the leading order expression is identical to Eq. (63) and
at next order in β we obtain

2ωfωs(k
2 + `2) = (2n+ 1± 1)

N`2√
k2 + `2

. (69)

The main differences between Eq. (67) from the exact system and Eq. (69) from the reduced
system are the presence of N , `/

√
k2 + `2 and the ± term on the right-hand side of Eq. (69).

The ± term indicates that the reduced system has filtered out modes that are even with
respect to the equator (n = 1, 3, 5, ...). It is likely that the former two terms are a result of
the scalings used to derive the quasi-geostrophic system from [13] (for example, that N is a
result of the time scaling employed and that k is scaled such that k = O(1) in the reduced
system corresponds to k � 1 in the primitive equations so that `2/

√
k2 + `2 ≈ `). In this

case, and taking into account the limits of the reduced model, the dispersion relations in
Eq. (12) and (68), and indeed the primitive and reduced systems, are then equivalent. We
now turn to the fully nonlinear quasi-geostrophic model.

5 Investigation of the nonlinear quasi-geostrophic model

This section introduces two methods of analyzing the nonlinear quasi-geostrophic system
in Eqs. (48) - (50): one method involves a similar scaling argument to that presented in
section 4 for a constant Brunt-Väisälä frequency, while the other method is not restricted
to small values of β and assumes a non-constant vertical stratification.

5.1 Constant Brunt-Väisälä frequency

Consider the nonlinear reduced equatorial system in Eqs. (48) - (50) from section 3. Follow-
ing [2], we transform Eqs. (48) - (50) to a frame traveling with the wave speed c eastwards,
by defining ξ = x−ct. We are interested in longwave solutions in the zonal direction that do
not change the distinguished limits in the scaling arguments of section 3, namely X = εξ,
where ε is a small number. We also introduce the following scalings:

Ψ = εΨ, Φ = ε2Φ, b = εb.
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Proceeding as in section 4, y is rescaled by y = β−1/2Y and β by β = ε4β̂. Eqs. (48) - (50)
simplify to

−∂Xb = −c(ε2∂2
X + ∂2

z )∂XΨ− ε2(∂Y + β̂Y ∂z)(ε
2∂2
X + ∂2

z )Φ

+ ε
[
∂zΨ(ε2∂2

X + ∂2
z )∂XΨ− ∂XΨ(ε2∂2

X + ∂2
z )∂zΨ

]
, (70)

0 = −c(ε2∂2
X + ∂2

z )∂XΦ + (∂Y + β̂Y ∂z)Ψ

+ ε
[
∂zΨ(ε2∂2

X + ∂2
z )∂XΦ− ∂XΨ(ε2∂2

X + ∂2
z )∂zΦ

]
, (71)

0 = −c∂Xb+ ε∂zΨ∂Xb− ε∂XΨ∂zb− ∂XΨN2. (72)

We make the assumption that the meridional velocity is of the same order as the zonal and
vertical velocities and expand the variables Ψ, Φ, b and the phase speed c as follows

Ψ = Ψ0 + εΨ1 + ..., (73)

Φ = Φ0 + εΦ1 + ..., (74)

b = b0 + εb1 + ..., (75)

c = c0 + εc1 + ... (76)

The expansions in Eqs. (73) - (76) are substituted into Eqs. (70) - (72), yielding the
leading order set, written as a system in terms of Ψ and Φ only

N2

c2
0

Ψ0X + Ψ0Xzz = 0, (77)

−c0Φ0Xzz + (∂Y + β̂Y ∂z)Ψ0 = 0, (78)

which, when the boundary conditions w = −Ψ0X = 0 on z = 0, H are satisfied, yields

Ψ0 = A0(X,Y ) sin
( π
H
z
)
. (79)

This wave is a standing wave in the vertical, which results from the ansatz we have assumed
here, which is analogous to that of the linear case in Eq. (61). Suppose that

Φ0 = B(X,Y ) sin
( π
H
z
)

+ C(X,Y ) cos
( π
H
z
)
. (80)

Substituting this into Eq. (78), the amplitudes B and C can be expressed in terms of A0,
namely

CX = − β̂HY
c0π

A0, BX = − H2

c0π2
A0Y . (81)

We are interested in the meridional and zonal structure of the amplitude of Ψ, and partic-
ularly how it is modified by nonlinearities. To this end, we proceed to next order.

The first order equations written in terms of Ψ and Φ are

c2
0Ψ1Xzz +N2Ψ1X = c0c1

π2

H2
A0X sin

( π
H
z
)

+ c1
N2

c0
A0X sin

( π
H
z
)

−A0XDz sin
( π
H
z
)
, (82)

⇒ (N2 + c2
0∂

2
z )Ψ1X = 2c0c1

π2

H2
A0X sin

( π
H
z
)
. (83)
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The linear operator (N2 + c2
0∂

2
z ) is self-adjoint, which leads to the solvability condition〈

Ψ0, 2c0c1
π2

H2
A0X sin

( π
H
z
)〉

= 0. (84)

We deduce that c1 = 0 and the first order equations are simplified to

N2

c2
0

Ψ1X + c0Ψ1Xzz = 0, (85)

c0Φ1Xzz − (∂Y + β̂Y ∂z)Ψ1 = Ψ0zΦ0Xzz −Ψ0XΦ0zzz. (86)

The former equation is solved by imposing the boundary conditions w = −Ψ0X = 0 on z =
0, H, yielding Ψ1 = A1(X,Y ) sin

(
π
H z
)
. Finally, Eq. (86) is solved for Φ1, and integrating

twice with respect to z, we find

Φ1X = − π

8c0H

[
(A0XB −A0BX) sin

(
2π

H
z

)
+ (A0XC −A0CX) cos

(
2π

H
z

)]
− H2

c0π2
A1Y sin

( π
H
z
)
− H

c0π
A1βY cos

( π
H
z
)
− π3

2c0H3
(A0XC +A0CX)

(
z2

2
+Dz + E

)
,

where

− π3

2c0H3
(A0XC +A0CX)E =

π

8c0H
(A0XC −A0CX) +

H

c0π
A1βY, (87)

π3

2c0H3
(A0XC +A0CX)D =

2

c0π
A1βY −

π3

4c0H2
(A0XC +A0CX). (88)

We expect nonlinearities to appear at second order, so proceed with our expansions. At
second order, there is cancellation of the nonlinear terms such that Ψ2 can be written

c0Ψ2Xzz +
N2

c0
Ψ2X =

(
2c2

π2

H2
A0X − c0A0XXX

)
sin
( π
H
z
)

+
π2

H2

(
BY sin

( π
H
z
)

+ CY cos
( π
H
z
))

− π3

H3

(
−β̂Y B cos

( π
H
z
)

+ β̂Y C sin
( π
H
z
))

. (89)

On applying the solvability condition 〈Ψ0X , RHS〉 to Eq. (89) we find that

2c2
π2

H2
A0X − c0A0XXX +

π2

H2
BY −

π3

H3
β̂Y C = 0. (90)

Eq. (81) defines CX and BX in terms of A0. This is substituted into the above equation,
and, after differentiating with respect to X, the following linear equation for the amplitude
A0 is obtained

2c2
π2

H2
A0XX − c0A0XXXX −

1

c0
A0Y Y +

π2

c0H2
β̂2Y 2A0 = 0. (91)

By assuming A0 is separable, i.e. A0(X,Y ) = F (X)G(Y ), we derive equations for F (X)
and G(Y ) that involve a separation constant µ. In a similar manner to that presented in
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preceding sections, the equation for G(Y ) can be solved in terms of equatorially-constrained
parabolic cylinder functions only when the separation constant is defined as µ = µn =
π
H β̂(2n+1), for the positive integer n. The equation for F (X) is the linear Swift-Hohenberg
equation. We assume that the solution F (X) is periodic in X, such that

2c2
π2

H2
k̂2 + c0k̂

4 +
µn
c0

= 0, (92)

which is the analog of the linear dispersion relation from the preceding section 4, this time
solving for the phase speed c2 in terms of the zonal wavenumber k. This result matches
that of the linear reduced theory, Eq. (67), when µn = π

H β̂(2n + 1). We proceed to solve
Eq. (89) for Ψ2. From the solvability condition 〈Ψ0X , RHS〉 applied to Eq. (89), terms
involving sin

(
π
H z
)

disappear due to orthogonality, and we obtain the following equation for
Ψ2

Ψ2Xzz +
N2

c2
0

Ψ2X =
π2

c0H2

(
CY + β̂Y B

π

H

)
cos
( π
H
z
)
. (93)

Once again taking into account the boundary conditions for Ψ on z = 0, H, the solution to
Eq. (93) is Ψ2 = Wz sin

(
π
H z
)
, provided that on substitution into Eq. (93) the following

relation between W and A holds

WXX = − β̂

2c2
0

(A0 + 2Y A0Y ). (94)

Here we have also made use of Eq. (81). We were expecting that the second order solvability
condition would introduce nonlinearity in our expression for the amplitude A0. Instead, due
to the scalings chosen, the nonlinearities at this order cancelled leaving the linear Swift-
Hohenberg equation once the Y -dependent part had been accounted for by the appropriate
parabolic cylinder function. It is therefore necessary to proceed to third order in ε to retrieve
the nonlinear adjustment to the amplitude equation.

At third order, we find the following equation for Ψ

N2

c0
Ψ3X + c0Ψ3Xzz =

(
2c3

π2

H2
A0X − c0A1XXX + 2c2

π2

H2
A1X

)
sin
( π
H
z
)

− (∂Y + β̂Y ∂z)Φ1zz +
π

2H
(A0A0XXX −A0XA0XX) sin

(
2π

H
z

)
+
π2

H2

[
A0WX

(
1 + cos

(
2π

H
z

))
+A0XW

(
1− cos

(
2π

H
z

))]
.

The solvability condition yields

0 = 2c3
π2

H2
A0XX − c0A1XXXX + 2c2

π2

H2
A1XX

+
2π2

c0H3
(A0XC +A0CX)Y +

2π2

3c0H3
(A0XC −A0CX)Y −

1

c0
A1Y Y

+ β̂Y
4π3

3c0H4
(A0XB −A0BX) +

π2

c0H2
β̂2Y 2A1

+
8επ

3H2
(A0WX + 2A0XW )X . (95)
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Writing A0 and A1 by Ã = A0 + εA1 + ..., and hence B and C from Eq. (81) in terms of
Ã, we employ the transformation Ã = ΘXX and combine Eqs. (91) and (95) to obtain the
following equation for Θ

0 = 2(c2 + εc3)
π2

H2
ΘXXXX − c0ΘXXXXXX −

1

c0
ΘXXY Y +

π2

c0H2
β̂2Y 2ΘXX

− 4επβ̂

3c2
0H

2
(2YΘXXXΘX + YΘ2

XX)Y

− 4επβ̂

3c2
0H

2
(YΘXXXΘXY − YΘXXΘXXY )

− 4επβ̂

3c2
0H

2
(ΘXX [ΘX + 2YΘXY ] + 2ΘXXX [Θ + 2YΘY ])X . (96)

Here the constant c3 is the nonlinear correction to the phase speed. The constants c0 and
c2 are defined as

c0 =
NH

π
, c2 = −NH

3

2π3
k̂2 − β̂(2n+ 1)

2Nk̂2
.

Note the appearance of the small parameter ε in Eq. (96), which implies that the nonlinear
terms are small compared to the linear terms from the leading order expansion.

Suppose Θ is separable in X and Y , namely Θ(X,Y ) = F (X)G(Y ). Then, from the
homogeneous part of Eq. (96) (the first line), we find equations for F (X) and G(Y ) that
involve a separation constant γ. As previously, provided that γ = γn = (2n + 1)πβ/H, an
equatorially-constrained solution for G(Y ) in terms of parabolic cylinder functions exists,
and is given by

G(Y ) = Gn(Y ) = 2−n/2e−πβ̂Y
2/2HHn

√πβ̂

H
Y

 , for n = 0, 1, 2, ..., (97)

where Hn is the Hermite polynomial. We wish to remove the Y -dependence of Eq. (96) to
investigate the effect of nonlinearities on the zonal wave structure. Consider the simplest

choice of function for Gn, that is, Gn = G0 = e−πβ̂y
2/2H . Multiplying each term in Eq. (96)

by G0 and integrating with respect to Y from −∞ to ∞ yields

θηηηηηη + bθηηηη − θηη + 4θηθηηη + 3θ2
ηη + 2θηηηηθ = 0, (98)

which is a new equation that is similar to the conserved Swift-Hohenberg (SH) equation

[16; 25]. Here, θ(η) and η are the rescaled F (X) andX and b = −2(c2+εc3)π
3/2α
H2 is a positive

constant. Eq. (98) has the symmetry η → −η, θ → θ. We are particularly interested in
finding localized solutions to Eq. (98), which have been found in the conserved SH equation
(e.g. [20]). Some solutions to Eq. (98) obtained using Neumann boundary conditions are
illustrated in figure 6. It is important to note that these are not localized solutions as they
depend on the boundary conditions even when the domain becomes large. A future work
will investigate possible localized solutions to Eq. (98).
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Figure 6: Some solutions to the amplitude equation, Eq. (98), for different values of b.
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If we were to choose a parabolic cylinder function that was even with respect to the
equator, i.e Gn for n = 1, 3, 5, ..., rather than an odd mode, such as the G0 chosen above,
the nonlinearities would cancel. As in [2], this does not mean that the nonlinear terms are
identically zero; rather, choosing a parabolic cylinder function that is even with respect
to the equator forces a symmetry that leads to cancellation of the nonlinear terms. It is
likely that an alternative scaling for the reduced system exists in which the even modes are
retained.

So far we have assumed that the Brunt-Väisälä frequency N is constant and have in-
troduced the scalings such that Eq. (98) applies only in the small β limit. In the following
section we return to Eqs. (48) - (50), this time assuming that that the Brunt-Väisälä fre-
quency varies with height, which allows us to derive a nonlinear equation for the amplitude
of the streamfunction that does not require the imposition of a small β limit.

5.2 Non-constant Brunt-Väisälä frequency

Consider Eqs. (48) - (50) once more, again transforming to the moving frame ξ = x−ct and
assuming long waves in the zonal direction X = εξ. This time we introduce the following
scalings

Ψ = ε2Ψ, Φ = ε3Φ, b = ε2b, (99)

where y = β−1/2Y and β1/2 = β̂1/2ε2. The physical interpretation of these scalings is that
the meridional current is small compared with the zonal and vertical equatorial currents.
Eqs. (48) - (50) become

−∂Xb = −c(ε2∂2
X + ∂2

z )∂XΨ− ε2β̂1/2(∂Y + Y ∂z)(ε
2∂2
X + ∂2

z )Φ

+ ε2∂zΨ(ε2∂2
X + ∂2

z )∂XΨ− ε2∂XΨ(ε2∂2
X + ∂2

z )∂zΨ, (100)

0 = −c(ε2∂2
X + ∂2

z )∂XΦ + β̂1/2(∂Y + Y ∂z)Ψ

+ ε2∂zΨ(ε2∂2
X + ∂2

z )∂XΦ− ε2∂XΨ(ε2∂2
X + ∂2

z )∂zΦ, (101)

0 = −c∂Xb+ ε2∂zΨ∂Xb− ε2∂XΨ∂zb− ∂XΨN2. (102)

We assume the following expansions about the small parameter ε

Ψ = Ψ0 + εΨ1 + ..., (103)

Φ = Φ0 + εΦ1 + ..., (104)

b = b0 + εb1 + ..., (105)

c = c0 + εc1 + ..., (106)

and obtain the leading order set in terms of Ψ and Φ

N2

c0
Ψ0X + c0Ψ0Xzz = 0, (107)

−c0Φ0Xzz + β̂1/2(∂Y + Y ∂z)Ψ0 = 0. (108)

Suppose thatN is a function of z, which takes the formN(z) = N0e−z, for some constantN0.
Assume also that Ψ0(X,Y, z) is separable, writing Ψ0 = A0(X,Y )J(z), and let z = − ln t.
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Then, the solution to J is simply the zeroth mode Bessel function of the first kind, J0,
defined by the equation

1

t

d

dt

(
t
dJ0

dt

)
= −N

2
0

c2
0

J0. (109)

We proceed to second order in ε and obtain the following set of equations

−b2X + c0Ψ2Xzz = −c0Ψ0XXX − c2Ψ0Xzz − β̂1/2(∂Y + Y ∂z)Φ0zz

+ Ψ0zΨ0Xzz −Ψ0XΨ0zzz, (110)

c0Φ2Xzz − β̂1/2(∂Y + Y ∂z)Ψ2 = −c0Φ0XXX − c2Φ0Xzz + Ψ0zΦ0Xzz −Ψ0XΦ0zzz,(111)

−b2X =
N2

c0
Ψ2X +

c2

c0
b0X −

1

c0
Ψ0zb0X +

1

c0
Ψ0Xb0z. (112)

Substituting Eq. (112) into Eq. (110) and using Eq. (108) we obtain the solvability
condition

0 = −c2
0B0XXXX

∫ ∞
0

J2
0 (z)dz +

2c2N
2
0

c0
B0XX

∫ ∞
0

e−2zJ2
0 (z)dz − 4N2

0

c0
B0XXB0X

∫ ∞
0

e−2zJ3
0 (z)dz

− β̂Y 2B0

∫ ∞
0

d2J0(z)

dz2
J0(z)dz − β̂(1 + 2Y ∂Y )B0

∫ ∞
0

dJ0(z)

dz
J0(z)dz

− β̂B0Y Y

∫ ∞
0

J2
0 (z)dz, (113)

where B0 =
∫
A0dX (note that the operator [N2 + c2

0∂
2
z ] is self-adjoint and we assume that

B0X 6= 0). Again using the transformation z = − ln t, this becomes

0 = −c2
0B0XXXX

∫ 1

0

1

t
J2

0 (ln t)dt+
2c2N

2
0

c0
B0XX

∫ 1

0
tJ2

0 (ln t)dt− 4N2
0

c0
B0XXB0X

∫ 1

0
tJ4

0 (ln t)dt

− β̂

2
Y 2B0

∫ 1

0

1

t

[
J0(ln t)J2(ln t)− J0(ln t)2

]
dt− β̂(1 + 2Y ∂Y )B0

∫ 1

0

1

t
J0(ln t)J1(ln t)dt

− β̂B0Y Y

∫ 1

0

1

t
J2

0 (ln t)dt. (114)

In this form the integrals involving the factor 1/t are infinite in the interval t = [0, 1]. Hence,
we restrict the interval of integration further such that we integrate from t = b to t = 1,
where b = e−j0,1 and j0,1 is the first root of the Bessel function of the first kind J0(z). This
is equivalent to integrating from z = 0 to z = j0,1. Proceeding in this manner, we obtain
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0B0XXXX 2F3
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1
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3

2
;−(j0,1)2

)
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+
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,
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)
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1

6
2F3
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3

2
,
3

2
; 1,

5

2
, 3;−(j0,1)2

)
(j0,1)3

]
− β̂B0Y Y 2F3

(
1

2
,
1

2
; 1, 1,

3

2
;−(j0,1)2

)
j0,1 +

β̂

2
(1 + 2Y ∂Y )B0. (115)

Here, 2F3 is the generalized hypergeometric function and r ≈ 0.4171, s ≈ 0.3756. We write
Eq. (115) more compactly as

−a1B0XXXX + a2B0XX − a3B0XXB0X + a4Y
2B0− a5B0Y Y + a6(1 + 2Y ∂Y )B0 = 0, (116)
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where the constants a1 to a6 are positive. Then, by introducing the scalings S = f1B0,
ξ = f2X and η = f3Y , we obtain the simpler equation

Sξξξξ − Sξξ + SξξSξ + α1Sηη − (η2 + α2 + 2α2η∂η)S = 0. (117)

The constants α1 = a5f
4
2 /a1f

2
3 and α2 = a6f

4
2 /a1 are functions of β̂, N0 and the phase

speeds c0 and c2. Eq. (117) is a generalization of the Kadomtsev-Petviashvili (KP) equation
[14], with the additional terms 2ηSη, η

2S and Sηη. As with the SH equation, the KP
equation permits localized solutions (e.g. [15; 18]). It is possible to remove the η dependence
in Eq. (117) such that it is an ODE in ξ only. We assume that S is separable, e.g. S(ξ, η) =
E(ξ)D(η), where E(ξ) and D(η) are related by a separation constant γ, and find that the
solution to D(η) from the homogeneous part of Eq. (117) (i.e. ignoring the nonlinear term)
can be expressed in terms of parabolic cylinder functions. When γ = γn = (2n + 1)α2 for
the nonnegative integer n, then D is equatorially constrained. Choosing the lowest order
mode, D0, we multiply Eq. (117) by D0 and integrate from −∞ to ∞ to remove the η
dependence. Finally we rescale E(ξ) to obtain the following equation

Eξξξξ − Eξξ + EξξEξ + κE = 0. (118)

Like Eq. (98), Eq. (118) contains only the one parameter κ = α2(2 −
√

2) + α1α2(
√

2 −
1) −

√
2α1/α2(α1 − 1). Some solutions to Eq. (118) using Neumann boundary conditions

are illustrated in figure 7. As with Eq. (98), these are not true localized solutions as they
depend on the boundary conditions even for a large domain.

In this section we have undertaken a preliminary investigation of the nonlinear quasi-
geostrophic model. Two alternative scalings have been presented that result in two different
amplitude equations when the stratification is assumed to be constant and a function of
height, respectively. The benefit of the latter scaling is that it does not restrict the resulting
equation to the small β limit. As for Eq. (98), a future work will further investigate localized
solutions to Eq. (118).

6 Conclusion

The aim of this work was to further that of Boyd in understanding the dynamics and
evolution of nonlinear equatorial waves in the context of a reduced, quasi-geostrophic model.
The model was derived based on the assumption that the Rossby number is small at the
equator, which is perfectly valid when both the vertical and horizontal components of the
Earth’s rotation are taken into account. Non-hydrostatic effects and the vertical component
of momentum were also included in the model. The derivation assumed that the meridional
length scale is large compared to the zonal and vertical length scales, such that the quasi-
geostrophic balance in this model was between the u and w components of the momentum.

In the first section, the results from the non-hydrostatic, linearized primitive equations
were contrasted with those of the shallow water equations. The horizontal component of
the Earth’s rotation added curvature to the y, z phase planes and introduced an imaginary
component into the solutions. Furthermore, non-hydrostatic effects modified the dispersion
relation for the inertio-gravity, Kelvin and mixed Rossby-gravity modes, such that their
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Figure 7: Some solutions to the amplitude equation, Eq. (118), for different values of κ.
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frequencies were necessarily less than or greater than the Brunt-Väisälä frequency in the
case of vertical traveling and standing waves, respectively.

In contrast with the linearized primitive equations, when a vertical traveling wave solu-
tion was assumed in the linearized quasi-geostrophic model, the system was not equatorially-
constrained. Rather, a vertical standing wave with rigid lid boundary conditions was re-
quired to produce an equatorially-constrained wave. This result held in the small β limit,
under which the even modes with respect to the equator were filtered out. It is likely that an
alternative scaling of the linearized quasi-geostrophic model that includes the even modes
can be found.

Multiple scalings of the nonlinear quasi-geostrophic model were undertaken. The first
involved a small β limit, and under the assumption of constant stratification, equatorial
waves behaved according to a generalized Swift-Hohenberg equation. Under an alternative
scaling that did not require β to be small, and with the assumption that the stratifica-
tion depended on height, equatorial waves behaved according to a generalized Kadomtsev-
Petviashvili equation. Solitary wave solutions to the conserved Swift-Hohenberg equation
and the Kadomtsev-Petviashvili equation have been found in previous studies and are a
motivation for further work on the equations presented here.

This work is a first step in describing the effects of nonlinearity on equatorial waves in
a context apart from the shallow water equations. It is acknowledged that many questions
remain to be addressed with respect to the quasi-geostrophic model: for example, what
rescaling will yield the even modes, and what effect does changing the vertical dependence
of the Brunt-Väisälä frequency have? One clear benefit of this work on the quasi-geostrophic
model is that it hints at appropriate methods for analyzing the nonlinear primitive equa-
tions, which will be investigated in a subsequent work.
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2:1 Spatial Resonance in Langmuir Circulation

Bevin Maultsby

University of North Carolina

Langmuir circulation in the upper layer of the ocean is studied as 2 : 1 spatial reso-
nance problem with steady state-steady state modal interaction and O(2) symmetry. A
center manifold reduction using asymptotic analysis results in a dynamical system with a
structurally stable and attracting heteroclinic orbit in an invariant subspace of the center
manifold. This heteroclinic orbit is used to illustrate the persistent switching between a
two-roll state and a four-roll state in the crosswind plane. Lastly, a set of coupled PDEs
are derived to study the Y junctions which mark transitions between these two states.

1 Introduction

Langmuir circulation is a wind- and surface wave-driven convective process in the upper
layer of bodies of water. When the speed of the wind over the surface of the water exceeds
approximately 3.5 meters per second, it can create pairs of counter rotating vortices with
axis parallel to the wind and the direction of wave propagation, see Figure 1. The rotation
of these vortices creates a mixing layer, which in the ocean typically ranges from 50 meters
to 100 meters deep.

The counter rotation cause regions of upwelling and strong downwelling in the mixing
layer. The downwelling, caused when water converges on the surface and is forced downward,
may trap dirt and debris, resulting in a visible pattern of “windrows” on the surface of the
water. The windrows are not perfectly parallel, however, and often display “Y junctions”
where two windrows appear to merge into one windrow, as seen in Figure 1. These Y
junctions can point in either direction, but most often the stem of the Y is observed pointing
in the direction of the wind.

Suppose there is a box in the cross-wind plane of width W with periodic sidewalls. When
there is a single pair of counter-rotating vortices within this box, this will be referred to as
a 2-roll state; when there are two pairs of vortices, it is a 4-roll state. A direct numerical
simulation in such a box of the governing equations carried about by Zhexuan Zhang at
the University of New Hampshire showed a persistent switching between a 4-roll state, to a
2-roll state, and then back to the 4-roll state with a shift by W/4. In this project, we are
interested in finding a dynamical systems explanation for this switching behavior between
two rolls and four rolls using a pair of coupled ODEs. Then we derive a pair of coupled
PDEs to study the Lagrangian pattern of Y junctions on the surface.

The rest of this paper is organized as follows. The equations for the fluid motion are
given in Section 2. In Section 3, evolution equations describing how the amplitudes of the
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Figure 1: Two pairs of counter-rotating rolls in Langmuir circulation. Note the axes of
the rolls is parallel to the direction of the wind. The downwelling between the rolls creates
windrows seen on the surface. Where two windrows appear to merge, they form a Y junction.
From [15].

WIN
D WIN
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z = −1

z = 0

Figure 2: This figure illustrates the spatial coordinate system: x is in the direction of the
wind, y is the lateral coordinate in the crosswind plane, and z is the vertical depth (after
rescaling, the depth of the water is 1). Note the velocity u is in the x-direction, v is in the
y-direction, and w is in the z-direction. Under the coordinate change (u, v, w)→ (u,Ω, ψ),
u remains the velocity in the x-direction, ψ is the streamfunction in the (y, z)-plane, and Ω
is the vorticity.
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2-roll state and the 4-roll state vary with time are derived using asymptotic analysis. The
dynamics of the resulting ODEs are explored. Lastly, in Section 4, slow advection in the
downstream direction is added to the system, yielding a set a reduced 3D equations. These
equations add terms to the derived ODEs to convert them into PDEs.

2 The governing equations

Let u be the velocity in the direction of the wind, which we will consider the x-direction.
Let v be the velocity in the direction perpendicular to the wind, the y-direction, and let
w be the velocity in the vertical z-direction (i.e. z measures the depth of the water). See
Figure 2.

The basic flow in the x-direction is a linear Couette flow denoted UB(z); this state
carries the wind stress, so the perturbation to the basic state is zero. Thus the overall
velocity in this direction is the sum of UB(z) and a perturbation term up. There is no
assumed basic flow in the y- or z-directions, hence the only velocity components in the
plane perpendicular to the wind arise from the perturbation. Therefore the terms v and w
denote the perturbation terms in the y- and z-directions.

Restricting attention to the (y, z)-plane, there are two symmetries; both can be observed
in Figure 1. Once a z-axis is chosen so that it passes between a pair of rolls as in Figure 2,
there is a reflection action ζ that changes the (v, w)-velocity components via

v(y, z) → −v(−y, z), (1)

w(y, z) → w(−y, z), (2)

which is an action of Z/2Z on (v, w). The second symmetry stems from translation, y → y+d
mod W , where W is the spatial period of y. This is an action of SO(2) on the system. Hence
there is overall a group action of O(2) = SO(2) o Z/2Z in the (y, z)-plane.

Let U = (u, v, w). The governing PDE is Navier-Stokes with a Craik-Leibovich forcing
term. Craik-Leibovich equations are a surface-wave filtered version of Navier-Stokes in
which the average effects of the surface waves show up in a vortex force term, see [8]. The
PDE, whose terms will be defined below, is

∂tU + U · ∇U = −∇p+
1

La2t
[Us(z)êx × ω] +

1

Re∗
∇2U. (3)

In (3) U is incompressible, so ∇ · U = 0, and ω = ∇× U is vorticity. The nondimensional
friction Reynolds number Re∗ is defined as

Re∗ :=
u∗H

νe
, (4)

where u∗ is a given surface friction velocity, often about 0.01m
s , H is the depth of the mixed

layer, and νe is a given eddy viscosity that arises as a result of the time averaging. The
Craik-Leibovich term in (3) is

1

La2t
[Us(z)êx × ω] . (5)
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The function Us(z) is the Stokes drift. This is a Lagrangian time-averaged velocity following
a particle in the surface wave field; it measures the horizontal displacement in the direction
of the wind (the êx-direction) as a function of depth z in the water. To simplify the analysis,
it can be taken to be linear; to be more realistic, however, we use an exponential profile:

Us(z) = Us0e
2βz, (6)

where Us0 is the horizontal displacement in the direction of wave propagation at the surface.
The number β > 0 is an inverse scale height of the Stokes drift and will be treated as a
parameter. The Craik-Leibovich computation includes a wind stress term given by

τw ≡ ρwu2∗, (7)

where ρw is the density of the water.
In (5), Lat is the “turbulent Langmuir number,”

Lat =

√
u∗
Us0

, (8)

which is a measure of the strength of the wind driving compared to the wave driving. As a
typical value of Us0 is 0.1m

s , a typical value for Lat is around 0.3.
Craik and Leibovich derived this theory using multiple time scale asymptotics with a

fast time scale for the waves and a slower time scale for the Langmuir currents. Although
(3) is already nondimensional, in section 2.1 we rescale the system. Note that we assume
there is no Coriolis force, nor any stratification in the fluid.

2.1 Rescaled Equations

For the remainder of Section 1 up to Section 4, we will work in a “2-dimensional, 3 com-
ponent” (2D/3C) setting. In other words, there are three velocity components (u, v, w)
which depend solely on the two spatial coordinates y and z. The 2D/3C assumption is
a reasonable one as Langmuir circulation is highly anistropic; long parallel windrows in
the x-direction can be observed on a long scale compared to the scale of the rolls in the
crosswind (y, z)-plane.

One of the important consequences of this assumption is that we can rescale the terms
in (3) to replace the two parameters Lat and Re∗ by the “laminar Langmuir number,”

La =
νe√

(u∗Re∗)us0H
, (9)

which is a single parameter for the analysis in Section 3. The laminar Langmuir number
includes forcing from both the wind and the waves and is typically about ten times smaller
than the turbulent Langmuir number. The term u∗Re∗ in the denominator is used to scale
the flow in the x-direction to make it non-dimensional. The basic flow from the wind in
this direction is given by

UB(z) = u∗Re∗
z

H
+ u0. (10)

337



Here u∗ and u0 have dimensions of speed, Re∗ and z
H are dimensionless, thus UB has units

of speed. We scale z so that the depth H of the mixed layer is 1; then after nondimension-
alization, the wind stress conditions ends up being

∂zUB(z) = 1; (11)

we also scale UB(z) so that u0 = 1. The directional velocities in the y- and z-directions are
rescaled differently, using √

(u∗Re∗)us0 . (12)

Notice that as Re∗ is dimensionless and u∗ and us0 are speeds, the above has a unit of m
s .

2.2 Coordinate equations

The assumption that U is incompressible together with the 2D/3C requirement that ∂
∂x(·) =

0 yields a natural definition of a streamfunction ψ, defined up to a constant by

∂zψ := v, −∂yψ := w. (13)

The vorticity Ω is defined by
Ω = −∇2ψ. (14)

We can rewrite the nondimensionalized version of (3) in component form using the fields
u,Ω, ψ rather than the directional velocities u, v, w. This form of the equations is obtained
by computing the curl of Craik-Leibovich and then taking the inner product of the result
with x; this computation removes the pressure term from the resulting equations. More
simply, as there is no x-dependence, it suffices to cross-differentiate the v and w component
equations to get an equation for Ω.

Setting J(·, ·) be the Jacobian

J(f, g) =
∂f

∂y

∂g

∂z
− ∂f

∂z

∂g

∂y
,

the resulting system of equations can be written in component form as

∂tu+ J(up, ψ)− ∂yψ
dUB
dz

= La∇2u, (15)

∂tΩ + J(Ω, ψ) = −dUs
dz

∂yu+ La∇2Ω, (16)

∇2ψ = −Ω. (17)

Notice that with the nondimensionalization, UB(z) = z + 1; (15) therefore simplifies to

∂tu+ J(up, ψ)− ∂yψ = La∇2u.
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2.3 Boundary Conditions

At this point there has been no mention of the boundary conditions for u, Ω and ψ. As the
sidewalls of our box are periodic, the fields are correspondingly periodic in y. As is common
in air-wind interface, we use shear stress-free conditions, thus ∂zv = 0. Furthermore, w = 0
at z = 0 due to the Craik-Leibovich filtered term: the surface waves have been averaged
out so that there is no vertical displacement at the top. As w = 0 and w = −∂yψ, the
streamfunction does not change with y. As ψ is defined up to a constant, we set

ψ = 0 (18)

at the top. Moreover, notice
Ω = ∂yw − ∂zv = 0. (19)

Similarly, at z = −1, there is no normal flow, and we assume the same conditions for ψ and
Ω at the bottom of the mixed layer z = −1.

The conditions on the downstream velocity u are chosen with several points in mind. In
particular, the bottom boundary is not a true physical boundary; this is especially true for
the deep ocean, where beneath the mixing layer is water whose depth may be considered
virtually infinite. At the surface, it is natural to impose a fixed stress condition between
the air and water; after rescaling, the boundary condition for u at the top is

∂zu = 1, (20)

implying that ∂zup = 0.
The bottom boundary condition on u is chosen not only to reflect the physics of the

circulation, but also in way that allows for 2 : 1 spatial resonance theory to be used in
our analysis. As the parameter La is inversely proportional to the Reynolds number, then
for a fixed wavenumber k, decreasing La (equivalently increasing La−1) has the effect of
increased forcing on the system. At some critical value of La, a mode with wavenumber
k bifurcates from a stable state to an unstable state. In numerical simulations of (3) with
fixed-stress boundary conditions, as the forcing on the system is increased, the first mode
to go unstable is k = 0. Physically this mode represents one long flat convection cell with
an infinitely long wavelength. The preference for these long scales at onset is a consequence
of taking the same stress at the bottom of the layer as at the top.

If the first mode to change stability is the physically unrealistic k = 0 mode, then no
2 : 1 spatial resonance can be observed from weakly nonlinear theory. Thus in the following
calculations, we will use a mixed boundary condition, also known as a Robin boundary
condition, at z = −1. This condition is physically realistic because though the wind stress
is assumed to be fixed, the water in the mixed layer may move at a faster speed than the
water below; at the very least, there will be some viscous stress at the bottom layer. The
mixed boundary conditions are beneficial as they indicate that the stress is proportional to
a difference in speeds in the downstream direction.

The resulting condition
∂zu− γu = 0 (21)

applies to the perturbation up, as UB(−1) ≡ 0. The parameter γ is a small, positive constant
often referred to as a Biot number. It is discussed in greater detail by Cox and Leibovich
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Figure 3: Marginal stability curves for two different sets of boundary conditions. Below
each curve the real parts of all eigenvalues are negative, and the system is stable; above the
curve there is at least one eigenvalue with positive real part, and the system is unstable.
The boundary conditions are identical to those described in Section 2.3 with the exception
of the boundary condition on u at z = −1. For (a), the bottom boundary condition is
∂zu = 0, while for (b) the bottom boundary condition is ∂zu − γu = 0. As a result of the
mixed conditions in (b), the first mode to change stability is no longer at k = 0. The two
+’s indicate the wavenumbers k0 and 2k0 which change stability at the same La0. The
◦ marks the wavenumber where the initial onset of instability occurs. The Stokes drift is
Us(z) = e2(4)z, and 30 Chebyshev grid points were used.
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(c.f. [5], [6], [7]). This stipulation has the added benefit of altering which modes undergo
an initial change in stability as La is decreased; in particular k = 0 is no longer the first
mode to go unstable. See Figure 3 for a comparison between the marginal stability curve
with fixed-stress boundary conditions and with mixed boundary conditions.

3 Evolution Equations

It is possible that for some value of La, two modes undergo simultaneous bifurcation; as
this arises from varying not only La but also k, this is a codimension-2 bifurcation. The
terminology “m : n spatial resonance” refers to a situation in which two separate modes
with spatial ratio is m : n experience such a bifurcation. Of interest here is the case
m = 2, n = 1, which corresponds to wavenumbers k0 and 2k0 changing stability at the same
Langmuir number, which we will denote La0.

In this section, we construct equations for the fields u, ψ and Ω in terms of the modes k0
and 2k0. Each mode will contain an amplitude term: A(t) for the k0 mode, also referred to
as the “single mode,” and B(t) for the 2k0 mode, the “double mode,” where t is time. These
equations describe how the two modes are activated at a particular instant; for example,
if A(T ) = 0 for some time T , then only the 2k0 mode is activated, and a 4-roll state is
observed at time T .

To illustrate the persistent switching between 4 rolls and 2 rolls in a box of width 2π/k0,
we derive evolution equations Ȧ = f1(A,B) and Ḃ = f2(A,B). These equations must
commute with the representation of O(2) given by

ϑ · (A,B) = (eiϑA, e2iϑB), (22)

ζ · (A,B) = (Ā, B̄), (23)

where the reflection ζ is defined with respect to a chosen origin in y. A dynamical system
that commutes with a group action is referred to as an equivariant dynamical system.

A fixed point (A0, B0) of a dynamical system occurs when Ȧ and Ḃ evaluated at (A0, B0)
are both zero. A heteroclinic orbit is a trajectory ϕ(t) in phase space that “connects” two
such fixed points (A0, B0) and (A1, B1) in the sense that

ϕ(t)→ (A0, B0) and ϕ(−t)→ (A1, B1) as t→∞.

In other words, the heteroclinic orbit lies in the stable manifold of (A0, B0) and the unstable
manifold of (A1, B1).

In general, heteroclinic orbits are not structurally stable: a heteroclinic orbit is likely
to break into two trajectories as parameters in a system are varied. Dynamical systems
exhibiting symmetry properties such as the system under consideration here, however, may
yield structurally stable heteroclinic orbits. These cycles, found on the center manifold
tangent to the center eigenspace, are robust and persist under a range of parameter values.

There are three codimension-2 mode interactions depending on the type of bifurcation
occuring at the two points, see [10] for an overview. As the eigenvalues at the bifurcation
points are both zero (with zero imaginary part), of interest here is the steady state/state
state case, for which the center manifold is 4-dimensional. Thus (A,B) ∈ C2.
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Using center manifold reduction we derive the amplitude equations for A and B. As
shown in [1] and [13], the normal form for such evolution equations up to cubic order is

Ȧ = µ1A+ c12AB + d11|A|2A+ d12|B|2A, (24)

Ḃ = µ2B + c11A
2 + d21|A|2B + d22|B|2B. (25)

where · = d
dt . With numerically computed coefficients for these equations, we analyze the

resulting dynamics, with particular attention given to the existence of structurally stable
heteroclinic orbits.

In addition to the A and B modes in the crosswind plane, the nonlinear terms in (15)-
(17) generate an additional mode C for the downstream direction. This is the horizontal
mean term with wavenumber zero and will produce a third evolution equation. While A
and B have no dependence on C, the evolution equation for C is of the form

Ċ = γ0C + γ1|A(τ1)|2 + γ2|B(τ1)|2, (26)

where · = d
dt and τ1 = εt; the small parameter ε > 0 is described in Section 3.2. In general,

if we suppose the Langmuir cells are very strong, then the horizontally averaged downwind
velocity is homogeneous except at the top and bottom of the box. The C mode equation
(26) computes the tendency to homogenize the horizontal mean velocity.

3.1 Linear Stability Analysis

We first linearize (15)-(17) about the basic flow U = (UB(z), 0, 0) with UB(z) = z + 1 and
obtain

∂tu− ∂yψ = La∇2u, (27)

∂tΩ = −dUs
dz

∂yu+ La∇2Ω, (28)

∇2ψ = −Ω. (29)

In the above, La is a parameter and not the fixed quantity La0. The boundary conditions
do not change with the linearization, as they are already linear (and in fact homogeneous).
Using the periodicity of y, we make a normal mode ansatzu(y, z, t)

Ω(y, z, t)
ψ(y, z, t)

 =

û(z)

Ω̂(z)

ψ̂(z)

 eikyeσt + c.c. (30)

where σ is the growth rate, k is an unspecified wavenumber in the lateral direction, and the
functions û(z), Ω̂(z), ψ̂(z) are the coordinates of the unknown vertical structure of the flow.
With this ansatz, (27)-(29) becomes an ordinary differential eigenvalue problem for σ:La(D2 − k2) 0 ik

−dUs
dz ik La(D2 − k2) 0
0 1 D2 − k2

ûΩ̂
ψ̂

 = σ

1 0 0
0 1 0
0 0 0

ûΩ̂
ψ̂

 , (31)
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where D = ∂
∂z . We discretize the z-direction with 30 Chebyshev points and use Chebyshev

spectral methods in Matlab1 to solve this eigenvalue problem as a two-point boundary value
problem in z. For each k in a chosen interval, we find the Langmuir number at which point
the stability of the system changes. The result is a marginal stability curve, an example of
which can be seen in Figure 3(b).

We locate on this curve the wavenumbers k0 and 2k0 which change stability at essentially
the same La0, and correspondingly set the width of the box in the (y, z)-plane to be W = 2π

k0
.

Henceforth, the terms k0, 2k0 and La0 refer to the quantities found by this eigenvalue
calculation.

For the zero-mode equation with amplitude C, we repeat (31) with k = 0 and solveLa0D2 0 0
0 La0D

2 0
0 1 D2

û0Ω̂0

ψ̂0

 = σ

1 0 0
0 1 0
0 0 0

û0Ω̂0

ψ̂0

 . (32)

With the chosen boundary conditions, Ω̂0 = ψ̂0 = 0. Then (32) reduces to

∂

∂t
û0(z, t) = La0

∂2

∂z2
û0(z, t). (33)

Writing û0(z, t) as
û0(z, t) = C(t)ũ(z), (34)

then C satisfies
dC

dt
= σC(t). (35)

Thus γ0 in (26) is the eigenvalue σ, which is determined numerically. As k = 0 is in the
stable regime, γ0 < 0.

3.2 Weakly nonlinear analysis

Let ε > 0 be a small parameter. As the shape of the marginal stability curve seen in Fig-
ure 3(b) is parabolic near the onset of instability, varying the wavenumber k by ε corresponds
to a change in La−1 by ε2. In particular, since we want small amplitude perturbations just
above the onset of instability, a small parameter µ > 0 is used to vary the height of the
parameter La−1 over the marginal stability curve in Figure 3(b). Then La−1 can be written

La−1 = La−10 + µε2. (36)

The role of the small parameter µ will be made more precise in Section 3.4. As we are
interested in a weakly nonlinear regime, the small perturbation terms added to each field
are O(ε), and each field can be expanded in powers of ε in the following way:

u = UB + εu1 + ε2u2 + · · · , (37)

Ω = εΩ1 + ε2Ω2 + · · · , (38)

ψ = εψ1 + ε2ψ2 + · · · . (39)

1Based on methods and code in [16].
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Lastly, we introduce slow times τ1 = εt and τ2 = ε2t so that

∂

∂t
= ε

∂

∂τ1
+ ε2

∂

∂τ2
. (40)

This separation of time scales will cause the quadratic terms AB and A2 of the evolution
equation in (24)-(25) to emerge in the analysis at O(ε2), while the rest of the terms will
emerge at O(ε3). Substituting the terms obtained at each step into (40) yields evolution
equations of the form

Ȧ = ε2µ1A+ εc12AB + ε2e11|A|2A+ ε2e12|B|2A, (41)

Ḃ = ε2µ2B + εc11A
2 + ε2e21|A|2B + ε2e22|B|2B, (42)

where · = ∂
∂t . After multipling both sides of the above by ε and rescaling via

εA→ A, εB → B, ε2µi → µi,

the equations have the expected form

Ȧ = µ1A+ c12AB + e11|A|2A+ e12|B|2A, (43)

Ḃ = µ2B + c11A
2 + e21|A|2B + e22|B|2B (44)

where µi is O(ε2), A and B are O(ε), while c1i and eij are O(1). For amplitude C of the
zero-mode equation, the coefficient γ0 emerges from the linear stability analysis, while γ1
and γ2 are found at O(ε2) with the slow time scale τ1. Hence C is O(ε2).

The leading O(ε) terms are written

u1(y, z, τ1) = A(τ1)e
ik0yu11(z) +B(τ1)e

2ik0yu12(z) + c.c., (45)

Ω1(y, z, τ1) = A(τ1)e
ik0yΩ11(z) +B(τ1)e

2ik0yΩ12(z) + c.c., (46)

ψ1(y, z, τ1) = A(τ1)e
ik0yψ11(z) +B(τ1)e

2ik0yψ12(z) + c.c., (47)

where c.c. denotes the complex conjugate, as each field must be real. We solve the O(ε)
system numerically for the functions uij , Ωij and ψij , i, j ∈ {1, 2} by solving for the eigen-
vectors of the system (31) with σ = 0.

The O(ε2) terms u2,Ω2, ψ2 are written similarly but inevitably have more wavenumbers
due to the mode-mode interaction in the nonlinear terms of (15)-(17). For example, the
eik0y and e2ik0y modes interact to generate a mode of wavenumber 3; overall, at O(ε2) there
are 9 total terms corresponding to each of

e0, e±ik0y, e±2ik0y, e±3ik0y, e±4ik0y.

Notice that the wavenumbers 0, 3 and 4 are all in the stable regime as they lie under the
marginal stability curve for the fixed value of La.

We remark further that the mode-mode interaction can reinforce the single mode eik0y

and the double mode e2ik0y. The former occurs when e2ik0y interacts with e−ik0y, while
the latter occurs when eik0y interacts with itself. Therefore, when the evolution equations
for the amplitudes A and B are written in such a way that these modes are only weakly
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Contours of the streamfunction ψ12 at 2k0 =2
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Figure 4: These plots illustrate the Langmuir cells for the (a) 2 roll case and (b) 4 roll
case. (a) is obtained by computing ψ11(z) from (47), and then plotting eik0yψ11(z) in the
(y, z)-plane with periodic sidewalls. (b) is obtained the same way for ψ12(z) and e2ik0y.
Thirty Chebyshev grid points were used.

growing, the interaction of Ā and B will produce a source term for A, while A and A will
produce a source term for B. These evolution equations are thus modified by the 2 : 1
resonance. Notice that this observation agrees with the normal form equations (24) and
(25).

Lastly, we note that the appearance of wavenumber zero terms at O(ε2) yields an equa-
tion for the C mode; the mean flow averaged over y can be written

u(z, τ1) = UB(z) +O(ε2) = UB(z) + ε2û1(z)C(τ1), (48)

where û1(z) is the vertical structure of the O(ε2) term. This equation is consistent with
(45) as C is O(ε) in (45). While the horizontal mean at O(ε) stage in equations (45)-(47) is
zero, the mode-mode interactions eik0y with e−ik0y and e2ik0y with e−2ik0y give a nontrivial
projection to the horizontal mean. Notice this mode-mode interaction justifies the form of
equation (26).

3.2.1 The Fredholm Alternative

Let 〈·, ·〉 be the Hermitian L2 inner product

〈v1, v2〉 =

∫∫
D
v1 · v2 dy dz,

where the domain D is the box [0, 2π/k0] × [−1, 0] in the cross-wind plane, and · denotes
the standard Euclidean inner product. Let L be the linear operator

L =

 La∇2 0 ∂y
0 1 ∇2

−dUs
dz ∂y La∇2 0

 , (49)
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and let L† be its adjoint. By the Fredholm alternative, L(u,Ω, ψ)t = (f, g, h)t has a solution
if and only if 〈

(u†,Ω†, ψ†), (f, g, h)
〉

= 0, (50)

where (u†,Ω†, ψ†)t is in the null space of L†.
L is an operator acting on the space of triples of functions (u,Ω, ψ)t with u, Ω and ψ

satisfying the boundary conditions in Section 2.3. Suppose (u∗,Ω∗, ψ∗) satisfies identical
boundary conditions to (u,Ω, ψ). Let M be the diagonal matrix

M =

dUs
dz 0 0
0 La 0
0 0 1

 , (51)

and set LM = ML. Using integration by parts with the definition of the adjoint,∫∫
D

(u∗,Ω∗, ψ∗) · (LM (u,Ω, ψ)t)t dy dz =

∫∫
D

(
L†M (u∗,Ω∗, ψ∗)t

)t
· (u,Ω, ψ) dy dz, (52)

we determine that LM is self-adjoint. A simpler calculation also shows that M † = M . Thus

ML = (ML)† = L†M † = L†M,

which implies that

L† = MLM−1 =

La∇2 0 dUs
dz ∂y

0 1 La∇2

−∂y ∇2 0

 . (53)

3.2.2 Order ε

Equations (37)-(39) are substituted into (15)-(17). The O(ε) equations are

−La∇2u1 − ∂yψ1 = 0, (54)

−dUs
dz

∂yu1 + La∇2Ω1 = 0, (55)

Ω1 +∇2ψ1 = 0, (56)

where u1,Ω1, ψ1 are the functions from (45)-(47). The form of these equations is identical
to the linear stability analysis in (27)-(29) with ∂

∂t = 0 as the onset of instability occurs
along the marginal stability curve.

There are two separate calculations performed, as ∂y becomes multiplication by ik0
when it acts on the single mode and by 2ik0 when it acts on the double mode. Solving for
eigenvectors (u1,Ω1, ψ1)

t satisfying

L

u1Ω1

ψ1

 = 0 (57)

yields two vectors: E1 = (u11,Ω11, ψ11)
t for the single mode structure and E2 = (u12,Ω12, ψ12)

t

for the double mode. Plots of ψ11 and ψ12 are seen in Figure 4.
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Set E11 = E1, E12 = E1, E21 = E2 and E22 = E2. Thenu1Ω1

ψ1

 = Aeik0yE11 +Be2ik0yE21 +Ae−ik0yE12 +Be−2ik0yE22.

With the same process, we also compute four vectors E†ij in the kernel of L† to use in the
calculations for the Fredholm alternative in the next two sections.

3.2.3 Order ε2

After substituting (37)-(39) into (15)-(17), the O(ε2) system is

La0∇2u2 + ∂yψ2 = ∂τ1u1 + J(u1, ψ1), (58)

Ω2 +∇2ψ2 = 0, (59)

−dUs
dz

∂yu2 + La0∇2Ω2 = ∂τ1Ω1 + J(Ω1, ψ1), (60)

Notice that we already have expressions for u1, ψ1,Ω1 from the O(ε) case. This can be
written in terms of the linear operator L and including the slow time τ1 as

L

u2Ω2

ψ2

 =

∂τ1u1 + J(u1, ψ1)
0

∂τ1Ω1 + J(Ω1, ψ1)

 . (61)

The right-hand side can be explicitly computed with the eigenvectors u1, ψ1,Ω1 found in
Section 3.2.2. For the solvability criterion (50), we set〈

E†ij ,

∂τ1u1 + J(u1, ψ1)
0

∂τ1Ω1 + J(Ω1, ψ1)

〉 = 0, (62)

i, j = 1, 2. We compute this inner product numerically using quadrature and obtain the
coefficients of the quadratic terms AB and A2 in the evolutions equations for A and B,
respectively; below is an example calculation for the AB coefficient. For the vectors in the
nullspace of L† computed in Section 3.2.2, let E†ij(z) = (E†ij,1(z), E

†
ij,2(z), E

†
ij,3(z))

t. Then
the solvability criterion yields a condition on the derivatives of A and B, found by computing

0 =

〈
E†11(z)e

−ik0y,

∂τ1u1(y, z, τ1) + J(u1(y, z, τ1), ψ1(y, z, τ1))
0

∂τ1Ω1(y, z, τ1) + J(Ω1(y, z, τ1), ψ1(y, z, τ1))

〉

=

∫∫
D

(
E†11,1(z)e

−ik0y(∂τ1u1(y, z, τ1) + J(u1(y, z, τ1), ψ1(y, z, τ1)))
)
dy dz

+

∫∫
D

(
E†11,3(z)e

−ik0y∂τ1Ω1(y, z, τ1) + J(Ω1(y, z, τ1), ψ1(y, z, τ1)))
)
dy dz

After simplification, each term in the above integrand contains an expression of the form
emik0y. If m 6= 0, then ∫ 2π/k0

0
emik0y dy = 0.
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Hence the only terms from the ∂τ1(·) + J(·, ψ1) expressions which contribute nontrivially
to the solvability criterion are those whose y-structure after complex conjugation is eik0y.
Therefore, the solvability criterion can be explicitly written as

0 =

∫ 0

−1

(
E†11,1(z) ·

(
Aτ1u11(z) + 2ik0ABu12(z)

dψ11

dz
− ik0ABu11(z)

dψ12

dz

))
dz

−
∫ 0

−1

(
E†11,1(z) ·

(
2ik0ABψ12(z)

du11
dz
− ik0ABψ11(z)

du12
dz

))
dz

+

∫ 0

−1

(
E†11,3(z) ·

(
Aτ1Ω11(z) + 2ik0ABΩ12(z)

dψ11

dz
− ik0ABΩ11(z)

dψ12

dz

))
dz

−
∫ 0

−1

(
E†11,3(z) ·

(
2ik0ABψ12(z)

dΩ11

dz
− ik0ABψ11(z)

dΩ12

dz

))
dz.

Thus

Aτ1

∫ 0

−1

(
E†11,1u11 + E†11,3Ω11

)
dz = −ik0AB

[∫ 0

−1

(
E†11,1

(
2u12

dψ11

dz
− u11

dψ12

dz

))
dz

+

∫ 0

−1

(
E†11,1 ·

(
2ψ12

du11
dz
− ψ11

du12
dz

))
dz

−
∫ 0

−1

(
E†11,3 ·

(
2Ω12

dψ11

dz
− Ω11

dψ12

dz

))
dz

+

∫ 0

−1

(
E†11,3 ·

(
2ψ12

dΩ11

dz
− ψ11

dΩ12

dz

))
dz.

]
The left and right sides of the above can be computed numerically using quadrature meth-
ods from [16], chapter 12. Then each integral results in a scalar value, yielding a simple
calculation for the coefficient c12 in

Aτ1 = c12AB.

In addition, the particular solution (u2,Ω2, ψ2)
t to (61) is also found numerically in

Matlab using the pseudoinverse of the matrix L.
Lastly, due to the presence of wavenumber zero at O(ε2), we compute the equation for

the amplitude C(τ1) of the mean velocity at this order. As a result of horizontal averaging,
no Langmuir cells remain; however, there is a correction term in the streamwise flow that
reflects the fact that there were cells present. For the solvability criterion to compute the
O(ε2) contribution to Ċ, the zero mode version of (61) is written

(LaD2 − σ)û2 = (ε∂τ1C) û1(z) + J(u1, ψ1)0, (63)

where J(u1, ψ1)0 refers to the terms in J(u1, ψ1) which have no y-dependence. These are
the terms that arise from nonlinear interaction between eik0y and e−ik0y, and e2ik0y and
e−2ik0y. Then (63) has a solution if and only if

〈û1, (ε∂τ1C) û1 + J(u1, ψ1)0〉 = 0, (64)
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which results in

(ε∂τ1C)

∫ 0

−1
|û1(z)|2 dz = −|A|2

∫ 0

−1
û1(z)

(
u11(z)ψ11(z) + u11(z)ψ11(z)

)
dz

−|B|2
∫ 0

−1
û1(z)

(
u12(z)ψ12(z) + u12(z)ψ12(z)

)
dz.

These integrals are also computed using quadrature methods and yield the coefficients γ1
and γ2 from (26). Then

Ċ = σC + ε∂τ1C

= γ0C + γ1|A|2 + γ2|B|2.

3.2.4 Order ε3

The remaining cofficients up to cubic order emerge from the O(ε3) system:

∂τ1u2 + ∂τ2u1 + J(u1, ψ2) + J(u2, ψ1)− ∂yψ3 = La0∇2u3 − La20µ∇2u1,

−Ω3 = ∇2ψ3,

∂τ1Ω2 + ∂τ2Ω1 + J(Ω1, ψ2) + J(Ω2, ψ1) = −dUs
dz

u3 + La0∇2Ω3 − La20µ∇2Ω1.

Written as matrices with the same linear operator L, the system is

L

u3Ω3

Ψ3

 =

 ∂τ1u2 + ∂τ2u1 + J(u1, ψ2) + J(u2, ψ1) + La20µ∇2u1
0

∂τ1Ω2 + ∂τ2Ω2 + J(Ω1, ψ2) + J(Ω2, ψ1) + La20µ∇2Ω1

 . (65)

The right-hand side of (65) is calculated using the results from the previous two sections. As

before, we compute the inner product of the right-hand side with the vectors E†ij numerically
using quadrature. The result gives us the coefficients µi, eij , i, j ∈ {1, 2} from (24) and (25).
These equations are described in more detail in Section 3.3.

3.3 The evolution equations

Once the vectors ui, Ωi and ψi have been computed for i = {1, 2}, we use quadrature
methods to solve for the coefficients of the evolution equations. As derived in [1] and [13],
the normal form of the equations for A and B up to cubic terms is

Ȧ = µ1A+ c12AB + d11|A|2A+ d12|B|2A, (66)

Ḃ = µ2B + c11A
2 + d21|A|2B + d22|B|2B. (67)

The reflection symmetry (A,B) → (A,B) forces the coefficients µi, cij , dij , i, j ∈ {1, 2}, to
be real. There are, however, no automatic requirements for the signs of these coefficients.
As discussed in the literature on such equivariant dynamical systems, see Armbruster, et
al. [1] and Porter and Knobloch [12], different dynamical behavior emerges with different
combinations of signs.
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For the general setting of 2 : 1 spatial resonance, it is possible that c12 and c11 have
the same sign. This situation is referred to as the “+ case” in [1], and it does not yield
particularly interesting dynamics. In particular, there is no heteroclinic orbit present in the
Im (A) = Im (B) = 0 plane. The other possibility, that c12 and c11 have different signs, is
referred to in [1] as the “− case” and is more fruitful. For the extensive range of parameter
values tested thus far, the evolution equations derived in this work have fallen under this
“−” category.

Near the onset of instability, the growth rates µ1 and µ2 should be positive. The last
sign requirement we make is that e11 and e22 be negative. This requirement will yield a
circle of pure modes discussed in Section 3.4 and seen in Figure 5 and, like the requirement
on the quadratic terms, has been satisfied for each set of parameters.

As explored by Chossat in [4], hydrodynamical systems with symmetries often produce
evolution equations that fulfill such requirements necessary to exhibit interesting dynamical
behavior, such as the class of “−” equations under consideration here. These symmetric sys-
tems then yield robust heteroclinic connections in the invariant subspaces of the amplitude
equations. Thus hydrodynamics can be rewarding to study from the dynamical systems
viewpoint, and it is unsurprising that we find the right type of dynamics in our evolution
equations for Langmuir circulation.

As an example of amplitude equations found from the calculations of the previous sec-
tions, we derive the following with 30 Chebyshev grid points, γ = 1.5, and Us(z) = e2(4z):

Ȧ = 0.0070A− 0.0801AB − 0.0758|A|2A− 0.3867|B|2A, (68)

Ḃ = 0.0152B + 0.0987A2 − 0.7563|A|2B − 0.3334|B|2B, (69)

· = ∂
∂t . Additionally, the evolution equation for the horizontal mean term is

Ċ = −0.0477C + 0.0188|A|2 + 0.0252|B|2.

As discussed above, (68) and (69) display the desired signs for the coefficients and can
be rescaled from the form (66)-(67) to the form (24)-(25), yielding

Ȧ = µ1A+AB − 0.9583|A|2A− 6.0219|B|2A, (70)

Ḃ = µ2B −A2 − 9.5573|A|2B − 5.1909|B|2B. (71)

As A,B ∈ C, they can be written in terms of their real and imaginary parts as

A = x1 + iy1 = r1e
iα1 ,

B = x2 + iy2 = r2e
iα2 ,

from which (66) and (67) can be written in Cartesian coordinates as

ẋ1 = x1(µ1 + e11(x
2
1 + y21) + e12(x

2
2 + y22)) + x1x2 + y1y2, (72)

ẏ1 = y1(µ1 + e11(x
2
1 + y21) + e12(x

2
2 + y22)) + x1y2 − y1x2, (73)

ẋ2 = x2(µ2 + e21(x
2
1 + y21) + e22(x

2
2 + y22))− (x21 − y21), (74)

ẏ2 = y2(µ2 + e21(x
2
1 + y21) + e22(x

2
2 + y22))− 2x1y1. (75)

Following the terminology of [1], we will call any fixed point Ȧ = Ḃ = 0 with r1 = 0 but
r2 6= 0 a pure mode, and a fixed point Ȧ = Ḃ = 0 with r1 6= 0, r2 6= 0 a mixed mode.

350



±
(√

−µ2
e22

, 0
)

x2

y2

Figure 5: The invariant subspace Σ1. There is a circle of pure modes given by |B|2 = − µ2
e22

.
The two points where this circle intersects the x2-axis lie in all three invariant subspaces,
as seen in Figure 6.

3.4 Dynamics of the Evolution Equations

As simultaneous bifurcation of modes k0 and 2k0 is a codimension-2 bifurcation problem,
two parameters are varied to explore the dynamics. Holding the coefficients µ1 and µ2 small
and varying them does not effect the other coefficients eij , i, j ∈ {1, 2}. These linear term
coefficients can be rewritten as

(µ1, µ2) = µ(cos θ, sin θ). (76)

Thus µ1 and µ2, or equivalently µ and θ, are unfolding parameters; varying µ is equivalent
to varying La close to La0, while varying θ is equivalent to varying the wavenumbers close
to k0 and 2k0.

There are three invariant subspaces for (Ȧ, Ḃ): two 2-dimensional subspaces and their
1-dimensional intersection. The union of the three subspaces can be seen in Figure 6.

1. Σ1 = {|A| = 0}. On this plane, the flow is given by

Ȧ = 0, Ḃ = µ2B + e22|B|2B, (77)

or equivalently, ẋ1 = ẏ1 = 0 and

ẋ2 = µ2x2 + e22(x
2
2 + y22)x2, (78)

ẏ2 = µ2y2 + e22(x
2
2 + y22)y2. (79)

There is a fixed point at the origin; moreover, as e22 < 0 while µ2 > 0, every point
on the circle x22 + y22 = − µ2

e22
is a pure mode. Of particular interest are the two pure

modes on the x2 axis,

±
(

0, 0,

√
−µ2
e22

, 0

)
, (80)
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Σ1

Σ2

Σ3

Figure 6: The three invariant subspaces Σ1-Σ3. A heteroclinic orbit connecting the two
pure modes of (80) is pictured in Σ2.

seen in Figure 5. These two fixed points appear in Σ2 below.

2. Σ2 = {ImA = ImB = 0}. The equations for (72)-(75) become

ẋ1 = µ1x1 + x1x2 + e11x
3
1 + e12x1x

2
2, (81)

ẋ2 = µ2x2 − x21 + e21x
2
1x2 + e22x

3
2, (82)

with ẏ1 = ẏ2 = 0. The flow in this plane is more complicated that for the previous
invariant subspace; however, for any choice of coefficients, the pure modes in (80) are
also fixed points of (81) and (82). For certain choices of the coefficients, mixed modes
may be present, and there may be a heteroclinic connection between the pure modes
(80). This possible heteroclinic orbit will be discussed further below.

3. The third invariant subspace is the intersection of the previous two: Σ3 = {|A| =
0, ImB = 0}. In other words, this third subspace is the real part of B.

Figure 6 ties together the three invariant subspaces; we see the two pure modes from (80)
which lie on the intersection of Σ3 and the circle of pure modes in {|A| = 0} in Σ1. The
heteroclinic connection found with the equations (68) and (69) is sketched in Σ2.

To employ the analysis and results in [1] and [12], we check that the coefficients of (70)
and (71) satisfy

e12 + e21 < 2(e11e22)
1/2, and (83)

µ1 − µ2e12e22 − (−µ2/e22)1/2 < 0 < µ1 − µ2e12e22 + (−µ2/e22)1/2, (84)
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Figure 7: Phase space for Σ2 with the parameter values of (68)-(69). The curves appearing
in all four quadrants are nullclines. The 4 and ◦ mark the pure modes from (80), and there
is a heteroclinic orbit pictured between these fixed points. This image was generated using
XPPAUT.

in addition to our previous requirements of the signs. These inequalities come from The-
orem 3.2 in [1]; in addition, the authors assume further that no mixed modes exist. This
assumption is not strictly necessary, but for the equations derived in this project, mixed
modes do not appear for a large range of parameter values. With the assumptions (83)-(84),
a heteroclinic orbit connecting the points in (80), such as the orbit seen in Figure 7, exists
and is structurally stable.

Additionally, we ensure the coefficients satisfy Proposition 5.1 of [1]: if

min
{

2µ2,−
(
µ1 − µ2e12/e22 − (−µ2/e22)1/2

)}
> µ1 − µ2e12/e22 + (−µ2/e22)1/2, (85)

then the heteroclinic orbit is locally asymptotically stable and attracts trajectories in a
small enough neighborhood. These trajectories spend long amounts of time near the two
pure modes where the dynamics are dominated by the linear terms before passing between
the two pure modes in a shorter amount of time. This behavior is illustrated in Figure 8(b):
the times in which |A| and |B| are flat are the time periods when the trajectory is close to
the two pure modes or transitioning rapidly between them, while the spikes correspond to
the times when the trajectory is following closely to the heteroclinic orbit.

Here enters the role of µ and θ from (76): we vary these two parameters as necessary
in the first quadrant of the (µ1, µ2) plane to find a desirable heteroclinic connection. In
general, it is not difficult to satisfy (83)-(85), and there is usually a large neighborhood of
µ and θ which yield such a heteroclinic orbit.

Once the heteroclinic orbit is located, it is possible to follow a nearby trajectory using
the software package XPPAUT [9]. In addition to plotting the trajectory, this package can
simultaneously compute the sizes of |A| and |B| for each time step in the integration. The
result of such a computation is seen in Figure 8. When the integration begins near the
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pure mode (0, 0,
√
−µ2/e22, 0), the A mode is hardly activated. As t grows, the trajectory

moves away from this pure mode, and the A mode is activated. At t = 114, ReB → 0;
at this t, the size of |B| reaches a minimum that is very small, as the imaginary part of B
near the heteroclinic orbit is close to zero. At this point, the size of |A| nearly reaches its
maximum. Then as the trajectory nears the second pure mode, −(0, 0,

√
−µ2/e22, 0), the

A mode returns to a nearly inactive state while the B mode becomes the driving mode.
This mode switching behavior is expressed physically in terms of the Langmuir cells in

Figure 9. At the start and finish of one pass near the heteroclinic orbit, a four-roll state is
observed, whereas when the B mode nearly vanishes, a two-roll state is observed. Moreover,
after passing along the heteroclinic orbit, the four-roll state is shifted by W/4; this shift
resembles the behavior observed in the direct numerical simulation of the PDE.

As seen in Figure 8, this process repeats itself as the trajectory loops around and
follows near the heteroclinic orbit again. The connection from −(0, 0,

√
−µ2/e22, 0) to

(0, 0,
√
−µ2/e22, 0) is related to the translational invariance of the equations, (A,B) →

(eiϑA, e2iϑB) from (22), and thus there is no lateral shifting of the rolls during this phase
of the trajectory. Instead, the connection between the pure modes appears in Figure 8 to
amount to taking a path in the {(x2, y1)}-plane rotating from the second pure mode to the
first one. To calculate this more rigorously, notice that shifting by a fourth of the width of
the box, L = 2π

k0
, means a shift of π

2k0
. Hence

A → e
π

2k0
ik0A = e

π
2
iB = iA, (86)

B → e
π

2k0
2ik0B = eπiB = −B. (87)

The B → −B conversion is simply the switch from the second pure mode to the first one.
But after the completion of one pass around the heteroclinic orbit, the real and imaginary
parts of A switch via

(x1, y1)→ i · (x1, y1) = (−y1, x1). (88)

This switch in the real and imaginary parts is illustrated in Figure 10.
Hence the return phase is essentially a reorientation of the manifolds after which the

trajectory returns near (0, 0,
√
−µ2/e22, 0) and again follows the heteroclinic clinic orbit in

Σ2. The second trip following the heteroclinic orbit leads to another brief transition to two
rolls, followed by a return to a four-roll state with a half-shift (not pictured, but similar to
Figure 9).

4 Reduced 3D equations

Up to this point we have restricted attention to the 2D/3C model to examine the rolls in
the (y, z)-plane. To visualize the Y junctions, a 3D Lagrangian pattern on the surface, we
reintroduce the x-direction into the PDE.

The equations below are not fully 3D; rather, we are performing asymptotic analysis
within the framework of the asymptotic analysis of the previous sections, assuming an even
longer scale in the downstream direction. We refer to this slow downstream direction as χ.
The incompressibility condition on U = (u, v, w) becomes incompressibility in the transverse
plane, which we denote by

∇⊥U = ∂yv + ∂zw = 0.
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Figure 8: The subspace shown in (a) is {ImB = 0}, compare with Figure 5. A trajectory
chosen to start near the pure mode (0, 0,

√
−µ2/e22, 0) is pictured. It follows near the

heteroclinic orbit of Figure 7 in Σ2, transitioning between passes along this heteroclinic orbit
via the connection that appears vertical. It passes along the heteroclinic orbit approximately
three times during the time of integration. This image was created with XPPAUT. The
magnitude of the amplitude A for the single mode k0 compared to the amplitude B for the
double mode 2k0 for the trajectory in (a) is plotted in (b). At t = 313, the magnitude of B
reaches its first minimum. The streamfunction at t = 0, t = 313 and t = 500 is plotted in
Figure 9.
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Figure 9: The streamfunction ψ1(y, z, t) for the trajectory in Figure 8. At the start of the
integration (t = 0), the orbit is close to the pure mode (0, 0,

√
−µ2/e22, 0), and four rolls

are observed. At t = 313, when the first minimum of |B| occurs in Figure 8, a two-roll state
is observed. At the end of the first loop (around t = 500), the orbit has passed near the
pure mode (0, 0,−

√
−µ2/e22, 0), and four rolls are again observed, with the predicted shift

of half of a period in the y-direction. Repeating this process for all three loops of the orbit
continues this pattern.

Hence the streamfunction ψ is still defined in this 3D context.
Following the derivation in Chini et al. [3] with their downstream variable X, the coor-

dinate version of the PDE with slow advection in the downstream direction is

∂tU + J(U,ψ)− ∂yψ = −∂XΠ + La∇2
⊥U, (89)

∂tΩ + J(Ω, ψ) + Us(z)∂XΩ = U ′s(z)(∂X∂zψ − ∂yU) + La∇2
⊥Ω, (90)

∇2
⊥Π = 2J(∂yψ, ∂zψ) +∇⊥ · (Us(z)∇⊥u) , (91)

+U ′s(z)∂X∂yψ, (92)

∇2
⊥ψ = −Ω. (93)

Unlike in [3], we will assume mixed boundary conditions on u and exponential Stokes drift,
as well as different boundary conditions on the pressure as a result of these adjustments.

4.1 Linear analysis

In Section 2, taking the curl of the equations caused the pressure terms to vanish. In this
reduced 3D setting, it does not. Hence in addition to the base state UB(z) in the x-direction
from before, we will also linearize about the pressure base state ΠB(z). The perturbation
terms are up(X, y, z, t), ψ(X, y, z, t), p(X, y, z, t) and Ω(X, y, z, t), and the total fields are
written

u(X, y, z, t) = UB(z) + up(X, y, z, t), (94)

ψ(X, y, z, t) = ψ(X, y, z, t), (95)

Π(X, y, z, t) = ΠB(z) + p(X, y, z, t), (96)

Ω(X, y, z, t) = Ω(X, y, z, t). (97)
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Figure 10: The three trips of the orbit from Figure 8(a) are pictured in terms of the real
and imaginary parts of A(τ), see equation (88).

In addition to the previous boundary conditions on u, Ω and ψ, we note that the boundary
condition on the pressure is ∂zp = 0 along z = 0 and ∂zp = Us(−1) · γ up along z = −1.
Linearizing about the base state yields

∂tu− ∂yψ = −∂Xp+ La∇2
⊥u, (98)

∂tΩ + Us(z)∂XΩ = U ′s(z)(∂X∂zψ − ∂yu) + La∇2
⊥Ω, (99)

∇2
⊥p = ∇⊥ · (Us(z)∇⊥u) + U ′s(z)∂X∂yψ, (100)

∇2
⊥ψ = −Ω. (101)

To reduce from four equations to three, we use the definition of the vorticity Ω in (101) to
write

∂tu− ∂yψ = −∂Xp+ La∇2
⊥u, (102)

−∂t∇2
⊥ψ − Us(z)∂X∇2

⊥ψ = U ′s(z)(∂X∂zψ − ∂yu)− La∇4
⊥ψ, (103)

∇2
⊥p = ∇⊥ · (Us(z)∇⊥u) + U ′s(z)∂X∂yψ. (104)

We again make a normal mode ansatz. In this case, there is an additional term for the
downstream direction with wavenumber `, resulting inuψ

p

 =

û(z)

ψ̂(z)
p̂(z)

 eikyeσtei`X , (105)

where û(z), ψ̂(z) and p̂(z) are the structures in the vertical direction. Let D = ∂
∂z as before,

then with the ansatz, (102)-(103) can be written as an eigenvalue problem

σu = La(D2 − k2)u+ ikψ − i`p, (106)

0 = −
[
Us(z)(D

2 − k2) + U ′s(z)D
]
u+ U ′s(z)k`ψ + (D2 − k2)p, (107)

σ(D2 − k2)ψ = ikU ′s(z)u+
[
La(D2 − k2)2 − i`Us(z)(D2 − k2)− i`U ′s(z)D

]
ψ,(108)
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with eigenvalue σ. Repeating the steps of Section 3.1, in matrix form this is

A

uψ
p

 = σB

uψ
p

 ,

where

A =

 La(D2 − k2) ik −i`
ikU ′s(z) La(D2 − k2)2 − i`Us(z)(D2 − k2)− i`U ′s(z)D 0

−
[
Us(z)(D

2 − k2) + U ′s(z)D
]

U ′s(z)k` (D2 − k2)


and

B =

1 0 0
0 D2 − k2 0
0 0 0

 .

We set det(A− σB) = 0 to find the dispersion relation numerically, as in the 2D/3C case.
In this setting, the horizontal wavenumber k for the single mode is fixed at the value of k0
computed for the same parameters in the 2D/3C setting. Similarly, the wavenumber is 2k0
for the double mode, and the forcing term La is fixed at La0.

Once these assignments are made, the growth rate σ becomes of function of `. Comput-
ing σ using the same pseudospectral approach as before, we can individually find the real
and imaginary parts of σ as functions of `, see Figure 11. The real part of the growth rate
is quadratic while the imaginary part is linear; this can be verified by plotting the first and
second derivatives of the curves.

Setting the slow variable χ to be χ = εX with ε as before, the equation for the growth
rate σ1 for A becomes

σ1 = µ1 − i`vg1 − ν1`2, (109)

while for B it is
σ2 = µ2 − i`vg2 − ν2`2, (110)

where vgj , j = 1, 2, denotes the group velocity for the wavepacket. The coefficients are
computed numerically; for the parameter set used for (68)-(69), the growth rates are

σ1 = µ1 − 0.1548i`− 0.0521`2, (111)

and
σ2 = µ2 − 0.1666i`− 0.0397`2. (112)

In Fourier space, we interpret these equations in terms of the ansatz. In physical space, we
set i` = ∂χ and −`2 = ∂χχ. Hence to the ODEs we append the slow χ derivatives to obtain
a set of reduced PDEs for A(t, χ) and B(t, χ):

At = µ1A− 0.0801AB − 0.0758|A|2A− 0.3867|B|2A− 0.1548Aχ + 0.0521Aχχ, (113)

Bt = µ2B + 0.0987A2 − 0.7563|A|2B − 0.3334|B|2B − 0.0833Bχ + 0.0099Bχχ. (114)

358



(a)

0 0.2 0.4 0.6 0.8 1
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0
Re(σ(`)) and Im(σ(`)) with fixed k0

Wavenumber `

G
ro
w
th

ra
te

σ

 

 

Re(σ)
Im(σ)

(b)

0 0.2 0.4 0.6 0.8 1
−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0
Re(σ(`)) and Im(σ(`)) with fixed 2k0

Wavenumber `

G
ro
w
th

ra
te

σ

 

 

Re(σ)
Im(σ)

Figure 11: Each plot shows the real and imaginary parts of σ as a function of the downstream
wavenumber `, as computed in Section 4.1; (a) is for the k0 mode, and (b) is for the 2k0
mode. The real part of each is quadratic, while the imaginary part is linear.

5 Conclusion

With a 2D/3C model, we performed a center manifold reduction to derive evolution equa-
tions for the amplitudes A for the mode eik0y and B for the mode e2ik0y. Using Matlab, for
an extensive range of parameters values we were able to numerically compute coefficients
that satisfy certain inequalities guaranteeing the existence of a robust and attracting het-
eroclinic orbit in an invariant subspace of the center manifold. Numerical simulations of
trajectories close to this orbit reveal a switching behavior between a 2-roll state and a 4-roll
state consistent with the behavior observed in direct numerical simulations of the govern-
ing PDE. The dynamics explored in this paper assumed an idealized state; for analysis of
structurally stable heteroclinic cycles in a system with O(2) symmetry with additive noise,
we refer to work by Stone and Holmes. In [14], they find that such white noise does not
drastically affect the solutions in the phase space of the evolution equations, but rather
leads to a particular selection of timescales.

Lastly, we used a set of reduced 3D equations to introduce slow advection in the down-
stream direction to convert the ODEs to PDEs. A future goal is to derive the PDE for
the zero mode to get the drift effect and show how simulating these PDEs will exhibit the
Lagrangian Y junction patterns observed on the surface of the ocean. We will also derive a
set of equations for A, B and C which couple A and B to C. This coupling will be used to
examine how the dynamics of the A and B modes are affected by downstream advection.
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1 Introduction

Transport of heat and mass is of fundamental importance in science and engineering. In
some environmental and industrial applications, the aim is to maximize (e.g. in cooling
or heating) or minimize (e.g. for pollution and hazards) the transport. In some other
problems, such as oil spills, the amount and the path of the transported material must be
determined. For problems arising in nature, the focus is on understanding the transport
processes and estimating their magnitude. In some problems with extreme parameters, such
as mantle convection, the interest is mainly on finding scaling laws relating the magnitude
of the transport to some physical parameters.

The focus of this investigation is a generic question: what is the maximum amount of a
passive scalar tracer that can be transported by unknown velocity fields satisfying certain
constraints. The constraints studied here are that the velocity field is divergence–free and
has a fixed (given) amount of (kinetic) energy or a fixed amount of enstrophy. Subsequently,
we shall discuss the motivation inspiring these constraints. Furthermore, we restrict our
attention to two–dimensional (2D) steady flows.

In the remainder of the Introduction, we will present details of the problem and its
mathematical formulation. In sections 2 and 3, we study the problems with fixed energy
and fixed enstrophy, respectively. For each problem, we employ the calculus of variations
to maximize a functional subjected to the constraints of the problem. The resulting Euler–
Lagrange equations are solved numerically and analytically to obtain the optimal velocity
field. Upper bounds on the transport are calculated from the optimal velocity fields. At
the end of each section, the calculated upper bound is compared with the available results
for relevant problems. Section 4 presents the concluding remarks and future work.

1.1 Mathematical Formulation

Here we present the mathematical formulation of the problem described above. For con-
venience, we only consider heat transport (i.e. with temperature treated as scalar tracer)
hereafter. The 2D heat transport is described by the advection-diffusion equation:

Ṫ + v · ∇T = κΔT, (1)

where T (x, z, t) is temperature, Ṫ = ∂T/∂t, Δ = ∂2/∂x2 + ∂2/∂z2, κ is the thermal diffu-
sivity of the fluid (assumed to be constant), and v(x, z, t) = (u,w) is the divergence–free
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Figure 1: Schematic of the configuration. The top and bottom walls are impermeable and
are kept at fixed temperatures.

velocity field, i.e.

∇ · v = 0. (2)

In the absence of advection (i.e. v = 0), the transport is purely by conduction and the
temperature field of this case is denoted by Θ. θ ≡ T−Θ is the deviation of the temperature
field from the purely conducting profile Θ when v �= 0. The geometry of the problem, shown
in Figure 1, consists of two infinite parallel impermeable walls with fixed temperature. Note
that the parallel walls can be horizontal or vertical or inclined; we do not use the dynamics
of the velocity field (i.e. momentum equations) in our analysis and therefore gravity is
irrelevant. We set the walls to be horizontal. The flow is assumed to be periodic in the x
direction with characteristic horizontal length scale L, which will be specified later.

In the next two sections, we study velocity fields that either have fixed energy U2,

U2 =
1

hL

∫

D
(v · v) dxdz, (3)

or fixed enstrophy Ω2,

Ω2 =
1

hL

∫

D
(ω · ω) dxdz =

1

hL

∫

D
(∇v : ∇v) dx, (4)

where ω = ∇× v is the vorticity, and D is the [0, L] × [0, h] domain. The second equality
in (4) is true for many boundary conditions including no–slip, free–slip, and periodic. The
significance of the second integral is that, multiplied by viscosity, it gives the viscous dissi-
pation rate in Newtonian fluids. As the integrals are equal for the boundary conditions of
interest, we use the second representation in this report because it is more convenient.

We non-dimensionalize length with the spacing between the walls h, time with diffusion
time scale h2/κ, and velocity with κ/h. The dimensionless temperature is (T−Tt)/(Tb−Tt).
We define the (dimensionless) Pećlet number Pe as the ratio of the diffusive time scale to
the advective time scale (i.e. a measure of the strength of advection relative to diffusion).
For the problem with fixed energy,

Pe ≡ Uh/κ, (5)
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and for the problem with fixed enstrophy,

Pe ≡ Ωh2/κ. (6)

We also define the aspect ratio Γ as

Γ ≡ L/h. (7)

Notice that hereafter all variables (i.e. v, T , Θ, θ, x, z, t) are dimensionless, but the
notation is not changed for simplicity.

Non-dimensionalizing equations (1)–(2) and the boundary conditions yields

θ̇ + v · ∇θ = Δθ + w, (8)

∇ · v = 0, (9)

θ(x, 0, t) = θ(x, 1, t) = 0, (10)

w(x, 0, t) = w(x, 1, t) = 0, (11)

where θ(x, z, t) ≡ T (x, z, t)−Θ(z) has been used (note that Θ(z) = 1− z).
We further define angle brackets 〈·〉 as the long time–space average:

〈a(x, z, t)〉 ≡ lim
t→∞

1

t

∫ t

0

{

1

Γ

∫

D
a(x, z, s) dxdz

}

ds, D = [0, 1] × [0,Γ]. (12)

Therefore, using (5), the fixed energy constraint (3) becomes

Pe =
〈|v|2〉 . (13)

The fixed enstrophy constraint (4) is

Pe =
〈|∇v|2〉 , (14)

where (6) has been used.
The Nusselt number Nu measures the heat transport by advection and is defined as the

ratio of the heat flux in the presence of advection qa to the heat flux by pure conduction
qc. We are interested in the vertical transport between horizontal walls, therefore

Nu ≡ 〈qa · z〉
〈qc · z〉 , (15)

where qc = −∇Θ (Fourier’s law) and qa = −∇T + Tv. Hence, after a little algebra, the
above equation reduces to

Nu = 1 + 〈wT 〉 = 1 + 〈wθ〉 . (16)

Note that 〈wΘ(z)〉 = 0 as a result of incompressibility.
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1.2 Objective

With the strength of advection (Pe), geometry of the flow (Γ), and strength of transport
(Nu) defined, we can now rigorously present the goal of this work.

1. We search over all divergence–free velocity fields v that have a given (Pe,Γ) (and
satisfy (11)), and find the maximum possible Nu (16) (notice that knowing v, (10)
and (8) uniquely determine θ). This Nu is called Numax:

Numax(Pe,Γ) ≡ sup
v
{Nu(v)}. (17)

2. For the same Pe, step 1 is repeated for various values of Γ. For this Pe, the largest
value of Numax(Pe,Γ) is called NuMAX:

NuMAX(Pe) ≡ sup
Γ
{Numax(Pe,Γ)}. (18)

3. For this Pe, the Γ in step 2 which gives NuMAX is dubbed the optimal aspect ratio
and noted as Γopt(Pe)

The goal is to find Numax(Pe,Γ), NuMAX(Pe), and Γopt(Pe) for any Pe, especially in the
limit of Pe → ∞. In sections 2.5 and 3.4 we show how to interpret the results based on the
Rayleigh number Ra commonly arising in buoyancy–driven convection problems.

The time–dependence of the advecting flow merits further discussion. The effect of un-
steadiness on transport is not fully understood and whether a time-dependent flow trans-
ports more or less than a steady flow (with the same amount of energy or enstrophy) remains
an open question. Of course the question can be answered by performing the optimization in
step 1 over both space and time, i.e. for v = v(x, z, t). Such an analysis is very complicated
and is a problem of optimal control theory. Here we focus on steady flows (i.e. v = v(x, z))
and use calculus of variations in step 1. The steady analysis gives useful insight into the
optimal transport problem that can be used to guide future unsteady analyses.

2 Optimal Transport with Fixed Energy

In the first problem, we look into the optimal steady transport with fixed energy. Therefore,
equations (8)–(11) and (13) become

v · ∇θ = Δθ +w, (19)

∇ · v = 0, (20)

Pe =
〈|v|2〉 , (21)

θ(x, 0) = θ(x, 1) = 0, (22)

w(x, 0) = w(x, 1) = 0. (23)

A simple analysis gives a relatively crude upper bound on Nu as 1 + Pe/2. Starting from
(16),

Nu = 1 + 〈wT 〉 = 1 + 〈w(T − 1/2)〉 ≤ 1 +
〈|w|2〉1/2 〈|T − 1/2|2〉1/2 ≤ 1 +

〈|v|2〉1/2
2

= 1 +
Pe

2
, (24)
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where the second equality is due to incompressibility and the boundary conditions. The
Cauchy–Schwarz inequality has been used in the first inequality. The maximum principle
assures |T | ≤ 1 and consequently |T − 1/2| ≤ 1/2. The latter has been used in the second
inequality. Equation (21) gives the final result. This upper bound, as shown later, is too
high, and a full analysis of (19)–(23), as given below, is required to obtain a better estimate,
and to find the optimal velocity field.

2.1 Variational Formulation for Steady Flows

Here the variational formulation is presented to maximize Nu = 1+ 〈θw〉 given constraints
(19)-(21) and boundary conditions (22)-(23). Therefore, we aim to maximize the functional
F constructed as

F =
〈

wθ − φ(x, z) (v · ∇θ −Δθ − w) + p(x, z) (∇ · v)− μ

2

(|v|2 − Pe2
)

〉

(25)

where φ(x, z), p(x, z), and μ are Lagrange multipliers (φ and p are functions of x and z
to enforce the constraints (19) and (20) point-wise). The Euler-Lagrange equations can be
expressed as [2]:

0 =
δF
δv

= (θ + φ) ẑ + θ∇φ−∇p− μv, (26)

0 =
δF
δθ

= v · ∇φ+Δφ+ w, (27)

0 =
δF
δφ

= v · ∇θ −Δθ − w, (28)

0 =
δF
δp

= ∇ · v, (29)

0 =
∂F
∂μ

=
〈|v|2〉 − Pe2, (30)

where ∇ · v = 0 and integration by parts along with boundary conditions (22)-(23) and
periodicity in the x direction have been repeatedly employed to derive (26) and (27). Ad-
ditionally, in deriving (27), it has been assumed that φ vanishes at z = [0, 1] (to eliminate a
surface term arising from the integration by parts of φΔθ, i.e. natural boundary conditions).
Therefore the boundary conditions are

w(x, 0) = w(x, 1) = 0, (31)

θ(x, 0) = θ(x, 1) = 0, (32)

φ(x, 0) = φ(x, 1) = 0. (33)

Also notice that using integration by parts, the +θ∇φ term in (26) can be replaced by
−φ∇θ (since ∇(θφ) is a perfect gradient and can be absorbed into the ∇p term). As
expected for an incompressible flow, the Lagrange multiplier enforcing ∇·v = 0 in equation
(25) (i.e. p), plays a role similar to pressure in the resulting equations.

Inspection of equations (26) and (28)-(29) reveals some similarities between these equa-
tions and the equations of convection in porous media in the limit of infinite Prandtl-Darcy
number (see e.g. [6]), although here, an extra field φ exists. This resemblance, which will
also be observed in the linear analysis in the next section, will be discussed in section 2.5.
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2.2 The Limit of Small Pe: Asymptotic Solution

In the limit of small Pe, |v| 
 1 (from (30)), which along with (27)-(28) and the maximum
principle imply that |θ| 
 1 and |φ| 
 1. Therefore in this limit we can linearize equations
(26)-(28):

μv +∇p = (θ + φ)ẑ, (34)

Δφ+ w = 0, (35)

Δθ + w = 0, (36)

∇ · v = 0. (37)

Subtracting (36) from (35) and using (32)-(33) gives θ = φ in the small Pe regime. Taking
the divergence of equation (34) gives

Δp = 2 θz, (38)

where the subscript z means ∂/∂z. Taking Δ of the ẑ-component of (34) results in

μΔw +Δpz = 2Δθ. (39)

Subtracting ∂/∂z of (38) from (39) gives

μΔw = 2 θxx, (40)

which along with equation (36) and boundary conditions (31)-(32) can be analytically solved
to find (v,θ) in the small–Pe limit. A Fourier transform in the x direction, these equations
become

(D2
z − k2) θ̂k(z) + ŵk(z) = 0, (41)

μ(D2
z − k2) ŵk(z) + 2k2 θ̂k(z) = 0, (42)

where Dz = ∂/∂z. ŵk(z) and θ̂k(z) are the Fourier coefficients of w and θ with horizontal
wavenumber k. Defining L as half of the (dimensionless) wavelength, we see that Γ = π/k.
Given the form of these equations and the boundary conditions, the solution is

ŵk(z) = Ak sin (mπz), (43)

θ̂k(z) = Bk sin (mπz), (44)

where m is the vertical wavenumber, and Ak and Bk are still undetermined. Substituting
into (41) and (42) gives

μ = (2 k2)/(m2π2 + k2)2, (45)

Ak = (m2π2 + k2)Bk. (46)

Using equation (37), ûk(z) is obtained as

ûk(z) = i
mπ

k
Ak cos (mπz). (47)
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Substituting (47) and (43) into (30) yields

〈|v|2〉 =

(

A2
k +

m2π2

k2
A2
k

)

= Pe2 ⇒ Ak =
k

(m2π2 + k2)1/2
Pe, (48)

which along with (46) gives

Bk =
k

(m2π2 + k2)3/2
Pe. (49)

Knowing Ak and Bk, Nu is obtained from (16):

Nu = 1 +AkBk = 1 +
k2

(m2π2 + k2)2
Pe2, (50)

which for a given (Pe,Γ = π/k), is maximized at m = 1. As a result, using the notation
defined in section 1.2:

Numax(Pe,Γ) = 1 +
Γ2

π2(Γ2 + 1)2
Pe2. (51)

The largest value of Numax(Pe,Γ), i.e. NuMAX, is achieved at Γopt = 1:

NuMAX(Pe) = 1 +
Pe2

4π2
(52)

Notice that (k,m) = (π, 1) corresponds to the maximum value of μ = 1/(2π)2 (see (45)).
Therefore, in the limit of small Pe (i.e. large μ), the maximum transport is achieved via an
array of square convection cells (rolls) with optimal aspect ratio Γopt = 1. Figure 2 shows
this flow field where the square convection cells are clearly seen. The computed flow field
(equations (43)-(44) and (47)), and the square cells closely resemble those of the flow in
porous media at the onset of linear instability (see e.g. [6]). Additionally, the factor 4π2

arising in (52) is the critical Ra for instability.

2.3 Small to Large Pe: Numerical Solution

The solution in the limit of small Pe was obtained analytically from the linearized equations
in the last section. To find the solution for any Pe, especially for large Pe, the full nonlinear
equations (26)-(29) must be solved. Taking the curl of (26) and defining the stream function
ψ as (u = ∂ψ/∂z,w = −∂ψ/∂x), (26)-(29) reduce to

J(θ, φ) + μΔψ + (θ + φ)x = 0, (53)

−J(ψ, φ) + Δφ− ψx = 0, (54)

−J(ψ, θ)−Δθ + ψx = 0, (55)

where J(a, b) = ∂a
∂x

∂b
∂z − ∂a

∂z
∂b
∂x is the Jacobian. Boundary conditions (31)-(33) become

ψ(x, 0) = ψ(x, 1) = 0, (56)

θ(x, 0) = θ(x, 1) = 0, (57)

φ(x, 0) = φ(x, 1) = 0. (58)
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Figure 2: Optimal flow field in the small Pe limit for the fixed energy problem: (a) stream-
lines ψ, (b) temperature θ.

The above equations and boundary conditions imply an interesting symmetry between θ and
φ which will be exposed in the numerical results and exploited later to obtain asymptotic
solutions.

Rewritten for ψ, equations (30) and (16) are

Pe2 =
〈

ψ2
x + ψ2

z

〉

, (59)

Numax = 1− 〈ψxθ〉 . (60)

Below we present the numerical solution of these equations, obtained using continuation.

2.3.1 Numerical Continuation

Numerical continuation is a strategy to systematically trace a branch of solutions starting
from a first guess [3]. In our problem, for a given Γ, we know the solution (analytically) in
the limit of small Pe (i.e. large μ), and we want to find the solutions numerically for larger
values of Pe (i.e. smaller μ). The continuation algorithm is:

1. We start from the analytical solution for large μ for a given value of Γ.

2. At iteration N +1, μN+1 is set to be 0.1%−5% smaller than μN . We use the solution
at iteration N (with μN ) as a first guess and iteratively find the solution at iteration
N + 1 (with μN+1).

3. Using the converged solution of step 2, we calculate Pe(μN+1,Γ) and Numax(μ
N+1,Γ)

from (59) and (60), respectively.

4. Steps 2 and 3 are repeated to reduce μ (i.e. increase Pe) by several orders of magnitude.

5. Steps 1–4 are repeated for several values of Γ.
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Figure 3: The fixed energy problem: the geometry and boundary conditions of the com-
putational domain corresponding to a single 2D cell. Boundary conditions on the bottom
(left) boundary are the same as top (right) boundary.

The result of steps 1–5 is to obtain Numax(Pe,Γ) for a wide range of Pe and Γ. In step
1, the vertical wavenumber m should also be chosen for the linear solution. As discussed
later, NuMAX is always obtained with solutions continued from a linear solution withm = 1;
therefore, for most of the cases we used m = 1, although cases with m = 2 and linearly
superposed solutions with different values of m also have been studied (see section 2.3.3).
The percentage reduction of μ in step 2 depends on the degree of nonlinearity of the problem
(μ should be varied more slowly as Pe increases). The next section presents details of the
iterative method and the numerical scheme used in step 2.

2.3.2 Numerical Method

We use the Newton–Kantorovich iteration scheme [3] with the pseudo–spectral Chebyshev
collocation method [18, 3] to solve (53)–(55). Instead of solving these equations in a large
horizontally periodic domain including multiple cells (such as the one shown in Figure 2a),
we choose the computational domain to be a single cell. Therefore, the computational
domain is between the horizontal walls and has a width Γ (Figure 3). This unicellular
approach has been used before with great success to study the Rayleigh–Bénard convection
[4] and porous media convection [5]. Symmetry boundary conditions have been used on the
vertical sides of the domain (at x = ±Γ/2). Note that in the computational domain the
horizontal walls are located at z = ±0.5 (instead of z = 0, 1 we used before), for convenience
when Chebyshev polynomials are employed.

In the following, we describe the Newton–Kantorovich method [3] used in step 2 of the
continuation algorithm (section 2.3.1). We use the known solution of the Nth iteration
(ψN , θN , φN ) as a first guess to iteratively find a good approximation of the true solution
at the N + 1th iteration (ψN+1, θN+1, φN+1). Rewriting equations (53)-(55) as

Δψ = F(θx, θz, φx, φz) (61)

Δθ = G(ψx, ψz, θx, θz) (62)

Δφ = Q(ψx, ψz , φx, φz) (63)
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and Taylor expanding the nonlinear terms F, G, and Q about the solution of the Nth
iteration gives

ΔψN+1 = FN + δθx F
N
θx + δθz F

N
θz + δφx F

N
φx + δφz F

N
φz +H.O.T, (64)

ΔθN+1 = GN + δψxG
N
ψx

+ δψz G
N
ψz

+ δθxG
N
θx + δθz G

N
θz +H.O.T, (65)

ΔφN+1 = QN + δψxQ
N
ψx

+ δψz Q
N
ψz

+ δφxQ
N
φx + δφz Q

N
φz +H.O.T, (66)

where the subscripts in F, G, and Q denote the Frechet derivatives (e.g. Fψx ≡ ∂F/∂ψx)
(the superscript N means evaluated at iteration N). δ of any quantity is defined as the
difference between its value at iterations N+1 andN (e.g. δψ ≡ ψN+1−ψN ). The neglected
higher order terms (H.O.T) are O((δθx)

2, (δθz)
2, (δφx)

2, (δφz)
2) or smaller. Following the

detailed procedure presented in Appendix A, we obtain a system of three linear differential
equations (199)–(201). Applying a pseudo–spectral Chebyshev collocation method in both
x and z directions results in the following linear matrix equation:

⎡

⎣

μΔ (I + φNz )Dx − φNx Dz (I − θNz )Dx + θNx Dz

−(I − θNz )Dx − θNx Dz Δ− ψNz Dx + ψNx Dz O
−(I + φNz )Dx + φNx Dz O Δ+ ψNz Dx − ψNx Dz

⎤

⎦

⎡

⎣

δψ
δθ
δφ

⎤

⎦

=

⎡

⎣

−μΔψN − (I + φNz )θ
N
x − (I − θNz )φNx

−ΔθN + (I − θNz )ψNx + ψNz θ
N
x

−ΔφN + (I + φNz )ψ
N
x − ψNz φ

N
x

⎤

⎦ (67)

where I and O are M2 ×M2 identity and zero matrices, respectively (M is the number of
collocation grid points.) Dx and Dz are the x and z differentiation matrices, respectively;
Δ = Dxx+Dzz. These matrices (with size M2×M2) are constructed using tensor products
(also known as Kronecker products) as described in detail in [18]. Boundary conditions
are implemented by modifying the rows corresponding to the boundary grid points in the
coefficient matrix and the right–hand side matrix in (67). A MATLAB code was developed
to construct the elements of (67) and solve it by direct matrix inversion. Once δψ, δθ,
and δφ are calculated, the solution is updated as ψN+1 = ψN + δψ, θN+1 = θN + δθ, and
φN+1 = φN + δφ. The iterations stop when δ(·)/‖(·)‖∞ ≤ 10−10 for all three variables ψ, θ,
and φ. The Clenshaw-Curtis quadrature [18] is used for all spatial integrations, for example
to calculate (59) and (60).

2.3.3 Numerical Results

All the results presented here are obtained using M = 61 or 91. The iterative solution
always converged in less than 6 iterations, and the converged solution satisfies (53)-(55)
with a relative error of 10−10 or smaller, except at the boundaries. Note that we did not
solve these equations for the boundary grid points, and instead we used the freed rows in
(67) to enforce the Dirichlet and Neumann boundary conditions. The converged solution
satisfies the vertical and horizontal boundary conditions with an absolute error of 10−10 or
smaller.

Figure 4 shows ψ and θ for the case with Γ = 1 for low to high values of Pe. As
Pe increases, Numax increases as well. The flow shown in Figures 4a and 4b is still in
the linear regime. As Pe (and hence the nonlinearity) increases, the bulk flow structure
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Figure 4: Evolution of the flow fields with Pe for the case with Γ = 1. Panels on the
left show ψ and panels on the right show θ. (a) Pe = 10.0, Numax = 2.4, (b) Pe = 59.4,
Numax = 9.7, (c) Pe = 161.3, Numax = 20.7. The resolution is 612.
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Figure 5: Vertical profiles of the horizontally averaged temperature T̄ (z) = Θ(z) +

1/Γ
∫ Γ
0 θ(x, z)dx for Pe = 25.6 (blue), Pe = 161.3 (red), and Pe = 1569.9 (black). The

thin green line shows T̄ = Θ (i.e. the purely conducting case, Pe = 0). Γ = 1 and M = 61.

changes, and also boundary layers start to develop in both ψ and θ (Figures 4c–4f). The
boundary layers become thinner as Pe increases. Figure 5 clearly demonstrates the thinning
of the thermal boundary layer by showing the horizontally averaged temperature T̄ (z) =

Θ(z) + 1/Γ
∫ Γ
0 θ(x, z)dx for Pe = 0, 25.6, 161.3 and 1569.9. In fact, this decrease in the

thermal boundary layer thickness is responsible for the increase of the vertical heat flux
(and consequently Nu). This is because the thinner thermal boundary layers have larger
temperature gradients (and heat fluxes) at the walls (as seen in Figure 5). Note that at
the walls, qa · z = −∂T/∂z|z=0,1 because w = 0. Additionally, it is easy to show that the

horizontally averaged vertical flux does not vary with z, i.e. ∂{1/Γ ∫ Γ
0 (qa ·z)dx}/∂z = 0 (see

e.g. [6]). Therefore, the Nusselt number can be readily calculated using the horizontally

averaged vertical flux at one wall, i.e. Nu = −1/Γ
∫ Γ
0 {∂T/∂z|z=0}dx. An immediate result

of this analysis is that Nu ∝ 1/δT where δT is the thermal boundary layer thickness.
Figure 6 presents the numerically calculated Numax(Pe,Γ) for several values of Γ. This

figure shows that:

• The absolute upper bound (24) overpredicts the maximum possible heat transport.

• NuMAX(Pe) is obtained with solutions continued from linear solutions with m = 1.
This was expected because flows with m > 1 produce horizontal transport in the
bulk (far from the walls) which is not desired and wastes the energy of the flow. We
computed several cases with m > 1 and a few cases with superposed solutions of two
m (only one case is shown in this figure) and they all confirmed this conclusion.

• In the limit of small Pe, Numax agrees well with the analytical bound (51).

• as Pe (and therefore nonlinearity) increases, Numax starts to scale as K(Γ)Pe2/3.

• As Pe increases, NuMAX is obtained for flows with smaller Γ. This figure clearly
demonstrate that Numax plotted against Pe for different values of Γ forms an envelope
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Figure 6: The non-black lines show the numerically obtained Numax as a function of Pe
for various values of Γ. For each case, the thin short line of the same color, visible for
most of the cases, shows the analytical Numax (51) in the limit of small Pe. The thick
solid black line shows the absolute upper bound (24), and the thick broken black line shows
the analytically obtained NuMAX (130) (see the next section). The thin broken black line
indicates the Pe2/3 slope. All numerical results started with linear solutions with m = 1,
unless otherwise stated. All results shown here have resolution M = 61. Using a higher
resolution M = 91 results in negligible difference.

which determines NuMAX. The numerical results suggests that NuMAX scales as C Pe
where C is a constant prefactor.

The prefactors K(Γ) and C can be determined from the numerical results. However, this is
not necessary as in the next section, guided by the numerical results, we obtain analytical
solutions for (53)–(55) and hence Numax, NuMAX, and Γopt in the limit of large Pe (the
analytically obtained NuMAX is shown in Figure 6 and agrees very well with the envelope
produced by the numerical results).

2.4 The Limit of Large Pe: Asymptotic Solution

The numerical results show various symmetries in ψ, θ, and φ in the limit of large Pe (e.g.
see Figures 7 and 8). ψ is found to be nearly independent of z in the bulk and to depend
on x as cos (πx/Γ) in both the bulk and boundary layers. θ and φ do not have such simple
structure in the bulk or boundary layer. However, defining

ξ(x, z) ≡ φ(x, z) + θ(x, z), (68)

η(x, z) ≡ θ(x, z)− φ(x, z), (69)
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it is observed that ξ (like ψ) is nearly independent of z except close to the top and bot-
tom boundaries (i.e. inside the thin boundary layers), and that η is only a function of
z everywhere (see Figures 7 and 8). This simple geometric structure suggests rewriting
the equations for (ψ, ξ, η) and using matched asymptotic analysis to solve the resulting
equations in the large–Pe (i.e. small–μ) limit.

Rewriting (53)-(55) for ψ, ξ, and η yields

− J(ξ, η) + 2μΔψ + 2ξx = 0, (70)

J(ψ, ξ) + Δη = 0, (71)

J(ψ, η) + Δξ − 2ψx = 0, (72)

where (71) and (72) are obtained from adding and subtracting (54) and (55), respectively.
The numerical results suggest using the following ansatzen:

ψ = ψ̄(x) A(z), (73)

ξ = ξ̄(x) B(z), (74)

η = η̄(z) C(z), (75)

where the overbar indicates the interior solution (or the so-called outer solution, i.e. far
from the top and bottom boundary layers), and A, B, and C are equal to unity in the
interior, rapidly decay close to the boundaries, and vanish at z = ±0.5. The first step in
the analysis is finding the interior solution (ψ̄,ξ̄,η̄).

2.4.1 Interior Solution

For small μ, the leading-order dominant balances in (70)–(72) in the interior are

2μψxx − ξxηz + ξzηx + 2ξx = 0, (76)

ηxx + ηzz + ψxξz − ψzξx = 0, (77)

ξxx + ξzz + ψxηz − ψzηx − 2ψx = 0, (78)

where the formally small 2μψxx term has been retained to develop an asymptotic solution
that remains uniformly valid in the small-μ limit even as Γ → 0 (see below). Motivated by
the numerics, we make the ansatz that η(x, z) ∼ η̄(z) and ψ(x, z) ∼ ψ̄(x), in the interior,
in accord with (73) and (75).

Therefore, (76)–(78) reduce to

2μ ψ̄xx + (2− η̄z) ξ̄x = 0, (79)

η̄zz = 0, (80)

ξ̄xx + (η̄z − 2)ψ̄x = 0. (81)

Equation (80) shows that η̄ is linear in z (this could be also inferred from (79) and (81)
because ψ̄ and ξ̄ are only functions of x). The linearity of η̄(z) along with the symmetry of
the flow with respect to z = 0 yields

η̄(z) = η̄o z, (82)
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Figure 7: Flow field for Γ = 1, μ = 3.557 × 10−5, Pe = 1320.5, and Numax = 90.7. (a) ψ,
(b) ψ along x = 0, (c) θ, (d) φ, (e) ξ ≡ θ + φ, and (f) η ≡ θ − φ. The resolution is 612.
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Figure 8: Flow field for Γ = 0.1, μ = 1.9 × 10−4, Pe = 1045.0, and Numax = 194.0. (a) ψ,
(b) ψ along x = 0, (c) θ, (d) φ, (e) ξ ≡ θ + φ, and (f) η ≡ θ − φ. The resolution is 912.
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where η̄o is an unknown constant. Linearity of η̄(z) can also be clearly seen from Figures 7f
and 8f. Using (82) and eliminating ψ̄ between (79) and (81) gives

ξ̄xxx +

(

η̄o − 2√
2μ

)2

ξ̄x = 0. (83)

Given the periodicity of 2Γ in x, and ξx(±Γ/2, z) = 0, this implies

ξ̄ = ±ξ̄o sin (π x/Γ), (84)

η̄o = 2− π

Γ

√

2μ, (85)

where ξ̄o > 0 is an unknown constant. Notice that there exists another possible solution
η̄o = 2 + (π/Γ)

√
2μ > 2 which is discarded here based on the numerical results. It will

be shown later in section 2.4.3 that η̄o must be ≤ 2 because of the maximum principle,
confirming that (85) is the only admissible solution.

Equation (81) gives

ψ̄ =
±ξ̄o√
2μ

cos (π x/Γ). (86)

Therefore, the interior flow field (i.e. outer solution) is known up to an unknown constant
ξ̄o (notice that in (84) and (86) either −ξ̄o or +ξ̄o should be chosen for both ψ̄ and ξ̄).

2.4.2 Boundary Layer Solution

To find the boundary layer solution (i.e. the inner solution), we rewrite (73)-(75) as

ψ = ψ̄(x)A(Z1), (87)

ξ = ξ̄(x)B(Z2), (88)

η = η̄(z)C(Z3), (89)

where Z is the rescaled z near the boundaries at z = ∓0.5:

Z1 = (0.5 ± z)/δ1, (90)

Z2 = (0.5 ± z)/δ2, (91)

Z3 = (0.5 ± z)/δ3. (92)

For the moment we allow for the possibility that the small boundary layer thicknesses for ψ,
ξ, and η are not the same. Notice that in the rescaled coordinate, A(0) = B(0) = C(0) = 0
and A(+∞) = B(+∞) = C(+∞) = 1.

Focusing only on the upper boundary layer for now (i.e. close to z = +0.5), and using
(87)-(89) and (90)-(92) in (70)-(72) gives

2μ (ψ̄xxA+ ψ̄ A′′/δ21) + (2− (η̄z C − η̄ C ′/δ3)) ξ̄xB = 0, (93)

η̄zz C − 2η̄z C
′/δ3 + η̄ C ′′/δ23 − ψ̄xA ξ̄ B

′/δ2 + ξ̄xB ψ̄ A
′/δ1 = 0, (94)

ξ̄xxB + ξ̄ B′′/δ22 − (2− (η̄z C − η̄ C ′/δ3))ψ̄xA = 0, (95)
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where ′ means d/dZ (e.g. A′ ≡ dA/dZ1). Using the interior solution (82)-(86), and noticing
that η̄ → η̄o/2 as z → 0.5, the above equations yield

√

2μ

[

−
(π

Γ

)2
A+

1

δ21
A′′

]

+
(π

Γ

)

[

2−
(

2− π

Γ

√

2μ
)

(

C − 1

2δ3
C ′

)]

B = 0, (96)

(

2− π

Γ

√

2μ
)

[

− 2

δ3
C ′ +

1

2δ23
C ′′

]

+
( π

2Γ

) ξ̄2o√
2μ

[

1

δ2
AB′ +

1

δ1
BA′

]

= 0, (97)

√

2μ

[

−
(π

Γ

)2
B +

1

δ22
B′′

]

+
(π

Γ

)

[

2−
(

2− π

Γ

√

2μ
)

(

C − 1

2δ3
C ′

)]

A = 0, (98)

where (97) has been integrated over 1/Γ
∫ Γ
0 dx to eliminate the sin2 (πx/Γ) and cos2 (πx/Γ)

terms.
To balance the leading order terms, we need to determine the generic boundary layer

thickness δ as a function of a small parameter ε defined based on μ and Γ. To get to
the large Pe limit, we know that μ 
 1, although from the above equations it seems that√
μ 
 1 is a more appropriate parameter in this problem. Here we restrict our analysis to

Γ ≤ 1, because the numerical results of section 2.3 showed that Γ > 1 does not maximize
the transport. With μ 
 1 and Γ ≤ 1, we define λ ≡ Γ

√
μ 
 1. We also need to consider

the magnitude of σ ≡ Γ/
√
μ. If Γ = O(1), then σ � 1. The numerical results (Figure 6)

suggest that Γopt decreases as Pe increases. Therefore, we should allow for the possibility
that Γ 
 1, i.e. σ = O(1) and σ 
 1. However, the latter means that the cell size shrinks
very fast as Pe increases, suggesting that this limit probably does not correspond to the
optimal flow. A close examination of (96)-(98) reveals that σ � 1 and σ = O(1) give the
same balance and result in the same scaling for boundary layer thicknesses. Therefore one
solution covers both limits. Additionally, the distinguished limit σ = O(1) guarantees that
the solution is uniformly valid in Γ. Here we focus on these two limits and exclude σ 
 1
from our analysis (but appendix B includes a brief discussion of the scaling in this limit).
Therefore, based on the above discussion, we choose the small parameter ε as

ε ≡ Γ
√
2μ

π
(99)

where the constants are included to simplify the algebra. Again we emphasize that we only
focus on σ ≥ O(1) hereafter. This will be justified later as we show that Numax for a fixed
value of Γ in the limit of large Pe is obtained with σ � 1, and that NuMAX for large Pe is
achieved when σ = O(1).

Using (99) in (96)-(98), and balancing the leading order terms gives

A′′ +
(

1− π

σ
√
2

)

B C ′ = 0, (100)

ε δ3 = δ21 . (101)

Notice that based on our assumption for σ, the term in the parentheses is O(1). The same
procedure for (98) results in

B′′ +
(

1− π

σ
√
2

)

AC ′ = 0, (102)

ε δ3 = δ22 , (103)
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showing that δ1 = δ2 ≡ δ. Equation (97) yields

(

1− π

σ
√
2

)

C ′′ +
ξ̄2o
2
(AB′ +BA′) = 0, (104)

ε δ = δ23 . (105)

Equations (101), (103), and (105) together show that the boundary layer thicknesses are
each O(ε), i.e. δ1 = δ2 = δ3 = δ = ε. Integrating equation (104) gives

(

1− π

σ
√
2

)

C ′ = − ξ̄
2
o

2
(AB − 1), (106)

where the constant of integration has been deduced from C ′(+∞) = 0 and A(+∞) =
B(+∞) = 1. Substituting this equation in (100) and (102) results in the exactly the
same equation for A and B, which along with the fact that they have the same boundary
conditions suggests that A = B. Using A = B in both equations (100) and (104) shows
that A = B =

(

1− π/(σ
√
2)

)

C/ξ̄o. Boundary conditions A(+∞) = C(+∞) = 1 imply

that ξ̄o = 1− π/(σ
√
2). Therefore

A = B = C, (107)

A′′ + ξ̄oAA
′ = 0, (108)

ξ̄o =
η̄o
2

= 1− π

2Γ

√

2μ. (109)

Determining ξ̄o completes the interior solution.
Equation (108) can be integrated once to give

A′ +
ξ̄o
2
A2 =

ξ̄o
2
, (110)

where again the constant of integration comes from A′(+∞) = 0 and A(+∞) = 1. Equa-
tion (110) is a Riccati equation with the solution

A(Z) =
1− exp(−ξ̄oZ)
1 + exp(−ξ̄oZ)

= tanh

[

ξ̄o
2
Z

]

. (111)

2.4.3 The Complete Solution: Matching

We have found the solution for the flow field to leading order, assuming that Γ
√
μ 
 1

and Γ/
√
μ is finite or large. Including the bottom boundary layer, and matching the three

regions (the interior and the two boundary layers), the complete solution is

ψ(x, z) =
1√
2μ

(

1− π

2Γ

√

2μ
)

cos
(π

Γ
x
)

H(z), (112)

ξ(x, z) =
(

1− π

2Γ

√

2μ
)

sin
(π

Γ
x
)

H(z), (113)

η(x, z) = 2
(

1− π

2Γ

√

2μ
)

z H(z), (114)
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where

H(z) = A

(

0.5 − z

δ

)

A

(

0.5 + z

δ

)

= tanh

[

π

2

(

1− π

2Γ

√

2μ
) z + 0.5

Γ
√
2μ

]

tanh

[

π

2

(

1− π

2Γ

√

2μ
) z + 0.5

Γ
√
2μ

]

. (115)

Therefore

u(x, z) =
1√
2μ

(

1− π

2Γ

√

2μ
)

cos
(π

Γ
x
)

H ′(z), (116)

w(x, z) =
1√
2μ

(π

Γ

) (

1− π

2Γ

√

2μ
)

sin
(π

Γ
x
)

H(z), (117)

θ(x, z) =
1

2

(

1− π

2Γ

√

2μ
) (

sin
(π

Γ
x
)

+ 2z
)

H(z). (118)

This solution is compared with the numerical results in Figures 9 and 10. The agreement
between the numerical and asymptotic solutions is excellent.

Note that the maximum principle requires |θ| ≤ 1. This means that in (118), the first
term in the parentheses, i.e. ξ̄o = η̄o/2 = 1− π

2Γ

√
2μ, has to be smaller than 1. This analysis

justifies discarding the other solution for η̄o in section 2.4.1.
Values of Pe and Numax can be calculated analytically from (116)-(118):

Pe =
√

〈u2 + w2〉 = 1

2
√
μ

(

1− π

2Γ

√

2μ
)

√

∫ 0.5

−0.5
{(H ′)2 + (π/Γ)2H2} dz (119)

Numax = 1 + 〈wθ〉 = 1 +
1

4
√
2μ

(π

Γ

)(

1− π

2Γ

√

2μ
)2

∫ 0.5

−0.5
H2dz (120)

Notice that H(z) depends on μ and Γ which makes it hard to find an explicit expression for
Numax(Pe,Γ). However, (119) and (120) can be easily calculated numerically for a given
pair of (μ,Γ). Figure 11 compares the values of Pe and Numax from the numerical solutions
with the values given by (119) and (120) for Γ = 0.2 and 1. The numerical and analytical
results agree well, even for relatively small values of Pe. This suggests that the higher order
terms in the analytical solution may be transcendentally small in ε.

2.4.4 Numax(Pe,Γ): λ
 1 and σ � 1 Limit

In the limit of relatively small λ ≡ Γ
√
μ, the integrals in (119) and (120) can be approxi-

mated as

∫ 0.5

−0.5
H2dz ≈ 1− 4

√
2

π

λ

1− π
σ
√
2

, (121)

∫ 0.5

−0.5
(H ′)2dz ≈

√
2π

3

1− π
σ
√
2

λ
, (122)

as has been confirmed numerically (again, recall that σ ≡ Γ/
√
μ is not 
 1).
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Figure 9: Comparison of the analytical (blue line) and numerical (red circles) solutions for
Γ = 1 (left panels), and Γ = 0.1 (right panels). The top row is ψ along x = 0, the middle
row is ξ along x = −0.227 (left) and x = −0.0155 (right), and the bottom row is η along
x = 0. For Γ = 1, Pe = 1320.5, Numax = 90.7, and M = 61. For Γ = 0.1, Pe = 1045.4,
Numax = 194.0, and M = 91.
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Figure 10: Comparison of the analytical (blue line) and numerical (red circles) solutions for
Γ = 1 (left panels) and Γ = 0.1 (right panels) (see the caption of Figure 9 for more details).
(a) and (b) ψ along z = 0. (c) ψ, (d) ψ, (e) ξ, and (f) η; (c)–(f) are versus x along the third
Chebyshev collocation point from the wall (z = 0.4972 in (c) and z = 0.4988 in (d)).
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Figure 11: Numax from the numerical solutions (blue circles), the small–Pe analytical solu-
tion (51) (dashed black lines), and the large–Pe asymptotic solution (119)-(120) (blue solid
lines) for two cases: (a) Γ = 1 and (b) Γ = 0.2. The dashed red lines, which have collapsed
with the blue lines in the large–Pe regime, show (125).

Here examine (119) and (120) in the limit of vanishing μ and fixed Γ, i.e. λ 
 1 and
σ � 1. In this limit, (121) and (122) further simplify to 1 and

√
2π/(3λ), respectively.

Using these limits in (119) and (120) yields

Pe =
π

2

1

λ

√√
2

3π
σ, (123)

Numax − 1 =
π

4
√
2

1

λ
. (124)

Solving (123) for μ and using that expression in (124) gives Numax(Pe,Γ):

Numax = 1 +
1

4

[

3π2

Γ2

]1/3

Pe2/3. (125)

The accuracy of this approximation is shown in Figure 11 for Γ = 0.2 and 1.
Equation (125) gives Numax as a function of Pe for a fixed value of Γ, which may not be

the same as NuMAX, i.e. the maximum achievable Numax at that Pe. NuMAX(Pe) is found
in the next section and requires letting Γ shrink as Pe increases.

2.4.5 NuMAX(Pe): λ
 1 and σ = O(1) Limit

Here we look at the limit
√
μ 
 1 and Γ 
 1 when their ratio is finite. Physically this

means that as Pe gets larger, we allow the cells to narrow. It turns out that it is in this
distinguished limit that NuMAX for a given Pe, i.e. the optimal transport for a given amount
of energy, is achieved.
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In this limit, (121) again reduces to 1, but (122) cannot be further simplified. Using
these approximations for the integrals in (119)–(120) gives

Pe =
π

2

1

λ

(

1− π√
2

1

σ

)

√

2

3
+

√
2

3π
σ, (126)

Numax − 1 =
π

4
√
2

1

λ

(

1− π√
2

1

σ

)2

. (127)

By dividing (127) by (126) we eliminate λ:

Numax − 1

Pe
=

1

2
√
2

1− π√
2
1
σ

√

2
3 +

√
2

3π σ
. (128)

Thus we have obtained Numax(Pe, σ), which is found to be maximized at

σopt ≡ Γopt√
μ

= 2
√
2π ≈ 8.885766. (129)

This gives the aspect ratio Γopt that maximizes Numax at a given μ. Using σ = σopt in
(128) gives NuMAX(Pe):

NuMAX = 1 + 0.1875Pe. (130)

Figure 6 shows that (130) gives the maximum possible transport with remarkable accuracy.
Combining (129) and (126) gives Γopt(Pe), i.e. the optimal cell aspect ratio at a given

Pe:

Γopt = 3.8476 Pe−1/2 (131)

Therefore as the Pe number increases, thinner cells provide the maximum transport.

2.5 Example: Application to Porous Media Convection

Here we show that convection in porous media is an example of transport with fixed energy.
We find Numax and NuMAX as a function of the Rayleigh number Ra and compare them
with the results of previous analytical and numerical investigations.

Convection in a layer of fluid-saturated porous medium heated from below and cooled
from above is often modeled by [6]

∇ · v = 0, (132)

1

Pr
(v̇ + v · ∇v) + v = −∇p+RaTz, (133)

Ṫ + v · ∇T = ΔT, (134)

where the first and the third equations are the incompressibility constraint and advection–
diffusion equation. The second equation is the Boussinesq momentum equation where Pr is
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the Prandtl–Darcy number, and Ra is the Rayleigh number. The linear velocity damping
term comes from the Darcy’s law (see [6] and references therein for details).

Multiplying (133) by v and integrating over long time and over the domain with imper-
meable walls gives

〈v · v〉 = Ra 〈wT 〉 , (135)

where the transient term vanishes due to long–time averaging, and the nonlinear and pres-
sure terms vanish because of the spatial integration. Using the definition of Pe for fixed
energy problems (13) and Nu (16) from section 1.1 we obtain

Pe2 = Ra (Nu − 1). (136)

The Nusselt number Nu, when calculated by long–time averaging, is just a function of Ra.
As a results, in both steady and statistically–steady flows, equation (136) shows that Pe is
fixed for a fixed value of Ra (note that Ra depends on the fluid properties and the imposed
temperature difference between the walls; it does not depend on the flow). Therefore,
convection in porous media occurs with fixed energy.

Employing (136), Pe can be replaced with Ra in (125), (130), and (131):

Numax(Ra,Γ) = 1 +

√
3π

8Γ
Ra1/2, (137)

NuMAX(Ra) = 1 + 0.0352Ra, (138)

Γopt = 8.89Ra−0.5. (139)

Interestingly, Ra−0.5 is the scaling of the smallest unstable mode in porous media convection
(obtained from linear stability analysis).

Table 1 compares (137)–(139) with the results obtained using other methods in the
literature. The classical argument of Malkus [14] and Howard [11], which is based on the
marginal stability of the boundary layer, gives Nu ∼ Ra for convection in porous media
[10]. The background method also gives upper bounds on Nu which scale linearly with Ra.
The prefactors in the upper bounds have been improved over the years [6, 16, 19].

While we solved (132) and the steady version of (134) for one cell in the current work,
we did not solve the momentum equation of porous media convection, i.e. (133) (instead
we solved an Euler–Lagrange equation (26) which resembles (133) to some extent). The
outcome of our analysis is the optimal steady flow, which might not satisfy (133). Solving
the steady version of (132)–(134) in the limit of infinite Prandtl–Darcy number for one cell
(using numerical continuation), Corson [5] has shown that Nu ∼ Ra2/3 and Γ ∼ Ra−0.5.
Furthermore, Corson [5] shows that if Γ is fixed, Nu scales as Ra1/3. Comparing these
scalings with those obtained in the current work shows that steady convection in porous
media does not transport as much as possible by a steady flow with a given amount of
energy. This might be due to the fact that the flow in steady porous media convection
differs significantly from the optimal steady flow (e.g. compare Figures 12b and 12a).

The latest direct numerical simulations (DNS) of (132)–(134) in the limit of infinite
Prandtl–Darcy number at Ra as high as 4 × 104 show that Nu scales as Ra and that the
cell aspect ratio scales as Ra−0.4 [9]. Comparing the steady [5] and unsteady [9] solutions
of (132)–(134) suggests that unsteadiness might enhance the transport.
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Table 1: Comparison of the results of the current work with the scalings for porous media
convection obtained using various other methods.

Nu(Ra) Γ(Ra) Nu(Ra,Γfixed)

Boundary Layer Stability Argument

Malkus [14], Howard [11], Horne & O’Sullivan [10] ∼ C Ra

Upper Bounds using Background Method

Doering & Constantin [6] ≤ 0.035Ra

Otero et al. [16] ≤ 0.029Ra

Wen et al. [19] � 0.017Ra

DNS: Unsteady Simulations

Otero et al. [16]: Ra ≤ 104 ∼ C Ra0.9

Hewitt et al. [9]: Ra ≤ 4× 104 ∼ 0.007Ra ∼ C Ra−0.4

Steady Unicellular Analysis

Fowler [8] ∼ C(Γ)Ra1/3

Corson [5] ∼ C Ra2/3 ∼ C Ra−0.5 ∼ C(Γ)Ra1/3

Current Work

Numerical & asymptotic analyses ≤ 1 + 0.035Ra ∼ 8.89Ra−0.5 ≤ 1 + 0.68
Γ Ra0.5

Results of the current work show that the maximum possible steady transport scales
linearly with Ra, which curiously agrees with the unsteady results. As shown in Figure 12,
the optimal steady flow obtained here and the unsteady flow look similar to some extent.
However, the unsteady transport is around 5 times smaller than the maximum possible
steady transport at a given Ra, and the convection cells of the unsteady flow are wider than
the optimal cells with aspect ratio Γopt.

3 Optimal Transport with Fixed Enstrophy

In the second problem, we investigate the optimal steady transport with fixed enstrophy.
Therefore, equations (8)–(11) and (14) become

v · ∇θ = Δθ +w, (140)

∇ · v = 0, (141)

Pe =
〈|∇v|2〉 , (142)

θ(x, 0) = θ(x, 1) = 0, (143)

w(x, 0) = w(x, 1) = 0. (144)

387



(a)

−0.05 0 0.05
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

z

 

 

−30

−25

−20

−15

−10

−5

(b)

(c)

(d)

Figure 12: Streamfunction ψ for (a) steady porous media convection with Γ = 0.07 and
Ra = 9976 [5] and (b) steady optimal flow with Γ = 0.1 and Ra = 5658. Temperature
T in the large–Ra regime (c) steady optimal flow with Γ = 0.1 and Ra = 4028.4 and (d)
unsteady DNS results with Ra = 2× 104 [9].
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As for the first problem, a simple analysis gives a relatively crude upper bound of Nu.
Starting from (16)

Nu = 1 + 〈wT 〉 = 1 + 〈w(T − 1/2)〉 ≤ 1 +
〈|w|2〉1/2 〈|T − 1/2|2〉1/2 ≤ 1 +

〈|v|2〉1/2
2

≤ 1 +

〈|∇v|2〉1/2
2π

= 1 +
Pe

2π
, (145)

where as before, the Cauchy–Schwarz inequality and maximum principle have been used in
the first line. The Poincaré inequality is applied to get the first term on the second line,
and (142) is used to get the final result. This upper bound,is too high, and a full analysis
of (140)–(144) is needed to obtain a better estimate. As the analysis is very similar to the
first problem, many details are omitted for brevity.

3.1 Variational Formulation for Steady Flows

The variational formulation of the second problem involves maximizing equation (16) given
constraints (140)–(142), and boundary conditions (143)-(144):

F =
〈

wθ − φ(x, z) (v · ∇θ −Δθ − w) + p(x, z) (∇ · v) + μ

2

(|∇v|2 − Pe2
)

〉

, (146)

where again, φ(x, z), p(x, z), and μ are Lagrange multipliers. The Euler-Lagrange equations
are:

0 =
δF
δv

= (θ + φ) ẑ + θ∇φ−∇p+ μΔv, (147)

0 =
δF
δθ

= v · ∇φ+Δφ+ w, (148)

0 =
δF
δφ

= v · ∇θ −Δθ − w, (149)

0 =
δF
δp

= ∇ · v (150)

0 =
∂F
∂μ

=
〈|∇v|2〉 − Pe2, (151)

where again it has been assumed that φ vanishes at z = [0, 1]. Also to eliminate the surface
term ∇ · (v∇v), we can use either the free–slip (i.e. ∂u/∂z = 0) or no–slip (i.e. u = 0)
boundary conditions at z = [0, 1]. Therefore the boundary conditions are the same as
before, i.e.

w(x, 0) = w(x, 1) = 0, (152)

θ(x, 0) = θ(x, 1) = 0, (153)

φ(x, 0) = φ(x, 1) = 0, (154)

in addition to one of

u(x, 0) = u(x, 1) = 0 no− slip (155)

∂u

∂z

∣

∣

∣

∣

z=0

=
∂u

∂z

∣

∣

∣

∣

z=1

= 0 free− slip (156)
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Here we only focus on the free–slip boundary condition and use (156).
Equations (147) and (149)-(150) look relatively similar to the Boussinesq equations (see

e.g. [7]), although here, an extra field φ exists.

3.2 The Limit of Small Pe: Asymptotic Solution

In the limit of small Pe, |v| 
 1 and we can linearize equations (147)-(149):

− μΔv+∇p = (θ + φ)ẑ (157)

Δφ+ w = 0, (158)

Δθ + w = 0, (159)

∇ · v = 0. (160)

Subtracting (159) from (158) and using (153)-(154) gives θ = φ in the small–Pe regime.
Taking the divergence of equation (157) and following the same steps as before results in

− μΔΔw = 2 θxx, (161)

which along with equation (159), and boundary conditions (152)-(153) and (156) can be
analytically solved to find (v,θ) in the small–Pe limit.

A Fourier transform in the x direction, these equations become

(D2
z − k2) θ̂k(z) + ŵk(z) = 0, (162)

−μ(D2
z − k2)2 ŵk(z) + 2k2 θ̂k(z) = 0. (163)

As before, the solution has the form

ŵk(z) = Ak sin (mπz), (164)

θ̂k(z) = Bk sin (mπz), (165)

with unknown Fourier coefficients Ak and Bk. Substituting these equations into (162) and
(163) gives

μ = (2 k2)/(m2π2 + k2)3, (166)

Ak = (m2π2 + k2)Bk, (167)

and equation (160), yields

ûk(z) = i
mπ

k
Ak cos (mπz). (168)

Using (168) and (164) in (151) results in

〈|∇v|2〉 =
1

k2
(

m2π2 + k2
)2
A2
k = Pe2 ⇒ Ak =

k

(m2π2 + k2)
Pe, (169)

which combined with (167) yields

Bk =
k

(m2π2 + k2)2
Pe. (170)
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Figure 13: Optimal flow field in the small Pe limit for the fixed enstrophy problem with
free-slip boundaries (a) streamlines ψ, (b) temperature θ.

Knowing Ak and Bk, Nu is obtained from (16):

Nu = 1 +AkBk = 1 +
k2

(m2π2 + k2)3
Pe2, (171)

which for a given (Pe,Γ = π/k), is maximized at m = 1. As a result, using the notation
defined in section 1.2:

Numax(Pe,Γ) = 1 +
Γ4

π4(Γ2 + 1)3
Pe2. (172)

The largest value of Numax(Pe,Γ), i.e. NuMAX, is achieved at Γopt =
√
2:

NuMAX(Pe) = 1 +
Pe2

(27π4/4)
. (173)

In the limit of small Pe, the maximum transport is achieved via an array of cells with aspect
ratio Γopt =

√
2 (Figure 13). This flow field (equations (164)–(165) and (168)), and the cells

of the aspect ratio of
√
2, closely resemble those of the Rayleigh-Bénard convection (with

free–slip boundary conditions) at the onset of linear instability (see e.g. [7]). The factor
27π4/4 in (173) is in fact the critical Ra of the instability.

3.3 Small to Large Pe: Numerical Simulation

Following the same steps as before, and using ω = Δψ, equations (147)-(150) simplify to

J(θ, φ)− μΔω + (θ + φ)x = 0, (174)

Δψ − ω = 0, (175)

−J(ψ, θ)−Δθ + ψx = 0, (176)

−J(ψ, φ) + Δφ− ψx = 0, (177)
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Figure 14: The fixed enstrophy problem: the geometry and boundary conditions of the
computational domain which is a single 2D convection cell. Boundary conditions on the
bottom (left) boundary are the same as top (right) boundary.

and boundary conditions (152)-(154) and (156) become

ψ(x, 0) = ψ(x, 1) = 0, (178)

ω(x, 0) = ω(x, 1) = 0, (179)

θ(x, 0) = θ(x, 1) = 0, (180)

φ(x, 0) = φ(x, 1) = 0, (181)

where ω has been introduced to avoid the occurrence fourth order derivatives and to simplify
the implementation of boundary conditions.

Using the same continuation algorithm as given in section 2.3.1, and following the same
steps as section 2.3.2 and appendix A, equations (174)-(177) become

⎡

⎢

⎢

⎣

μΔ −I O O
O μΔ −(I + φNz )Dx + φNx Dz −(I − θNz )Dx − θNx Dz

−(I − θNz )Dx − θNx Dz O Δ− ψNz Dx + ψNx Dz O
−(I + φNz )Dx + φNx Dz O O Δ+ ψNz Dx − ψNx Dz

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

δψ
δω
δθ
δφ

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

−ΔψN + ωN

−μΔωN + (I + φNz )θ
N
x + (I − θNz )φNx

−ΔθN + (I − θNz )ψNx + ψNz θ
N
x

−ΔφN + (I + φNz )ψ
N
x − ψNz φ

N
x

⎤

⎥

⎥

⎦

(182)

The details of the matrix algebra and boundary condition implementation are the same as
before (see section 2.3.2).

3.3.1 Numerical Results

All the results presented here are obtained using M = 61 or 81. As before, the iterative
solution always converged in less than 6 iterations, and the converged solution satisfies the
equations and boundary conditions with the relative error of 10−10 or smaller.
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Figure 15: Evolution of the flow field with Pe for the case with Γ =
√
2/π3. Panels on

the left show ψ and panels on the right show θ (only the upper half of the domain is
shown for better illustration of the circulation zone). (a) Pe = 4889.1, Numax = 1.98, (b)
Pe = 3.97 × 104, Numax = 40.1, (c) Pe = 1.43× 105, Numax = 175.6. The resolution is 812.
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Figure 15 shows ψ and θ for the case with Γ =
√
2/π3 for low to high values of Pe.

Numax increases withPe, and the flow structure changes. The enhancement of the heat
transport is associated with the development of the boundary layers: the boundary layers
thin as Pe increases and result in larger Numax. However, here we observe that for very
large values of Pe, a circulation zone emerges between the boundary layers and the bulk.
The circulation zone complicates the flow structure even for ξ and η. Figures 16 and 17
present (ψ, θ, φ, ξ, η) for Γ =

√
2/π2 and

√
2/π3 in the limit of large Pe (the wiggles are due

to the lack of numerical resolution). These results show that the optimal flow field for the
fixed enstrophy problem is more complicated than the optimal flow field for the fixed energy
problem, mainly due to the presence of the circulation zone. However, the bulk flows in
the two problems still look rather similar: ψ and ξ are nearly independent of z and have a
single mode dependence on x. η seems to be linear in z as before and nearly x–independent.
Appendix C presents the interior solution for this problem:

ξ̄ = ±ξ̄o sin (π x/Γ), (183)

η̄o = 2−
(π

Γ

)2 √

2μ, (184)

ψ̄ =
±ξ̄o

(π/Γ)
√
2μ

cos (π x/Γ), (185)

which agree with the observations of the numerical results. This solution is determined up
to an unknown constant ξ̄o which should be determined from the boundary layer solution.
Owing to the complexity of this flow, we have not yet succeeded in solving the boundary
layer equations and completing the matched asymptotic analysis.

In the absence of an analytical solution, we use the numerical results to find Numax(Pe,Γ)
and NuMAX(Pe). Figure 18 shows the numerically calculated Numax(Pe,Γ) for several values
of Γ. The first three conclusions made from the results of Figure 6 are also true for these
results. However, the scalings of Numax and NuMAX with Pe are different. For fixed Γ, we
observe that

Numax(Pe,Γ) = 1 +K(Γ)Pe1/2, (186)

where K(Γ) is a prefactor that can be determined from the numerical results. A fit to the
envelope made by the largest values of Numax gives

NuMAX(Pe) = 1 + 0.2175Pe10/17. (187)

The exponent we originally found by eyeballing was 0.58. However, the scaling of Nu
with Ra reported by other investigators for Rayleigh–Bénard convection with stress–free
boundaries (see Table 2) gives Nu ∼ Ra5/12. Interpreting their results in term of Pe (using
(192) gives Nu ∼ Pe10/17=0.5882. This led us to believe that Pe10/17 is the scaling in our
problem as well. Also note that this scaling is only valid for moderate and large values of
Pe; in the limit of small Pe, (172) is the scaling of NuMAX. This explains the crossing of
(187) and (145) in the limit of very small Pe.

To find Γopt(Pe) accurately from the numerical results, more data points in Γ (and
especially for smaller Γ) are needed. However, using just three points in the wide range of
Pe = 1701 − 4.1 × 104, we obtain −0.361 and −0.358 as the exponent of Pe in the scaling
of Γopt(Pe).
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Figure 16: Flow field for Γ =
√
2/π2, μ = 4.83×10−8, Pe = 3.57×104, and Numax = 103.3.7.

Only the upper half of the domain is shown for better illustration of the circulation zone.
(a) ψ, (b) ψ along x = 0, (c) θ, (d) φ, (e) ξ ≡ θ + φ, and (f) η ≡ θ − φ. The resolution is
612.
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Figure 17: Flow field for Γ =
√
2/π3, μ = 9.7 × 10−9, Pe = 1.2 × 105, and Numax = 153.1.

Only the upper half of the domain is shown for better illustration of the circulation zone.
(a) ψ, (b) ψ along x = 0, (c) θ, (d) φ, (e) ξ ≡ θ + φ, and (f) η ≡ θ − φ. The resolution is
812.
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Figure 18: The non-black lines show the numerically obtained Numax as a function of Pe
for various values of Γ. For each case, the thin short line of the same color, visible for most
of the cases, shows the analytical Numax (172) in the limit of small Pe. The thick solid black
line shows the absolute upper bound (145), and the thick broken black line shows a fit to
the envelope (i.e. NuMAX) (see equation (187)). The thin broken black line indicates the
Pe1/2 slope. All numerical results started with linear solutions with m = 1 and all results
shown here have resolution M = 61. Using a higher resolution M = 81 results in negligible
changes to the plot.
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3.4 Example: Application to Rayleigh-Bénard Convection

Rayleigh-Bénard convection, i.e. convection in a layer of fluid heated from below and cooled
from above, is a problem of great interest in science and engineering and has been studied
extensively over the past few decades [1]. Here we show that this problem is an example of
transport with fixed enstrophy. We find Numax and NuMAX as a function of the Rayleigh
number Ra and compare them with the results of previous analytical and numerical analyses.

Rayleigh-Bénard convection is modeled by the Boussinesq equations [7, 20]:

∇ · v = 0, (188)

1

Pr
(v̇ + v · ∇v) = −∇p+Δv +RaTz, (189)

Ṫ + v · ∇T = ΔT, (190)

where Pr is the Prandtl number.
Multiplying (189) by v and integrating over long time and over a domain with imper-

meable walls gives

0 =
〈|∇v|2〉 +Ra 〈wT 〉 , (191)

where the left–hand side and the pressure term vanish due to the long time–space averaging.
Using the definition of Pe for the fixed enstrophy problems (14) and Nu (16) from section 1.1
we obtain

Pe2 = Ra (Nu − 1). (192)

As argued before, the Nusselt number Nu, when calculated by long–time averaging, is just
a function of Ra. As a result, in both steady and statistically–steady flows, equation (192)
shows that Pe is fixed for a fixed value of Ra (as before Ra depends on the fluid properties
and the imposed temperature difference between the walls; it does not depend on the
flow). Therefore, Rayleigh-Bénard convection occurs with fixed enstrophy. Employing the
analogy made before between enstrophy and viscous dissipation in (4), we can conclude
that Rayleigh-Bénard convection in Newtonian fluids occurs with fixed viscous dissipation.

Employing (192), Pe can be replaced with Ra in (186) and (187):

Numax(Ra,Γ) = 1 + (K(Γ))4/3 Ra1/3, (193)

NuMAX(Ra) = 1 + 0.1152Ra5/12. (194)

Also using the rather crude approximations we obtained for the exponent of Pe in Γopt(Pe),

Γopt(Ra) ∼ Ra−0.2546. (195)

Curiously, Ra−0.25 is the scaling of the smallest unstable mode for Rayleigh-Bénard convec-
tion (the same agreement was observed for porous media convection, see equation (139)).

Table 2 compares (193)–(194) with the results obtained using other methods in the
literature. The classical argument of Malkus [14] and Howard [11], which is based on the
marginal stability of the boundary layer, gives Nu ∼ Ra1/3 while the argument by Spiegel
[17] and Kraichnan [13] gives Nu ∼ Ra1/2. These arguments are independent of the type
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Table 2: Comparison of the results of the current work with the scalings for Rayleigh–Bénard
convection with free–slip boundary condition obtained using various other methods.

Nu(Ra,Pr) Nu(Ra,Γfixed)

Classical Theories

Malkus [14] & Howard [11] ∼ C Ra1/3

Spiegel [17] & Kraichnan [13] ∼ C (Pr Ra)1/2

Upper Bounds using Background Method

Ierley et al. [12]: Numerical with infinite Pr ≤ C Ra5/12

Otero et al. [15]: 2D Numerical with finite Pr ≤ 0.142Ra5/12

Whitehead & Doering [20]: ≤ 0.289Ra5/12

Analytical, 2D finite Pr and 3D infinite Pr)

DNS: Unsteady Turbulent Simulations inconclusive

Steady Unicellular Analysis

Chini & Cox [4] ∼ C(Γ)Ra1/3

Current Work:

Numerical ≤ 1 + 0.115Ra5/12 ≤ 1 + (K(Γ))4/3 Ra1/3

of boundary conditions. For free–slip boundary conditions, the background method gives
Nu ∼ Ra5/12 independent of the Pr number [12, 15, 20]. DNS results of (188)–(190) for high–
Ra turbulent convection with free-slip boundary conditions, conducted by several research
groups, are still inconclusive.

NuMAX(Ra) obtained in this work has the same scaling in Ra as the upper bounds
obtained using the background method. This was also the case for the fixed energy problem.
For fixed Γ, Chini and Cox [4] have analyzed the steady Rayleigh–Bénard connection in one
cell (in an approach very similar to the current work) and found that Nu ∼ Ra1/3, which
agrees with the scaling of Numax(Ra,Γ) with Ra obtained here. This agreement suggests
that steady Rayleigh–Bénard convection transports as much as possible by a steady flow
with a given amount of enstrophy, modulo a constant prefactor.

4 Concluding Remarks

How much heat can be transported by flows which have a given amount of kinetic energy
or enstrophy? What the optimal velocity field look like? In this investigation, we addressed
these questions for steady incompressible 2D flows. We focused on heat transport between
two parallel impermeable walls. For each of the two main constraints (fixed kinetic energy
and fixed enstrophy), we employed the calculus of variations to find the divergence-free
velocity field that maximizes the heat transport between the walls. We solved the resulting
nonlinear Euler-Lagrange equations numerically in a cell of a given aspect ratio Γ. For
the problem with fixed kinetic energy, we exploited the symmetries in the flow and solved
the nonlinear equations using matched asymptotic analysis as well. The analytical and
numerical results agree remarkably well. The problem could be readily formulated for mass
transport, or the transport of any scalar tracer.

We report our results based on Nusselt number Nu and Péclect number Pe, which
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quantify the heat transport and the strength of advection, respectively. For both problems,
our analysis shows that as Pe increases, the maximum possible transport NuMAX is achieved
by cells of smaller aspect ratio. For the problem with fixed energy, we found that NuMAX ∼
Pe and Γopt ∼ Pe−0.5. If enstrophy is fixed, NuMAX ∼ Pe10/17 and Γopt ∼ Pe−0.36.

For practical purposes, we assume that the optimal velocity field can be produced by a
combination of force fields, although such a flow might be linearly or nonlinearly unstable.
For each of the two main constraints, we have looked into a buoyancy-driven flow which
satisfies that constraint to see how the transport compares with upper bounds. For these
problems we interpret the results in terms of the Ra number which is more appropriate. For
convection in porous media, which occurs with fixed energy, we have found NuMAX ∼ Ra and
Γopt ∼ Ra−0.5. For Rayleigh-Bénard convection, an example of fixed enstrophy transport,
we found NuMAX ∼ Ra5/12 and Γopt ∼ Ra−0.25. Interestingly, for both problems the scalings
of Γopt(Ra) agree with the scalings of the smallest unstable mode.

The research presented in this work gives new insight into steady 2D optimal trans-
port. There are several lines of research which should be pursued to further expand our
understanding of optimal transport:

• Completing the large–Pe asymptotic solution for the fixed enstrophy problem would
help in confirming and interpreting the numerical results

• Studying the fixed enstrophy problem with no-slip boundary conditions is more chal-
lenging but of great interest

• Obtaining conclusive results for the unsteady turbulent simulation and steady uni-
cellular analysis of the Rayleigh–Bénard problem with free- and no-slip boundary
conditions and for small and high values of Pr number would significantly improve
our understanding of the physics of heat transport

• Investigating the transport by 3D cells, although difficult, should produce interesting
results

• Finally, studying unsteady transport using optimal control is of great interest and
importance and will result in much deeper insight into turbulent transport
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A Equations for Newton-Kantorovich Iteration Scheme

Here we present more details on how equation (67) was derived. First, we deduce from
equations (53)-(55) that

F =
1

μ
(−(1 + φz)θx + (θz − 1)φx) , (196)

G = (1− θz)ψx + ψzθx, (197)

Q = (1 + φz)ψx − ψzφx. (198)

Calculating the Frechet derivatives, recalling the definition of δ(·) ≡ (·)N+1 − (·)N , and
ignoring the higher order terms, equations (64)-(66) become

μΔδψ + (1 + φNz ) δθx − φNx δθz + (1− θNz ) δφx + θNx δφz =

−μΔψN − [

(1 + φNz )θ
N
x + (1− θNz )φNx

]

(199)

Δδθ − ψNz δθx + ψNx δθz − (1− θNz ) δψx − θNx δψz =

−ΔθN + (1− θNz )ψNx + ψNz θ
N
x (200)

Δδφ− (1 + φNz ) δψx + φNx δψz + ψNz δφx − ψNx δφz =

−ΔφN + (1 + φNz )ψ
N
x − ψNz φ

N
x (201)

B Limit of λ 
 1 and σ 
 1

To study the large Pe asymptotic solution in the case that σ 
 1, we start from equa-
tions (96)-(98). The main difference between the current analysis and the one in sec-
tion 2.4.2 is that the (2 − π

√
2μ/Γ) term is O(1/Γ) � 1 if σ 
 1 (as opposed to O(1) in

section 2.4.2). Therefore, it contributes to the balancing of the leading order. Only keeping
the terms which might contribute to the leading order, and rearranging a few constants, we
get

[

−π2A+
Γ2

δ21
A′′

]

− π2

2δ3
C ′B = 0, (202)

− μ

δ23
C ′′ +

ξ̄2o
2

[

1

δ2
AB′ +

1

δ1
BA′

]

= 0, (203)

[

−π2B +
Γ2

δ22
B′′

]

− π2

2δ3
C ′A = 0. (204)

The first equation shows that the same as section 2.4.2, the balance is between the A′′

and C ′B terms and δ21 = Γ2δ3. Similarly, in the third equation the balance is between B′′

and C ′A terms and δ22 = Γ2δ3, implying that δ1 = δ2. The balancing terms in the second
equation are the same as before as well, and δ23 = μδ1. Combining these equalities gives

δ1 = δ2 = Γ4/3 μ1/3, (205)

δ3 = Γ2/3 μ2/3. (206)

Therefore, unlike section 2.4.2, here ψ and ξ do not have the same boundary layer thickness
as η which complicates the problem as we have to deal with a nested boundary layer.
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However, the Numax(Pe) obtained in section 2.4.5 agrees very well with the results of the
numerical simulations (see Figure 6) and shows that the optimal transport is achieved in
the distinguished limit that σ = O(1). Therefore, we do not further analyze the σ 
 1
limit.

C Interior Solution for the Fixed Enstrophy Problem

Equations (174) and (177)-(176) can be written in terms of (ψ, ξ, η)

− J(ξ, η)− 2μΔ2ψ + 2ξx = 0, (207)

J(ψ, ξ) + Δη = 0, (208)

J(ψ, η) + Δξ − 2ψx = 0, (209)

which except for −2μΔ2 instead of +2μΔ are the same as (70)-(72). However, the higher
derivative is expected to result in major differences between the two problems.

The numerical results suggests

ψ = ψ̄(x) A(x, z), (210)

ξ = ξ̄(x) B(x, z), (211)

η = η̄(z) C(x, z), (212)

where (ψ̄, ξ̄, η̄) constitute the outer solution.
Using (ψ̄(x),ξ̄(x),η̄(z)) in (207)-(209) gives

2μ ψ̄xxxx − (2− η̄z) ξ̄x = 0, (213)

η̄zz = 0, (214)

ξ̄xx − (2− η̄z)ψ̄x = 0, (215)

which again imply that
η̄(z) = η̄o z, (216)

where η̄o is an unknown constant. Eliminating ψ̄ between (213) and (215) yields

ξ̄xxxxx −
(

η̄o − 2√
2μ

)2

ξ̄x = 0, (217)

Given the periodicity of 2Γ in x, and ξx(±Γ/2, z) = 0, this implies

ξ̄ = ±ξ̄o sin (π x/Γ) (218)

η̄o = 2−
(π

Γ

)2 √

2μ, (219)

where ξ̄o > 0 is an unknown constant. Notice the difference between (219) and 85).
Equation (215) yields

ψ̄ =
±ξ̄o

(π/Γ)
√
2μ

cos (π x/Γ). (220)

As before, the interior flow field (i.e. outer solution) is known up to an unknown constant
ξ̄o which shall be determined using the inner solution.
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A reduced model for exact coherent states

in high Reynolds number shear flows

Cédric Beaume

April 16, 2013

Abstract

We consider a shear flow driven in the streamwise direction by a sinusoidal body
force varying in the wall normal direction and apply a lower branch scaling found by
Wang et al. (2007) to reduce the dynamics to a set of two-dimensional PDEs valid at
high Reynolds numbers. We then propose an iterative strategy to converge to lower
branch exact coherent structures. This strategy only necessitates a two-dimensional
projection of the streamwise velocity as initial condition and has been used to approach
a stationary lower branch solution. Further strategies to find lower branch solutions are
also proposed.

1 Introduction

Incompressible channel flow driven by in-plane boundary motion, referred to as plane Cou-
ette flow (figure 1), is a canonical model of a wall-bounded shear flow that is frequently used
to investigate transition to turbulence. Although this flow is known to be linearly stable
for all Reynolds numbers Re = UL/ν, where U is the speed of the upper (or oppositely-
moving lower) boundary, L is the half-channel width and ν is the kinematic viscosity [13],
experiments and numerical simulations show a transition to a disordered flow state when
Re exceeds a few hundred [11] (see figure 2). Theoretical progress on this transition process
has been made by computing numerically exact coherent states (ECS): stationary or time-
periodic solutions corresponding to fixed points in a (reduced) phase space [12, 7, 19, 4].
Analysis of a low-order model [20] and more systematic numerical studies [21, 14] reveal
that these solutions seem to exist in an open interval of Reynolds number and are cre-
ated through a saddle-node bifurcation. As the lower part of the branch produced by the
saddle-node is not connected to the laminar solution, the mechanism underlying the exis-
tence of ECS is nonlinear. It consists in a cycle in which streamwise-invariant rolls (also
called vortices) redistribute streamwise momentum by advection that leads to the creation
of spanwise inhomogeneities, namely the streaks. The streaks then create wave-like struc-
tures varying in the streamwise direction that, in turn, feed the rolls to close the feedback
loop. This cyclic mechanism, first articulated by Waleffe [20] is called the self-sustaining
process and is illustrated in figure 3.

As the laminar profile is linearly stable at all Reynolds numbers, a finite-amplitude
perturbation is necessary to trigger observable solutions such as turbulence (cf. diagram
in figure 2). Given an appropriate spatial form for the perturbation, if the amplitude is
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Figure 1: Sketch of plane Couette and Waleffe flows. Plane Couette flow is driven by wall
motion in the x direction, the top and bottom walls moving with opposite velocities ±U .
Plane Waleffe flow is driven by a volume force in the x direction. The forcing is half a sine
period in the y coordinate. Note that the laminar flow is stable despite the presence of an
inflection point owing to the proximity of free-slip walls.

Figure 2: Behavior observed in experimental Couette flow. Once the Reynolds number
(here R) is above 310, the system exhibits nonlinear dynamics. After Manneville [11].

Figure 3: Self-sustaining process (SSP) sketched as a loop. After Waleffe [20].
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too small, it decays. Conversely, if it is too large, the perturbation grows and a nonlinear
behavior is reached. This defines a boundary between decay and growth that is called
“the edge” and is populated by unstable nonlinear solutions. By studying the edge in
small domains of different sizes, Schneider et al. [14] have obtained a family of ECS. They
continued these solutions in Re to locate the saddle-nodes characteristic of these solutions
and studied their stability, revealing that one of the lower branch solutions is only once
unstable. It follows that lower branch ECS are likely to control some of the edge dynamics.

Wang et al. [21] established that lower branch solutions have an asymptotic structure
as Re → ∞ consisting of O(1) streaks and O(Re−1) rolls. They also identified that the
fundamental streamwise-varying mode scales roughly asO(Re−1) and that higher harmonics
are o(Re−1). In the present study, we exploit these scalings to systematically derive a
multiscale PDE model for plane parallel shear flow. The proposed reduced model appears to
be conceptually simpler than a related asymptotic reduction of the Navier–Stokes equations
by Hall & Sherwin [6]. Although both approaches enable the dynamics to be reduced from
a 3D problem to two coupled 2D systems, the reduced formulation described here appears
more straightforward. Moreover, this reduced model may be useful not only for studying
large Reynolds number states, but also solutions in spatially-extended domains.

The following section introduces the new reduced model. After reviewing the asymptotic
scaling observed by Wang et al. [21], the model is derived and interpreted. Section 3 deals
with strategies for obtaining a nontrivial solution of the reduced model. In section 4, we
explore the long-wavelength limit and present further reductions in this case. The last
section briefly summarizes the work done and outlines work in progress.

2 Reduced model

2.1 Asymptotic law

Among the very few successful attempts to continue nonlinear solutions to relatively high
Reynolds numbers (above 103) in plane Couette flow is a study byWang, Gibson and Waleffe
[21]. In their paper, the authors reported a computation in a box of size 2π × 2× π where
they decomposed the stationary lower branch solutions in Fourier modes in the streamwise
direction,

u(x, y, z) =
N

∑

n=0

un(y, z) e
inαx + c.c., (1)

where un represents the n-th Fourier mode, N is the order of truncation in the expansion,
α is the fundamental wavenumber in the streamwise direction and c.c. denotes the complex
conjugate.

The result of the numerical continuation of the stationary nonlinear solution is shown
in figure 4. The solution is represented by its dominant components and their amplitude is
plotted as a function of the Reynolds number. The figure indicates that the amplitudes scale
like powers of the Reynolds number with the higher harmonics decaying faster than the lower
ones. The stationary solution of interest is represented in figure 5. It consists of streaks u0
and streamwise rolls (v0, w0) representing the average behavior in the streamwise direction.
In addition to these quantities, a contribution u1 that fluctuates in the streamwise direction
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Figure 4: Results of the continuation in Reynolds number R of the stationary nonlaminar
solution shown as the y-maximum of the z-root-mean-square of the leading Fourier modes.
From top to bottom: the O(1) n = 0 mode u0 (black), the O(R−0.9) fundamental mode
u1 (red), the O(R−1) streamwise rolls (v0, w0) (blue), the O(R−1.6) second harmonics u2

(purple) and the O(R−2.2) third harmonics u3 (amber). After Wang et al. [21].

Figure 5: Representation of the solution studied by Wang et al. at Re = 50171. In both
panels, the (black) open lines denotes contours of u0, the thick line being u0 = 0. The left
(right) panel represents the contours of v0 (v1). After Wang et al. [21].
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is present and accumulates around u0 = 0. This specifies the location of the critical layer,
a strong gradient zone centered on the isosurface on which the phase speed (here 0 since
the solution is stationary) matches the streamwise flow velocity. Figure 4 shows that the
streaks are O(1) at all Reynolds numbers and that the rolls and the fundamental mode scale
roughly like the inverse of the Reynolds number. Note that beyond Re = 6168, the second
and higher harmonics have been dropped but the computation continues to be well resolved,
indicating that the n = 0 and fundamental modes suffice to approximate the solution when
the Reynolds number is large.

Consequently, the streamwise structure of this type of nonlinear solution in plane Cou-
ette flow becomes simpler and simpler when the Reynolds number is increased. However,
due to gradient sharpening in the vicinity of the critical layer, the solution structure be-
comes more and more difficult to resolve in the y–z plane. It is therefore possible to take
advantage of this emergent 1/Re scaling by truncating the streamwise representation of the
solution to the constant and fundamental modes to derive a reduced model for lower branch
ECS at high Reynolds number.

2.2 Model derivation

In this work, we do not consider plane Couette flow, but a simpler case introduced by Waleffe
[20] in which the flow is driven by a streamwise body force varying sinusoidally in the wall-
normal direction with free-slip boundary conditions. A sketch of this flow is also shown in
figure 1. The corresponding dimensionless Navier–Stokes equation for incompressible flow
is

∂tu+ (u · ∇)u = −∇p+ 1

Re∇2u+
√

2π2

4Re sin(πy/2), (2)

∇ · u = 0, (3)

where t is the time variable, u = (u, v, w) is the 3D velocity field with components u, v
and w in the x, y and z Cartesian directions respectively, p is the pressure and Re = UL/ν
is the Reynolds number where U is the root-mean-square velocity of the laminar solution
(u =

√
2sin(πy/2), v = w = 0 in dimensionless form), L is half the distance between the

walls and ν is the kinematic viscosity of the fluid. These equations are complemented by
stress-free boundary conditions along each wall:

∂yu(y = ±1) = v(y = ±1) = ∂yw(y = ±1) = 0, (4)

as well as periodic boundary conditions in the spanwise and streamwise directions. Al-
though inflectional, the laminar flow is stable at all Re because of wall-blocking [20]. In
the following, we refer to this flow as Waleffe flow. Its advantage, compared to plane Cou-
ette flow, lies in the use of the stress-free boundary-conditions, preventing the formation of
diffusive boundary layers and facilitating Fourier-type expansions in all three coordinates.

To exploit the scaling behavior discussed in section 2.1, we first introduce a reduced
Reynolds number R = ǫRe = O(1). Given the small parameter ǫ, we proceed to the
following asymptotic expansion:

u = u0 + ǫu1 +O(ǫ2), (5)

v = ǫv1 + ǫ2v2 +O(ǫ3), (6)

w = ǫw1 + ǫ2w2 +O(ǫ3), (7)
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where the subscript denotes the order in the ǫ-expansion. In this new framework, the
streaks are contained in the variable u0 and the rolls as well as the fundamental mode in
the variables u1, v1, w1 as they arise at first order (for notational simplicity, the subscript has
a different meaning than in the previous section and in Wang et al. [21]). We also introduce
a long spatial scale X = ǫx to allow for modulation in the streamwise direction together
with a slow time scale T = ǫt. The variables are treated by separating the fast-(x, t) average
from the fluctuations:

fn = fn(X, y, z, T ) + f ′n(x,X, y, z, t, T ), (8)

where fn stands for the (x, t) average of the field fn and f ′n for its fluctuation. We then
average the equations over x and t and examine the mean and fluctuation fields separately.
The averaged equations read:

∂Tu0 + u0∂Xu0 + v1∂yu0 + w1∂zu0 =
1

R∇2

⊥
u0 +

√

2π2

4R sin(πy/2), (9)

∂T v1 + u0∂Xv1 + v1∂yv1 + w1∂zv1 +

∂y

(

v′
1
v′
1

)

+ ∂z

(

w′

1
v′
1

)

= −∂yp2 + 1

R∇2

⊥
v1, (10)

∂Tw1 + u0∂Xw1 + v1∂yw1 +w1∂zw1 +

∂y

(

v′
1
w′

1

)

+ ∂z

(

w′

1
w′

1

)

= −∂zp2 + 1

R∇2

⊥
w1, (11)

∂Xu0 + ∂yv1 + ∂zw1 = 0, (12)

where ∇2

⊥
is the restriction of the Laplacian operator to the y–z plane. The fluctuation

equations are:

∂tu
′

1
+ u0∂xu

′

1
+ v′

1
∂yu0 + w′

1
∂zu0 = −∂xp′1, (13)

∂tv
′

1
+ u0∂xv

′

1
= −∂yp′1, (14)

∂tw
′

1
+ u0∂xw

′

1
= −∂zp′1, (15)

∂xu
′

1
+ ∂yv

′

1
+ ∂zw

′

1
= 0. (16)

Equations (9) and (12)–(16) are obtained at O(ǫ) while equations (10) and (11) are obtained
at O(ǫ2) (at O(ǫ), p1 must satisfy a zero-gradient condition, hence the absence of pressure
term in equation (9)). Note that at leading order (O(1)), u′

0
= p0 = 0. Moreover, fluctuating

terms like v′
1
v′
1
−v′

1
v′
1
enter atO(ǫ2) and therefore are not present in the fluctuation equations

derived at O(ǫ).
Further reduction can be achieved by exploiting the simple structure in the streamwise

direction noted in section 2.1. The leading order streamwise velocity is O(1) and inde-
pendent of the fast streamwise coordinate x. In addition, the first order wall-normal and
spanwise velocities involve both the zero and fundamental modes. If we further assume
that the leading order streamwise velocity and the fluctuations are independent of the slow
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streamwise coordinate X, we can expand as follows:

u0 ∼ u00(y, z, T ), (17)

v1 ∼ v01(y, z, T ) + vδ1(y, z, T )e
iδX + c.c., (18)

w1 ∼ w0

1(y, z, T ) + wδ
1(y, z, T )e

iδX + c.c., (19)

u′1 ∼ u′1(y, z, t, T )e
iαx + c.c., (20)

v′1 ∼ v′1(y, z, t, T )e
iαx + c.c., (21)

w′

1 ∼ w′

1(y, z, t, T )e
iαx + c.c., (22)

where δ = O(1) is the wavenumber in the long (O(ǫ−1)) streamwise scale, α is the wavenum-
ber in the short (O(1)) streamwise scale. The streamwise independent variables are noted
with a 0 superscript, those varying on the long streamwise scale with a δ superscript and
the fluctuations with a prime. As u0 = u0

0
(y, z, t, T ) 6= f(X), the mean incompressibility

condition (equation (12)) yields the following constraints:

∂yv
0

1
+ ∂zw

0

1
= 0, (23)

∂yv
δ
1
+ ∂zw

δ
1
= 0. (24)

This reduction enables us to introduce a streamfunction-vorticity formulation:

v0
1
= −∂zψ

0

1, w0
1
= ∂yψ

0

1, ω0
1
= ∇2

⊥
ψ
0

1, (25)

vδ
1
= −∂zψ

δ
1, wδ

1
= ∂yψ

δ
1, ωδ

1
= ∇2

⊥
ψ
δ
1. (26)

Here, ψ
0

1 (ψ
δ
1) stands for the streamfunction for the velocities with a 0 (δ) superscript and

ω0

1
(ωδ

1
) is the associated vorticity in the y–z plane. Given these further simplifications, the

system (9)–(16) can be rewritten:

∂Tu
0 + ∂yψ

0

1∂zu
0 − ∂zψ

0

1∂yu
0 = 1

R∇2

⊥
u0 +

√

2π2

4R sin(πy/2), (27)

∂Tω
0
1
+ J

(

ψ
0

1, ω
0
1

)

+ 2R
[

J
(

ψ
δ∗
1 , ω

δ
1

)]

+

2
(

∂2y − ∂2z
)

R(v′
1
w′∗

1
) + 2∂z∂y

(

w′

1
w′∗

1
− v′

1
v′∗
1

)

= 1

R∇2

⊥
ω0

1
, (28)

∂Tω
δ
1
+ iδ

[

u0ωδ
1
+ ∂yu

0∂yψ
δ
1 + ∂zu

0∂zψ
δ
1

]

+

J
(

ψ
0

1, ω
δ
1

)

+ J
(

ψ
δ
1, ω

0
1

)

= 1

R∇2

⊥
ωδ
1
, (29)

where J(f, g) = ∂yf∂zg − ∂zf∂yg is the Jacobian of the functions f and g, R(f) is the
real part of the function f and the superscript ∗ indicates the complex conjugate. These
equations are to be solved together with the fluctuation equations:

∂tu
′

1
+ iαu0u′

1
+ v′

1
∂yu

0 + w′

1
∂zu

0 = −iαp′
1
+ ǫ

R∇2

⊥
u′
1
, (30)

∂tv
′

1
+ iαu0v′

1
= −∂yp′1 + ǫ

R∇2

⊥
v′
1
, (31)

∂tw
′

1
+ iαu0w′

1
= −∂zp′1 + ǫ

R∇2

⊥
w′

1
, (32)

iαu′
1
+ ∂yv

′

1
+ ∂zw

′

1
= 0, (33)

where the streamfunctions are determined from equations (25) and (26). In writing the
fluctuation system (30)–(33), the higher order diffusion term has been retained in order to
regularize the equations, hence their occurrence with an ǫ prefactor.

412



2.3 Discussion

A classic picture of linearly stable shear flow dynamics is the presence of three unconnected
families of solutions:

• the laminar solution: here, u0 =
√
2sin(πy/2) with the other variables vanishing

• turbulent trajectories: strongly nonlinear solutions with nontrivial time behavior

• intermediate states that include the lower branch states: stationary or periodic solu-
tions in time corresponding to fixed points in a (reduced) phase space

The model derived in section 2.2 is intended to capture lower branch ECS as well as similar
states exhibiting amplitude modulation in the streamwise direction. The use of an asymp-
totic expansion in our derivation can be interpreted as a zoom in a particular regime in
which at least one lower branch solution is present. Only solutions in this scaling regime
can be captured and we anticipate the reduced model to preclude turbulent states as well
as some of the fixed points.

In the usual derivation of equations for mean quantities from the Navier–Stokes equa-
tions, one ends up with products of fluctuations, namely the Reynolds stresses. The primary
challenge is then to find a closure for these Reynolds stresses [18]. In the present case, the
use of multiscale analysis not only allows us to study streamwise modulation but also to
obtain a natural closure using the time-dependent fluctuation equations (30)–(33).

The model (27)–(33) contains the essential ingredient for the existence of nontrivial
solutions: the self-sustaining process [20]. For short to moderate streamwise domains (ωδ

1
=

0), this process is as follows:

• streamwise rolls ω0
1
redistribute the streamwise momentum u0 by advection to create

spanwise inhomogeneities

• spatial inhomogeneities of u0 generate a wave-like instability in the streamwise direc-
tion by feeding the fluctuations (u′

1
, v′

1
, w′

1
)

• the fluctuations, through the Reynolds stresses in equation (28), reenergize the rolls
ω0
1

This cycle explains why solutions other than the base flow can persist in plane Waleffe flow
and be captured in our model.

Finally note that the time separation between the mean variables evolving slowly as
T = ǫt and the fluctuations evolving on the rapid time scale t leads to the quasi-linearity
of the fluctuation equations (30)–(33). Indeed, the pseudo-nonlinear terms in these equa-
tions always involve a product between one fluctuation and u0. While the former variable
evolves rapidly, the latter evolves far more slowly, making u0 roughly a constant during time
scales on which the fluctuations evolve. Although this quasi-linearity can enable analytical
progress, it also causes the amplitude of the fluctuations to be indeterminate. This char-
acteristic is common in models derived using multiscale analysis and has previously been
observed in multiscale models for the tropics [10] as well as the description of the interaction
on time disparate scales of ocean dynamics [5] and of atmospheric flows [8]. To deal with
this pathology, one needs to adapt the technique, as described in the next section.
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Figure 6: Equilibrium solutions of plane Couette flow in a 2π/1.14× 2× 2π/2.5 domain at
Re = 400. The greyscale indicates the streamwise velocity of the fluid: light (dark) grey
shows fluid moving at u = +1 (u = −1). Arrows indicate in-plane velocity. The top half of
the fluid is cut away to show the (u,w) velocity in the y = 0 midplane. Note that solution
EQ1 is a lower branch Nagata solution. After Gibson et al. [4].

3 Computing a lower branch exact coherent structure

We look for solutions of the same type as those computed by Gibson et al. [4] and shown
in figure 6. As for most of those presented in the literature [21, 14, 3], these solutions have
been computed in a small (O(1) aspect-ratio) domain. As a natural first step, we similarly

restrict our search to solutions with no long-scale dynamics, for which ψ
δ
1 = 0 (ωδ

1
= 0).

By taking the divergence of the fluctuation equations (30)–(32) and applying the in-
compressibility condition (33), we find an equation for the pressure that does not involve
u′
1
:

(α2 −∇2

⊥
)p′1 = 2iα(v′1∂yu

0 + w′

1∂zu
0). (34)

Neither equation (34) nor equations (31) and (32) for v′
1
, w′

1
involve u′

1
. As this fluctuation

field is not needed to compute the Reynolds stresses in equations (28) and (29), equation
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(30) does not need to be solved. Hence, the “maximally simplified” reduced model is:

ǫ∂tu
0 + ∂yψ

0

1∂zu
0 − ∂zψ

0

1∂yu
0 = 1

R∇2

⊥
u0 +

√

2π2

4R sin(πy/2), (35)

ǫ∂tω
0
1
+ J

(

ψ
0

1, ω
0
1

)

+ 2
(

∂2y − ∂2z
)

R(v′
1
w′∗

1
) + 2∂z∂y

(

w′

1
w′∗

1
− v′

1
v′∗
1

)

= 1

R∇2

⊥
ω0
1
, (36)

(α2 −∇2

⊥
)p′

1
= 2iα(v′

1
∂yu

0 + w′

1
∂zu

0), (37)

∂tv
′

1
+ iαu0v′

1
= −∂yp′1 + ǫ

R∇2

⊥
v′
1
, (38)

∂tw
′

1
+ iαu0w′

1
= −∂zp′1 + ǫ

R∇2

⊥
w′

1
, (39)

where we have replaced T by the non-asymptotic form t/ǫ to have a single time variable.
We proceed by choosing Re = 400 (ǫ = 1/400 and R = 1), the streamwise wavenumber

α = 0.5, and the spanwise extent of the domain to be π. The domain is discretized using
an equispaced mesh in both the wall-normal y and the spanwise z coordinates. We used 64
points in both directions which proved sufficient for convergence when compared with a 96-
point mesh. The equations are treated in spectral space, using the Fast Fourier transform
in the periodic direction z and the Fast Cosine Transform-I or Fast Sine Transform-I in
the y direction, depending on the boundary conditions [2]. The nonlinear products are
computed in physical space, and a classic 2/3 dealiasing rule is applied before each nonlinear
computation to prevent frequency folding. Spatial derivatives are computed in spectral
space. Derivatives in z are computed by a multiplication of the spectral coefficients by ik
where k is the wavenumber corresponding to the spectral coefficient. Derivatives in y are
treated similarly, bearing in mind that differentiating a field expanded in sine functions
yields cosine coefficients and vice versa.

3.1 Iterative algorithm

The solutions we seek to compute are unstable and cannot be reached via time-integrating
the reduced equations. As shown in figures 5 and 6, they also have a non-trivial spatial
structure and the absence of a very precise initial condition prevents the successful use of a
fixed point method. Finally, these solutions do not bifurcate from the laminar base state,
so continuation from that state is not useful. Fortunately, we can exploit the mathematical
structure of the simplified reduced model (35)–(39). The mean variables u0 and ω0

1
and

the fluctuations p′
1
, v′

1
and w′

1
evolve over different time scales. By separating the fast

fluctuation system (37)–(39) from the slow averaged one, the former becomes linear as the
mean quantities do not evolve over the fast time scale. The advantage of this decoupling
is that, owing to the linearity of equations (37)–(39), the fluctuations can be thought of as
solutions of an eigenvalue problem with a temporal growth rate λ. The crucial observation
is that if an eigenvector has a vanishing real growth rate, it is a stationary solution of
equations (37)–(39). Of course, the amplitude of the fluctuations is then indeterminate and
must be formally introduced as a new scalar unknown A. For such fluctuations and given
A, if the mean fields u0 and ω0

1
are stationary, then we have a stationary solution.

To apply this decoupling algorithm we proceed as follows:

• Choose a fluctuation amplitude A

• While the growth rate λ is not converged:

415



– Compute the fastest non-oscillatory growing (or most slowly decaying) fluctua-
tion mode and its real growth rate λ using equations (37)–(39)

– Compute the Reynolds stresses using A and the fluctuation fields so obtained

– Time-advance u0 and ω0

1
to steady state using equations (35) and (36)

• Store the converged λ and adjust A to drive λ to zero

Thus, given an initial condition for u0, this algorithm requires iteration on the amplitude
A. We describe the method to obtain the initial condition for u0 below. Solution of the
fluctuation eigenvalue problem is performed using an Arnoldi iteration [9]. This compu-
tation is equivalent to finding the stability of u0 with respect to perturbations varying
sinusoidally in the streamwise direction. In this sense, one wants to focus on the least
unstable, hence more realizable and dynamically influential solutions. This is achieved by
picking the fastest growing (or most slowly decaying) mode. Moreover, we choose to isolate
non-oscillatory modes (I(λ) = 0) to compute stationary ECS. It should be possible to find
a traveling-wave ECS by choosing an oscillatory mode (I(λ) 6= 0). Finally, time integration
of equations (35) and (36) is carried out using a semi-implicit third order Runge–Kutta
scheme [17].

3.2 Results

3.2.1 Initial condition

We describe here how we obtained an initial condition for the algorithm described in the
previous section. We remind the reader that we do not need a full initial condition as
only u0 is required to initiate the calculation of the fluctuations. We generate a physically

reasonable initial profile for u0 by imposing faux rolls ψ
0

1 and then solving for u0 from (35)

with ψ
0

1 frozen. We choose a simple shape for the rolls: ψ
0

1(y, z) = Ψ sin(2z) cos(πy/2),
with Ψ an arbitrary amplitude to be tuned to get the desired initial condition. Figure 7
depicts a family of initial conditions parametrized by Ψ. In this way, we have generated
a whole family of initial conditions having the characteristic u-shape of the desired ECS.
Given these results, we choose to use the profile obtained for Ψ = −20 (figure 7(b), top
right).

3.2.2 Algorithm behavior

We executed the algorithm for different values of the fluctuation amplitudeA and summarize
the results of the iterations in figure 8. The convergence of the leading real eigenvalue
λmax is monitored which allows us to identify two different regimes. For small amplitudes
(figure 8(a)), the algorithm converges but λmax is not necessarily 0. Figure 9 shows u0

at convergence for A = 5 to A = 6.8. These converged iterations indicate that for small
fluctuation amplitudes, the streamwise velocity u0 relaxes to reach a converged state that is
close to the laminar state (figure 9(a)). When the amplitude is large enough, the algorithm
converges to a u0 that now has a pronounced u-shape (figure 9(b) and (c)). By comparing
converged iterates for A = 6.6 and A = 6.8, it is evident that the increase in the fluctuation
amplitude leads to a stretching of the u0 = 0 line.
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Figure 7: (a) Faux rolls ψ
0

1(y, z) = Ψ sin(2z) cos(πy/2) used to create the initial guess for
u0 in (b). Different streak profiles are plotted in (b) corresponding to different values of
Ψ, from Ψ = −10 (top left) to Ψ = −40 (bottom right) with an increment of −10. Red
indicates positive velocity, blue indicated negative velocity and white u0 = 0. The initial
condition used in the following is the solution plotted in the top right panel, corresponding
to Ψ = −20.
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Figure 8: (a) Plot of the leading real eigenvalue λmax as a function of the iteration number
for different fluctuation amplitudes. The algorithm is stopped when λmax is converged to
the sixth digit: λmax = −0.19366 for A = 5, λmax = −0.14064 for A = 6, λmax = 0.01099 for
A = 6.6, λmax = 0.00489 for A = 6.8. (b) From top to bottom, the leading real eigenvalue
is shown as a function of iteration number for A = 7, A = 7.5 and A = 8.
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Figure 9: Converged iterations represented via u0 for (a) A = 5 (a similar solution is
obtained for A = 6), (b) A = 6.6 and (c) A = 6.8. The color code is the same as in figure 7.

Figure 10: Streamwise mean velocity u0 during iterations 13, 16, 19, 21, 23 and 24 obtained
with A = 7.5. A global view of the behavior of the algorithm for this value of the fluctuation
amplitude is available in figure 8(b) center plot. The same color code is used as in figure 7.

If the amplitude of the fluctuations is increased approximately A = 6.8, another regime
is reached. As illustrated in figure 8(b), the iterations do not converge but instead produce
oscillations around λmax = 0 with large excursions to negative values. The oscillations are
bounded although the interval increases as A is increased with the upper bound increasing
slowly while the lower bound decreases rapidly. Some iterates computed during the simu-
lation run with A = 7.5 are shown in figure 10. These iterates are taken along the second
“cycle” in figure 8(b) center plot. At iteration 13, u0 is close to the laminar profile, with the
u0 = 0 isosurface rather flat. Then, until iteration 23, the streaks build progressively owing
to the forcing generated by the fluctuations. The u-shape of the u0 = 0 surface becomes
more and more pronounced until, at iteration 24, u0 becomes remarkably similar to that at
iteration 13. This cycle is repeated, although with slight “phase” changes during further
iterations.

Regarding the Reynolds stresses as a forcing term, we can interpret the amplitude
of the fluctuations as the (square root of the) amplitude of the forcing. When A is too
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Figure 11: (a) Plot of the leading real eigenvalue λmax as a function of the iteration for
different amplitudes of the fluctuations. The horizontal line indicates λmax = 0. Only the
curve for A = 6.6 is stopped at convergence, that for A = 6.5 goes way below λmax = 0
and that at A = 6.55 converges very slowly. (b) Evolution of the difference E between two
successive iterates of λmax for A = 6.55 on logarithmic scale.

small, the dynamics are diffusion dominated, with any initial condition relaxing to the
laminar solution except for a slight perturbation that is maintained by fluctuations (that
have fixed amplitude). This behavior is observed for A ≤ 6. For sufficiently large A, the
Reynolds stresses are strong enough to compete with diffusion in equation (36), and allow
the fluctuations to maintain a nontrivial profile as seen for A = 6.6 and A = 6.8. Finally, if
A is too large, the Reynolds stresses dominate diffusion and an oscillatory behavior sets in,
as observed for A ≥ 7 and exemplified at A = 7.5 in figure 10. At these large values of the
fluctuation amplitude, the mean variables u0 and ω0

1
over-respond to the fluctuations due

to their exaggerated amplitude, and the solution oscillates around what may be the actual
fixed point.

The results shown in figure 8(a) show that the converged λmax first increases as A
increases, eventually becoming positive. Then, at A ≈ 6.6, λmax starts decreasing before
the oscillatory regime is reached. These results suggest that there is at least one value
of the fluctuation amplitude Aopt for which λmax → 0. This amplitude lies in the range
6 < A < 6.6 and will lead to a stationary solution of the problem (35)–(39), that is, a lower
branch ECS. A second value 6.8 < A′

opt < 7 may lead to a stationary solution: as A is
increased above 6.6, λmax decreases but is still positive for A = 6.8 before oscillating for
A ≥ 7. This solution, if captured by our reduced model, presumably would have the same
structure and would be related to the lower branch solution found with Aopt.

3.2.3 Towards a solution

Given the results of the preceding section, we focus on the interval 6 < A < 6.6. Figure
11 shows the results obtained from simulations with A = 6.5, A = 6.55 and A = 6.6. As
in figure 8, the leading real eigenvalue converges to λmax = 0.01099 for A = 6.6 after ap-
proximately 80 iterations. When A = 6.5, λmax decreases quickly to converge to a negative
value. This indicates that 6.5 < Aopt < 6.6. A typical result for A within this interval is
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Figure 12: Flow fields at the last iteration for A = 6.55 (see figure 11). (a) Top: u0, bottom:

ψ1

0
. (b) Top: R(v′

1
), bottom: I(v′

1
). (c) Top: R(w′

1
), bottom: I(w′

1
). In all cases, blue

(red) represents negative (positive) values of the field.

reported in figure 11. Even after nearly 100 iterations, λmax is not fully converged. The
difference E between two successive iterates is plotted as a function of the iteration number
in figure 11(b). The error E decreases faster than exponentially, indicating convergence is
likely. However, the slope is very small and a large number of iterations is therefore required
to satisfy a reasonable convergence criterion.

The converged values of λmax for different A indicate that the fluctuation amplitude
of the actual lower branch solution is close to 6.55. Moreover, the solutions obtained by
varying A are very similar (as the reader can convince himself by comparing figures 9(b) and
(c)). This suggest the state shown in figure 12, obtained at the last iteration for A = 6.55,
is very close to the actual lower branch solution. This state is comprised of streaks u0 and

rolls ψ
0

1, with the rolls differing from the initial condition (figure 7) by a slight tilt. The
fluctuations are concentrated around u0 = 0, indicating the emergence of a critical layer.
This state can be used as a very good initial guess in a Newton solver to converge to the
desired precision to the lower branch solution, a task we leave for future work.

4 Long-wavelength limit

It is of interest to consider the long-wavelength limit of the lower branch ECS. Indeed, Hall
& Sherwin [6] have shown that the minimum drag state for lower branch ECS occurs as
the fundamental streamwise wavenumber α of the fluctuation fields tends to zero. Here, we
show that a further reduction of our asymptotically reduced model of plane Waleffe flow can
be obtained in the limit Re → ∞ and α → 0 with R̂ ≡ αRe ≫ 1. In this limit, the single
streamwise scale χ ≡ αx replaces the fast x scale and the modulation scale X ≡ ǫx, where,
again, ǫ = O(1/Re) is indicative of the amplitude of both the roll and streamwise-varying
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(i.e. fluctuation) components of the lower-branch ECS. Two time scales are required, with
the fluctuation dynamics occurring on the scale τ ≡ αt and the mean fields evolving more
slowly, on the scale T ≡ ǫt. It should be emphasized at the outset that the distinguished
limit in which α → 0 with α = O(1/Re) requires a rather different analysis in which: (i)
the fluctuation dynamics are, at leading order, modified by viscous effects across the entire
domain, not just within thin boundary and critical layers; and (ii) the fluctuation dynamics
are fully nonlinear rather than quasi-linear, resulting in the mixing of streamwise modes.
This limit, although of interest, is not pursued here.

Again motivated by the results of Wang et al. [21], we expand the velocity fields as

u ∼
(

u0 + u′0
)

+ ǫ
(

u1 + u′1
)

+ . . . , (40)

v ∼ ǫ
(

v1 + v′1
)

+ ǫ2
(

v2 + v′2
)

+ . . . , (41)

w ∼ ǫ
(

w1 + w′

1

)

+ ǫ2
(

w2 + w′

2

)

+ . . . , (42)

where generic dependent variable f(x, y, z, t) = f(y, z, T ) + f ′(χ, y, z, τ, T ); that is, an
overbar refers to a χ and fast time τ average and a prime to a fluctuation about that
mean. Substituting into equations (2) and (3) yields u′

0
= p0 = p1 = 0 in the limit being

considered. The resulting leading order mean equations can be expressed as

∂Tu0 + J(ψ1, u0) =
1

R
∇2

⊥
u0, (43)

∂TΩ1 + J(ψ1,Ω1) =
(

∂2z − ∂2y
)

v′
1
w′

1
+ ∂z

[

∂y

(

v′
1
v′
1
− w′

1
w′

1

)]

+
1

R
∇2

⊥
Ω1, (44)

∇2

⊥
ψ1 = Ω1, (45)

where Ω1 = ∂yw1 − ∂zv1 is the mean vorticity with ψ1 the associated streamfunction,
R ≡ ǫRe = O(1) and the Jacobian J(a, b) ≡ ∂ya∂zb− ∂za∂yb for fields a and b.

At O(ǫ), the χ-component of the fluctuation momentum equation requires

J(ψ′

1, u0) = 0, (46)

a key constraint that will enable significant simplifications in the following analysis. The
O(αǫ) y- and z- components of the fluctuation momentum equation can be combined into
a single equation for the χ-component of the fluctuation vorticity:

∂τΩ
′

1 + u0∂χΩ
′

1 = −∂zu0∂χ
(

∂zψ
′

1

)

− ∂yu0∂χ
(

∂yψ
′

1

)

. (47)

Restricting attention to equilibrium lower branch ECS, we seek single χ-mode solutions of
the form

ψ′

1 = F (u) cos χ+G(u) sinχ, (48)

Ω′

1 = Ωc(u) cosχ+Ωs(u) sinχ, (49)

where the subscript 0 on the leading order mean streamwise velocity component has been
omitted here (and will be henceforth) for brevity of notation. The Poisson equation relating
the fluctuation streamfunction and vorticity yields

Ωc = |∇⊥u|2F ′′ +
(

∇2

⊥
u
)

F ′, (50)

Ωs = |∇⊥u|2G′′ +
(

∇2

⊥
u
)

G′, (51)
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where a prime on F (u) or G(u) denotes ordinary differentiation. Finally, substituting into
equation (47) gives

F ′′ +

[ ∇2

⊥
u

|∇⊥u|2
+

1

u

]

F ′ = 0. (52)

An analogous relation is easily derived for G(u). For equation (52) to have a solution, the
term in brackets must be a function only of u:

∇2

⊥
u

|∇⊥u|2
+

1

u
= Q(u). (53)

Presuming this to be the case,

F ′(u) = a exp

[

−
∫ ū

0

Q(ũ)dũ

]

(54)

for a to-be-determined constant a.
Inspection of equations (53) and (54) shows that the fluctuation velocity field in the y–z

plane, which is proportional to F ′, is singular at ū = 0, with F ′(ū) = O(1/ū) as ū → 0.
As shown in [6], this critical layer singularity is regularized by viscous forces for the lower
branch ECS. Reinstating viscous diffusion in the steady version of equation (47) yields

u∂χΩ
′

1 = −∂zu∂χ
(

∂zψ
′

1

)

− ∂yu∂χ
(

∂yψ
′

1

)

+
1

R̂
∇2

⊥
Ω′

1. (55)

Upon substituting for ψ′

1
and Ω′

1
from equations (48) and (49), noting that the slaving

relation (46) continues to be asymptotically valid within the critical layer, a pair of coupled,
fourth-order ordinary differential equations (ODEs) is obtained for F and G. The ODE for
F reads

1

R̂

{

F ′′′′ +

(

2∇⊥u · ∇⊥|∇⊥u|2 + 2|∇⊥u|2∇2

⊥
u

|∇⊥u|4

)

F ′′′

+

(

2∇⊥u · ∇⊥(∇2

⊥
u) + (∇2

⊥
u)2 + 2|∇⊥(∇⊥u)|2 + 2∇⊥u · ∇⊥(∇2

⊥
u)

|∇⊥u|4

)

F ′′

+

( ∇4

⊥
u

|∇⊥u|4

)

F ′

}

− u

( |∇⊥u|2G′′ + (∇2

⊥
u)G′

|∇⊥u|4

)

−
(

|∇⊥u|2
|∇⊥u|4

)

G′ = 0, (56)

with a similar equation holding for G. Within the critical layer, gradients with respect to
u are large, O(R̂1/3), but u (as a function of y and z) is smooth, implying u = O(R̂1/3).
Hence, asymptotically, this ODE simplifies to

1

R̂
F ′′′′ − u

|∇⊥u|2
|∇⊥u|4

G′′ − |∇⊥u|2
|∇⊥u|4

G′ = 0. (57)

For this resulting equation to be well posed, 1/|∇⊥u|2 = (Q(u) − 1/u)/∇2

⊥
u must be a

function solely of u. In fact, consideration of other steady critical layers arising in shear
flows and regularized by viscous diffusion of momentum strongly suggests that the constraint

|∇⊥u|2 ≡ (∂yu)
2 + (∂zu)

2 = C (58)
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must be satisfied for some (to-be-determined) constant C. Presuming this to be the case,
and employing the rescaling

u ∼ R̂−1/3U, (59)

the linear, non-constant coefficient ODEs for F(U) ≡ F (u) and G(U) ≡ G(u) become

F ′′′′ − 1

C
UG′′ − 1

C
G′ = 0, (60)

G′′′′ +
1

C
UF ′′ +

1

C
F ′ = 0. (61)

Finally, defining H ≡ F + iG and J ≡ H′, we obtain

J ′′ + i

(

1

C

)

UJ = K (62)

for some constant K. Following Hall & Sherwin (see equation (2.22) in [6]), the solution
for J (U) that decays as |U | → ∞ may be expressed in terms of Scorer functions but can
be further manipulated to yield

J (U) = −KC2/3

∫

∞

0

exp

[

i
1

C1/3
Us− s3

3

]

ds. (63)

As |U | → ∞, the real (imaginary) part of J (U) matches smoothly with the solution (54)
for F ′(u) (the corresponding solution for G′(u)), as |u| → 0. This asymptotic matching
yields an algebraic relation between the constants K and a. Thus, apart from the constants
a and C, v′

1
and w′

1
are completely determined by this analysis, at least as a function of the

unknown u(y, z) – a significant simplification.
The Reynolds stress divergence across the critical layer drives a mean flow in the y–z

plane; namely, the rolls. The leading-order dominant balance in equation (44) within the
critical layer requires

1

R
∇2

⊥
Ω1 ∼ −

(

∂2z − ∂2y
)

v′
1
w′

1
− ∂z

[

∂y

(

v′
1
v′
1
− w′

1
w′

1

)]

, (64)

where it has been posited that the roll velocity is smooth but that there is a jump in the
χ-component of mean vorticity Ω1 across the critical layer, as can be verified a posteriori. It
proves convenient to consider this equation in (u,z) rather than Cartesian (y,z) coordinates.
Specifically, we write Ω1(y, z) = Ω̃(u, z) and ψ1(y, z) = ψ̃(u, z), and recall ψ′

1
(χ, y, z) =

F (ū) cos χ+G(ū) sinχ. After much algebraic manipulation, equation (64) can be expressed
as

1

R
|∇⊥u|2∂2uΩ̃ ∼

[

(

F ′(ū)
)2

+
(

G′(ū)
)2

]

′

{

∂y(∂zu)
[

(∂yu)
2 − (∂zu)

2
]

+(∂yu)(∂zu)
[

∂2zu− ∂2yu
]

}

. (65)
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Integrating this equation from u = 0 to u = ∆, i.e. from the center to the upper edge of
the critical layer, yields an effective boundary condition on the “outer” mean vorticity as
the critical layer is approached from above:

∂uΩ̃

∣

∣

∣

∣

u→0+

∼ R

2

{

∂y(∂zu)
[

(∂yu)
2 − (∂zu)

2
]

+ (∂yu)(∂zu)
[

∂2zu− ∂2yu
]

|∇⊥u|2

}

u→0+

×
{[

(

F ′(∆)
)2

+
(

G′(∆)
)2

]

−
[

(

F ′(0)
)2

+
(

G′(0)
)2

]}

. (66)

The outer problem for the mean flow in the y–z plane above the critical layer (above the
white region in figure 12(a) top panel for example) also requires a boundary condition on
ψ̃. This condition is obtained by noting that Ω̃ ∼ |∇⊥u|2∂2uψ̃ within the critical layer and,
hence, that

∂uψ̃

∣

∣

∣

∣

u→0+

∼ 1

|∇⊥u|2
∫ u=∆

u=0

Ω̃ du. (67)

Note that both equations (66) and (67) implicitly enforce the symmetry conditions ∂uΩ̃ =
∂uψ̃ = 0 along u = 0 and must satisfy the constraint (58), which applies (asymptotically)
everywhere within the critical layer.

We may now summarize the algorithm for computing lower branch ECS, satisfying Wang
et al. scalings [21], in the small-α limit with R̂ ≡ αRe ≫ 1 and R = ǫRe = O(1). In the
limit Re → ∞, the critical layer becomes infinitely thin, and we compute the solution in
the non-rectangular y–z domain above the critical layer; by symmetry, we can reconstruct
the solution below the critical layer. First, an initial guess for u(y, z) in this domain is
required; again, it should be emphasized that this initial and all subsequent iterates must
satisfy equation (58) along u = 0, as noted above. We then march

∂T Ω̃ + (∂yu)
(

∂uψ̃∂zΩ̃− ∂zψ̃∂uΩ̃
)

∼ 1

R

[

|∂⊥u|2∂2uΩ̃ +
(

∇2

⊥
u
)

∂uΩ̃ + ∂2z Ω̃
]

, (68)

|∂⊥u|2∂2uψ̃ +
(

∇2

⊥
u
)

∂uψ̃ + ∂2z ψ̃ = Ω̃ (69)

to steady state on a discrete (u,z) grid. Note that, asymptotically, the Reynolds stress
terms in equation (44) are consistently omitted in equation (68). The mean flow is, instead,
driven by the effective boundary conditions just above the critical layer (i.e. as u → 0+):
equations (66) and (67). Imposition of these boundary conditions requires evaluation of the
quadrature (63) for the fluctuation fields within the critical layer. Finally, the solution for
ψ̃(u, z) along with the initial iterate for u(y, z) can be used to reconstruct ψ1(y, z) in the
region above the critical layer. Then equation (43) can be marched to steady state in the
discrete y–z domain (subject to u = 0 at the “old” location of the critical layer), and the
entire iteration repeated until convergence.

5 Discussion

In the present investigation, we have derived a model of the dynamics near lower branch
ECS in plane Waleffe flow. This model is asymptotically valid in the limit of high Reynolds
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Figure 13: (a) Eigenvalues λ for the iterate shown in figure 12, with R(λ) the growth rate
of the fluctuation and I(λ) the temporal pulsation. (b) Time integration of the “complete”
reduced system (35)–(39) starting from this state. The solutions are represented by the 2-
norm of the Fourier spectrum N for the mean variables (bottom curve) and the fluctuations
(oscillating curve).

numbers. We have also developed an algorithm based on this model to obtain good es-
timates of lower branch solutions given only an initial profile for the streamwise averaged
velocity. Using this novel iterative algorithm, we were able to compute the near lower branch
flow state shown in figure 12, which, in turn, should provide an excellent first iterate for a
standard Newton solver. Other solutions can easily be sought by imposing an appropriate
initial condition for the streamwise averaged velocity or by using the small-α approach de-
veloped in section 4. The merit of this approach is two-fold: (i) the problem can be solved
for asymptotically large Re without the need to resolve the critical layer; and (ii) the fluc-
tuation system has been reduced to a quadrature. With a solution for asymptotically-small
α available, solutions for finite α can be computed using standard numerical continuation
software.

An alternative method can also be used to obtain lower branch solutions: edge-tracking
[16]. Designed to find edge states, this technique involves time-stepping the governing
equations for initial conditions with different amplitudes. This methods exploits the fact
that some edge solutions are once unstable: if the amplitude is too small, the initial condition
will decay to the laminar solution; if the amplitude is too large, the initial condition will
grow to reach a different state. By identifying the divergence in the decay/growth behavior,
linear combinations of the diverging solutions can be formed to generated initial conditions
that, when time-advanced, continue to track the edge for longer and longer durations.
The edge can be followed in this way, simply using a time-stepper. The stability of the
state we have found is indicated in figure 13(a). It is represented in the complex λ plane,
where the real part R(λ) represents the temporal growth rate of the perturbation and the
imaginary part I(λ) the temporal pulsation. There is a λ ≈ 0 mode, representing the
fluctuations in figure 12. In addition to this mode are modes with complex conjugate λ
with positive real part. The presence of these modes indicates that the solution is unstable
with respect to time-dependent fluctuations. It is therefore not an attractive edge solution,
in the sense it is not strictly once unstable. Nevertheless, edge-tracking can be used to
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find new solutions. We implemented a third order Runge–Kutta scheme to discretize in
time [17] in the reduced system (35)–(39). A typical simulation result is plotted in figure
13(b). This simulation has been initialized using the state shown in figure 12. Initially, the
dynamics are slow, owing to the fact the solution is nearly marginal. Then, oscillations,
corresponding to the most unstable mode in figure 13(a), start to grow exponentially. Due
to the separation in time scales, the mean variables do not respond, enabling the fluctuations
to grow. At approximately t = 200, the fluctuations become O(1/ǫ), violating the lower
branch asymptotic scaling and suggesting the dynamics is moving toward upper branch
solutions or turbulent states. Indeed, by continuing the computation a little bit further, the
code blew up as a result of the undamped growth of the fluctuations, generating intense
rolls that violated the CFL condition. This process seems unavoidable as the tests we ran
with different time steps resulted in a similar blow up behavior, albeit at slightly different
times despite a converged simulation until then. These simulations do however provide
useful information: the quasi-linear behavior of the fluctuations and time scale separation
imply that fluctuations and mean variables evolve in a rather decoupled manner. Classic
edge-tracking is therefore not possible as two different amplitudes are needed (one for the
fluctuations and one for the mean variables) instead of one.

To cope with these difficulties, we propose to simulate the following augmented system:

ζ1∂tu
0 + ∂yψ

0

1∂zu
0 − ∂zψ

0

1∂yu
0 = 1

R∇2

⊥
u0 +

√

2π2

4R sin(πy/2), (70)

ζ1∂tω
0
1
+ J

(

ψ
0

1, ω
0
1

)

+ 2
(

∂2y − ∂2z
)

R(v′
1
w′∗

1
) + 2∂z∂y

(

w′

1
w′∗

1
− v′

1
v′∗
1

)

= 1

R∇2

⊥
ω0
1
, (71)

∂tu
′

1
+ iαu0u′

1
+ v′

1
∂yu

0 + w′

1
∂zu

0 = −iαp′
1
+ ǫ

R∇2

⊥
u′
1
, (72)

∂tv
′

1
+ iαu0v′

1
+ ζ2 (v

′

1
∂yv

′

1
+ w′

1
∂zv

′

1
) = −∂yp′1 + ǫ

R∇2

⊥
v′
1
, (73)

∂tw
′

1
+ iαu0w′

1
+ ζ2 (v

′

1
∂yw

′

1
+ w′

1
∂zw

′

1
) = −∂zp′1 + ǫ

R∇2

⊥
w′

1
, (74)

iαu′
1
+ ∂yv

′

1
+ ∂zw

′

1
= 0. (75)

This system is a replica of equations (27)–(33) in the case of O(1) varying solutions in
the streamwise coordinate with a few modifications. The first one concerns the occurrence
of ζ1 terms in equations (70) and (71) where ζ1 should be ǫ. By replacing ǫ by an O(1)
value, we eliminate the time scale separation, enabling an effective feedback from the mean
variables. The second modification is the addition of the terms involving ζ2 in equations
(73) and (74). Provided ζ2 = O(1), these nonlinear terms for the fluctuations will fix their
amplitude. Strictly, these terms arise at higher order and hence ζ2 should equal ǫ to respect
our model derivation. Nevertheless, the idea behind this augmented system is to compute
the edge for ζ1 = O(1) and ζ2 = O(1) and then, in a process called homotopy, gradually
decrease ζ1 and ζ2 to obtain an edge solution for ζ1 = ζ2 = ǫ. At large Re (small ǫ), this
solution is a solution of the system (35)–(39).

Once edge solutions are obtained, their dependence on the streamwise wavenumber
α will be investigated. Indeed, the current literature has focused on finite-sized boxes,
but practical applications of parallel shear flows may involve very long streamwise scales.
Thus, our reduced model may provide an effective way to bridge the gap between current
simulations and long domains. Another possibility is to use the model to compute more

complex solutions exhibiting streamwise modulation by including ψ
δ
1 and ωδ

1
or to obtain

localized solutions in the spanwise direction by computing in a larger domain. These lines of
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Figure 14: (a) Instantaneous snapshots of the edge state for Re = 375 (left) and Re = 1000
(right). Three-dimensional isocontours of the streamwise velocity perturbation are shown.
Only part of the spanwise domain is shown here. After Duguet et al. [1]. (b) Localized
turbulence seed at Re = 400 represented via the streamwise velocity in the y = 0 plane.
After Schneider et al. [15].

inquiry are motivated by the edge solutions obtained by Duguet et al. [1] and Schneider et
al. [15] and shown in figure 14. Computing these solutions using the reduced model would
shed light on the structure of the edge at high Reynolds numbers and on various types of
localization in parallel shear flows. Finally, it should be noted that although Waleffe flow
has been used here as a simpler surrogate for Couette flow, there have been no systematic
comparative studies of these flows. Such a comparison would inform future studies and
provide impotant context for the current investigation.
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