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Mesoscale Dynamics

Submesoscale Dynamics
Locally, Ro =

�

f
= O(1)

� = vx � uy Vorticity  (vertical component)

Ro =
U

fL
=

�

f
= O(0.1� 0.01)

Review on submesoscale processes: 
Thomas, Tandon, Mahadevan, 2008

Mahadevan & Tandon, 2006
Mahadevan, 2006

Capet et al, 2008

Why?
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balance, for small Ro

Fronts - Lateral gradients in density (buoyancy) -present everywhere
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Fronts spontaneously intensify
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Frontogenesis

u  increases
vorticity increases. �

f
= O(1)

locally...

vertical velocity
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YZ

X

U

ζ/f = O(1), Ro = U/fL = O(1)

since (Tandon & Garrett, 1994) by ∼ Nf

L = byH/f2 = NH/f
−by

H

Ri = N2H2/U2 = Ro−1/2 = O(1)Bulk

W ∼ Ro δ U = δ U

δ = H/L = f/N

Vertical
velocity

where

N2

Review on submesoscale processes: 
Thomas, Tandon, Mahadevan, 2008

Submesoscale Processes

Submesoscale motion can arise from:
 Frontogenesis
 Surface forcing 
 Instabilities, .....    

Mahadevan & Tandon, 2006
Mahadevan, 2006

Fronts - Lateral gradients in density
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Front - forms eddies and filaments

Density Rel. Vorticity /f 2d Strain rate /f
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Vertical Velocity
How large?
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Mesoscale Dynamics

Submesoscale Dynamics

Locally, Ro =
�

f
= O(1)

Ro =
U

fL
=

�

f
= O(0.1� 0.01)

-3 -4W ~ (10  - 10   )  U ~ 1-10 m/d    

W ~ (10   )  U ~ 100 m/d-2

= 0.01

U=0.1m/s

W

D
� 1

µ
tadvec � tbio

Submesoscale dynamics can sustain higher 
growth rates of O(1 day)
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Vertical Transport is largely along-isopycnal
but, because of the vertical gradient in nutrients and consumption near-surface,  

Vertical velocity Nutrient

-150m
60 km 60 km

z

...and, nutrients (tracers) get transported across the mean isopycnal surfaces.

�wN ��zprod � �nitrate uptake�prod zone
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Vertical supply of nutrients
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Small scale
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Ekman Pumping 
Large-scale wind stress curl

Coastal upwelling

Variability of wind-stress due to 
ocean velocity

Nonlinear Ekman dynamics

Uplift of isopycnal surfaces 
(eddies/ internal waves) 

Advective transport at fronts

Mixing and mixed layer entrainment

Increasing light (length of day)

Reduce depth of mixing
• Reduced buoyancy loss

Enhance stratification 
• Surface buoyancy
• Mixed layer eddies

• Thinning ice / melt ponds)

Limiting depth of mixing
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30 March 2007 FOX-KEMPER and FERRARI 3

a)

b)

Figure 2: Temperature (oC) during a typical simulations of the adjusting front. (Black contour interval=0.01oC,
white contour interval=0.1oC.)

Fox-Kemper et al., 2008 Restratification of the mixed layer by eddies Boccaletti et al., 2006 

−by

YZ

X

U

by

EDDY-DRIVEN
CIRCULATION

-

�e

Eddy-driven stream function
�e = 0.06 byH2/f

Fox-Kemper et al., 2008 Tuesday, October 29, 13



Mixed Layer Instability
Rapid adjustment of the mixed layer by submesoscale eddies 

Vertical Section at x=48 km 

�

N2

� N2

�10�5

Process Study Ocean Model

Effect on phytoplankton 
spring blooms, see 
Mahadevan et al., 2012
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Mahadevan, Tandon, Ferrari (2010)

In the presence of wind forcing? 
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North Atlantic Bloom study Mahadevan, D’Asaro, Lee, Perry (2012)
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North Atlantic Bloom study

In the Arctic, eddy-driven restratification is likely below ice cover in late winter
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Eddy-driven subduction 

Density Chlorophyll

Text

km

km OxygenAlkire et al., 2011

Model section

Float data
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Omand et al., (in prep)
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o
wind-ocean wind-driven mixing on shelves 

and in the interior

stronger internal waves

more heat,

more light

more small-scale

structures?

ice-edge

upwelling and

downwelling (?)

o
wind-ocean

cross-shelf exchanges

(upwelling &

downwelling)

changes in halocline

water formation?

changes in 

thermohalocline

structures?

ice melt &

ice formation

o
wind-ice

o
ice-ocean

Submesoscale Processes at the Ice Edge

Effects of enhanced seasonal ice retreat on phytoplankton productivity?

Rainville et al., 2011

Mahadevan, Rainville, Woodgate, Matrai, Wang
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2009 Ice Extent
Luc Rainville 

Ice retreat
10 km per day 

Effect on productivity
Enhanced 

stratification
light

lateral gradients
wind
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FIXED
ICE

EXTENT

Nitrate 
Consumption Rate Surface Salinity Vorticity/f

Upwelling at the ice edge during a westerly wind burst. But winds are mostly from the east.
Model Results
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Nitrate 
Consumption Rate Surface Salinity Vorticity/f

Wind
stress

Sea Ice retreats by melting
Evolving over 35 days

Large lateral density gradients are generated and lead to instability and eddies that draw nutrients up.
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Inertial motion is generated by a northward wind 
stress of 0.26 Pa applied for 12 hours and stopped

5 days time evolution of surface ~u

Wind-generated inertia gravity waves

Stratified ocean

Mixing - Will it be enhanced in an ice-free Arctic?

M. Claret 
& Mahadevan (in prep)

Inertial
period ~
12 hrs
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dy=1.2km
dt=180s  

Ly=700km
Lz=2500m

Wind blows 
perpendicular 

to  fronts

Stratified fluid (control case) Shallow and intense front

Deep and moderate front Combination of both fronts

What is the effect of a front on wind-forced IGWs?
�(y, z)
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s-1

Inertia gravity waves propagate to depth along fronts. 
�v/�z

 Energy transfer depends on frontal intensity and depth.

Time-evolution of

Shallow front

No front
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Some effects of submesoscale dynamics

Intensification of vorticity, strain, vertical velocity 
associated with submesoscale dynamics

Submesoscale Dynamics

Eddy-driven subduction
Surface freshwater and tracers can be dispersed by along-
isopycnal filaments. 

ML-Eddy-driven stratification
Countered by surface buoyancy loss and downfront winds

Near-inertial waves at a front
Wind-generated near-inertial waves propagate to depth at fronts

Mahadevan 2006
Mahadevan & Tandon 2006

Thomas, Tandon, Mahadevan 2008

Badin, Tandon, 
Mahadevan, 2011

Mahadevan, Tandon, 
Ferrari, 2010

Mahadevan, D’Asaro, 
Lee, Perry, 2012

Mahadevan, Woodgate, Rainville, Matrai, Wang (in prep)

Claret, Tandon and Mahadevan (in prep)

Ice edge phytoplankton blooms
Horizontal salinity gradients enhance vertical exchange in 
regions of meltwater
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