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Abstract

A recent paleo-data compilation with over 450 δ13C and δ18O observations

provides the opportunity to sample the Last Glacial Maximum (LGM) well enough

to infer its global properties, such as the mean δ13C of dissolved inorganic car-

bon. Here, the paleo-compilation is used to reconstruct a steady-state circulation

field for the LGM, that in turn is used to map the data onto a 3D global grid. A

global-mean marine δ13C value and a self-consistent uncertainty estimate are de-

rived using the framework of state estimation (i.e., inverse methods). The LGM

global-mean δ13C is estimated to be 0.14h± 0.20h at the two standard error

level, giving a glacial-to-modern change of 0.32h± 0.20h. The magnitude of

the error bar is attributed to the uncertain glacial ocean circulation and the lack

of observational constraints in the surface Pacific and Southern Oceans. A ma-

nipulated circulation field can even yield a mean δ13C change of 0.6h, in basic

consistency with inferences of terrestrial carbon reservoir change.
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1. Introduction1

Carbon-13 to carbon-12 ratios (i.e., δ13C) can chemically fingerprint different2

carbon reservoirs, and thus the global-mean glacial-interglacial change in δ13C3

of oceanic dissolved inorganic carbon (i.e., δ13CDIC) reflects the carbon partition-4

ing between terrestrial, atmospheric, and marine reservoirs. Dramatic environ-5

mental changes during the Last Glacial Maximum (LGM, 19-23 ka) altered the6

terrestrial biosphere, and some of the low isotopic signature of terrestrial car-7

bon (δ13C≈−25h) was transferred to the glacial ocean, consistent with observa-8

tions of benthic foraminiferal δ13C lower than the modern-day (e.g., Shackleton,9

1977; Curry et al., 1988; Duplessy et al., 1988). The glacial atmosphere held ap-10

proximately 170 gigatons (Gt) less carbon, leaving the ocean as the most readily11

available source of compensation for the other two reservoirs. Pollen records and12

vegetation models that more directly reflect terrestrial carbon change yield higher13

estimates of glacial-to-modern carbon transfer (e.g., 750 to 1900 Gt C, Crowley,14

1995; Adams and Faure, 1998; Kaplan et al., 2002) than the marine-based es-15

timates (e.g., 330 to 650 Gt C, Shackleton, 1977; Curry et al., 1988; Duplessy16

et al., 1988; Köhler et al., 2010). A recent compilation of benthic Cibicidoides17

spp. δ13C has nearly twice the data points of previous compilations and cover-18

age of the Atlantic, Pacific, and Indian Oceans (Peterson et al., 2014), and thus19

motivates the re-investigation of the marine-based whole-ocean δ13C estimates.20

Determining the mean value of a spatially-distributed tracer field boils down

to a linear operation in most cases (i.e., an inner vector product):

c =
N

∑
i=1

wiyi + c0 = wT y+ c0 (1)

where c is the global mean value, w is a vector of weights with wi for the ith el-21
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ement, T is the vector transpose, y is a vector containing N observations, and c022

is a constant included for full generality. If all observations are assumed to con-23

tain equal information about the global mean and no prior information is available24

(c0 = 0), the optimal weights would all be 1/N, and equation (1) reverts to the25

basic sample mean. The sparse, irregularly-spaced nature of glacial observations26

invalidates this assumption, of course. Originally, paleoceanographers best dealt27

with this issue by choosing cores from what was thought to be the most repre-28

sentative oceanic regions (e.g., Shackleton, 1977). As more data became avail-29

able, basin-wide or regional means were computed as a preliminary step before30

global averaging (e.g. Curry et al., 1988; Boyle, 1992; Matsumoto and Lynch-31

Stieglitz, 1999; Peterson et al., 2014). This multi-step process naturally leads to32

non-uniform weights on the observations in equation (1).33

The global mean computed as a succession of sub-averages may be sensitive34

to the size and location of the sub-domains, and only by producing δ13C maps35

at higher spatial resolution will this sensitivity disappear. The distance between36

LGM observations, however, is often greater than the decorrelation lengthscale of37

oceanic property fields, and thus the typical method of “objectively” mapping the38

observations onto a regular grid (e.g., optimal interpolation or objective mapping,39

Bretherton et al., 1976) will revert to a first-guess estimate in many locations. In40

other words, large regions of the LGM ocean would be unconstrained by the data,41

especially at intermediate depths where little core coverage is available. Further-42

more, the objectively-mapped estimate will leave local extrema in the estimated43

tracer field around the data points. Such features are undesirable because they44

are not physically sustainable in equilibrium when diffusion has sufficient time to45

act (e.g., in the case of atmospheric momentum, Hide, 1969), although it is not46
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clear how equilibrated the glacial ocean was. For a nonconservative tracer such as47

δ13CDIC, local minima (but not maxima) may exist in conjunction with an interior48

tracer sink due to remineralization. A new method is needed to create a map with49

such sparse observations while addressing these complications.50

Here we suggest that a method originally developed for estimating the ocean51

circulation from sparse observations (Gebbie, 2014) is also well-suited to make52

three-dimensional global maps. Specifically, we combine observations with a nu-53

merical model to produce an LGM state estimate. Additionally, we outline a54

method to determine the observational weights, w, that takes sampling character-55

istics and ocean circulation into account. Rather than using the assumed statistics56

of circulation lengthscales, we suggest that the circulation itself can be used to57

make a better gridded field. The numerical model serves a dual purpose: 1) a58

means to readily interpret the sources, sinks, and pathways of tracer, and 2) a59

kinematic interpolator and extrapolator that allows large-scale information to be60

extracted from the observations.61

This work is divided into two major parts: 1) estimating the LGM global-mean62

δ13CDIC, and 2) diagnosing and understanding its uncertainty. The first part intro-63

duces the numerical model, observations, and the 3D mapping technique (Section64

2). This technique allows the reconstruction of a global map of LGM δ13CDIC65

and the emergence of a coherent pattern of LGM-to-modern changes (Section 3).66

The second part extends the state estimation framework to produce uncertainty67

estimates with the attribution of the sources of uncertainty (Section 4). An uncer-68

tainty estimate is produced for glacial-mean δ13CDIC, as well as regional estimates69

(Section 5). Then we interpret the sources of the uncertainty and put it into the70

context of previous works (Section 6), before concluding (Section 7).71
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2. Global LGM state estimate72

The global LGM state estimate is produced by combining a kinematic ocean73

circulation model with a global array of benthic foraminiferal observations of74

δ13C and δ18O. The model and observations are detailed next.75

2.1. Model76

Multiple tracers are modeled for the glacial ocean simultaneously: potential77

temperature, salinity, seawater δ18O, phosphate, and δ13CDIC. The model is a sta-78

tistically steady-state conservation equation that is assumed to hold for, c, a gen-79

eral tracer: ∇ · (~f c) = q, where ~f is the mass flux and q is a local source or sink.80

In the statistical steady state, any temporal variability that has a net diffusive or81

advective effect can be represented by the model used here. For the isotope vari-82

ables, an error is incurred by modeling the ratio rather than the individual isotopes83

(e.g., Walker, 1991), but this error is damped in the vicinity of observations by84

the formal data constraints. In particular, the sink of δ13CDIC due to remineraliza-85

tion is assumed to be equal to -0.95 times the source of remineralized phosphate,86

which is adjusted relative to the modern ratio of -1.1 due to changes in whole-87

ocean δ13CDIC and upper-ocean biological fractionation (e.g., following Broecker88

and Maier-Reimer, 1992). For conservative tracers, the source and sink vanishes89

(q = 0). A global grid is defined with 4◦×4◦ horizontal resolution and 33 vertical90

levels with enhanced resolution near the surface.91

2.2. Observations92

A major extension to the work of Gebbie (2014) is the use of the paleo-data93

compilation of Peterson et al. (2014) that includes observations in the Pacific and94
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Indian sectors, rather than the Atlantic-only data used previously. This compi-95

lation contains 376 δ13C and 369 δ18O measurements from benthic foraminifera96

dated to the Last Glacial Maximum from 19,000 to 23,000 years before present97

(19-23 kyr BP) following a re-derived age model (Stern and Lisiecki, 2014). The98

need for inter-species and interlaboratory offsets is reduced by compiling only99

Cibicidoides spp. δ13C data, and by implementing δ18O constraints based on the100

LGM-to-Late Holocene difference in the same core. Other data are added (e.g.,101

personal communication, D.W. Oppo and W. Curry, Marchal and Curry, 2008;102

Makou et al., 2010; Hesse et al., 2011), including porewater salinity and δ18O103

data points (Adkins et al., 2002). The deglacial records indicate a group of out-104

liers where the LGM-to-Holocene δ18O change is less than 0.6h, which can be105

traced back to low temporal resolution in the cores. Therefore we have removed106

these values from the compilation. Observations were also culled when the phy-107

todetritus effect was implicated by the original authors (e.g., Mackensen et al.,108

2000), and at locations that fall more than 200km outside of the model grid. In to-109

tal, 492 LGM δ13C and δ18O data points constrain the model simulation (locations110

are later shown in Figure 7).111

2.3. Solution method112

Our solution method must fit the model to the observations and also handle113

nonlinearities, including gravitational stability, the non-negativity of tracer con-114

centrations, and the multiplication of uncertain tracer concentrations with uncer-115

tain circulation fields. The nonlinear optimization problem is solved via a hand116

coding of the adjoint equation that describes the evolution of the Lagrange mul-117

tipliers (see supporting information of Gebbie (2014)), and is solved iteratively118

using a limited-memory quasi-Newton gradient descent routine (Nocedal, 1980).119
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The resulting δ13CDIC distribution fits the observations with a standard deviation120

of the misfit of 0.19h that is an acceptable fit within the expected uncertainty of121

0.2h in the data. This expected value is based upon the proxy error calculated122

by the Late Holocene core data to modern-day seawater data misfits. 50% of the123

points are fit within 0.02h, although outliers larger than ±0.6h exist. While not124

being the primary variable of interest here, δ18O is also fit well, with a standard125

deviation of 0.22h that is approximately equal to the expected value of 0.2h.126

We are motivated by the atmospheric pCO2 change of 80-100ppm from the127

LGM to the pre-industrial era, and thus we seek to estimate the marine δ13C128

change over the same time period, here denoted ∆MG[δ
13CDIC] (i.e., modern, “M,”129

minus glacial, “G”). A modern-day reference circulation that attempts to recon-130

struct the pre-industrial ocean was produced using the same method (Gebbie,131

2014) and will be used for comparison here. The GLODAP and CARINA sea-132

water δ13CDIC compilation (Schmittner et al., 2013) constrained the modern-day133

distribution, and observations in the upper 1km of the water column were down-134

weighted in an attempt to account for the Suess effect (e.g., Olsen et al., 2006)135

and to produce a pre-industrial gridded δ13CDIC distribution. Note that most ma-136

rine estimates were based on glacial-to-Late Holocene differences (here distin-137

guished by the notation, ∆HG[δ
13CDIC]) that may reflect a different quantity due to138

the core information ending asynchronously over the last few thousand years of139

the Holocene. Modern-day and glacial ocean computations are undertaken on the140

same grid, but gridcells above 120 meters modern-day water depth are discarded141

in the glacial case.142
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3. Glacial-mean δ13C143

The global mean of any LGM tracer is calculated as the mass-weighted av-144

erage of the tracer concentration in each gridcell. As three-dimensional fields145

are modeled for temperature and salinity, the mass of each gridcell is determined146

by the product of the cell volume and the seawater density as calculated by the147

international thermodynamic equation of state (IOC, 2010). Although the LGM148

density field is not well constrained, the spatial range of density has variations no149

larger than 5%, and thus volume (set by the size of the gridcells) dominates the150

calculation. The glacial global mean δ13C is estimated to be 0.14h, leading to an151

estimate of glacial-to-modern change of 0.32h when comparing to the reference152

(modern) state estimate. This estimate results from a spatially structured pattern153

of change, shown next.154

3.1. LGM δ13C distribution155

The main characteristic of the LGM North Atlantic δ13C distribution is a de-156

pletion of δ13CDIC below 2km depth (upper panel, Figure 1) that conforms with157

expectations (e.g., Duplessy et al., 1988; Curry and Oppo, 2005). The δ13CDIC gra-158

dient with depth is not as sharp as in the inversion of Gebbie (2014), due to zonal159

averaging over the entire Atlantic basin, but also reflecting a spurious smearing160

effect in the large data compilation sourced from multiple laboratories. For the161

present focus of seeking global and regional means, weaker gradients are unim-162

portant so long as the center of the high-gradient interface is at the right depth, as163

it appears to be. Of more concern are the undersampled regions, where this in-164

version sometimes disagrees with the Gebbie (2014) inversion. For example, the165

updated state estimate has a much higher δ13CDIC in the Arctic (1.2h compared to166
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0.6h). The Southern Ocean endmember is −0.8h in both inversions, but should167

not necessarily be interpreted as a robust result. The uncertainty of the estimate in168

these regions without data will be explicitly addressed in the next section. In the169

Pacific, the most depleted LGM Pacific δ13CDIC values deepen from 1.5km in the170

modern-day to almost 3km (e.g., Matsumoto et al., 2002; Herguera et al., 2010),171

and our gridded field shows how this structure fits into the surface and Southern172

Ocean distribution (lower panel, Figure 1).173

Besides the δ13C distribution, we also solve for the circulation (actually, water-174

mass distribution) that is consistent with the seawater properties. The inferred175

LGM Atlantic circulation is similar to the previous inversion of Gebbie (2014),176

with an increased return flow of North Atlantic Water to bottom waters relative to177

intermediate waters. In addition, the 50% southern source isoline is around 4km178

depth in the North Atlantic (this is also the place where southern and northern179

source water concentrations are equal). Significant deep remineralization (with180

the addition of 12C effectively causing a sink of δ13C) was originally reported in181

the deep Atlantic (Gebbie, 2014), but is less pronounced in the updated state esti-182

mate due to the use of a more spatially-coherent δ18O dataset (derived from LGM-183

to-Late Holocene differences). The estimated LGM Pacific has deeper North Pa-184

cific Water (down to 2km instead of 800m today, as defined by the 50% concen-185

tration line). Otherwise southern water masses fill the same part of the Pacific186

sector.187

3.2. Spatial pattern of δ13C change188

The difference of the modern-day and LGM gridded δ13CDIC fields permits the189

mapping of a global, three dimensional field of ∆MG[δ
13CDIC], where large-scale190

coherent patterns emerge (Figure 2). In much of the Atlantic and Pacific Oceans191
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Figure 1: LGM Atlantic (upper) versus Pacific (lower) δ13CDIC, with all observations from the

particular basin (colored squares) and 3D gridded field (background colors and contours). All At-

lantic sections are zonally averaged from 70◦W to 0◦, and all Pacific sections are zonally averaged

from 135◦E to 105◦W. The colored symbols are on the same color scale as the background field.
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above 1km, δ13CDIC decreased over the deglaciation despite the increase in the192

global mean. In general, ∆MG[δ
13CDIC] increases with depth and toward the south in193

these two ocean basins, however, the biggest changes are reserved for the Atlantic194

sector of the Southern Ocean. While a previous study showed little δ13CDIC change195

above 2km in the North Pacific (Matsumoto et al., 2002), here we find that the196

North Pacific δ13C drops over the deglaciation by more than 0.8h between 300197

and 1100 meters depth. In intermediate waters, our map suggests a scenario closer198

to that described by Herguera et al. (2010), where the intermediate South Pacific199

δ13CDIC increases, but the intermediate North Pacific decreases. Overall, δ13CDIC200

actually decreases in many locations, and the global mean value results from the201

competing influence of regions with differing signs of change.202

4. Uncertainty of the state estimate203

4.1. Deriving an uncertainty formula204

A major focus of this work is the determining the uncertainty of the global205

mean and attributing the sources of that uncertainty. The uncertainty, Pc, is de-206

fined as the expected squared difference between the estimated global mean, c̃,207

and the true value, c (i.e., Pc ≡< (c̃− c)2 >), where the brackets indicate the ex-208

pected value operator (e.g., Wunsch, 1996). This matrix becomes a scalar when209

c is a scalar. As a complete uncertainty analysis of this large, nonlinear problem210

would require computational resources beyond our capacity, we instead derive the211

uncertainty with a local, linearized approach. For an unbiased estimator, the true212

solution, c, may be set equal to the expected value that would emerge from our es-213

timation method over many different realizations, < c̃>, but here we restrain from214

such an interpretation given the highly nonlinear nature of the problem and the215
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Figure 2: Similar to Figure 1, but for the Atlantic and Pacific zonal-average difference in δ13CDIC

between the modern-day and LGM (i.e., ∆MG[δ
13CDIC] = δ13CM

DIC - δ13CG
DIC).
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simplified nature of the model. Thus we are restricted to solving for the expected216

range of solutions, here defined as the dispersion of c̃−< c̃ > or equivalently the217

solution covariance, Cc≡< (c̃− < c̃ >)2 >. The standard error, σc, is then de-218

fined as the square root of the solution covariance: σc ≡
√

Cc. Our estimate of the219

glacial-mean δ13CDIC uncertainty will later be quoted as twice the standard error.220

To calculate the uncertainty of the global mean, we first define the global mean221

explicitly (following Section 3). For reasons that should become clear below, the222

state vector, x, is defined to contain both tracer and circulation information, i.e.,223

xT = [c;m]T , where c is a vector that represents any global three-dimensional224

tracer distribution and m describes the circulation as a vector of mass-flux ratios225

between grid faces (e.g., Gebbie and Huybers, 2010). This state vector definition226

is not unique, but it provides sufficient information to permit a steady-state tracer227

distribution to be computed, and thus is an acceptable definition of the state. The228

mass-weighted global mean is operationally defined as c = rT x, where r is the229

appropriately-defined mass-weighting vector (i.e., ri = Mi/∑
J
j=1 M j for all i ≤230

J, ri = 0 for all i ≥ J, Mi is the mass of gridcell i, and the global ocean has J231

gridcells). The sum of elements of r is equal to one to form a proper average232

(||r||1 ≡ 1).233

Substituting the equation for the global mean into the definition of the global-

mean covariance, the uncertainty of the global mean is clearly dependent upon the

uncertainty over the entire globe:

Cc = rT Cx̃r, (2)

where Cx̃ is the solution covariance. Thus it is necessary to determine the uncer-234

tainty of the three-dimensional tracer distribution in order to calculate the uncer-235

tainty of the global mean.236
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4.2. Sources of uncertainty237

The uncertainty is determined by the three types of constraints that define238

the state estimation problem: 1) prior information about the tracer distribution239

and circulation, 2) proxy observations, and 3) the kinematic tracer conservation240

model. These constraints relate the tracer distribution and circulation, and thus241

an uncertainty in one will affect the other. Constraint 1) is some prior knowledge242

of the state: x = x0 +u, where x0 is a first guess of the state vector and u is the243

deviation from the first guess. Constraint 2) is a collection of observational equa-244

tions: y = Ex+n, where y is a vector of observations, E predicts the observations245

from the state, and n is the observational error. Constraint 3) is the statistically246

steady-state conservation equation that, when discretized, becomes L [x] = q+v,247

where L is a nonlinear operator due to the multiplication of the tracer concentra-248

tion and flow field that encapsulates advective and diffusive processes, and v is249

the source deviation from the first-guess, q. The model equation includes surface250

concentration (i.e., Dirichlet) boundary conditions. In this general state estima-251

tion framework, the solution state is determined by minimizing a cost function252

that combines the constraints, J = uT S−1u+ nT W−1n+ vT Q−1v, where S,W,253

and Q are matrices that provide the relative weightings.254

Under the assumption that this cost function adequately represents the domi-

nant constraints, all information for an uncertainty analysis in the neighborhood

of the known solution is available. The squared standard error, or dispersion of

c̃−< c̃ >, is (following Appendix A)

Cx̃ = (S−1 +ET W−1E+LT
x̃ Q−1Lx̃)

−1, (3)

where Lx̃ is the model linearized about the state, x̃ (i.e., Lx̃ ≡ ∂L/∂x]x̃). Equa-255

tion (3) assumes that the weight matrices are chosen to be the expected second-256
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moment matrices of the residuals (i.e., Rnn =W, Rqq =Q, and Rxx = S, following257

Wunsch (1996)), which has been done in this work, and also assumes that the lin-258

ear problem is a good surrogate for the more complete nonlinear method.259

Substitution of equation (3) into (2) permits the global-mean uncertainty to be

written explicitly in terms of the known input variables in the problem:

Cc = rT (S−1 +ET W−1E+LT
x̃ Q−1Lx̃)

−1r. (4)

Equation (4) illustrates that the three contributions to the uncertainty come from260

the three constraints: the first-guess uncertainty in the state (S−1), the uncertainty261

related to the observations (ET W−1E), and the uncertainty related to the imperfect262

model (LT
x̃ Q−1Lx̃). While these three terms have clear contributions to the uncer-263

tainty, they are under the inverse in the equation and thus the total uncertainty is264

not simply a linear combination of the three parts.265

5. Uncertainty in glacial-mean δ13C266

The glacial-mean δ13C and its uncertainty are calculated by adapting equa-267

tion (4) for δ13CDIC. The input variables include the weighting matrices for the268

different constraints, taken here as simplified versions from the state estimate.269

The S−1 matrix is chosen to reflect prior knowledge of the δ13CDIC field and cir-270

culation. For example, the surface δ13CDIC is assumed to vary by no more than271

2.4h with lengthscales no smaller than 10◦ of latitude or longitude. The mass272

flux ratios, m, are given a prior uncertainty of 0.3 (relative to their nondimen-273

sional range of 0 to 1), chosen by the standard deviation of the m entries for the274

modern-day circulation. This choice reflects our desire to constrain the glacial cir-275

culation with little subjective prior information, but to require that the statistics of276
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glacial transport should not fall outside the range of the modern-day statistics. For277

the modern-day circulation, on the other hand, we estimate that the uncertainty278

of the m values is about 0.05, based on the differences between various modern279

solutions. The W−1 matrix assumes that the observational uncertainty is 0.2h,280

derived from the standard deviation of the misfit between Holocene core values281

and the reconstructed modern-day seawater properties. (Systematic errors in this282

relationship will be addressed in Section 6.4.) The choice of the Q−1 matrix con-283

servatively assumes that the glacial source of remineralized material is the same284

magnitude as the modern day source or sink. The full solution uncertainty (equa-285

tion 3) is never needed explicitly, thus avoiding the storage of a 1.8 TB matrix (the286

state has 475773 elements and Cx̃ has this dimension squared). As r is a column287

vector, we can break equation (4) into two parts, one a matrix-vector product and288

one a vector inner product, such that memory usage is minimized.289

Adding the uncertainty estimate to the glacial-mean calculated in Section 3,290

we find that the LGM mean δ13CDIC is δ13CDIC

G
= 0.14h±0.20h and the refer-291

ence modern-day estimate is δ13CDIC

M
= 0.47h±0.03h. Under the assumption292

that the LGM and modern estimates are independent, the LGM-to-modern differ-293

ence is ∆MG[δ13CDIC] = 0.32h± 0.20h (after rounding). Our estimate provides294

corroborating evidence for both 1) a recent data-based estimate of 0.34h±0.19h295

(Peterson et al., 2014) and 2) a forward circulation model that reproduced about296

100 observations and found a change of ∆MG[δ13CDIC] = 0.31h± 0.20h (Tagli-297

abue et al., 2009).298

5.1. Observational sensitivity299

Obvious candidates to contribute to the uncertainty include the sparsity, mea-300

surement error, and representativeness of the observations. Here we address how301
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the number of sediment core observations affects the resulting uncertainty. We302

test a range of 10 to 15000 sediment core observations. For the hypothetical303

cases where we have fewer observations than actually observed, we randomly “ob-304

serve” a subset of the true observations. This constraint is symbolically written:305

y̆ = Ĕx+ n̆, where the variables with the breve mark have rows deleted from the306

original E definition. The actual observational values do not matter in this calcu-307

lation, but only that the observational term (E in the second term on the right hand308

side of equation 4) is modified. We report the mean of the five experimental trials.309

For hypothetical cases with more observations than reality, we augment the ac-310

tual observations with additional observations taken randomly from the seafloor,311

although this is not entirely realistic due to issues with carbonate preservation,312

species habitats, and sediment availability. Again we perform five trials with the313

modified Ĕ matrix to help make the statistics more robust.314

The uncertainty decreases with an increasing number of observations accord-315

ing to an apparent power law (e.g., σc ≈ 2h/
√

N), where N is the number of316

observations (Figure 3). This function is consistent with the uncertainty estimate317

for the actual number of observations (2σc = 0.20h for N = 492, not plotted).318

Between N = 500 and N = 1000, the slope of the power law increases, suggest-319

ing that the additional randomly-distributed data points sample the ocean better320

than the irregularly-clustered 492 data points that are actually available, and in-321

dicating that a strategic sampling plan (e.g., see Section 6.1) would produce an322

even greater reduction in uncertainty. Limitations on the presence of Cibicidoides323

calcite on the seafloor would also provide a constraint for a sampling strategy. In324

tests where the number of observations is increased past 15000, the standard error325

does not decrease below 0.06h, suggesting that seafloor observations are eventu-326
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Figure 3: The standard error (2σc) of the glacial-mean δ13CDIC as a function of number of obser-

vations, on a log-log set of axes. Each circle represents the average of five trials. For N = 10 to

N = 400, a subset of actual observational locations is used. For N = 500 to 15000, the 492 actual

observations are augmented with observations randomly distributed along the lateral and bottom

oceanic boundaries.

ally limited in their ability to record interior ocean signals, and only non-seafloor327

observations could help at that point.328

5.2. Circulation dependence329

A second major contributor to uncertainty is the circulation field. In this330

steady-state scenario, the mass fluxes are expressed as dimensionless mass flux331

ratios, m, that are bounded by 0 and 1 (recall the discussion of the model in Sec-332

tion 2). Here we calculate the sensitivity of the standard error of the global mean333

δ13CDIC to the assumed uncertainty in the circulation, as calculated by keeping334
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all input variables constant in equation (4) but adjusting the part of the S−1 ma-335

trix corresponding to the circulation. For cases where the circulation is known336

as well or better than the modern-day (σm < 0.05), the resulting global mean un-337

certainty cannot be reduced below 0.03h due to the observational characteristics338

(Figure 4). This limit is lower than previously estimated (e.g., 0.26h, Ciais et al.,339

2012), which we interpret as being a result of the improved reconstruction ability340

of the state estimate. For circulation uncertainties greater than 0.05, the standard341

error increases rapidly from 0.05h to 0.6h with increasing circulation uncer-342

tainty, and follows an approximate exponential relation (i.e., σc≈ 0.3hσ0.8
m ). The343

prior estimate of circulation uncertainty, σm, is a difficult quantity to estimate, and344

our assumed glacial uncertainty of 0.3 is in the middle of the sensitive range. This345

sensitive dependence is because the circulation is used to interpolate data points346

over far-flung regions of the globe.347

5.3. Regional analysis348

A more traditional means of analysis is to break the ocean into subdomains to349

quantify the geographic contribution to global-mean uncertainty. Here, regional350

means are calculated by taking subdomains of the global domain and recalculating351

the mass-weighting vector, r, in equation (4). Specifically, the elements of r that352

correspond to locations outside the region of interest are set to zero, and the vector353

is renormalized such that the elements sum to one. Here we select 13 regions of354

interest in an attempt to compare to the recent work of Peterson et al. (2014).355

The primary geographic contributors to global-mean uncertainty are the Sur-356

face and North Atlantic regions (σc > 0.6h in Table 1). This result does not357

straightforwardly proceed from a consideration of the number of observations in358

any given region. For example, both the Surface and Deep regions have less than359
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Figure 4: Same as Figure 3, but the standard error (2σc) of the glacial-mean δ13CDIC as a function of

how well the circulation (in terms of nondimensional mass-flux ratios) is known. An uncertainty of

σm = 1 in the mass-flux ratios represents zero circulation knowledge. The modern-day circulation

uncertainty is estimated to be σm = 0.05.
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Region ∆MG[δ13CDIC] δ13CDIC

M
NM µM σM δ13CDIC

G
NG µG σG

Global 0.32 ± 0.20 0.46 ± 0.03 19922 0.09 0.28 0.15 ± 0.19 492 0.01 0.19

Deep 0.49 ± 0.23 0.37 ± 0.02 229 0.05 0.21 -0.12 ± 0.22 0 - -

Surface 0.06 ± 0.70 1.06 ± 0.07 8453 0.21 0.36 1.01 ± 0.70 6 -0.01 0.05

NW Atlantic 0.16 ± 0.67 0.96 ± 0.06 321 0.11 0.20 0.80 ± 0.67 72 -0.02 0.18

NE Atlantic 0.25 ± 0.85 0.99 ± 0.25 540 0.10 0.15 0.74 ± 0.81 155 0.01 0.22

SW Atlantic 0.41 ± 0.31 0.77 ± 0.02 836 -0.03 0.14 0.36 ± 0.31 45 0.06 0.23

SE Atlantic 0.60 ± 0.21 0.72 ± 0.05 274 0.00 0.13 0.12 ± 0.20 79 0.04 0.23

South Atlantic 0.84 ± 0.40 0.62 ± 0.06 23 0.21 0.20 -0.22 ± 0.40 23 0.02 0.27

North Pacific 0.13 ± 0.27 -0.08 ± 0.02 1254 0.03 0.22 -0.21 ± 0.27 65 -0.01 0.11

South Pacific 0.33 ± 0.33 0.35 ± 0.01 4157 0.00 0.15 0.02 ± 0.33 36 0.00 0.08

Indian 0.25 ± 0.32 0.34 ± 0.01 2735 -0.04 0.12 0.09 ± 0.32 42 0.02 0.12

Southern (AI) 1.22 ± 0.85 0.54 ± 0.03 648 0.06 0.10 -0.68 ± 0.85 0 - -

Southern (P) 0.44 ± 0.30 0.45 ± 0.02 401 0.01 0.10 0.01 ± 0.30 1 0.07 -

Table 1: Mean δ13CDIC with error estimates and statistics for 13 oceanic regions defined by Peter-

son et al. (2014). The quantities include (from left column to right): global-mean LGM-to-modern

δ13C change and 2-σ uncertainty (∆MG[δ13CDIC]), modern-day mean δ13CDIC and 2σ uncertainty

(δ13CDIC
M

), number of modern-day observations (NM), mean modern-day model-data misfit (µM),

standard deviation of modern-day model-data misfit (σM), LGM mean δ13CDIC and 2σ uncertainty

(δ13CDIC
G

), number of LGM observations (NG), mean LGM model-data misfit (µG), and standard

deviation of LGM model-data misfit (σG). Three large-scale regions are included: Global, Deep

(everywhere below 5 km depth), and Surface (everywhere shallower than 500 m). The Atlantic is

split into five regions: NW (west of 33◦W, north of 0◦), NE (east of 33◦W, north of 0◦), SW (west

of 15◦W, 0◦ to 55◦S), SE (east of 15◦W, 0◦ to 55◦S), and South Atlantic (east of 22◦W, 40◦S to

55◦S). The Pacific is split into two regions: North Pacific (0◦ to 60◦N) and South Pacific (0◦ to

66◦S). The Indian Ocean is defined as one region (north of 55◦S, 30◦E to 125◦E). The Southern

Ocean is split into two parts: Atlantic-Indian (AI) sector (south of 55◦S) and the Pacific (P) sector

(south of 66◦S). See Figure 1 of Peterson et al. (2014) for complete boundaries.
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10 observations, yet the Deep region has much more moderate uncertainty (0.23h360

versus 0.70h in the Surface). Waters that enter the Deep region must pass through361

observations at shallower depths, and are therefore somewhat constrained by the362

numerical model and observations. The uncertainty in the North Atlantic occurs363

despite over 200 LGM observations in those regions, and results from the nearly-364

unobserved δ13CDIC values in the Nordic, Mediterranean, and Caribbean Seas. The365

center of the North Atlantic, on the other hand, has some of the lowest estimated366

errors, but this is masked by our choice of regional boundaries.367

The model fits the observations to an acceptable level in almost all regions, as368

evidenced by the standard deviation of the modern and glacial model-data misfits,369

σM and σG, being less than or equal to 0.2h. One exception is the modern-day370

surface (σM = 0.36h) which may be symptomatic of seasonal variations not cap-371

tured by the steady-state model. The model-data misfit also has a strong mean off-372

set in the modern-day surface ocean (µM = 0.21h), that results from the filtering373

of the Suess effect in the surface ocean and leads to the state estimate having more374

positive δ13CDIC than the contaminated observations. Even over the entire globe,375

the modern-day state estimate is on average 0.09h more enriched in δ13CDIC than376

the observations, roughly consistent with a forward model (Tagliabue and Bopp,377

2008) that found a pre-industrial-to-modern change of 0.12h when constrained378

by observations (Gruber et al., 1999). Here, the accounting for the Suess effect379

makes a 1σ (equal to one standard error) shift in the estimated LGM-to-modern380

global-mean δ13CDIC change.381

Up to this point, we have emphasized the agreement of our global-mean esti-382

mate with previous studies, and generally speaking, our regional results are also383

consistent with previous regional estimates (e.g., Oliver et al., 2010; Peterson384
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et al., 2014). In a detailed investigation of the Deep (> 5km) region, however,385

our model reconstructs a 0.49h change, suggesting that the 0.74h estimate of386

Peterson et al. (2014) is an overestimate owing to the extrapolation by their as-387

sumed linearly-varying vertical structure. In the Surface region, there are sim-388

ilarities in the estimates (here: ∆MG[δ13CDIC] = 0.07h± 0.71h, Peterson et al.389

(2014): 0.02h± 0.40h), but here we use a more sophisticated reconstruction390

technique yet obtain larger uncertainties, suggesting that their ad-hoc error bar is391

an underestimate. Our large Surface region error bars indicate that the best place392

to isolate a reservoir from benthic foraminiferal detection is not the bottom ocean,393

but instead the upper thermocline waters that primarily recirculate in the subtrop-394

ics and tropics. This result points toward the need to compile planktonic δ13CDIC395

records (e.g., Broecker and McGee, 2013) such that they can be used in concert396

with benthic records. In this regard we note that there is convincing evidence indi-397

cating the δ13C of planktonic foraminifera shells vary with seawater carbonate ion398

concentration (Spero et al., 1997; Russell and Spero, 2000; Peeters et al., 2002).399

Although this effect has not been identified in benthic foraminifera, its pervasive400

presence among many species of planktonic foraminifera suggests that deep wa-401

ter carbonate ion variations between the modern and glacial could shift benthic402

foraminifera shell δ13C away from a 1:1 relationship with δ13CDIC and contribute403

to uncertainties in these modeled reconstructions (see Section 6.4).404

6. Discussion405

6.1. Large δ13C change scenario406

The LGM-to-modern δ13CDIC change presented in Section 3 falls at the low407

end of the spectrum of previous marine-based estimates, and is very low when408
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compared to terrestrial-based carbon reservoir inferences (e.g., Crowley, 1995).409

The state estimation method reverts to the modern-day circulation in the absence410

of any paleo-data. Thus, the ∆MG[δ13CDIC] estimate could be biased low because411

of remnant modern-day constraints pulling the estimate toward no change. A low412

estimate may also be due to low temporal resolution in the cores, as suggested413

by a selection of high-resolution cores that indicates ∆MG[δ13CDIC] may be as high414

as 0.6h (A. Mix, personal communication, 2014). Such a high estimate would415

then bring the marine and terrestrial estimates closer to consistency. Here we have416

attempted to account for the resolution issue by removing cores using an δ18O cri-417

terion (discussed in Section 2.2), but we believe it is worth addressing these issues418

in greater detail by performing a test to determine whether a large ∆MG[δ13CDIC]419

is consistent with the observations and a steady-state circulation. To perform this420

test, we add an additional “observation” that the LGM-mean δ13CDIC is 0.6h less421

than the modern-day with a small uncertainty of 0.01h. As in Section 5.1, this422

modification is handled by introducing a modified observational matrix, vector,423

and weighting: Ĕ, y̆, and W̆. The nonlinear solution method of Section 2 is then424

run with these additions and no other changes.425

A second LGM state estimate (hereafter, LGM State Estimate 2) is indeed ca-426

pable of fitting the data while producing a whole-ocean change of ∆MG[δ13CDIC]=427

0.59h (Figure 5). The spatial pattern of remaining model-data misfits do not428

suggest that the phytodetritus or carbonate ion effect are at play. The circulation429

pattern leads to a deep (greater than 3km) northern-southern water-mass interface430

in the Atlantic Ocean, similar to that in LGM estimate 1. The standard devia-431

tion of the model-data misfit is actually smaller than that for LGM estimate 1432

(LGM 1: σG = 0.19h, LGM 2:σG = 0.17h). LGM state estimate 2, however,433
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is barely capable of fitting the data without introducing a significant mean off-434

set. The estimated mean model-data misfit of µG = −0.03h is insignificant at435

the 5% level, but just so (p = 0.06 for N = 492). The larger whole-ocean change436

is due to increased changes in specific regions, such as the Atlantic sector of the437

Southern Ocean where ∆MG[δ
13CDIC]> 1.4h. The zonally-averaged ∆MG[δ

13CDIC]438

in the core of North Pacific Intermediate Water increases from−0.1h to 0.5h as439

well, indicating that the observations located along the margins are not sufficient440

to constrain the Pacific zonal mean. In addition, the unconstrained Arctic Ocean441

has much increased ∆MG[δ
13CDIC] at intermediate levels.442

The difference in δ13CDIC between the two LGM state estimates, ∆GG[δ
13CDIC]443

(the difference of two glacial “G” estimates), can be thought of as the observa-444

tional null space and illustrates the ocean regions that are both unconstrained and445

important for setting the global mean. The biggest differences occur at the sea446

surface and the Southern Ocean (Figure 6). Increased ∆GG[δ
13CDIC] in the Atlantic447

sector of the Southern Ocean also requires an increased ∆GG[δ
13CDIC] in the inflow448

of this water into the Pacific Ocean due to the circulation constraints. Surface449

differences, especially in the Pacific Ocean, are as large as 1h, and are consistent450

with the large error bars previously detailed in Table 1. Should the planktonic451

δ13C records that indicate little change between the LGM and modern-day (e.g.,452

Broecker and McGee, 2013) be representative of the entire tropics, LGM state453

estimate 1 (from Sections 3-5) would be considered more reasonable. Our map454

of the difference between the two LGM state estimates emphasizes the regions in455

which additional observations would be most useful.456
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Figure 5: Atlantic and Pacific zonal-average difference of δ13C between LGM estimate 2 and

modern-day (i.e., ∆MG[δ
13CDIC] = δ13CM

DIC - δ13CG2
DIC).
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Figure 6: Atlantic and Pacific zonal-average difference of δ13CDIC between 2 LGM Estimates

(∆GG[δ
13CDIC] = δ13CG2

DIC - δ13CG
DIC).
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6.2. Optimal data weights457

Given a circulation field, the state estimate formulation permits the optimal set

of data weights in equation (1) to be explicitly calculated (following Appendix B)

w = W−1Ê(Ŝ−1 + ÊT W−1Ê+LT
c Q−1Lc)

−1r̂, (5)

where the hat represents truncating the variables to the quantities related to the

tracer field. Interestingly, the elements of w need not sum to one, nor are they nec-

essarily non-negative. The additional, usually-neglected constant in equation (1)

is

c0 = (cT
0 Ŝ−1 +qT Q−1Lc)(Ŝ−1 + ÊT W−1Ê+LT

c Q−1Lc)
−1r̂, (6)

and it is related the sampling bias. If all the observations have a value of zero,458

the best estimate of the global mean has a value of c0, indicating that prior infor-459

mation is being used to calculate the global mean. Thus, the degree to which the460

observations sample the global ocean in a biased way is quantified. In the case461

that no observations are available, c0 reverts to the first-guess global mean.462

The map of observational weights is spatially heterogeneous with Eastern At-463

lantic points generally having the smallest weights (Figure 7). A point in the464

Indian Ocean is upweighted the most, with w ≈ 10/N (or 10 times the weight465

that it would be given in the basic arithmetic mean). This map generally corre-466

sponds to the upweighting of Pacific data points (due to their relative sparsity)467

and downweighting of Atlantic points. Finer detail is also present, however, such468

as the upweighting of the few points in the Nordic Seas, but a downweighting of469

nearby points that are just south of the Greenland-Iceland-Scotland ridge. Other470

details depend on the flow patterns in the glacial circulation, as observations have471

influence both up- and downstream.472
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Figure 7: Optimal observational weights to construct a global mean given the glacial circulation

(LGM State Estimate 1): plan view (top), Atlantic data (middle) and Indo-Pacific data (bottom).

The colorscale is logarithmic. The weights vary from 10 times greater to 100 times lesser than the

arithmetic-mean weight and thus some values are offscale low (saturated at a value of 1/10N).
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6.3. Interpreting data histograms473

Important information about ∆MG[δ13CDIC] is available by aggregating point-474

wise estimates of ∆MG[δ
13CDIC] in a histogram. Pointwise values of ∆MG[δ

13CDIC]475

are here inferred by projecting the modern-day state estimate δ13CDIC field onto476

the core sites by a linear interpolation of the 8 nearest gridpoints, then comparing477

with LGM sediment core values. In our 492 points of ∆MG[δ
13CDIC], the median478

is 0.45h and the mean is 0.39h (upper left panel Figure 8). The mode of the479

distribution is 0.6h, which may explain why Shackleton (1977) was more likely480

to estimate a number this high with a small number of cores. It is not clear from481

this analysis, however, whether the mean of the histogram is a good estimate for482

the global-mean δ13CDIC.483

To better interpret such a histogram, consider formulating a modern-day and

LGM equation of the type of equation (1) and taking their difference. For a general

tracer, we obtain

∆MG(c) = wT
∆MG(y)+∆MG(w)T y+∆MG(c0), (7)

where the ∆MG operator acts elementwise on each vector and the double overbar484

represents the temporal mean of modern-day and LGM conditions (to distinguish485

from the single overbar that is a global spatial average). The mean of the aformen-486

tioned histogram reflects the true global mean in the case that the data weights are487

based on the arithmetic mean (wi = 1/N for all i) and that the second and third488

terms of equation (7) vanish. As discussed in the Introduction, the spatially irreg-489

ular distribution of observations makes these conditions improbable, and thus the490

mean of the histogram is not necessarily a good estimate of global-mean change.491

The interpretation is improved when a circulation is available to compute the492

optimal weights via equations (5) and (6). For illustration, consider a case where493
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Figure 8: Inference of LGM-to-modern δ13CDIC change from pointwise measurements. Upper

left: Histogram of the 492 observations of ∆MG[δ
13CDIC]. Upper right: Histogram modified by

the optimal weights computed for the modern-day circulation. Histogram modified by the optimal

weights computed for the glacial circulation (lower left: LGM State Estimate 1, lower right: LGM

State Estimate 2). The inferred ∆MG[δ13CDIC] (solid lines) results from the mean of the histogram

in the top row. In the bottom row, the mean of the histogram (dashed lines) is corrected to produce

the ∆MG[δ13CDIC] estimate (solid lines).
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it is assumed that the modern-day circulation is representative of the LGM. Then494

we can use the calculated modern-day weights (wM) to better approximate the495

first term of equation (7). These weights shift the mode of the distribution to496

∆MG[δ13CDIC]= 0.05h and the inferred global-mean decreases from 0.39h to497

0.22h (visualized as a weighted histogram, upper right panel, Figure 8). In ef-498

fect, the observations of smaller change are upweighted because they are located499

along modern-day circulation pathways that influence more of the ocean.500

A full interpretation of the pointwise data should also account for LGM-to-501

modern circulation change, of course. In particular, we use both the circula-502

tions from LGM State Estimate 1 and 2 (lower row, Figure 8). The mean of503

the histogram is again modified, this time back toward larger values (0.23h and504

0.28h, respectively). The two correction terms due to the changing ocean cir-505

culation must also be considered (terms 2 and 3 of the right hand side of equa-506

tion 7). For LGM State Estimate 1, the correction is 0.09h and the final estimate507

of ∆MG[δ13CDIC]= 0.32h is consistent with the results showcased in Sections 3508

and 5. For LGM State Estimate 2, the correction is even larger: 0.21h (domi-509

nated by term 3: 0.15h). Equation (7) then diagnoses a global-mean change of510

∆MG[δ13CDIC]= 0.49h, smaller than the actual 0.59h, which is symptomatic of511

the breakdown of the linear assumption (i.e., equation A.4). Unfortunately, the512

correction terms are poorly known due to the uncertainty in the LGM circulation.513

We emphasize that the correction cannot be determined from the data histogram514

alone.515

6.4. Carbonate chemistry effects516

Here we revisit our definition of ∆MG[δ
13CDIC] and whether it signficantly dif-517

fers from ∆HG[δ
13CDIC], defined as the LGM-to-Late Holocene difference. Infor-518
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mation regarding ∆HG[δ
13CDIC] is more directly available through the differencing519

of LGM and Late Holocene core data. One tradeoff is that only 365 measure-520

ments of a Late Holocene and LGM value from the same core are available even521

when the Late Holocene time interval is extended from 0-6kyr BP. An advantage522

of this definition is that interlaboratory offsets are irrelevant when using intracore523

differences. We find that inferring ∆HG[δ
13CDIC] by this method is not substan-524

tially different from our previous ∆MG[δ
13CDIC] estimate; the median and mean are525

slightly larger (0.47h and 0.43h, respectively).526

A potential hidden error in ∆HG[δ
13CDIC] estimates, however, could occur due527

to a systematic error in the δ13C calcite-to-seawater proxy relationship, for ex-528

ample a dependence of calcite δ13C on carbonate ion or temperature (e.g., Spero529

et al., 1997; Hesse et al., 2014). To determine the size of such an effect, we seek an530

improved calibration between the Late Holocene δ13C values and the modern-day531

seawater characteristics including δ13CDIC, temperature, salinity, CO2−
3 , DIC, and532

pH (using MATLAB routines of Zeebe and Wolf-Gladrow, 2001). In this case,533

we find that the original calcite-seawater calibration can only be marginally im-534

proved (standard error: 0.23h, r = 0.83, for the equation: δ13CDIC= 1.01 δ13Cc−535

0.24 S−0.024 T + .0056[CO2−
3 ]+ .0026[DIC]−0.15[pH]+3.95 (N = 488). Such536

a finding suggests that the error due to ignoring these dependencies is smaller537

than interlaboratory calibration error, although it does not conclusively rule out538

systematic errors because of the difficulty in reconstructing the appropriate sea-539

water properties at the core sites.540
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7. Summary541

The LGM-to-modern δ13CDIC change is explicitly estimated by first mapping542

benthic foraminiferal observations onto a global grid, and then taking a mass-543

weighted average of the gridded values. The mapping process, however, requires a544

method more sophisticated than typical interpolation because of the sparsity of the545

dataset and large spatial gaps. Here we demonstrate that an LGM state estimate546

derived from a recent compilation of almost 500 δ13C data points combined with547

a numerical model can provide a reasonable globally-gridded field, as well as self-548

consistent uncertainty estimates. Our updated best estimate of LGM-to-modern549

global δ13CDIC change is 0.32± 0.20h at the 2σ uncertainty level. A coherent550

picture of the LGM δ13C distribution emerges that is consistent with previous551

Atlantic estimates and fills in the missing details of the Pacific distribution. Maps552

of the LGM-to-modern difference in δ13C also display coherent spatial patterns,553

with largest changes in the Atlantic sector of the Southern Ocean.554

While previous investigators have used various sub-domains and multiple-555

step averaging techniques to determine how to best weight pointwise observa-556

tions to obtain the global mean, here we show that determination of the optimal557

data weights requires knowledge of the ocean circulation. The diagnosed optimal558

weights conform to expectation in many ways, such as upweighting data in re-559

gions with sparse coverage. It is very difficult, however, to determine the global560

mean change from pointwise histograms of the local δ13CDIC change unless the561

concommitant circulation change is also known. Thus, much of the existing un-562

certainty in LGM-to-modern δ13C change is due to the difficulty in determining563

the glacial ocean circulation.564

Our glacial state estimate points toward future directions to reduce the consid-565

34



erable remaining global-mean δ13CDIC uncertainty. For example, the addition of566

randomly-distributed hypothetical data would reduce the uncertainty of the global567

mean as N−1/2, where N is the number of observations. In addition, we find mul-568

tiple δ13CDIC distributions that can fit the data, including one with global mean569

change of nearly 0.6h, possibly bringing marine and terrestrial carbon partition-570

ing estimates into consistency. This large δ13C change scenario has its great-571

est differences to the best-guess LGM estimate in the upper ocean and Southern572

Ocean, pointing to regions where additional information can distinguish between573

these two scenarios. In particular, a compilation of planktonic records would help574

reduce the uncertainty in surface regions. Provided that challenges with interpreta-575

tion regarding DIC change and species offsets can be overcome (e.g., Spero et al.,576

1997), we expect that strategic sampling can reduce the global-mean uncertainty577

at a faster rate than the hypothetical randomly-sampled case. A two-pronged ap-578

proach appears best suited to reduce the global-mean uncertainty: compilation of579

information from strategically-placed locations, including planktonic records, and580

the implementation of a model with more sophisticated dynamical constraints, es-581

pecially in the upper ocean.582

Appendix A. Uncertainty derivation583

Appendix A.1. Least-squares solution584

Section 4.2 defines a cost function, J = uT S−1u+nT W−1n+vT Q−1v, that is

here written in a more complete form by substituting the equations for the first-

guess adjustment, the observational constraint, and the model:

J = (x−x0)
T S−1(x−x0)+(Ex−y)T W−1(Ex−y)+(L [x]−q)T Q−1(L [x]−q).

(A.1)

35



The solution, x̃, satisfies the stationary assumption:

Jx̃ ≡ ∂J/∂x]x̃ = 2{S−1(x−x0)+ET W−1(Ex−y)+LT
x̃ Q−1(L [x]−q)}= 0.

(A.2)

We define a linearization of model in the neighborhood of the solution:

L [x] = L [x′]+Lx′(x−x′)+ ε, (A.3)

where ε represents the higher-order terms in the expansion. The solution estimate,

x̃, satisfies

x̃=(S−1+ET W−1E+LT
x′Q
−1Lx′)

−1{S−1x0+ET W−1y+LT
x′Q
−1(q+Lx′x′−L [x′])},

(A.4)

where the higher-order terms become negligible as one approaches the solution585

and are dropped from this last equation.586

Appendix A.2. Uncertainty of tracer distribution and circulation587

Here we seek the expected solution in the hypothetical case that a perfect first-

guess, observations, and tracer source are available (x∗0, y∗, and q∗, respectively).

Defining

d0 = S−1x∗0 +ET W−1y∗+LT
x′Q
−1(q∗+Lx′x′−L [x′]), (A.5)

the expected solution is

< x̃ >= (S−1 +ET W−1E+LT
x̃ Q−1Lx̃)

−1d0. (A.6)

The dispersion of x̃−< x̃ > is equal to the solution covariance of x̃:

Cx̃ ≡< (x̃−< x̃ >)(x̃−< x̃ >)T >), (A.7)
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and substitution of equation (A.6) into (A.7) gives

Cx̃ =(S−1+ET W−1E+LT
x̃ Q−1Lx̃)

−1 < (d−d0)(d−d0)
T > (S−1+ET W−1E+LT

x̃ Q−1Lx̃)
−1.

(A.8)

Assuming that errors in the first guess, observations, and model are uncorrelated

(i.e., Rxn = 0, Rxq = 0, etc.), the expected value in the right hand side of (A.8) is

< (d−d0)(d−d0)
T >= S−1RxxS−1 +ET W−1RnnW−1E+LT

x̃ Q−1RqqQ−1Lx̃.

(A.9)

Substituting equation (A.9) into (A.8) and assuming that the weight matrices are

equal to the expected second-moment matrices of the residuals (i.e., Rnn = W,

Rqq = Q, and Rxx = S), we obtain the solution covariance in terms of the known

input variables:

Cx̃ = (S−1 +ET W−1E+LT
x̃ Q−1Lx̃)

−1, (A.10)

which is used in the main text as equation (3). The standard error is here defined588

as ±
√

Cx̃ of the diagonal elements.589

Appendix B. Calculation of the optimal observational weights590

In the case that the circulation is known exactly, the cost function equation (A.1)

can be simplified

J = (c− c0)
T Ŝ−1(c− c0)+(Êc−y)T W−1(Êc−y)+(Lcc−q)T Q−1(Lcc−q),

(B.1)

where the hat indicates truncation of the E and S matrices to the parts related to

the tracer field. Using the least-squares estimate of the tracer solution and the

following definition of the global mean, c = r̂T c, we obtain a simplified equation

c̃ = r̂T (Ŝ−1 + ÊT W−1Ê+LT
c Q−1Lc)

−1(Ŝ−1c0 + ÊT W−1y+LT
c Q−1q) (B.2)

37



Comparison of the equation (B.2) to equation (1) permits the identification of the

optimal data weights:

w = W−1Ê(Ŝ−1 + ÊT W−1Ê+LT
c Q−1Lc)

−1r̂, (B.3)

and the additional constant

c0 = (cT
0 Ŝ−1 +qT Q−1Lc)(Ŝ−1 + ÊT W−1Ê+LT

c Q−1Lc)
−1r̂. (B.4)
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