Phylogenetic and photo-physiological characterization of newly isolated diatoms from the Ross Sea (Antarctica)

Hedy M. Aardema¹

Anne-Carlijn Alderkamp², Laura Z. Filliger³, Bethany D. Jenkins³

Supported by NSF

¹ University of Groningen The Netherlands

² Stanford University USA

³ University of Rhode Island USA

Identify isolates

- Sequence two rDNA regions: V4 and internal transcribed spacer (ITS)
- Compare sequence to NCBI BLAST database for identification

Photo-physiological characterization

- Compare six diatom isolates to two Phaeocystis antarctica strains
- Photo-physiological parameters: F_v/F_m -the maximum photochemical efficiency of photosystem II (PS II)
 - $\sigma_{_{PSII}}$ $\,$ -the effective absorption cross section of PS II
 - p -the connectivity between PS II reaction centers

Are there differences in photo-physiology between diatom isolates? How do they compare to *Phaeocystis antarctica*? How does this relate to spatial distribution in the Ross Sea?

<section-header></section-header>				
Phylogenetics Public Network				
<figure><list-item><figure><list-item><list-item><list-item><figure><figure><list-item><list-item></list-item></list-item></figure></figure></list-item></list-item></list-item></figure></list-item></figure>				
Achnowledgments <th></th>				

Characterizing Southern Ocean diatom community composition

Laura Filliger (funded by NSF GRFP) University of Rhode Island, Graduate Student – Jenkins lab Collaboration with Kevin Arrigo's (Stanford) and Anton Post's (MBL/URI) labs Funded by NSF

- Can we differentiate Fe stress response in SO diatoms?
- Established culture collection of ~300 isolates to develop ecologically relevant laboratory models

• Characterized *in situ* diatom community composition across regions of varying Fe levels

• Matched diatoms in our collection to dominant taxa

4 cruises in Sargasso Sea: Trophic-BAT

How does planktonic community composition modify carbon export from the euphotic zone in the Sargasso Sea?

mic

ext

Planktonic Food Webs in Two Sargasso Sea Eddies

Combining *in situ* measurements and inverse modeling, we constructed food webs in two Sargasso Sea eddies. *How did grazer diet influencees carbon export?*

Come find out today! Section: General Interest

1 cruise along Labrador - Sargasso Sea transect: Dimensions of Biodiversity

How is productivity partitioned among the three main groups of picophytoplankton along a nutrient/productivity gradient?

Bridget Bachman PhD Candidate Adviser: Tammi Richardson University of South Carolina

Who is there? What are they doing? Future research interests: - To combine omic tools with rate measurements to investigate how diversity within communities impacts functional diversity in oligotrophic waters. Photophysiology Bridget Bachman Marine Science Program PhD Candidate (more

SOUTH CAROLINA

riser: Tammi Richardson University of South Carolina

University of East Anglia

July 29, 2015

Dissolved oxygen concentration at the PAP site: resolving O₂ annual dynamics at an eddy rich site in the temperate North Atlantic using Seagliders Umberto Binetti University of East Anglia Centre for Ocean and Atmospheric Sciences School of Environmental Sciences Norwich, UK

C(O2) at OSMOSIS site Sep 2012 – Sep 2013

C(O2) at OSMOSIS site Sep 2012 – Sep 2013

July 29, 2015

Mixed layer – Mixing layer

July 29, 2015

Thanks for your attention

Physical processes governing phytoplankton blooms in the Southern Ocean

> Magdalena Carranza Advisor: Sarah Gille

Scripps Institution of Oceanography California, USA

Physical controls on Chl-a variability: a satellite perspective

Summer Chl-a

Focus on atmospheric synoptic storm scales: < 10 days, > 700 km

Atmospheric forcing: - Mixed-layer depth (MLD) deepening - Ekman Pumping $w_e(-h) \sim \frac{\partial h}{\partial t} + w_{Ek}(-h)$ $w_{Ek} > 0$ Ekman-driver wind-driven $30^{\circ}S$ $70^{\circ}S$ Vertical advection Vertical processes Ekman pumping → mixina

 Carranza and Gille (2015). "Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer", JGR

Physical controls on Chl-a variability: a satellite perspective

Wind speed vs Chl-a

High winds enhance satellite Chl-a

 Carranza and Gille (2015). "Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer", JGR

Vertical structure of Chl-a profiles: from floats and elephant-seal data

- Surface Chl-a is a
 good proxy for Chl-a
 content in the
 euphotic zone (ZEU),
 but poorly represent
 Chl-a within the
 mixed layer (MLD)
- Subsurface blooms
 are not uncommon
 and they are found
 close to the MLD
- ✓ Carranza et al. (2015). " Mixed-layer depth, euphotic depth and Chl-a variability in the Southern Ocean", in review for *Journal of Marine Sciences*

Case study: Patagonian shelf

Role of the atmospheric forcing in setting up stratification and mixing:

Wind-front interaction at the shelf-break front:

Wind modulation of upwelling at the shelf-break front off Patagonia

modified for the SH from Siedlecki et al. (2011)

 ✓ Carranza et al. "Wind modulation of upwelling at the shelf-break front off Patagonia", in preparation

Sophie Chu PhD candidate MIT-WHOI JP

Estimating the change in anthropogenic CO2 storage in the Northeast Pacific using eMLR

CHANnelized Optical Sensor (CHANOS) simultaneously measures DIC and pH at highresolution

Accurately quantify inorganic carbon and alkalinity fluxes export fluxes from an intertidal salt marsh

Cyanobacteria, too small to sink? Strain specific contribution of cyanobacteria to the carbon export in the Sargasso Sea.

> Francesca De Martini Environmental Life Sciences PhD student Arizona State University, Tempe, AZ, USA

> > Co-authors: Susanne Neuer, Demetra Hamill and Julie Robidart

We sampled the euphotic zone and sinking particles (150m particle traps)

We targeted specific clades of *Synechococcus* and *Prochlorococcus* using qPCR in two different seasons (late winter and summer) 2012

- The export of the different strains of *Synechococcus* was positively related to their abundance in the water column, higher in spring (~18% of total POC flux) than during the summer (~2% of total POC flux).
- 2) The export of the *Prochlorococcus* community was always low (< 1% of total POC flux), independently of their abundance in the water column

Recent changes in Southern Ocean biogeochemistry and biogeography

Natalie Freeman

University of Colorado at Boulder

Department of Atmospheric and Oceanic Sciences Institute of Arctic and Alpine Research

PIC and calcification changes

Freeman & Lovenduski (2015)

PIC and calcification changes

Freeman & Lovenduski (2015)

Impact of Antarctic Polar Front variability

Impact of Antarctic Polar Front variability

A control volume approach for estimating nitrous oxide (N_2O) production and consumption in the Chesapeake Bay

Sarah M. Laperriere¹, Nicholas J. Nidzieko¹, Rebecca J. Fox^{1,2}, and Alyson E. Santoro¹

¹Horn Point Laboratory, University of Maryland Center for Environmental Science ²Washington College

Is the Chesapeake Bay a source or sink for N_2O ?

Transport Equation

Submesoscale heterogeneity enhances phytoplankton chlorophyll in the North Pacific Subtropical Gyre

Xiao Liu and Naomi M. Levine The University of Southern California

The submesoscale dynamics is ubiquitous in the upper ocean -

- > in situ observations are difficult
- Current global climate models cannot address
- > Impact on marine ecosystem is poorly understood

The Heterogeneity Index (HI)

- A new metric for ocean surface patchiness using MODIS/Aqua 1-km SST

Key conclusions & Implications

- > On average 6.2 % of the area is occupied by fine-scale (<10 km) structures;
- Chlorophyll concentrations are enhanced by fine-scale heterogeneity, with an average increase of 32% (max. 73%) during the early spring.
- > This impact of submesoscale physics on phytoplankton may offset the warminginduced weakening of the carbon pump.
- Parameterizing global climate models for the impact of submesoscale dynamics is needed.

We acknowledge NASA for providing satellite data, and NSF, NASA, USC for funding support.

A field-deployable gas equilibration mass spectrometer for continuous measurements of dissolved Ne, Ar, Kr, and Xe

Cara Manning (MIT-WHOI)

Advisors: Rachel Stanley and David (Roo) Nicholson

Poster: Net and gross productivity during a Lagrangian experiment in coastal California from gas tracers

Cara Manning (MIT-WHOI)

Poster: Net and gross productivity during a Lagrangian experiment in coastal California from gas tracers

Cara Manning (MIT-WHOI)

Optimality-based model analysis of nitrogen and phosphorus cycling in mesocosm experiments of the Peruvian Upwelling region

Alexandra Marki*, Markus Pahlow* and Helena Hauss*

Canto

* GEOMAR Helmholtz Centre for Ocean Research Kiel

Optimality-based Plankton Ecosystem Model

WHOI. 22 JULY 2015

OCB SUMMER SCIENCE WORKSHOP

SFB 754

Optimality-based model analysis of nitrogen and phosphorus cycling in mesocosm experiments of the Peruvian Upwelling region

What drives ecosystem dynamics in mesocosms?

GEOMAR

2015 OCB SUMMER SCIENCE WORKSHOP WHOI, 22 JULY 2015

S,v N,P,Fe

SFB 754

Optimality-based model analysis of nitrogen and phosphorus cycling in mesocosm experiments of the Peruvian Upwelling region

Does plankton stoichiometric plasticity matter?

ooplank on feeding behaviour

Do bacteria preferentially take up dissolved inorganic or organic phosphorus? 2015 OCB SUMMER SCIENCE WORKSHOP

matter

SFB 754

DFG

GEOMAR

The annual cycle of primary production, net community production and export efficiency across the North Pacific Ocean

Hilary I. Palevsky School of Oceanography, University of Washington

Co-authors: Paul D. Quay, Deirdre E. Lockwood, David P. Nicholson

Annual Productivity Rates

Fine Scale Phytoplankton Diversity of Galveston Bay

Hannah Preischel

PhD. Student

Department of Oceanography

116

GALVESTON CAMPUS®

Texas A&M University at Galveston

Assessing Diversity

Temporal Diversity

- Compare to changes in temperature, and
- Harmful algal bloom (HAB) detection and
- Create library of phytoplankton types

Spatial Diversity

- Rivers: flows and salinity gradient
- Nutrient Bioassay
 - Competition and community composition shifts with limiting nutrients

African dust and *Trichodesmium* increase in temperate North Atlantic from 1980-1990's

<u>Rivero-Calle S.</u>¹, Del Castillo C.E.², Gnanadesikan A.¹, Dezfuli A.¹, Zaitchik B.¹ JOHNS HOPKINS

sara.rivero@jhu.edu, carlos.e.delcastillo@nasa.gov

Pathway

African dust and *Trichodesmium* increase in temperate North Atlantic from 1980-1990's

PKINS

Rivero-Calle S.¹, Del Castillo C.E.², Gnanadesikan A.¹, Dezfuli A.¹, Zaitchik B.¹ **IOHNS H**

sara.rivero@jhu.edu, carlos.e.delcastillo@nasa.gov

African dust and *Trichodesmium* increase in temperate North Atlantic from 1980-1990's

JPKINS

<u>Rivero-Calle S.</u>¹, Del Castillo C.E.², Gnanadesikan A.¹, Dezfuli A.¹, Zaitchik B.¹ JOHNS HO

sara.rivero@jhu.edu, carlos.e.delcastillo@nasa.gov

Pathway

Bloom

Sir Hardy with CPR

College of Earth, Ocean, and Atmospheric Sciences

Nancy L. Williams

PhD Student at Oregon State University Advisor: Laurie Juranek E-mail: nancy.williams@oregonstate.edu

M.S. in Oceanography, University of Washington, 2014 Advisors: Richard Feely and Christopher Sabine of NOAA PMEL

Southern Ocean Anthropogenic Carbon

Reference: Williams, N. L., R. A. Feely, C. L. Sabine, A. G. Dickson, J. H. Swift, L. D. Talley, and J. L. Russell (2015), Quantifying Anthropogenic Carbon Inventory Changes in the Pacific Sector of the Southern Ocean, Mar. Chem., 174, 147–160, doi:10.1016/j.marchem.2015.06.015.

Carbon Algorithm Development

Unlocking the mysteries of the Southern Ocean

Target Variable	Predictor Variables	R ²	rmse
рН∾	Salinity	0.981	0.010
	Temperature		
	Pressure		
	Nitrate		
рН ^{ох}	Salinity	0.964	0.008
	Temperature		
	Pressure		
	Oxygen		
Ω_{Ar}^{N}	Salinity	0.983	0.035
	Temperature		
	Sigma Theta		
	Pressure		
	Nitrate		
Ω_{Ar}^{Ox}	Oxygen	0.982	0.023
	Salinity		
	Temperature		
	Sigma Theta		
	Pressure		

The marine nitrogen cycle during the Anthropocene

Simon Yang Supervisor : Nicolas Gruber

Stabilizing feedbacks in the nitrogen cycle

Yang and Gruber, submitted

Tool : forced ocean-ice model + comprehensive BGC

CESM-BEC Nitrogen cycle

Tool : forced ocean-ice model + comprehensive BGC

Yang and Gruber, submitted

Linking microbes to climate: Modeling prokaryotic metabolisms explicitly

Emily Zakem, MIT Advisor: Mick Follows

Approach: Metabolisms defined by redox reactions.

- Growth efficiency from thermodynamics.
- **Growth rate** from uptake limitations.

Hypothesis: Bacterial biogeography and nutrient distributions will emerge from competition of metabolisms.

Linking microbes to climate: Modeling prokaryotic metabolisms explicitly

Emily Zakem

Zhi Zhu Ph. D Candidate University of Southern California

Phaeocystis VS Diatom

http://www.phaeocystis.org/

Pseudo-nitzschia subcurvata

Factors affect phytoplankton community structure

Phytoplankton community structure in the Ross Sea is related to mixed layer depth (Arrigo et al., 1999)

 Water column temperature may play a significant role in phytoplankton community composition (Liu and Smith, 2012)

Arrigo, Kevin R., et al. Science 283.5400 (1999): 365-367 Liu, Xiao, and Walker O. Smith. Journal of Marine Systems 94 (2012): 135-144.

Global warming and iron input change

IPCC 2007

Evolving Views on Physical, Ecological, and Biogeochemical Underpinnings of Plankton Blooms

Interactive effects of iron and temperature on Antarctic diatoms and *Phaeocystis antarctic*

Zhi Zhu¹, Kai Xu¹, Feixue Fu¹, Jenna Spackeen², Deborah A. Bronk², David A. Hutchins¹

Department of Biological Science, University of Southern California, Los Angeles, CA
 Department of Physical Sciences, Virginia Institute of Marine Science, Gloucester Point, VA

