

Southern Ocean Carbon and Climate Observations and Modeling

The challenge

Deep ocean outflow: about 80% occurs in the Southern Ocean

Morrison et al. (Physics Today, 2015)

Consequences for the role of the Southern Ocean in carbon and climate

The ocean south of 30°S accounts for

- Nutrient supply supporting three-quarters of biological production north of 30°S
- Half of the current anthropogenic carbon dioxide uptake by the oceans (43 \pm 3% in CMIP5 models)
- About 75% \pm 22% of excess heat uptake by the oceans (in CMIP5 models)

The grand challenge

- Despite its critical importance, the Southern Ocean is the least understood region of the world ocean.
 - The meridional overturning circulation and its response to climate change are highly uncertain
 - Biogeochemical and carbon cycling are poorly constrained
 - Current climate models are unable to resolve the crucial contribution of eddies
- And yet
 - It is the least observed region of the world ocean
 - The public is largely unaware of the importance of this region
 - We are sorely lacking in experts on the Southern Ocean

The opportunity

(I) Transformative observing system

- Argo profiling floats
 - have a 4 to 7 year lifetime,
 - Measure T & S from ~2000 m to the surface each 5 to 10 days.
 - data direct to Internet.

Current Argo float distribution

Southern Ocean: a paradigm shift Transformative biogeochemical sensors

- Field developing rapidly:
 - Körtzinger, et al. (2005) O₂
 - Tengberg et al. (2006) O_2
 - Riser and Johnson (2008) O_2
 - Johnson et al. (2010) ISUS nitrate
 - Johnson et al. (2013) ISUS nitrate
 - Martz et al. (2010) Durafet pH
 - Ongoing work
 - E. Boss et al. (2008) FLBB optics
 - Whitmire et al. (2009) FLBB optics
 - Boss and Behrenfeld (2010) FLBB optics

(2) Transformative observational analysis methods

 Southern Ocean State
 Estimation (SOSE) using data assimilation to produce full 4D
 estimates of ocean properties

The plan

- Objective I: To develop a new observing system for carbon, nutrients, and oxygen based on ~200 biogeochem floats
- **Objective 2:**To produce an unprecedented 3-dimensional space and time resolved estimate of Southern Ocean biogeochemistry based on SOSE.

Nutrient profiles south of 30°S

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Proposed deployment cruises (6 yrs):

Table 2. Proposed float production and research ship deployment, with source of calibration costs. *Full chemistry/CTD provided (<u>no cost</u> to SOCOM):* (a) U.S. GO-SHIP cruises (ushydro.ucsd.edu) and (b) other, mostly international, cruise collaborations. *Some SOCOM calibration costs required:* (c) international cruise collaborations with partial SOCOM support (chemistry only), and (d) requested UNOLS cruises requiring full support (chemistry and CTD).

	Floats Totals		In situ calibration at no cost to SOCOM		In situ calibration costs paid partially or in full by SOCOM	
Year	Build	Deploy	a. US GO-SHIP b. Other	Deploy	c. Chemistry only d. SOCOM UNOLS cruises	Deploy
2014/201 5	39	17	(none)		Polarstern (Ger.)	15
			SOTS (Aust.)	2		
2015/201 6	23	43	P18 (US)	4	Malvinas (Arg.)	4
			108S (US)	4	Pacific/Ross Sea (SOCOM)	25
			P15S (Aust.)	6		
2016/201 7	35	26	P6 (US)	6	SR1/A23 (UK)	7
			SR3 (Aust.)	5		
			P17E/P19C (Japan)	2		
			OISO (Fr.)	4		
			LTER (US)	2		
2017/201 8	27	38	15 (US)	7	Indian Antarctic (SOCOM)	25
			195 (Aust.)	6		
2018/201 9	31	31	165 (US)	8	SE Pac. (Chile)	4
			A13.5 (US)	7	SE Atl. (S. Africa)	6
			0ISO (Fr.)	6		
2019/202 0	30	30	\$4P (US)	16	Good Hope (S. Africa)	6
			LTER (US)	2	SAMOC (Arg./Brazil)	6
Totals	185	185	15 cruises	87	9 cruises	98

Sources of support

Agency	Program manager	Contribution
NSF/PLR	Peter Milne	Core support (\$3.5M/yr x 6 yr; Pl: J. Sarmiento)
NOAA/CPO	Stephen Piotrowicz	50% of Argo equivalent floats
NOAA/GFDL	V. Ramaswamy	Mesoscale eddying coupled climate model simulations
NASA	Paula Bontempi	Optical sensors for Argo floats (PI: E. Boss & O. Schofield)

Accomplishments SOCCOM started Sept. 1, 2014

SOCCOM Year I accomplishments

Theme	Торіс	Significant results
Observa- tional	Floats	I 2 in pre-SOCCOM (EAGER)I 3 in Year I
	Cruises	 P16S Pre-SOCCOM (EAGER) (Pacific) Polarstern (Atlantic) SOTS (Pacific)
	Data availability	Available in real time from SOCCOMVizpH sensor analysis in progress
	State Estimation	• Biogeochemical models setup and being tested

Some early results from Alison Gray & Ken Johson analysis of pre-SOCCOM PI6S cruise

Float trajectories (pre-SOCCOM P16S)

Different regimes

2014 2015

Alkalinity

Estimated using 3D-window multiple linear regression algorithm, developed by B. Carter based on Velo et al. 2013 (cf. ongoing work by N. Williams, L. Juranek, & R. Feely)

Algorithm is trained using bottle data (GLODAPvI + PACIFICA + CARINA)

 $Alk_{est} = f(S, \ \boldsymbol{\theta}, NO_3, O_2) \text{ for 3 floats}$ $Alk_{est} = f(S, \ \boldsymbol{\theta}, O_2) \text{ for 4 floats}$

Air-sea CO₂ fluxes in the Southern Ocean south of 30°S

Pre-industrial from Mikaloff-Fletcher et al. (2006); Contemporary from Takahashi et al. (2009)

SOCCOM

Froelicher et al. (pers. comm.)

What's next?

- Mixed layer budgets
 - Carbon processes
 - Stoichiometric ratios
 - Chl:C ratio
- SOSE (Southern Ocean State Estimate)
- OSSEs (Observation System Simulation Experiments)
- BGC Argo global coverage

Southern Ocean Carbon and Climate Observations and Modeling

