

Arctic-COLORS: a collective effort by members of the broader science community

ú	Name	Institution	Expertise			
	arlos Del Castillo, PI NASA GSFC		Ocean optics; CDOM & DOC river fluxes; DOM biogeochemistry			
	Marjorie Friedrichs, PI	VIMS	Coupled physical-biogeochemical modeling: data assimiliation; remote sensing of primary productivity			
S	Peter Hernes, PI	UC-Davis	nternational team of Collaborators closs CDOM photochemistry			
à	Antonio Mannino, lead PI	NASA GSFC	Coastal Cloycling; CDOM and DCM biogeochemistry, ocean color remote sensing, estuarine processes			
	Patricia Matrai, PI	Bigelow	Anctic air-sea-sea ice exchange of gases and biogenic aeroxols, Anctic primary production			
	Joseph Salisbury, PI	UNH	Broader community involved in:			
	Maria Tzorziou, PI	UMD/ GSFC	identifying the high priority science questions			
	Matthew Alkire	U. Washington	Adebic doastal and diverting hindely chemistry			
	Marcel Babin	U. Laval	determining the study domain and research			
	Simon Bélanger	UQAR Canada	- phases for the field campaign - Management - exploring opportunities for linking to/leveraging			
	Emmanuel Boss	U. Maine				
	Eddy Carmack	Fisheries & Oceans Canada	other field activities in the Arctic region			
4	Lee Cooper	UMCES/ CBL	Arctic Ocean OM biogeochemistry; stable & raciosotopes, SBI PI			
	Susanne Craig	Dalhousie University	Biological Oceanicgraphy; satellite remote sensing			
	Jerome Fiechter	UC Santa Cruz	11 meetings so far (townhalls, special sessions) and			
	Joaquim Goes	Lamont-Doherty				
	Peter Griffith	Sigma Space/ GSFC	two dedicated 2-day workshops where community & collbarators provided input			
	David Kirchman	U. Delaware				
	Diane Lavoie	Fisheries & Oceans Canada				
	Bonnie Light	U. Washington	Radiative transfer in ice & snow, optical & structural properties of Arctic sea ice			
	James McClelland	U. Texas / MSI	Arctic land-sea coupling/coastal ecosystem dynamics			
	Donald McLennan	CHARS	Arctic land-sea coupling coastal ecosystem dynamics			
	Irina Overeem	U. Colorado	Arctic rivers and sea ice			
No.	Chris Polashenski	U.S. Army Corps of Engineers	Coastal and pack ice physical properties			
E,	Michael Rawlins	U. Massachussets	Arctic meteorology; climate models; ABoVE SDT member			
	Rick Reynolds	Scripps/ UCSD	Ocean particle optics including Arctic; ICESCAPE			
	Michael Steele	U. Washington	Arctic freshwater export; physical oceanography			
	Dariusz Stramski	Scripps/ UCSD	Ocean optics; ICESCAPE			
	Robert Striegl	USGS	River carbon chemistry – Yukon; ABoVE SDT member			
	James Syvitski	U. Colorado	Rivers, deltas, estuaries, particle dynamics, sediment transport & stratigraphy			
	Suzanne Tank	U. Alberta	Ecology & Biogeochemistry at land-river-ocean interface in Canadian Arctic			
	Muyin Wang	U. Washington	Climate and climate change in the Arctic; sea ice projections			
	Tom Weingartner	U. Washington	Coastal Arctic Ocean physical oceanography			
7	Paula Bontempi	NASA HQ	Biological oceanography; ocean color remote sensing			

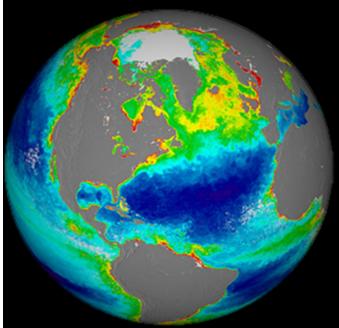
Coastal Arctic as an integrated land-ocean-atmosphere-biosphere system

Why Coastal Arctic?

BUT...

- → Very few interdisciplinary studies of processes at the land-ocean-atmosphere interface
- → Very few studies at larger scales, or across spatial and temporal scales (or seasonality?)
- → Inconsistent sampling and analytical methods across sites
- → Poor coverage at low salinities, and *hot-spot* areas of biogeochemical exchanges

NASA's ABoVE Field Campaign: above.nasa.gov



NASA's Terrestrial Ecology Program is conducting a major field campaign:

the Arctic-Boreal Vulnerability Experiment (ABoVE)

A unique opportunity to link processes in Arctic coastal ocean and terrestrial ecosystems, leverage on-going field activities and **get maximum return on investments in the Arctic region.**

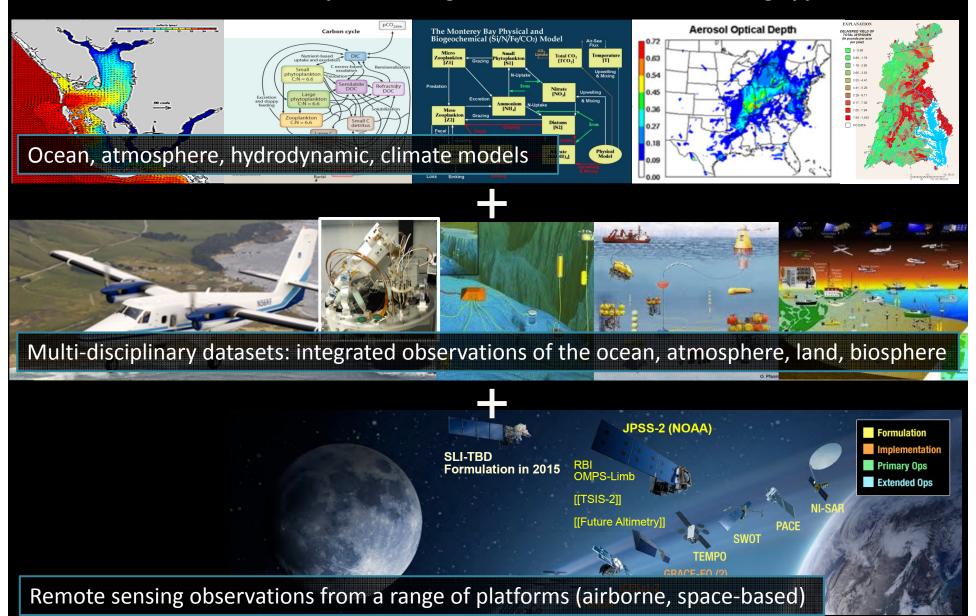
Why Now?

PACE
Pre-Aerosol, Clouds, and ocean Ecosystem Mission

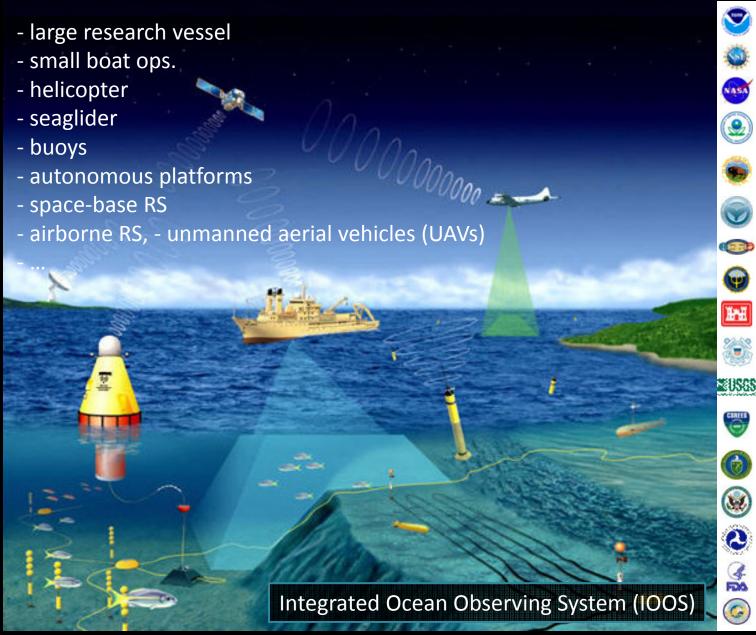
Arctic-COLORS is timely

- Further delays in establishing a comprehensive baseline will **hamper future assessments** of Arctic climate change impacts as well as any pro-active strategies.
- → in May 2013 the White House released the National Strategy for the Arctic Region :

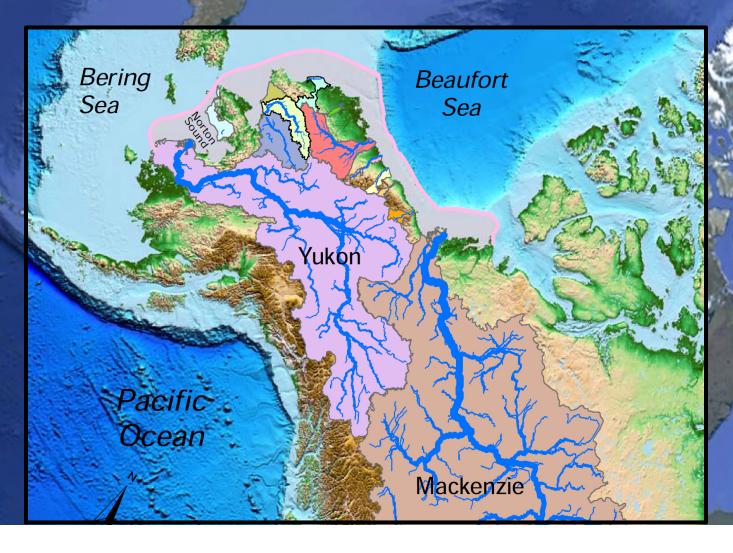
 <u>a strategic priority</u> to "employ scientific research and traditional knowledge to increase understanding of the Arctic"



Arctic-COLORS Science Questions

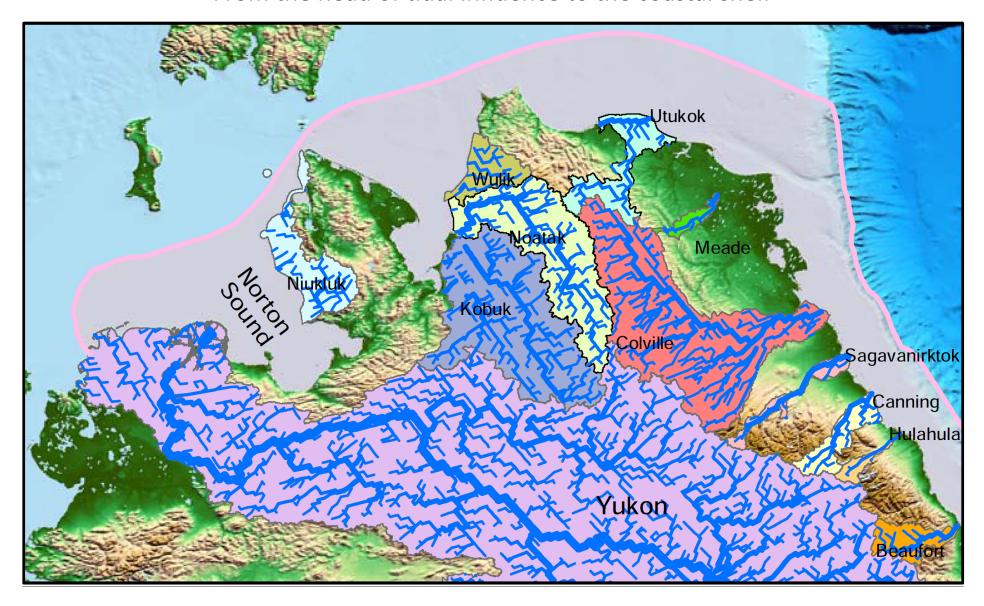

- 1. How do **coastal Arctic biogeochemical transformation zones** impact terrestrial, riverine, atmospheric, and coastal materials **across the continuum of Arctic rivers, estuaries and the continental shelf**?
- 2. How do **Arctic riverine**, atmospheric, and other fluxes of constituents effect changes in **coastal ecology**?
- 3. How does **thawing of Arctic permafrost**—either **directly through coastal erosion or indirectly through changing freshwater loads**—translate to quantitative changes in coastal ecology and biogeochemistry?
- 4. How do **changing snow and ice conditions and coastal circulation** effect changes in estuarine and coastal ecology and biogeochemistry?
- 5. How do changing environmental (short-term) and climate (long-term) conditions alter the **region's availability and use of ecosystem services**?

Arctic-COLORS will require an integrative measuremets & modeling approach


Arctic-COLORS Core Study Domain

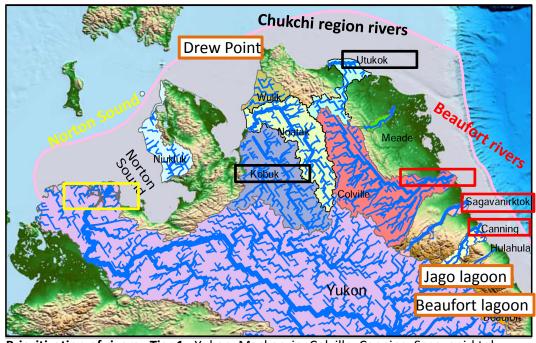
Victoria and Banks
Islands in the Canadian
Archipelago - CHARS
(CHARS: Canadian High
Arctic Research Station)

Arctic-COLORS Study Domain


Large globally important rivers, regionally important watersheds, smaller tundra rivers, coastal lagoons, erosional bluffs

Arctic-COLORS Study Domain

From the head of tidal influence to the coastal shelf



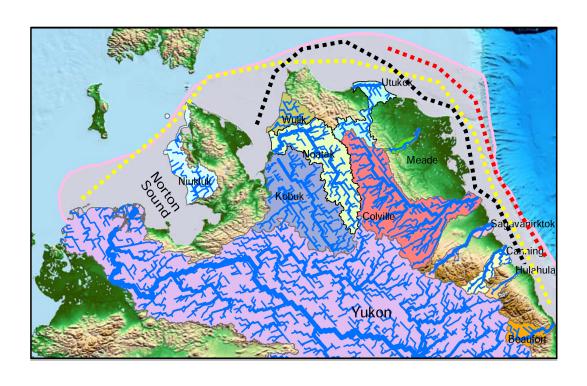
Arctic-COLORS Field Activities

Process Studies / Survey Studies

- Intensive sampling & experiments from river mouths to outer shelf of large & small rivers.
- Processes, Fluxes, Seasonality: Productivity, photo-oxidation, air-sea fluxes, optics, biogeochemistry, physics, grazing, phytoplankton taxonomy, etc.
- Contrast points: Particle dynamics, carbon, CDOM and nutrient loads, temporal discharge dynamics, residence time, sea ice change at coast, terrain (boreal/tundra/ mountainous), soils, coastal ice coverage vs open water duration
- Coastal erosion sites

Prioritization of rivers: Tier 1: Yukon, Mackenzie, Colville, Canning, Sagavanirktok, Utukok, Kobuk; **Tier 2**: Noatak, Hulahula, Meade, Wulik, Niukluk; **Tier 3**: Canadian Copper, Arctic National Wildlife Refuge: Canning & Hula

Process Studies


NO compromise in seasonality

March	May/early June	July	Sept	October
• End of winter condition	Peak river dischargeUnder ice blooms	 Increasing biological & photochemical activity 	Max open water/min sea iceLow river dischargePre-conditioning of systems prior to winter	Freeze-up period

Arctic-COLORS Field Activities

Survey Studies

- Assess spatial variability in physical, biological, and biogeochemical state of different shelf regions
- Determine interactions between the coastal ocean and the shallower shelf regions occupied during the process studies.
- Evaluate model simulations across temporal and spatial scales
- Scale up using remote sensing (design, evaluate RS algorithms across a range of environments)
- **Point** sources versus distributed inputs

Process Studies

March May/early June

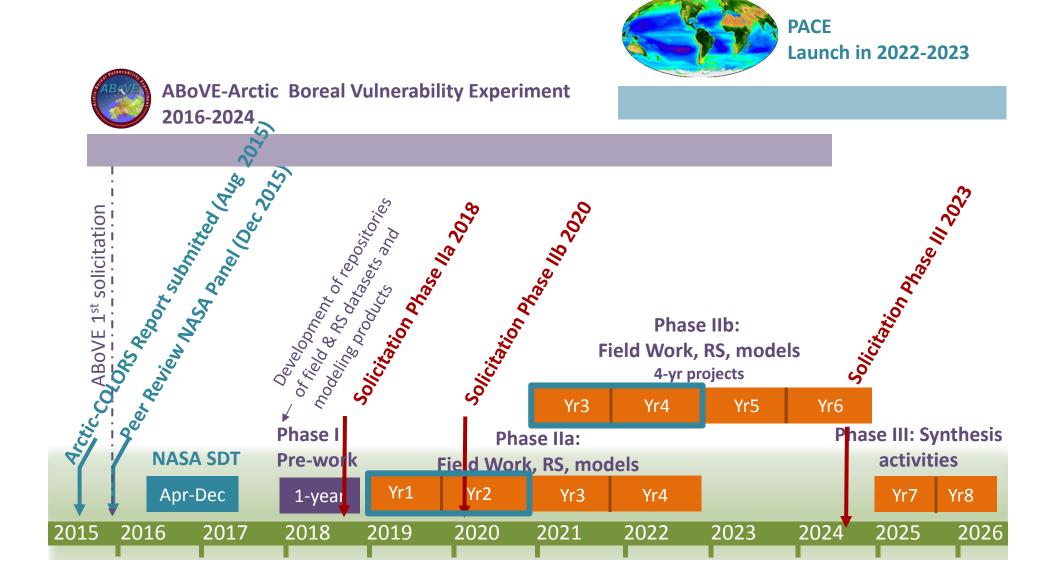
- End of winter condition
- End of winter Peak river discharge
 - Under ice blooms

Survey Studies

July

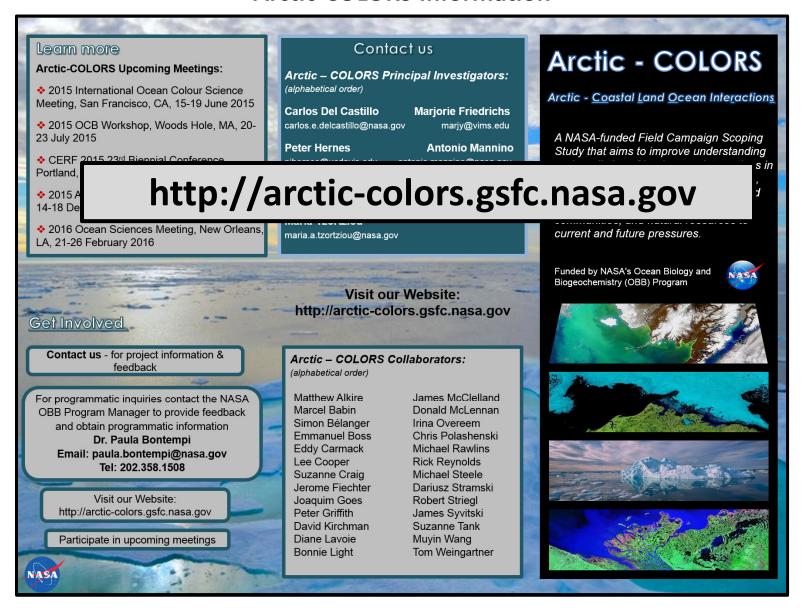
 Increasing biological & photochemical activity

Sept


- Max open water/min sea ice
- Low river discharge
- Pre-conditioning of systems prior to winter

October

Freeze-up period



Notional Timeline for Arctic COLORS

Arctic-COLORS Information

