A Combination of Measurement Strategies Elucidates Rare Events along Line P

Roberta Hamme University of Victoria

Canada

Line P / Station Papa

1949 – Bathythermograph obs begin, 1956 - hydrography

Mooring – 2007 to present

(Freeland 2007 Prog. Oceanogr.)

HNLC Region

Large phytoplankton iron limited, periodic bloom events

Annual mean Nitrate (umol/L)

Boyd et al. 2007 Science

Boyd et al. 1998 Global Biogeochem. Cycles Reprinted from Parslow 1981 PhD thesis

Biological oxygen supersaturation (2007-2009) - high Aug 2008

(Giesbrecht et al. 2012 Global Biogeochem. Cycles)

Shipboard observations demonstrate bloom conditions in Aug 2008

Satellite chlorophyll demonstrates Aug 2008 bloom widespread

MODIS Aqua chlorophyll

(modified from Hamme et al. Geophys. Res. Lett.)

Ash dispersal matches chlorophyll extent fairly well Kasatochi erupted directly into a forming storm system

NOAA AVHRR Brightness Temp Diff Ash: Peter Webley (University of Alaska Fairbanks) NASA MODIS Aqua chlorophyll

(modified from Hamme et al. Geophys. Res. Lett.)

Mooring and glider data demonstrate timing of bloom

Changes begin ~2 days after ashfall, largest change within 7 days Ocean Carbon uptake ~ 0.01 Pg C

(Hamme et al. Geophys. Res. Lett.)

"The Blob" – Anomalously warm N Pacific SST High SLP suppressed wind stress and winter heat loss

Feb 2014 SST anomaly (°C) from NCEP GODAS relative to 1981-2010 mean

Jan 2014 SST anomaly (std dev) from NOAA Olv2 relative to 1981-2013 mean

(Bond, Cronin, Freeland, Mantua (2015) Geophys. Res. Lett.) (Freeland (2014) CMOS Bulletin)

February 2014 Argo temperature interpolated onto Line P minus Line P 1956-1991 mean

(Bond, Cronin, Freeland, Mantua (2015) Geophys. Res. Lett.)

Biogeochemical floats show anomalously low nitrate in Blob

Data figures from Ken Johnson (MBARI) extended from Johnson, Coletti, Jannasch, Sakamoto, Swift, Riser (2013) JTECH Map by Frank Whitney (IOS-DFO)

Biogeochemical floats show anomalously low nitrate in Blob

Data figures from Ken Johnson (MBARI) extended from Johnson, Coletti, Jannasch, Sakamoto, Swift, Riser (2013) JTECH

Biogeochemical floats show anomalously low nitrate in Blob

Must calibrate float nitrate to shipboard measurements Also shipboard nitrate provides longer timescale context

Figure / compilation by Frank Whitney (IOS-DFO) from data by Ken Johnson (MBARI) and Marie Robert (LineP, IOS-DFO)

Papa mooring: 7 years surface pCO₂ and pH measurements

Alkalinity – Salinity Relationship based on CLIVAR

Alk–S Relationship performs better than Lee algorithm Calculated DIC matches in situ samples well

Productivity derived from carbon mass balance

Conclusions

- Autonomous and Shipboard measurements build on each other synergistically
- Shipboard Line P meas provide measurements that cannot be made by autonomous sensors, long time history for comparison, calibration of deployed sensors, and proxy relationships for interpretation
- Autonomous sensors provide high frequency data (timing, event detection, full annual cycle), broader spatial sampling, and independent realizations of phenomena