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Some interesting questions

. . start
What is a bloom and what causes it? here

Under what conditions can the state of ‘blooming’ be initiated?

What sustains a bloom from initiation to climax?

jump to
here

With what basic conceptual framework should we think about blooms

Blooms are diverse. Are there fundamental ‘rules to the game’ ?

How do trophic interactions, taxonomic composition, and successional

. . . _ not a prayer
dominance influence blooming and the characteristics of a bloom? i
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What is a phytoplankton bloom?

A bloom 1s the condition of elevated phytoplankton
concentration.

What causes a phytoplankton bloom?

[simple answer] A bloom i1s caused by the rate of
phytoplankton division (&) exceeding the rate of
phytoplankton loss (/)

When u > [, the rate of accumulation (7) is positive and
biomass increases (i.e. ‘blooming’).

To understand blooms, it 1s essential to evaluate RATES



Evaluating Blooms
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Conceptual framework
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Threshold framework

[classic ‘critical depth’ formulation]

 [oss rate treated as constant

* Threshold (i.e., critical) rate at which
division = losses

e Rate of accumulation in biomass is
directly proportional to division rate

The ‘critical depth hypothesis’ is better taught
as the ‘critical division rate hypothesis’



Loss rate (d1)

Accumulation rate (d1)
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Conceptual framework

] Modified threshold framework
* Loss rate allowed to vary
* Threshold (i.e., critical) rate at which

+* . . . division = losses
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Loss rate (d1)
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Conceptual framework
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Fractional loss framework

* Loss rate allowed to vary

 Biomass accumulates at all division
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Loss rate (d1)

Accumulation rate (d1)
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Conceptual framework

‘Quasi-equilibrium’ framework

* Loss rate parallels division rate

* Biomass accumulates in proportion to
2.0 division-loss disequilibrium

 Rate of accumulation in biomass is
independent of division rate

.
0.0 0.5 1.0 1.5
Division rate (d)
biomass increase
0.0 0.5 1.0 1.5 2.0

Division rate (d)



Summary

Three basic frameworks with testable hypotheses

(A) Threshold

(B) Fractional loss

(C) Quasi-equilibrium

Hypothesis

Null Hypothesis

A threshold division rate exists for
blooming (¢ > [) to occur (A)

Blooming can occur at any
division rate > 0 d-! (B, C)

Biomass accumulation rate (1.e.,
blooming rate) is proportional to
division rate (A, B)

Biomass accumulation rate is
independent of division rate (C)




North Atlantic data
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North Atlantic data

Bloom can end when
division rates are still high
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Winter-to-Summer rise in division rate is not
reflected by a similar pattern in accumulation rate

Behrenfeld 2014 Nature Climate Change, doi:10.1038/NCLIMATE2349



North Atlantic data
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North Atlantic data

50 -
40 A

30 -
20 A

I O\ 0 O

J F AlMlJlJlAlSlOlNlDI
Month

Why do concentrations begin increasing
when convection stops deepening the
mixed layer?
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Thought experiment
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Division rate, u (d-")
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North Atlantic data
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Why do concentrations begin  Because the population is no longer being
increasing when convection stops? diluted, so the excess of division over loss
starts being expressed as an increase in
phytoplankton concentration (m-3)

PY Cphyto (mg C m'3)

Behrenfeld 2010 Ecology 91(4): 977-989
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Blooms are diverse. Are there any common rules?

-L\ SERIES
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In the subarctic Atlantic, the blooming
season can begin from a physical
disturbance of division-loss balance
(while division rates are still declining)

What about an iron-enrichment bloom?

- clearly a poster child example of a
‘bottom up’ generated bloom...



Iron-induced blooms

Chlorophyll (mg md)
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Fly in the ointment

| SERIES *
Sl . [Question] If loss rates can catch up within a
£ week or so following the major increase in
e division rate associated with iron addition....
— .... then what allows a natural bloom, such as in
the subarctic Atlantic, to keep going for months?
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CHANGE: One of the ‘common rules’ ?

[Idea] During blooming, phytoplankton concentrations can continue
increasing so long as the rate of division continues to increase

North Atlantic

step 1: early winter conditions decouple division and loss (disturbance), mixed layer
biomass increases but concentrations do not (no response of loss rates)
step 2: convective mixing ends, concentrations increase, grazing/other losses respond

step 3: (unlike Fe+) division rates continue to accelerate, decoupling sustained despite
rising loss rates

step 4: blooming phase continues until division rates reach maximum or become
resource limited, losses catch up, bloom reaches climax and terminates

Prediction: Post-convective mixing, phytoplankton concentration changes reflect
relative accelerations and decelerations (i.€., changes) in division rate
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North Atlantic data
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Mixing vs Mixed Layer

Uncertainty in mixing depth introduces
uncertainty in division rate changes
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What about other types of blooms?




Under-ice blooms

501 Sea ice \ iju:v E * ICESCAPE, Chukchi Sea
. 0 — uly
0 { concentration () * Division rate @ sea-ice

interface ~0.9 d-1
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 [Chl]]~20-30uglL?
 Euphotic depth ~ 10 m
* Mixing depth ~ 10 m

o Mixed layer population
250 200 150 100 50 0 doubling time: once every
Distance along transect (km) ~ 4+ days

Is this an example of a bloom where increases in concentration were
sustained despite decreasing division rates?

Light history?
Grazers simply couldn’t respond?

K.R. Arrigo et al. / Deep-Sea Research Il 105 (2014) 1-16



Rules to the Game

Blooms differ in their form, composition, duration,
and cause of initiation

Blooms appear to start in response to disturbances
in predator-prey relationships,

e.g., population dilution (e.g., N. Atlantic), a change in
division rate (e.g., iron addition), growth opportunities
out of phase with loss processes (melt ponds and low
temp), rapid loss of grazers (e.g., carn. zoop. swarm?)

Blooming persists so long as division rates accelerate
(??), but the fraction escaping losses declines

Blooming ends when division rates remain constant 50
or decline, allowing losses to catch up

Blooms do not require rapid division rates

Models should be evaluated against rates...

1 Seaice \ _2 jﬁ:y C
1 concentration (%) Y I

57 56 55 52 50 48 46
s
2 N——

/ Chlorophyll a (ug L)

200 150 100 50
Distance along transect (km)




Random thoughts: If the subarctic Atlantic blooming phase lasts
for many months, why is the climax in the spring/summer?
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Random thoughts: Why do diatoms often dominate the climax
community?




Random thoughts: Why do diatoms often dominate?
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Random thoughts

Martha’s Vineyard record (Heidi Sosik): Monotonic increase in
chlorophyll, rapid succession of dominance

Extremely selective losses: Grazers + Viruses?

To become uncommonly abundant, do you first need to be
uncommonly rare?

Do diatoms have an advantage during prolonged blooming
conditions because of their ability to continue accelerating?

What if winter mixing is dampened in the future?




Summary
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