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1 Introduction

Rossby waves arise in the oceans as a response to forcing, either by buoyancy or by the
actions of winds at the sea surface [3]. They have been observed in satellite altimeter data
(for example, Kelly and Thompson (2002)[1] show excellent agreement between observed
sea surface height and a Rossby wave model) as well as in moorings.

The case of Rossby waves in closed basins (i.e. Rossby basin modes) is a classical problem
in geophysical fluid dynamics [2, 3, 4]. There is observational evidence from moorings for
these modes; for example, Warren et al. (2002)[9] observed a large signal in moorings in
the Mascarene Basin (off the coast of Madagascar) which they attributed to a barotropic
Rossby mode.

When examining ocean circulation in basins with incomplete barriers, Pedlosky et
al. (1997)[7] and Pedlosky and Spall (1999)[8] found that barriers extending through most
of the ocean basin were surprisingly inefficient at blocking the transmission of Rossby wave
energy from one subbasin to the next. Pedlosky (2000)[5] developed the linear theory fur-
ther for the case of a long thin island extending nearly the entire meridional length of the
basin, with only small gaps between the north and south ends of the island and the basin
boundary, and found that for certain forcing symmetries, waves forced in the eastern sub-
basin were able to easily slip around the island into the western subbasin. Following this,
Pedlosky (2001)[6] looked at the amplitude of reflected and transmitted waves through a
barrier with two or three small gaps. However, the theory derived in Pedlosky (2000)[5]
and Pedlosky (2001)[6] neglects nonlinear effects and friction in the main basin interiors,
and it is unclear what effect these neglected processes will have. As such, investigation of
this problem in a laboratory setting might be able to shed some light as to how well the
linear theory captures the physics of Rossby waves impinging on a barrier with small gaps,
such as ocean ridges or island chains with small gaps between neighbouring islands.

The remainder of this report will proceed as follows. In section 2, the details of the linear
theory for the problem of Rossby modes interacting with a barrier with two gaps in it will
be outlined, as well as giving a scaling for the likely impact of nonlinear effects. In section 3,
the laboratory setup and the associated troubleshooting of the apparatus will be described.
Then, in section 4, the measured flows will be described and compared with the linear
theory. The quantitative details of the integral constraint derived in the linear theory will
be examined using the laboratory data, and some effects of nonlinearity will be examined.
We find that while the linear theory captures the large-scale structures of the flow as the
Rossby modes encounter the barrier, viscosity and nonlinearity appear to significantly affect
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Figure 1: Geometry of basin, barrier, and forcing.

the flow along the boundaries and the barrier through strong boundary currents, and in the
gaps through the formation of vortices. Additionally, there is no indication of resonance in
the experimental results, despite the predicted resonance at the basin and subbasin normal
mode frequencies in the linear theory, indicating additional missing physics. Finally, in
section 5, future directions for the problem based on the laboratory results observed here
will be discussed.

2 Linear theory

The geometry of the system being considered, shown in figure 1, is similar to that of Pedlosky
(2001)[6]: a barrier from x1 to x2 extends the length of a square basin in the meridional
direction with only two small gaps of length d � L, and is symmetric with respect to the
y-coordinate. The flow is forced at the location x = xf , similar to the forcing in Pedlosky
(2000)[5].

As in Pedlosky (2000)[5], the governing equation for the flow is the linearized quasi-
geostrophic potential vorticity equation for the β-plane. The fluid is homogeneous and the

262



flow is barotropic. In nondimensional form, with lengths scaled by the basin length L and
times scaled by the characteristic Rossby wave period (βL)−1, the equation of motion is

∇2Ψt + Ψx = −r∇2Ψ +A∇4Ψ +W (x, y, t) . (1)

The first term on the right-hand side of (1), proportional to r, is a linear drag term repre-
senting the effect of bottom friction, and may be thought of as a ratio between Stommel’s
boundary layer thickness to L. The second term, proportional to the nondimensional vis-
cosity A, represents the effect of lateral friction. It can be thought of as a cubed ratio of
the Munk scale δM to L [5]. Both A and r are assumed to be small parameters. Finally,
the third term is a forcing term.

As in Pedlosky (2000)[5], we assume that the forcing is harmonic with frequency ω0,

W = Re[eiω0tw(x, y)] . (2)

We then search for solutions Ψ(x, y, t) of the form

Ψ = Re[eiω0tψ(x, y)] . (3)

Substituting the above expressions for W and Ψ into (1) thus leads to the following partial
differential equation for the spatial structure of the stream function ψ(x, y):

iω∇2ψ + ψx = A∇4ψ + w(x, y) (4)

where ω = ω0 − ir.
On the basin boundaries and the peninsulas, we set ψ = 0, while the island is assumed

to have constant value ΨI , to be determined.
The vertical structure of the forcing may be represented as a Fourier sine series

w =
∑

n=1

wn(x) sinnπy . (5)

Additionally, if the forcing is localized in x, for instance at some location x = xf , then the
x-dependent coefficients wn(x) may be represented using a Dirac delta as

wn = Wnδ(x− xf ), x2 < xf < x . (6)

2.1 Gaps

In the gaps, the characteristic length scales of the flow are assumed to be much smaller in
the y-direction than in the x-direction. Correspondingly, x-derivatives are assumed to be
negligible when compared with y-derivatives, and (4) becomes

iωψyy −Aψyyyy = 0 (7)

in the gaps.
Defining y′ = y2 + d − y in the northern gap and y′ = y − y1 + d in the southern gap,

the solution to (7) is

ψ = A1 +B1
y′

d
+ C1 exp

(
(1 + i)y′

δ

)
+ C2 exp

(−(1 + i)y′

δ

)
, (8)
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where δ =
√

2A/ω. The corresponding boundary conditions are that the streamfunction ψ
be continuous across the gaps, i.e.

ψ = 0, y′ = 0 ,

ψ = ΨI , y′ = d , (9)

ψy = 0, y′ = 0, d .

Applying (9) allows for the determination of the coefficients in (8) as

A1 = −ΨI
ρ(1− q)

(1 + i)[1 + q − ρ(1− i)(1− q)] (10)

B1 = ΨI
(1 + q)

[1 + q − ρ(1− i)(1− q)] (11)

C1 = −ΨI
qρ

(1 + i)[1 + q − ρ(1− i)(1− q)] (12)

C2 = ΨI
ρ

(1 + i)[1 + q − ρ(1− i)(1− q)] (13)

with ρ = δ/d and q = exp(−(1 + i)/ρ). The values of A1, B1, C2, C2 are proportional to ΨI

which is yet to be determined.
Thus, the streamfunction along the longitudes of the barrier is

ψ =





0, 0 < y < y1 − d
ψgap, y1 − d < y < y1

ΨI , y1 < y < y2

ψgap, y2 < y < y2 + d

0, y2 + d < y < 1

(14)

which may be written as ψ = ΨIg(y).

2.2 Basins

In the basin interior, lateral friction is neglected and (4) becomes

iω∇2ψ + ψx = w(x, y) . (15)

The solution may be represented as

ψ = eikx
∑

n=1

φn(x) sinnπy , (16)

so that solving for ψ amounts to solving

d2φn
dx2

+ a2nφn =
wn(x)

iω
e−ikx , (17)

in which a2n = k2 − n2π2 and k = 1/(2ω), for φn.
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Solving (17) with the boundary conditions for ψ and continuity of the streamfunction
at x = xf ,

dφn
dx

∣∣∣∣
x=xf+

− dφn
dx

∣∣∣∣
x=xf−

= − i
ω
Wne−ikxf (18)

gives

φn =





A+
n

sin an(x−xe)
sin an(x2−xe)

, xf ≤ x ≤ xe
A−n

sin an(x−xe)
sin an(x2−xe)

+Bn
cos an(x−xe)
sin an(x2−xe)

, x2 ≤ x ≤ xf
Dn

sin an(x−xw)
sin an(x1−xw) , xw ≤ x ≤ x1

(19)

in which

Bn =
Wne−ikxf

iωan
sin an(x2 − xe) sin an(xf − xe) (20)

A−n = ΨIgne−ikx2 − Wne−ikxf

iωan
cos an(x2 − xe) sin an(xf − xe) (21)

A+
n = A−n +Bn cot an(xf − xe) (22)

Dn = ΨIgne−ikx1 (23)

In the above, gn refers to the Fourier sine transform of g(y),

gn = 2

∫ y

0
g(y) sinnπy dy . (24)

2.3 Integral constraint

To determine the value of ΨI , we may apply Kelvin’s circulation theorem by integrating
around a contour, CI , bordering the island. This gives

∮

CI

u · ds = 0 (25)

for time-periodic motion with frequency ω. This may be expressed as

iω

∮

CI

∇ψ · n dl −A
∮

CI

∇∇2ψ · ndl = 0 . (26)

When the above expressions for ψ are substituted into the above, the resulting algebraic
expression is for this integral constraint is

ΨI

[∑

n=1

µngnan cosnπy1
nπ

sin an[Lx − lx]

sin an(x2 − xe) sin an(x1 − xw)
− 2B1lx

d

]

= −i
∑

n=1

µnWn cosnπy1
ωnπ

exp ik(x2 − xf )
sin an(xf − xe)
sin an(x2 − xe)

(27)

where µn = 1− (−1)n. This may then be solved for the island constant ΨI .
It should be noted that when n is even, the resulting value of ΨI is identically zero.

This may be understood by considering that for the symmetric island geometry described
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here, the integral around the island may be satisfied on the eastern side of the island alone:
the meridional velocities along the eastern side integrate to zero.

However, when n is odd, ΨI 6= 0 in general. In contrast to the even-n case, the velocities
along the eastern side of the island do not integrate to zero. This requires some response
on the western side of the island in order to satisfy the integral constraint.

Finally, it should be noted that within the theoretical framework considered here, the
result for the integral constraint is also applicable to the nonlinear equations of motion,
i.e. integration around the island would still imply some response on the western side of the
island to satisfy the integral constraint.

2.4 Scaling for nonlinearity

While the theory presented above is a linearized theory for the problem being considered,
in a real fluid it is expected that nonlinear effects may become important in certain flow
regimes. By considering the relative importance of the nonlinear terms in the full nonlinear
quasigeostrophic potential vorticity equation, we can predict under what circumstances
nonlinear effects may become important.

We begin by defining a characteristic forcing velocity Ue = ω0Aforcing. Then, the (di-
mensional) stream function in the basin is expected to scale with this forcing velocity as
ψe ∼ UeL. In addition, x distances are expected to scale roughly with L everywhere. In the
basin, y distances scale approximately with L. We can then define a parameter NLbasin as
a scaling of the relative importance of the nonlinear J(ψ,∇2ψ) terms compared with the
linear βψx term, i.e.

J(ψ,∇2ψ)

βψx
∼ Ue

βL2
= NLbasin . (28)

However, in the gaps the y distances do not scale with L, but rather with d. A similar
parameter NLgap can thus be defined as

J(ψ,∇2ψ)

βψx
∼ UeL

βd3
= NLgap . (29)

For gaps which are small compared with the length of the barrier, d � L, this implies
that NLgap � NLbasin, i.e. nonlinear effects are expected to be more significant in the gaps
than in the basin interior.

3 Laboratory setup

The general experimental setup is shown in figure 2, with the corresponding parameters
listed in table 1. The resulting laboratory apparatus is shown in figure 3, and consists of
a square tank with a sloping bottom on a rotating table to create a laboratory analogue
to the β-effect. A meridional barrier, constructed from 1/8′′ acrylic, is placed in the tank;
the geometry of the barrier is symmetric with respect to y. The 45 cm-long forcing paddle
is mechanically forced by a scotch yoke-type mechanism which allows for different forcing
frequencies (O(0.10) rad/s) and amplitudes (up to 3 cm). A rigid lid is used in order to
reduce surface gravity-capillary modes in the system.
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Figure 2: Geometry of basin, barrier, and forcing for laboratory experiments. (a) xy-plane.
(b) yz-plane.
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Parameter Value Parameter Value

Lx 60 cm y1 15 cm
Ly 60 cm y2 45 cm
d 4 cm D 20 cm
xw 0 cm s 2/15
xe 60 cm Aforcing 0.7-3.0 cm
x1 22 cm ω0 0.05-0.15 rad/s

x2 − x1 1/8′′ f0 2.0-3.5 rad/s
xf 57 cm

Table 1: Experimental parameters used in laboratory experiments, corresponding to fig-
ure 2.

Two types of experiments are performed: dye visualization and particle image velocime-
try (PIV). For the dye experiments, a syringe pump capable of low flow rates (O(1 ml/hr))
is used to inject dye at various locations within the basin. For the PIV experiments, salt-
water with density ρ ≈ 1200 kg/m−3 is used as the working fluid. The fluid is seeded with
50µ particles with density ρ ≈ 1160 kg/m−3. A green laser (532 nm/1064 nm) is used to
illuminate the flow, with a pulse rate of 1-10 Hz. The software used to compute the flow
velocities is LaVision’s DaVis software.

The Ekman layer depth, relative to the change in depth due to the sloping bottom, is
δEk/∆D ∼ 0.01− 0.02. The Munk scale, relative to the gap width, is δM/d < 0.25 (where
the gap needs to be at least twice the Munk scale, to prevent the boundary layers from
blocking flow through the gap). Given that d� L, this confirms the assumption in § 2 that
A is a small parameter.

We anticipate a resonant response at approximately the normal-mode frequencies asso-
ciated with the full basin in the absence of the barrier as well as those for each individ-
ual subbasin [8, 5]. These frequencies are computed in nondimensional form (relative to
(βL) ∼ 1) by

ωnm =
1

2π
√
m2(Ly/Lx)2 + n2

, (30)

in which the integers m and n refer to the mode number in the x and y directions, respec-
tively [3]. These frequencies are ωF = 0.1075, ωE = 0.0802, and ωW = 0.0548 for the full,
eastern, and western basins respectively.

4 Results

4.1 Initial results and troubleshooting

Initial dye visualization experiments (not shown) showed evidence of oscillations at approx-
imately the forcing frequency. However, one limitation of the dye visualization technique is
that it only gives a Lagrangian description of particle paths, and not a full picture of the
overall flow field, which motivated the move to full PIV measurements of the flow.
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Figure 3: Laboratory apparatus corresponding to figure 2.
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However, upon taking initial PIV measurements of the flow, a high-frequency oscillation
of O(1 Hz) was observed with amplitude comparable to that of the signal being forced. The
high-frequency signal persisted even when the forcing was turned off entirely, as shown in
figure 4; as such, it was necessary to determine the cause of the oscillations in order to
reduce or eliminate them.

Several possible sources of oscillations were examined:

1. Surface gravity waves.
Although a rigid lid for the tank is included in the experimental apparatus, it seemed
possible that the lid may have still been able to wobble, thus forcing a flow in the
interior of the tank. However, sealing down the lid did not appear to reduce the
observed oscillations.

2. Table off-balance.
Given the addition of the camera, camera mount, and laser to the table, it was thought
that perhaps the weight may have unbalanced the table surface. However, adding
weight to the opposite side of the table to offset this potential imbalance did not
appear to reduce the oscillations.

3. Table not level.
It was found that the table was not properly level, i.e. the axis of rotation was not
parallel to gravity. Re-levelling the table appeared to help slightly but did not sub-
stantially reduce the oscillations.

4. Additional vibration introduced by control system.
Due to the setup of the control system used to maintain the table’s rotation speed, a
peak in frequency of O(1Hz) could be observed in the associated frequency spectrum.
By changing the manner in which the table was operated, the oscillations observed
within the tank were reduced significantly.

With the oscillations observed in figure 4 substantially reduced, the PIV measurements
of the forced flow could then be measured.

4.2 Comparison of PIV results with linear theory

PIV experiments were carried out at five forcing frequencies (ω0 = 0.0690, 0.0882, 0.1010,
0.1134, 0.1355 rad/s) and three forcing amplitudes (Aforcing = 0.7, 2.0, 2.7 cm) with a table
rotation rate of 15 rpm (f0 = 3.1 rad/s).

Figures 5 and 6 show the stream functions and velocities, respectively, from the lab-
oratory measurements and the corresponding linear theory for forcing with ω0 = ωF =
0.1355 rad/s (at f0 = 3.1 rad/s) and Aforcing = 2.0 cm. As the two figures show, despite
the noise apparent in the experimental data, the linear theory does capture many of the
large-scale features of the observed flow from the experiments. In particular, the computed
streamfunction shown in figure 5 shows the Rossby wave propagating through the barrier
with the correct frequency, as predicted by the linear theory.

Using the computed streamfunction from the experimental data, the experimental island
constant can be computed. This is done by taking the average value of the streamfunction
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Figure 4: Horizontal (top) and vertical (bottom) velocities at four points in basin. Points
1, 2, 3, and 4 correspond to the northern gap, southern gap, centre of the western subbasin,
and centre of the eastern subbasin, respectively.
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Figure 5: Comparison of streamfunction in laboratory results (left) and theoretical model
(right) for ω0 = ωF = 0.1355 rad/s at f0 = 3.1 rad/s and Aforcing = 2.0 cm.
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Figure 6: Comparison of velocities (arrows) and speeds (colours) in laboratory results (left)
and theoretical model (right) for ω0 = ωF = 0.1355 rad/s at f0 = 3.1 rad/s and Aforcing =
2.0 cm.

273



0 20 40 60 80 100 120 140 160 180 200−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 x 10−5

t (s)

Ψ
I e

xp
iω

 t

 

 
data
fit

Figure 7: Mean value of streamfunction around island and corresponding computed fit,
ΨI cosωt.

around the island at each point in time, which oscillates with frequency ω, and computing
the root-mean-square velocity corresponding to this timeseries. An example of the data and
corresponding fit for ω0 = 0.1355 rad/s and Aforcing = 2 cm is shown in figure 7. Excellent
agreement is seen between the amplitude of the oscillations in the experimental data and
the computed amplitude ΨI .

A summary of the computed values of the island constant for all forcing frequencies
and forcing amplitudes is shown in figure 8. Of note is the apparent lack of resonance,
despite three of the forcing frequencies (ω0 = 0.0690, 0.1010, 0.1355 rad/s) corresponding to
the western subbasin, eastern subbasin, and full basin normal mode frequencies. This is
particularly surprising given that the theoretical predictions of Pedlosky and Spall (1999)[8]
and Pedlosky (2000)[5] indicate that resonant peaks should be observed in the value of ΨI

(see, for instance, figure 4 of [5]).
An additional way in which the experimental results may be compared with the linear

theory outlined above is by further examining the integral constraint defined in (25). We
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Figure 8: Computed values of island constant ΨI for different forcing frequencies and am-
plitudes.
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redefine this expression as ∮

CI

u · ds = residual . (31)

By computing the individual components of the contour integral, the residual is determined.
The mean value of the computed residual is shown in figure 9, and the rms amplitudes of

oscillation of each of the individual components of the contour integral are shown in figure 10.
The amplitudes of the mean values are smaller than the rms amplitudes; however, it is clear
from figure 10 that the amplitude of the residual value is comparable to that of some of the
individual terms in the contour integral. This points to some missing physics in the contour
integral. As the contour integral should be valid for nonlinear flows, the missing terms
are likely related to missing viscous effects not accounted for in the linear theory (e.g. the
assumption that lateral friction is negligible in the basin). This is, perhaps, unsurprising
given that the laboratory’s smaller length scales; viscous effects might be expected to be
more dominant in the laboratory than at, say, geophysical scales.

4.3 Nonlinear effects

Figure 11 shows a zoomed-in view of the northern gap for ω0 = 0.1134 rad/s and Aforcing =
2.7 cm. For these parameters, the scalings for nonlinearity in the basin and in the gaps are
NLbasin = 0.004 and NLgap = 13.7, respectively. As such, it is expected that significant
nonlinear effects will be observed in the gap regions for these parameters.

Examination of figure 11 does show evidence of nonlinear effects. In particular, we can
see the formation of a vortex on the western side of the barrier, and a strong boundary
current on the eastern side of the barrier. Both the vortex and the strong east-west asym-
metry are characteristic of strong nonlinear effects which are not well captured by the linear
theory.

5 Discussion and conclusions

Here we have presented laboratory experiments corresponding to the theory of Pedlosky
(2000)[5] and Pedlosky (2001)[6], which predicts that barriers with relatively small gaps
may be quite inefficient in preventing the transmission of Rossby waves through the barriers.
Comparisons between the linear theory and the experimental results indicate that the theory
does capture the large-scale structure of the flow; however, preliminary analysis of the
results points to the importance of additional physics not captured by the linear theory in
its current form.

First, additional forcing frequencies would be of great interest, particularly to determine
whether resonant peaks are seen in the laboratory experiments (as the linear theory sug-
gests) or not. Given that only five frequencies were considered above, it may be the case
that the resonant peaks were “missed” in some sense. On the other hand, if there is no
evidence of resonance, it may be indicative of some additional physics not fully captured
by the linear theory.

Modification of the forcing symmetry and/or the barrier symmetry and number of gaps
would be of interest. Blocking off one of the gaps to confirm that only smaller-scale struc-
tures are able to pass through the gap would be of interest, as would adjusting the forcing
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Figure 9: Mean values of the computed residual from (31).
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Figure 10: Root-mean-square amplitudes of each term in (31).
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Figure 11: Velocities (arrows) and speeds (colours) in laboratory results, zoomed in around
the northern gap, for ω = 0.1134 rad/s at f0 = 3.1 rad/s and Aforcing = 2.7 cm.
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to one in which n is even. As Pedlosky and Spall (1999)[8] describe (see their figure 7), ad-
ditional gaps in the barrier allow for different ways in which the waves may be transmitted
through the barrier; comparing these scenarios with laboratory results could reveal further
interesting features of the flow.

Additional forcing amplitudes could also be considered. In particular, it would be in-
teresting to see if increasing the forcing could lead to separation of the vortex forming at
the western side of the gap, shown in figure 11. Additionally, varying the forcing may help
to quantify under what conditions these vortices form. As such vortices are an additional
means by which wave energy may be transmitted into the western subbasin, and are a
nonlinear effect not described by the linear theory described above, understanding their
behaviour is of great interest.

Finally, numerical simulations corresponding to the laboratory length scales would be
of great interest. In particular, while it is difficult to compute contributions due to viscosity
from the measured velocities, owing to the noisy nature of the data and the higher derivatives
that appear in viscous terms, these terms could be more easily computed from numerical
data. This may help in quantifying the effects of nonlinearity and viscosity suggested to be
of some importance by the experimental results.
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