Autonomous Vessels for Towing Tasks in Offshore Fish Farming

Clifford A. Goudey

C.A. Goudey & Associates 21 Marlboro Street Newburyport, MA 01950 <u>cliffgoudey@gmail.com</u>

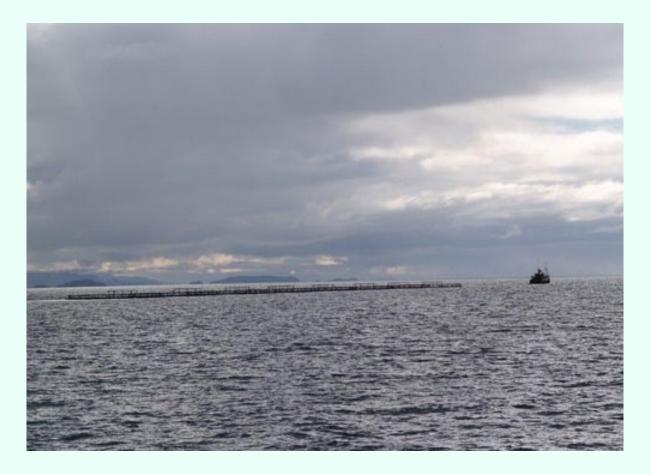
William A. Lincoln

Response Marine, Inc. 25 High Street Newburyport, MA 01950 wal@responsemarine.com

Joseph A. Curcio

Robotic Marine Systems, LLC 139 Cottage Road Gray, ME 04039 jacurcio@netscape.net

Challenges and Opportunities for Robotics and Automation Applied to Aquaculture Woods Hole, MA Jan. 11, 2016


Vessel Use at Offshore Fish Farms

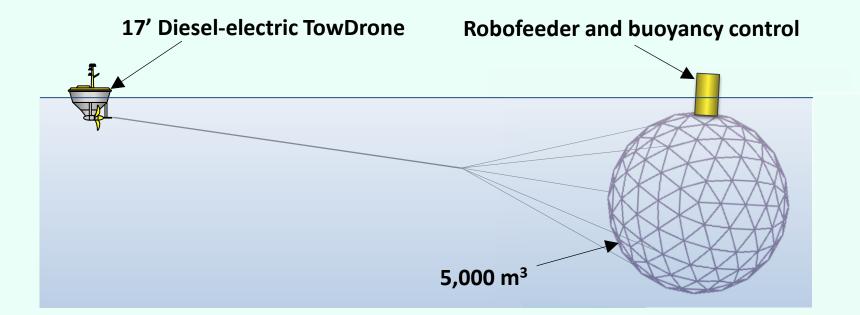
Took	Requirements						
Task	Speed	Cargo cap.	Tow power				
Mooring installation	?	\checkmark	\checkmark				
Cage installation	?	?	✓				
Stocking	\checkmark	\checkmark	?				
Husbandry	1	1	?				
Harvest	\checkmark	\checkmark	?				
Cage towing	?	?	\checkmark				

Vessel Use at Offshore Fish Farms

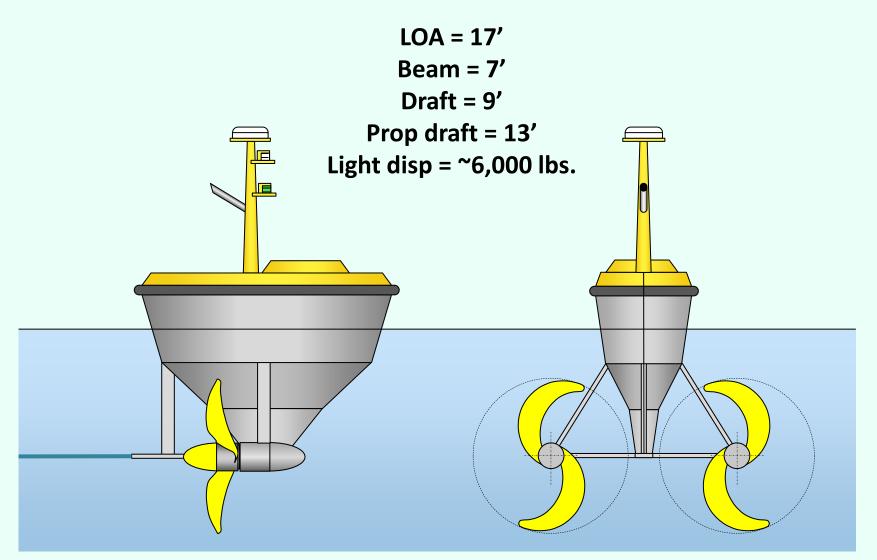
Task	Requirements							
Task	Speed	Cargo cap.	Tow power					
Mooring installation	?	\checkmark	1					
Cage installation	?	?	\checkmark					
Stocking	1	\checkmark	2					
Husbandry	1	\checkmark	?					
Harvest	1	\checkmark	2					
Cage towing	2	2	1					
Role of the typical fish-farm service vessel								

Cage towing often involves the charter of tugboat

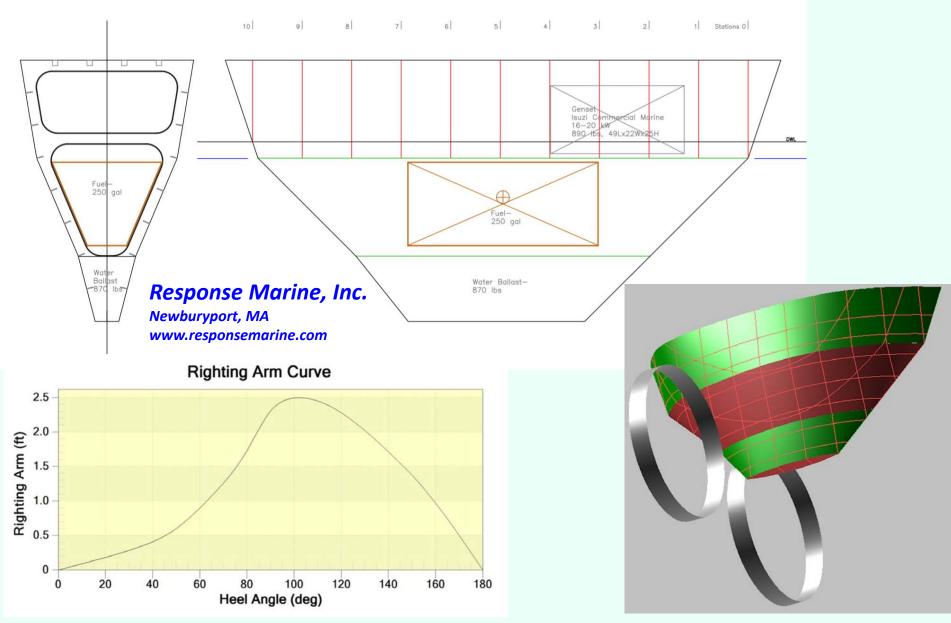
The Valella Project


While obviously a pilot effort, it demonstrated that unanchored, drifting cages can be commercially viable. A 65' motorsailer connected to a 22' diameter Aquapod™ cage.

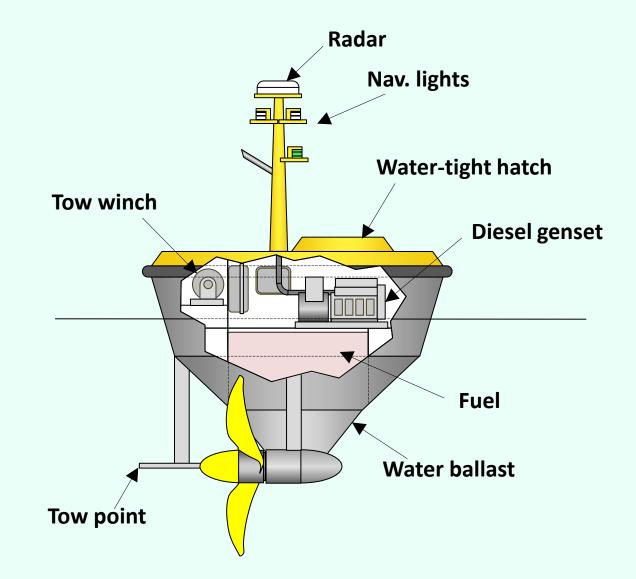
©BRYCE GROARK - BRYCEG

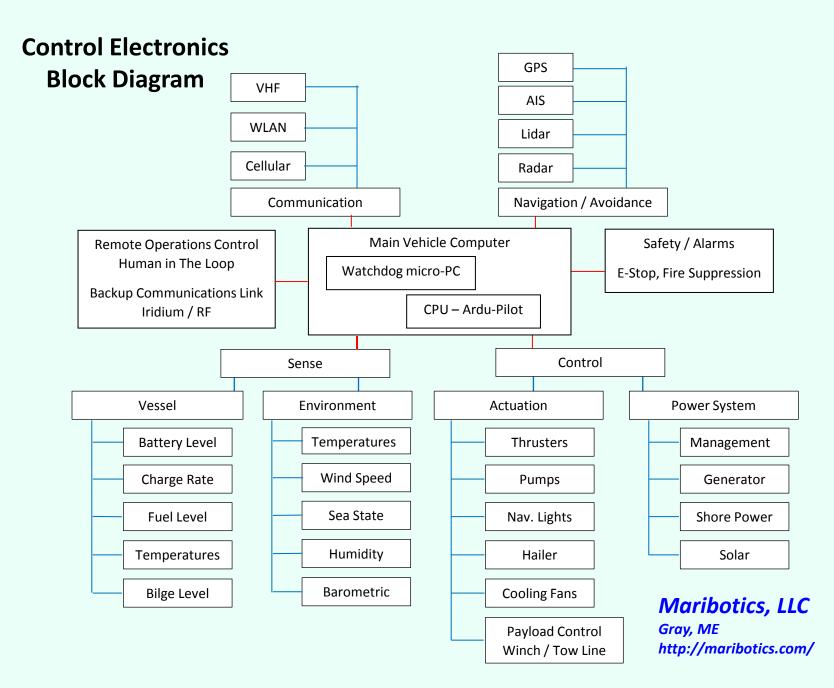

Is this a more viable approach?

A 17' vessel connected to a 70' diameter, 5,000 m³ Aquapod[™]

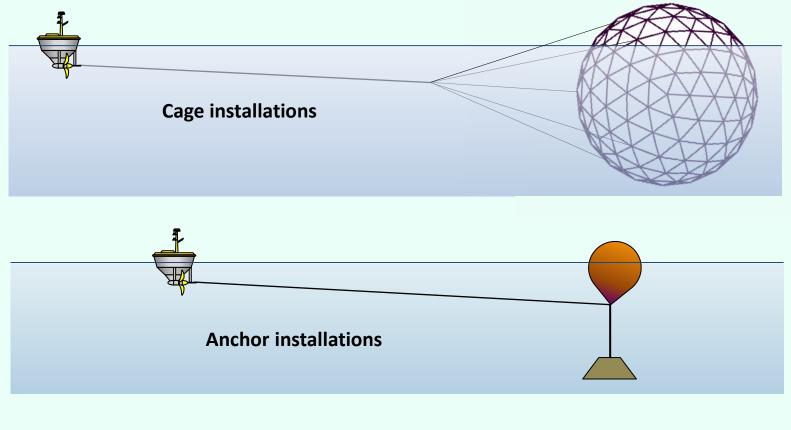


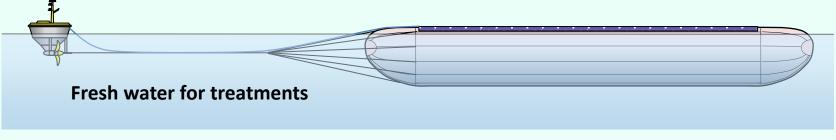
Requires re-supply visits (feed & fuel) every one to two weeks depending on stocking density


TowDrone Specifications



Preliminary design exercise




TowDrone Preliminary Design

TowDrone uses in conventional offshore fish farming

11

Most marine propellers are diameter limited due to draft constraints and the need for a broad range of operating speeds. A kort nozzle slightly improves a bad situation.

The key to efficient towing is a largediameter, slow-turning propeller

By turning to the wastewatertreatment sector we find systems intended for mixing that offer the sort of thruster efficiency needed.

Flygt, a Swedish company and a subsidiary of Xylem, Inc. of NY has a range of low-speed mixers with AC power up to 8.0 kW.

By selecting the combination of blade length, RPM, and motor size we can achieve optimal performance.

RPM	30			32			35			38			42		
Propeller diameter, mm	F _{thrust} N	P _{in} kW	Prop code												
2500	2190	2,44	440	2470	2,89	400	2780	3,57	450	3080	4,20	410	<mark>3630</mark>	5,44	460
2200	1880	2,20	441	2180	2,61	401	2530	3,24	451	2880	3,88	411	3380	4,94	461
2000	1510	1,89	442	1740	2,21	402	2050	2,75	452	2460	3,29	412	2770	4,17	462
1800	1120	1,56	443	1290	1,81	403	1540	2,25	453	1750	2,65	413	2130	3,42	463
1700	980	1,44	444	1140	1,67	404	1340	2,05	454	1540	2,40	414	1860	3,07	464
1600	850	1,32	445	990	1,52	405	1160	1,85	455	1340	2,14	415	1610	2,72	465
1500	720	1,18	446	820	1,36	406	970	1,64	456	1120	1,90	416	1350	2,37	466
1400	580	1,04	447	670	1,19	407	790	1,43	457	900	1,65	417	1110	2,01	467

RPM	47			49			55			
Propeller diameter, mm	F _{thrust} N	P _{in} kW	Prop code	F _{thrust} N	P _{in} kW	Prop code	F _{thrust} N	P _{in} kW	Prop code	
2500										
2200										
2000										
1800	2640	4,67	423	2850	5,27	473				
1700	2310	4,20	424	2510	4,75	474				
1600	2010	3,72	425	2160	4,21	475				
1500	1690	3,21	426	1820	3,63	476	2200	4,95	436	
1400	1370	2,69	427	1490	3,05	477	1830	4,16	437	

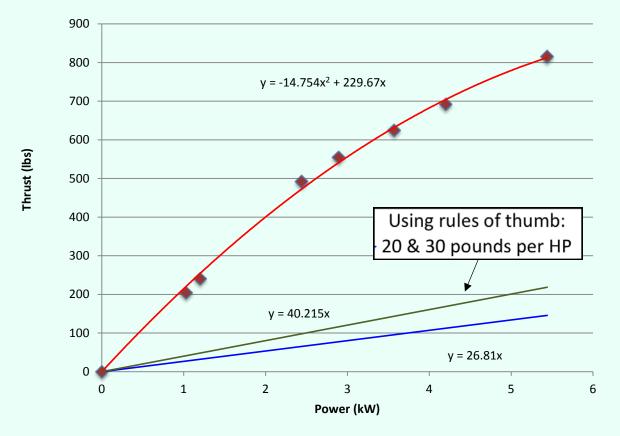
Maximum thrust comes with a 2,500 mm (98") dia prop spinning at 42 RPM and drawing 5.44 kW (7.3 hp) Experience to date: demonstration of a self-propelled aquaculture cage to enable deep-ocean fish farming in cooperation with OFT and Snapperfarm off Culebra, PR.

A pair of 98"-diameter, 5.44 kW Flygt thrusters for "twin-screw" operation

Installed at the equator of a 3,250 m³ Aquapod 30' underwater

View from underside

Bollard tests against mooring to verify thrust then self-propelled tests achieving 0.5 to 0.6 kts


Thruster operation during bollard tests

Scuba air used for flow visualization

C. Goudey Challenges and Opportunities for Robotics and Automation Applied to Aquaculture, Woods Hole Jan. 11, 2016

Conventional tugboats and trawlers offer 20 to 30 pounds of thrust per horsepower. The Flygt thrusters offered 5.6 to 7.5 times that thrust ratio.

Flygt 4430 thruster vs. conventional tug

The TowDrone offers the following:

- **1.** Fuel efficient towing
- 2. Autonomous or remotely-piloted operation
- 3. Eliminates the human urgency for speed
- 4. Slow cage towing is better for cages and fish
- 5. Extended endurance
- 6. Battery powered version is feasible
- 7. Can serve as a security patrol
- 8. Zero carbon footprint using biofuels

Work to be done

- Determine off-design propeller performance
- Develop towline dynamics solutions
- Examine propeller options
- Need clockwise rotation model
- Final design, construction, sea trials

Thanks for your attention.

Questions?

Clifford A. Goudey C.A. Goudey & Associates <u>cliffgoudey@gmail.com</u>

William A. Lincoln Response Marine, Inc. wal@responsemarine.com

Joseph A. Curcio Robotic Marine Systems, LLC jacurcio@netscape.net