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A B S T R A C T

Over the past ~40 years, the distribution of silver hake on the Northeast U.S. shelf is found to be significantly
correlated with changes in the latitude of Gulf Stream path. The correlation coefficient between the fall Gulf
Stream position and the center of biomass of spring silver hake reaches 0.75 when the Gulf Stream leads the
silver hake for 6 months. Based on this lead-lag relationship and low-frequency variability of Gulf Stream
position with a dominant periodicity of ~9–10 years, the Gulf Stream position is used as a predictor for the
center of biomass of silver hake in linear autoregressive (AR) models. The goal of this study is then to optimize
the AR model for the prediction of silver hake based on the observed changes in Gulf Stream position. Fall Gulf
Stream position is first predicted out to 5 years using a 5th order AR model and the observed Gulf Stream
position in preceding years. An optimization process is proposed to choose best AR coefficients based on a newly
proposed combined skill parameter. Furthermore, the robustness of our Gulf Stream prediction is verified by
comparing the observed Gulf Stream path index data from 2009 to 2012, which are not used for optimizing the
AR model, and the predicted Gulf Stream path values for the same time period. We then use this predicted Gulf
Stream position to further predict the center of biomass of silver hake in the subsequent spring. Three different
methods are used and compared for the silver hake prediction. The predicted silver hake time series can explain
as much as 69% of the variance of the observation for the 1st year prediction and 41% for the 5th year
prediction. Our results indicate that including Gulf Stream as a predictor produces better prediction skills of
silver hake center of biomass than the AR model prediction solely based on the observed silver hake time series.

1. Introduction

Recent studies continue to reveal that the large-scale climate
variability and change can lead to a reorganization of the biology in
the ocean. For example, Nye et al. (2009) showed changes in spatial
distribution of marine fish on the Northeast U.S. continental shelf in
response to the climate change. Similar findings are reported by the
various studies in other regions of the world ocean (e.g. Dulvy et al.,
2008; Mueter and Litzow, 2008; Pinksy et al., 2013). Climate indices,
such as North Atlantic Oscillation (NAO), Atlantic Multidecadal
Oscillation (AMO) in the North Atlantic and El Niño-Southern
Oscillation (ENSO), Pacific Decadal Oscillation (PDO) in the Pacific,
represent large-scale variations of the ocean and atmosphere and have
been found to be closely tied to the variability of the distribution and
productivity of certain biological species (Mantua et al., 1997; Hatun
et al., 2009; Nye et al., 2011, 2014; Pershing et al., 2015).

In some cases, attention has been directed towards exploring
biophysical relationships driven by individual components of the

climate system, e.g. ocean western boundary currents such as Gulf
Stream. The abundance of biological and physical data in the western
North Atlantic has motivated numerous investigations of the relation-
ships between the two (Lohrenz et al., 1993; Hitchcock et al., 1993;
Anderson et al., 2000; Anderson and Robinson, 2001; Ottersen et al.,
2000; Nye et al., 2011). The open ocean frontal regions such as the Gulf
Stream have been observed to enhance the biological growth associated
with their meandering, mesoscale eddies and upwelling (Hitchcock
et al., 1993; Lohrenz et al., 1993; McGillicuddy et al., 2007). The
mesoscale processes associated with the Gulf Stream are also shown to
be important for the local biology, based on various physical-biological
modeling (Anderson et al., 2000; Anderson and Robinson, 2001;
Anderson et al., 2011).

Furthermore, the north-south shift of the Gulf Stream reflects the
large scale change in the North Atlantic and has been found to be
linked to the changes in temperature and zooplankton abundance
(Taylor and Stephens, 1980; Taylor et al., 1992; Taylor, 1996) as well
as the spatial distribution of the fish biomass (Nye et al., 2011). In
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particular, Nye et al. (2011) reported that changes in spatial distribu-
tion of silver hake, Merluccius bilinearis, a commercially important,
semi-pelagic fish prolific in Northeast U.S. shelf, over the past forty
years demonstrates a high correlation with the latitude of the Gulf
Stream path. They suggested that these changes are indirect response
to changes in the Atlantic Meridional Overturning Circulation (AMOC),
which drive shifts in bottom temperature on the outer continental shelf
(Peña-Molino and Joyce, 2008; Joyce and Zhang, 2010). The north
(south) shift of the Gulf Stream is correlated with the warming
(cooling) of the bottom temperature over the shelf of order 1 °C (Nye
et al., 2011). Meanwhile the silver hake prefers the water temperature
range of 7–10 °C (Nye et al., 2011). When Gulf Stream was in its
northern position, the bottom temperature in the southern area
increased to be warmer than 10 °C so that the silver hake moved
northward to be in the Gulf of Maine where the bottom temperature
was within the range of 7–10 °C. Note that the changes in the Gulf
Stream path are also associated with NAO (Joyce et al., 2000;
Frankignoul et al., 2001) through both wind-driven gyre adjustment
and AMOC changes (Marshall et al., 2001; Kwon et al., 2010).

Nye et al. (2011) further pointed out that the correlation between
Gulf Stream position and silver hake is characterized by a phase lag
with the Gulf Stream leading the silver hake by 0.5 or 1 year, which
implies some potential predictability of silver hake using Gulf Stream
data. The impact of the physical environment on the commercially
important fish stocks in the North Atlantic (e.g., Nye et al., 2009, 2011;
Friedland et al., 2013；Pinksy et al., 2013; Pershing et al., 2015) has
indeed motivated the prediction studies of parameters of the physical
environment. For example, Ottersen et al. (2000) developed the
prediction of the Barents Sea's temperature using a statistical analysis
method. Based on the combination of a first order autoregressive (AR)
model, local advection and large-scale air-sea interaction terms, their
1st year prediction explained 50% of the total historical temperature
variability.

Our study builds on these works and advances application of an AR
model in conjunction with Gulf Stream path record to provide a
predictive tool for Gulf Stream variability and associated biological
variability. More specifically, we examine the potential predictability of
silver hake distribution using Gulf Stream path record based on the AR
models. The AR model is a group of linear prediction formulae that
attempt to predict an output of a system based on the previous values.
In climate studies, previous works have demonstrated the utility of AR
models in simulating trends in global indicators such as sea surface
temperature anomalies in the Pacific (Reynolds, 1978) and global
atmospheric temperature (Seidel and Lanzante, 2004; Mahajan et al.,

2011). Some efforts have also demonstrated the effectiveness of AR
models in identifying and forecasting impacts of climate shifts on some
elements of the global ecosystem, such as changes of salmon produc-
tion in the Northeast Pacific Ocean (Hare and Francis, 1994) and
sediment transport rates of rivers in the United Kingdom (Augustin
et al., 2008). Unlike complicated general circulation models, the
predictability characteristics of AR models can often be derived without
the computational expense of ensemble integrations (Schneider and
Griffies, 1999). Also notable is that dynamical predictions have had
little success in this region thus far – likely due to coarse resolution of
the detailed shelf processes (Stock et al., 2015). Further motivation in
this approach is derived from the fact that an AR model is based on the
linear combination of its own previous values. This is highly suitable in
the case of the Gulf Stream, since the Gulf Stream path demonstrates
low-frequency variability in the near-decadal (7–10 years) band
(Gangopadhyay et al., 2016). Coupled with this is the existence of a
strong correlation between Gulf Stream path and silver hake time
series.

The paper is organized as follows. In Section 2.1, we first describe
the data that we will use. The basics of AR models and the criteria for
our prediction comprise Section 2.2. In Section 2.3, we detail the
methodology we developed for the application of the AR model to the
prediction of the Gulf Stream and silver hake. We report our results
based on this methodology in Section 3. Finally we discuss our results
in Section 4 and conclude in Section 5.

2. Data, model and methodology

2.1. Data

2.1.1. Gulf Stream path index data
Gulf Stream path index representing coherent north-south shift of

the current in 55°–75°W is based on the historical subsurface
temperature data at 200 m depth essentially from the World Ocean
Database (WOD2015) at the National Oceanographic Data Center
(NODC), and the detailed definition can be found in Joyce et al.
(2000, 2009) and Nye et al. (2011). The Gulf Stream path index has
four data points in each year, one in each season (Fig. 1a). Since the
variability of the center of biomass of the silver hake during spring and
fall seasons are very different (solid and dotted lines in Fig. 1b), we will
next define the spring and fall Gulf Stream path indices to examine the
relationship of the center of the biomass of the silver hake and Gulf
Stream indices during spring and fall seasons. Specifically, we define
the spring and fall Gulf Stream path indices by simply averaging the

Fig. 1. The time series of the (a) Gulf Stream path index and (b) silver hake spatial distribution: In (a), the Gulf Stream index time series is in seasonal resolution, positive values
represent northward displacement of the Gulf Stream. In (b), the distance (km) of the center of biomass of the spring and fall southern silver hake from the Cape Hatteras North Carolina
is in yearly resolution. Larger distances indicate a northward position generally.
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first two data points and last two data points of the Gulf Stream path
index in each year, respectively. The Gulf Stream data shown (Fig. 1a)
are from 1954 to 2008. The data during 1967 and 2008 are used for
prediction in this study to match the overlapping time period of the
available spring silver hake data, which will be described next. More
recent Gulf Stream path index data from 2009 to 2012 are later used as
an independent comparison to the prediction based on 1967–2008
data.

2.1.2. Silver hake data
Silver hake biomass (mean-stratified weight per tow) data are

collected by the NOAA Northeast Fisheries Science Center (NEFSC)
trawl survey on the Northeast U.S. shelf. The center of biomass is a
metric commonly used to describe the overall spatial distribution of
organisms which usually links to climate variability and climate
change. The center of biomass of the southern silver hake (simply
silver hake hereafter) used here was calculated as an overall distance
from the Cape Hatteras, North Carolina (35.3°N, 75.5°W) as described
in Nye et al. (2009) (Fig. 1b). There are two measurements in each
year: one in spring, the other in fall. The spring silver hake data were
collected from 1968 to 2008 and the fall silver hake data started 5 years
earlier, i.e., from 1963 to 2008 (Fig. 1b). More details about these data
can be found in Azarovitz (1981) and Nye et al. (2009).

2.1.3. The relationship between the Gulf Stream and Silver Hake
As detailed in later Section 3.1, the 4 pairs of cross correlations

between Gulf Stream path index and the silver hake center of biomass
in spring and fall seasons, is calculated and analyzed. Considering the
maximum correlation and corresponding lead-lag relationship, a pair
of time series is chosen for the model construction and prediction study
shown in later sections.

2.2. Model

2.2.1. AR modeling
The AR model is a group of linear prediction formulae that attempts

to predict an output Y(t) of a system based on the previous values Y(t-
1), Y(t-2)…Y(t-p) such that

Y t A Y t A Y t A Y t p n( ) = ( − 1) + ( − 2)+…+ ( − ) +p t1 2 (1)

for AR(p) model. Where A1, A2, …Ap are the coefficients of AR model;
Y(t-1), Y(t-2) … Y(t-p) are the values of the time series Y at time step t-
1, t-2, … t-p; p is the order of the AR model and nt stands for white
noise with a mean value of zero. Deriving the AR(p) prediction model
for a time series Y(t) involves determining the parameters A1, A2, …Ap
and nt in the Eq. (1). These parameters are estimated for fall Gulf
Stream and spring silver hake time series using the stepwise least
square algorithm by Neumaier and Schneider (2001). The confidence
levels of the model parameters and the adequacy of the order are also
calculated and evaluated as detailed in the following subsections and
Appendix.

2.2.2. AR model order selection
The autocorrelation function of the fall Gulf Stream path index

shows a 9-year periodicity (Fig. 2a) significant at 80% confidence level,
which suggests the AR model can be a good tool for the prediction of
the fall Gulf Stream path based on the assumption that the fall Gulf
Stream path index is stationary. The significance threshold (80%) here
is calculated following Mitchell et al. (1966), in which the serial
correlation check was recommended, i.e., when the autocorrelation
coefficients of different lag times, calculated for a time series, are
outside the threshold confidence level, the observations in this time
series can be accepted as being dependent on each other. Similarly, this
serial correlation check can be used for two time series when their
correlations are calculated. Eq. (1), which is also called the Yule-Walker
equation, can be used for the AR model of any order. However,

increasing the model order after a certain extent will result in over-
fitting of the model and does not improve the data representation
much. Increasing the AR model order also means increasing the
number of previous data points needed for the prediction.

There are various criteria for evaluating the ‘optimum’ order of
autoregressive processes, such as the Schwartz's Bayesian Criterion,
SBC (Schwartz, 1978; SAS, 1988a), the logarithm of Akaike's (1969)
Final Prediction Error and the Akaike Information Criteria (Akaike,
1974). The comparison between the SBC and other order selection
criteria was made in a simulation study by Lütkepohl (1985) and the
author concluded that by applying SBC criteria, the smallest mean-
squared prediction error of the fitted AR models was achieved on the
average and the correct model order was chosen mostly. Hence, we
choose SBC criterion for our study here. For the same length of the
time series, a smaller value of SBC indicates a better choice of the
model order. Given a lower bound and an upper bound on the model
order, the optimum order of an AR model for a given time series can be
selected according to the SBC criterion (Schneider and Neumaier,
2001). In our study, we calculated the SBC values of the AR models for
fall Gulf Stream time series from order 1–10 (Fig. 2b) and found that
SBC for order 5 has the smallest values. Therefore we choose 5th order
for the fall Gulf Stream prediction. We also assessed the adequacy of
the fitted AR5 model for representing the fall Gulf Stream time series
based on the hypothesis by Li and Mcleod (1981) and concluded that it
is sufficient since the residuals are uncorrelated.

2.3. Application of AR model to Gulf Stream and silver hake data

Based on the lead-lag relationship and the maximum correlation
between Gulf Stream and silver hake during spring and fall seasons as
detailed in later Section 3.1, we choose to use fall Gulf Stream as the
predictor of the spring silver hake. We next describe the methodology
we use for the prediction of the fall Gulf Stream path and spring silver
hake.

2.3.1. Prediction of fall Gulf Stream path using the optimized AR5
model

To use the AR model as a tool for prediction, we first fit the AR5
model to the observed fall Gulf Stream path index time series by
calculating the model coefficients A1, A2… A5 and the ranges with 95%
confidence level for each coefficient following Neumaier and Schneider
(2001). While the calculated coefficients guarantee the best prediction
skill for the first year prediction using only the observed values, the
same does not hold for the predictions beyond the 1st year when the
predicted as well as observed values are used as input. Therefore, we
need to further optimize the model coefficients A1, A2, …A5 within
their 95% confidence range for each prediction beyond the 1st year to
ensure the best prediction. We here define a “combined prediction skill
Pcombo” (as detailed in the Appendix A), through which the optimiza-
tion of AR model coefficients can be achieved as detailed in Appendix
B. Here we test the AR model from second to fifth order and compare
their optimum prediction skills for fall Gulf Stream (Fig. 3). It is clear
that for all five years of predictions, the higher the order of AR model,
the smaller the root mean square error (RMSE), the larger the skill
coefficient (ρ), the larger the percentage of the explained variance
(PEV), hence the smaller the Pcombo (where the RMSE, ρ and PEV are
defined in Appendix A). In other words, the AR5 has the best prediction
skills as expected based on SBC criterion. Note that the prediction is
made based on the detrended fall Gulf Stream first, then the trend is
added back to the predicted time series. With this best prediction of fall
Gulf Stream up to 5 years, we then predict the spring silver hake time
series based on the linear regression coefficient between observed Gulf
Stream and silver hake.

2.3.2. Prediction of spring silver hake
Three methods are used for the prediction of the silver hake, two of
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which are based on the best prediction of the fall Gulf Stream path. The
third one is based on the spring silver hake itself. In the first method,
the best predicted fall Gulf Stream (without trend) is used to predict the
spring silver hake (without trend) based on their linear regression at

the 0.5 year lag, then we add the trend of the spring silver hake back to
the predicted spring silver hake without trend. The flow diagram I
(Fig. 4a) summarizes this prediction procedure for the spring silver
hake. In the second method, we consider an additional prediction of

Fig. 2. (a) The autocorrelation function of the detrended fall Gulf Stream for 1967–2008. The auto correlation is significant at 80% level when it lies outside the dashed lines.
Significance threshold (dashed line) is calculated by considering serial correlation following Mitchell et al. (1966). (b) The Schwartz's Bayesian Criterion (SBC) values as a function of the
order of auto-regressive (AR) models for the detrended fall Gulf Stream from order 1–10.

Fig. 3. The optimized prediction skills for fall Gulf Stream prediction in each AR model for the first five years of prediction. The different colors correspond to the different AR models
(shown in legend) and different panels are for different years of prediction from first year to fifth year as indicated in the titles. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article)
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the residual time series, i.e. observed silver hake minus predicted, in an
attempt to further improve the silver hake prediction. To have a fair
comparison, AR5 is chosen for the residual prediction based on the
Pcombo criterion and we use the same methodology as that for the
prediction of fall Gulf Stream to find the best prediction of the residual
time series. Then we add this prediction of residual from year 1 to year
5 to the original prediction of the spring silver hake at each year based
on fall Gulf Stream prediction before adding back the linear trend of
silver hake. The specific procedure for this prediction is shown in the
flow diagram II (Fig. 4b). Since the observed silver hake also exhibits
some low-frequency oscillation, it would also be possible to construct
the AR prediction solely based on the observed silver hake time series.
So in the third method, we fit an AR model directly to the spring silver
hake time series (using the same optimization as that for the Gulf
Stream) to make the prediction and compare it with the prediction
based on the fall Gulf Stream. Using the same optimization method
described in Section 2.3.1 for Gulf Stream prediction, we find that AR4
and AR5 have best and comparable prediction skills based on Pcombo
for the spring silver hake. Compared to AR5, AR4 requires one less
previous value for prediction (4 vs 5), i.e., it has the advantage of
producing a prediction of the silver hake with one extra year value.
Thus the AR4 is used for the silver hake prediction here. The specific
procedure is similarly shown in the flow diagram III (Fig. 4c).

3. Results

3.1. The relationship between the Gulf Stream and silver hake

The Gulf Stream path index (normalized to have a standard
deviation of unity) and the center of biomass of silver hake have a
similar trend and variability (Fig. 1). The correlations between annual

mean Gulf Stream index and center of biomass of the spring silver hake
and fall silver hake are 0.73 and 0.61 respectively during their
overlapping time period. Generally, when Gulf Stream index is positive
and larger, i.e. Gulf Stream is in its northerly position, the distance of
the center of biomass of the silver hake from Cape Hatteras is larger,
i.e. the center of biomass of the silver hake is more northerly. This
relationship between the Gulf Stream path and the silver hake
distribution can be seen clearly by comparing the time periods when
Gulf Stream was in its most northern (represented by the years when
Gulf Stream index was greater than 0.7, Fig. 5) and southern positions
(represented by the years when Gulf Stream index was smaller than
−0.7, Fig. 5). The center of biomass of the spring silver hake shown in
Fig. 5 includes effects of both the long-term trend and the interannual-
to-decadal variability. Here we use the southern spring silver hake as
an example since the spring silver hake is the main subject of the study
as detailed next in this section. Gulf Stream path index values of
± 0.7 are chosen as the thresholds to represent the time periods of the
most northern (large peaks in Fig. 1a corresponding to Gulf Stream
path index > 0.7) and southern positions (large troughs in Fig. 1a
corresponding to Gulf Stream path index < −0.7) to illustrate clearly
the relationship of the Gulf Stream position and the center of biomass
of the spring silver hake. However, the result is not sensitive to the
exact threshold values. Note that the southern spring silver hake area
extends from southern Georges Banks to Cape Hatteras along the
Northeast U.S. shelf. The large spring silver hake biomass was
concentrated in the Gulf of Maine and northern Mid-Atlantic Bight
when Gulf Stream was in its northerly positions (Fig. 5a) and the large
concentration of spring silver hake was mainly along the outer shelf of
southern Mid-Atlantic Bight when Gulf Stream was in its southerly
position (Fig. 5b).

To examine the relationship between Gulf Stream and silver hake in

Fig. 4. The flow diagrams for illustrating the procedure of spring silver hake prediction using three different methods. (a) Flow diagram I: the procedure for predicting spring silver hake
based on optimum Gulf Stream prediction using AR5; (b) Flow diagram II: the procedure for predicting spring silver hake based on the optimum Gulf Stream and ‘residual’ predictions
both using AR5; (c) Flow diagram III: the procedure for predicting spring silver hake based on optimum silver hake prediction using AR4.
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spring and fall seasons, the correlation between the Gulf Stream and
silver hake is calculated based on the four pairs of fall and spring time
series (Fig. 6). The maximum correlation coefficients (Fig. 6 and
Table 1), from high to low, are 0.75 between fall Gulf Stream and
following spring silver hake with 0.5 year lag (Gulf Stream leads the
silver hake), 0.74 between spring Gulf Stream and spring silver hake
without any lag, 0.71 between fall Gulf Stream and fall silver hake with
1 year lag (Gulf Stream leads the silver hake) and 0.69 between spring
Gulf Stream and fall silver hake with 0.5 year lag (Gulf Stream leads the
silver hake). After the linear trends are removed, their correlations
become lower, ranging from 0.44 to 0.61 (dotted lines with plus signs
in Fig. 6). All the above coefficients are statistically significant at 95%
confidence level (solid and dashed lines without plus signs in Fig. 6)

regardless of the trend removal. Three out of four correlations
mentioned above show that Gulf Stream variability leads the silver
hake variability: fall Gulf Stream leading the following spring silver
hake by 0.5 year (Fig. 6a), spring Gulf Stream leading fall silver hake by
0.5 year (Fig. 6b), and the fall Gulf Stream leading the fall silver hake
by 1 year (Fig. 6c). Note that the removal of the linear trend does not
affect the lead-lag relationship.

Considering the maximum correlation coefficient (i.e., 0.75) be-
tween the fall Gulf Stream and the spring silver hake and that the fall
Gulf Stream leads the spring silver hake 0.5 year (Table 1), we choose
to use fall Gulf Stream and spring silver hake for the prediction study
here. The fact that fall Gulf Stream leads the following spring silver
hake for 0.5 year (i.e., the high correlation corresponding to the offset

Fig. 5. The spatial distribution of the spring silver hake biomass (in color dots, unit: log weight (kg) per tow). (a) when Gulf Stream was in its northerly position and (b) when Gulf
Stream was in its southerly position. The northerly (southerly) position years here are defined as the years when Gulf Stream path index is greater (smaller) than 0.7 (−0.7). The location
of the Cape Hatteras is marked by black rectangle. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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of 0.5 year between fall Gulf Stream and the coming spring silver hake)
enhances the use of fall Gulf Stream as a predictor.

3.2. Prediction of fall Gulf Stream path using the optimized AR5
model

Based on the optimum set of AR5 coefficients corresponding to the
smallest positive Pcombo, the first 5 years prediction of fall Gulf Stream
is shown together with the observed fall Gulf Stream time series
(Fig. 7). The 1st year prediction is solely based on the previous 5 years
of observation (Fig. 7a). The predicted Gulf Stream time series
reproduce not only the low frequency (~9 years) variations of the
Gulf Stream but also the higher frequency (~2–5 years) variability,
such as the double positive peaks around 1977, 1986, 1994 and 2002.
The correlation coefficient is as high as 0.83 between the predicted and
observed fall Gulf Stream time series for the overlapping period, 1973–
2008. The 2nd year prediction, which uses four previous observations
and one prediction from the 1st year prediction, still exhibits the low
frequency features but with little indications of the higher frequency
signals (Fig. 7b). The correlation coefficient for the 2nd year prediction
is a 0.56, which shows a significant decrease compared to the 1st year
prediction. Similarly, the 3rd, 4th and 5th year results predict the low
frequency well but not the high frequency features of the observed Gulf

Stream with similar correlation coefficients between the predicted and
observed fall Gulf Stream index (Fig. 7c, d and e). As mentioned earlier,
for the 2nd year to 5th year prediction, the prediction is based on the
combination of the observed and predicted values for previous years,
which may explain the noticeable decrease in the correlation coefficient
compared to that of the 1st year prediction.

3.3. Prediction of spring silver hake

3.3.1. Prediction of spring silver hake based on optimum Gulf Stream
prediction

Given the observed strong correlation between the fall Gulf Stream
and spring silver hake with 0.5 year lag (Table 1), we use the optimum
fall Gulf Stream prediction from the Section 3.2 to predict the spring
silver hake (i.e., using the first method described in Section 2.3.2 and
the flow diagram I in Fig. 4a). The 1.5, 2.5, 3.5 and 4.5 year prediction
of silver hake (Fig. 8b-e) are resulting from the 1st, 2nd, 3rd and 4th
year prediction of Gulf Stream, respectively, according to the 0.5 year
lag between Gulf Stream and silver hake. Note that the 0.5 year
prediction of spring silver hake is achieved solely based on the observed
fall Gulf Stream using the maximum detrended regression between the
observed fall Gulf Stream and spring silver hake at 0.5 year lag
(Fig. 8a). To be brief, we hereafter call the 0.5, 1.5, 2.5, 3.5 and 4.5
year prediction of silver hake as the 1st, 2nd, 3rd, 4th and 5th
prediction of silver hake (Fig. 8a-e). The correlation between predicted
(for the 1st year prediction) and observed spring silver hake is 0.81
(Fig. 8a), comparable to the 1st year prediction of fall Gulf Stream
index based on AR5 (Fig. 7a). Note that this correlation coefficient of
0.81 is larger than the observed correlation between fall Gulf Stream
and spring silver hake as shown in Fig. 6a and Table 1, which is not
contradictory, since here the predicted spring silver hake has the same
trend as that of the observed spring silver hake. Correlation without the
trends between the predicted and observed spring silver hake is 0.60
(Table 2), which is identical to the observed correlation (Fig. 6a and
Table 1). This indicates the advantage of the detrending for the
prediction, which optimizes the prediction of the detrended time series
as the first step instead of focusing on predicting both the linear trend
and the detrended data. Based on the fall Gulf Stream prediction, the

Fig. 6. The cross correlations between Gulf Stream and silver hake. (a) the fall Gulf Stream and spring silver hake (b) the spring Gulf Stream and fall silver hake (c) the fall Gulf Stream
and fall silver hake and (d) the spring Gulf Stream and spring silver hake. The solid (dotted) lines with plus signs are cross correlations between the observed data with (without) their
trends. The solid (dotted) lines without plus signs mark the significance at 95% level for the correlations with (without) trends, respectively. Significance threshold is calculated by
considering serial correlation following Mitchell et al. (1966).

Table 1
The maximum cross correlations and corresponding time lags between Gulf Stream and
silver hake time series.

Gulf Stream & Silver hake
Correlation (r)

With
trend

Without trend Years led by Gulf
Stream

Fall Gulf Stream vs. 0.75 0.60 0.5 year
following Spring silver hake
Spring Gulf Stream vs. 0.74 0.61 0 year
Spring silver hake
Fall Gulf Stream vs. 0.71 0.49 1 year
Fall silver hake
Spring Gulf Stream vs. 0.69 0.44 0.5 year
Fall silver hake
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predicted spring silver hake has a correlation coefficient as high as 0.67
for the 2nd year prediction and around 0.6 for predictions during the
3rd, 4th and 5th year (Fig. 8b-e).

3.3.2. Improving the spring silver hake prediction by considering the
residual prediction

Though based on observed fall Gulf Stream alone the correlation
coefficient between the predicted and observed time series of spring
silver hake is as high as 0.81, there remains ~36% variance, which is
not explained by the predicted time series. The residual here (Fig. 9f) is
simply the difference between the observed and the predicted spring
silver hake for the 1st year, which is based on the linear regression
between the observed fall Gulf Stream and spring silver hake (i.e., the
difference between the time series plotted in bar and line in Fig. 8a). By
adding the prediction of the residual (i.e., using the second method
detailed in Section 2.3.2 and the flow diagram II in Fig. 4b), the
predicted spring silver hake improved slightly for all five years of
prediction (Fig. 9 and Table 2), the correlation coefficients range from
0.62 to 0.83. The largest improvement is for the 4th year prediction as
the correlation coefficient between the predicted and observed values
increased from 0.59 to 0.66 (Fig. 8d vs. 9d). The predicted time series
with residual prediction exhibits higher frequency variations than that
without residual prediction, which is especially clear for the 3rd, 4th
and 5th year predictions.

3.3.3. The prediction of spring silver hake based on the observed
silver hake only

In this section, we use the third method described in Section 2.3.2
and optimized the AR models by fitting directly to the spring silver
hake data. The prediction using the spring silver hake itself and the
optimized AR model shows that the skill correlation for the 1st year is
0.68, a significant drop compared to the previous two methods with

r=0.83 and 0.81, using fall Gulf Stream (Fig. 8a, 9a, vs. Fig. 10a). The
2nd year prediction is not either as good as the other two methods, i.e.
r=0.64 comparing to 0.67 and 0.70 (Figs. 8b, 9b and 10b). For the 3rd
year and longer predictions, the all three methods produce comparable
prediction skills (Figs. 8c-e, 9c-e and 10c-e).

In Table 2, we summarized the prediction of the spring silver hake
using the three methods that we described in the Section 2.3.2. In
addition to what is shown in Figs. 8, 9 and 10, the skill correlations
between the detrended prediction and the observation are also
included.

4. Discussion

Based on our prediction, the Gulf Stream path will shift toward its
northerly position after 2010 (Fig. 7) and the center of biomass of
southern silver hake will migrate northward as well (Figs. 8–10).
Though the most recent silver hake data calculated in a consistent
fashion are not available for a comparison with our prediction, the
prediction of the Gulf Stream is in agreement with the recent
observations (unfilled bars in Fig. 7), a validation of our prediction
for the Gulf Stream path. This recent northward shift of the Gulf
Stream has also been reported in other observational studies
(Gawarkiewicz et al., 2012; Pérez-Hernández and Joyce, 2014).
Based on an AR model, Mahajan et al. (2011) predicted a weakening
trend of AMOC over the time period between 2010 and 2015, which
also supports the AR model prediction of a northerly position of the
Gulf Stream path. As discussed earlier, it is mainly the changes of
bottom temperature on the Northeast U.S. Shelf corresponding to the
Gulf Stream shifts that alters the shift of the silver hake center of
biomass, as the northward shift of the Gulf Stream indicates a warming
of the bottom temperature. In other regions, this relation between the
bottom temperature and fish abundance has also been documented, for

Fig. 7. The prediction of the fall Gulf Stream index based on the optimized AR5 model for the (a) 1st year, (b) 2nd year, (c) 3rd year, (d) 4th year and (e) 5th year prediction,
respectively. The observed fall Gulf Stream position index is represented by red (positive values) and green (negative values) bars. The filled bars are the observed Gulf Stream fall
position index from 1968 to 2008 that are used for the prediction. Further, more recent (2009–2012) observed Gulf Stream fall position index is also plotted (open bars) for independent
comparison with prediction. The correlation coefficients (r) between the observation and the prediction are shown on the upper left corner of each panel. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article)
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example, the northward shift of the North Sea bottom-dwelling fishes
in response to the warming of the European shelf bottom water is
reported by Dulvy et al. (2008) and their study further suggests that the
latitude indicator may be more suitable for the north-south oriented
shelf seas like the Northeast U.S. coastal region.

Our approach for the silver hake prediction could be expanded for
predictions of the other fish specifies on the Northeast U.S. shelf, which
have been shown to exhibit significant correlations with the changes in
the Gulf Stream path. Lucey and Nye (2010) reported that practically
the entire fish and macroinvertebrate assemblage respond to changes
in water mass properties as indicated by the Gulf Stream path index
even when taking into account the impacts of fishing. The effectiveness

of this approach may be sensitive to multiple factors, including the
preferred depth range of each species. For example, this approach may
work better for the bottom dwellers, such as the silver hake (Nye et al.,
2011) or cod (Pershing et al., 2015), considering the link through the
preferred temperature range of the adult fish as emphasized already. In
addition to this physiological aspect of the adult fish which controls the
upper trophic level distribution, there could also be a link between the
Gulf Stream path changes and the fish distribution through the changes
in the nutrient regimes (Greene et al., 2013), which may impact the
lower trophic levels. For example, Saba et al. (2015) suggest that the
Gulf Stream index is associated with phytoplankton biomass on the
shelf break, slope, and specific coastal regions of the Mid-Atlantic

Fig. 8. The prediction of the center of biomass of the spring silver hake (black lines with dots) based on the fall Gulf Stream prediction. Note that in (a) the 1st year prediction of spring
silver hake is based on the observed fall Gulf Stream and the observed detrended linear regression between fall Gulf Stream and spring silver hake, as explained in Section 3.3.1. In (b),
(c), (d) and (e), the predictions are based on the corresponding Gulf Stream prediction shown in the Fig. 7a-d, but without the trend. The observed spring silver hake is represented by
magenta (positive values) and blue (negative values) bars. The correlation coefficients (r) between the observation and the prediction are shown on the upper left corners of each panel.
The prediction procedure is summarized in the flow diagram I in Fig. 4a. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article)

Table 2
Summary of the correlation coefficients between the observed and predicted time series of spring silver hake based on three main methods as shown in Figs. 8, 9 and 10.

Correlation between Prediction & Observation Based on Gulf Stream prediction (AR5) Based on Gulf Stream prediction (AR5) Based on silver hake prediction (AR4)
(after/before adding back hake trend) + silver hake residual prediction (AR5) (after/before adding back hake trend)
As shown in Fig. 4a, and Fig. 8 (after/before adding back hake trend) As shown in Fig. 4c, and Fig. 10

As shown in Fig. 4b, and Fig. 9

1st year prediction 0.81/0.60 0.83/0.64 0.68/0.45
2nd year prediction 0.67/0.45 0.70/0.53 0.64/0.39
3rd year prediction 0.58/0.25 0.62/0.53 0.62/0.37
4th year prediction 0.59/0.25 0.66/0.33 0.64/0.36
5th year prediction 0.62/0.21 0.64/0.36 0.64/0.25
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Bight.
The strong relationship between the Gulf Stream and fish species on

the Northeast U.S. Shelf has been recognized as a critical information
for the fisheries management (e.g. Ecosystem Assessment Program,
2012). Furthermore, there have been attempts to incorporate the Gulf
Stream index into the stock assessment model used by the fisheries
managers, e.g. Nye et al. (2010) for the silver hake and Xu et al. (2017)
for yellowtail flounder. In addition to these efforts to incorporate the
past and current Gulf Stream index values, our approach opens up an
intriguing new possibility for using future predicted values of the Gulf
Stream index in the fisheries management models. For the operational
use of our approach, a further research should be conducted to better
understand the uncertainty and to make the best choices of data source
and parameters for the operational purpose. In this study, we have
assumed the Gulf Stream index and its relationship with silver hake to
be stationary when optimizing the AR models, which is a reasonable
assumption given the limited record lengths of the observations.
However, climate variability is often suggested to be nonstationary.
For example, Li et al. (2014) hinted a nonstationary relationship
between the basin-scale North Atlantic Oscillation and interannual
variability of the alongshore wind in Gulf of Maine and Nova Scotian
Shelf. Another aspect to consider is the sensitivity to the choice of the
index. In our study, we used the Gulf Stream index based on the
subsurface temperature at 200 m, while there are other Gulf Stream
indices used in various studies based on the SST (Taylor, 1996) or sea-
surface height (Peña-Molino and Joyce, 2008; Pérez-Hernández and
Joyce, 2014). It should be verified whether the findings in this study are

equally applicable to these other Gulf Stream indices. Furthermore, it
should be determined which index would work best for the operational
purpose.

The complexity of the coastal environment has made it one of the
most challenging aspects for the general circulation model-based
dynamical prediction effort in seasonal-to-interannual and decadal
time scales as well as the long-term climate change projections. This
nature is due to the complex interactions among the deep and shallow
ocean, atmosphere, river run-off, and topography in the coastal
environment (e.g. Stock et al., 2015). A recent study by Saba et al.
(2015) implied that high-resolution general circulation models could
improve the prediction and climate projection of the coastal environ-
ment. Assuming that the large-scale variability could potentially be
more reliably predicted and projected by the general circulation
models, an alternative (perhaps more cost effective) approach could
be based on statistical relationship between the large-scale variability
and the coastal environment. A good example is the Northeast U.S.
Shelf bottom temperature (using Gulf Stream as a proxy) and silver
hake relationship shown in this study and Nye et al. (2011). Besides the
Gulf Stream path, a few other large-scale indices of variability have
been shown to be highly correlated with the Northeast U.S. Shelf
environment. For example, Xu et al. (2015) showed that the SST
associated with the North Atlantic Oscillation propagates from
Labrador Shelf to Gulf of Maine over 4 years. Pershing et al. (2015)
reported the Pacific Decadal Oscillation to be highly correlated with the
summer SST in the Gulf of Maine, although the dynamical link is yet to
be understood. Therefore, a better understanding of the dynamical link

Fig. 9. (a)-(e) are similar to that shown in Fig. 8 except the prediction of the spring silver hake is based on the fall Gulf Stream prediction plus the residual silver hake prediction as
described in Section 3.3.2. (f) Residual (red line with plus signs) is the difference between observed and the 1st year prediction of spring silver hake. The prediction procedure shown in
(a)-(e) is summarized in flow diagram II in Fig. 4b. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article)
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between the large-scale variability and the coastal environment com-
bined with an improved understanding on the predictable components
of the large-scale variability could lead to a significant improvement in
the prediction and projection of coastal environment including the
Northeast U.S. Shelf in various time scales.

5. Conclusion

During the past 50+ years, the Gulf Stream variability has shown a
dominant frequency of ~9 years. The variability of the Gulf Stream is
closely related to the change of the bottom temperature on the outer
continental shelf (Nye et al., 2011) and the center of biomass of the
silver hake are modulated consequently since the silver hake prefers
the water temperature range of 7–10 °C (Nye et al., 2011). This
physical link between the Gulf Stream and the silver hake time series
is reflected quantitatively in the high correlations between them when
the Gulf Stream leads, with or without their trends. Based on this, the
fall Gulf Stream path time series is chosen as a predictor of the spring
silver hake for the future 5 years using linear AR models. The number
of years of prediction (i.e., 5 years) is chosen based on the decadal
oscillation of the Gulf Stream and the fishery resource management
time scales of 5–10 years (Nye et al., 2013). It is found that the
correlation between the prediction of the Gulf Stream and the
observation using AR5 can be as high as 0.83 for the 1st year and
around 0.6 for the 2nd to 5th year. The high correlation (prediction
skill) for the 1st year can be detected in the high frequency variations
(double peaks with 2–3 year frequency) in the predicted time series,

which are not present in predictions beyond the 1st year. The inclusion
of the predicted value in the predictions beyond the 1st year may be the
cause that the 2–3 year high-frequency variability is not adequately
captured in the extended forecasts.

We then made the prediction of the spring silver hake based on the
fall Gulf Stream prediction through the observed linear relationship
between the fall Gulf Stream and spring silver hake. Two other methods
of the prediction of spring silver hake are also performed. One is by
adding the prediction of the ‘residual’ also using AR5 model to the
predicted silver hake based on Gulf Stream, and the other is the
prediction based on silver hake itself using the AR4 model. As shown in
our study, it is clear that the predictions incorporating the strong
environmental variability, i.e., the bottom temperature changes re-
flected by Gulf Stream path shifts, are better than using the statistical
information from the silver hake data alone. Although there are many
biological and anthropogenic factors that can contribute to the
variability of silver hake, which are beyond the scope of this study,
by considering the impact of physical environment represented by Gulf
Stream alone and using a simple optimized AR model, the 1st year
prediction of silver hake can explain as much as ~ 69% of the observed
variance (i.e., r ≈0.692 in Fig. 8a) of silver hake. The result suggests the
dominant role of the physical environment in the silver hake variability
and the effectiveness of the AR model for this type of study.

Silver hake acts as both prey and predator for many other species
and it is thought to play the principal predatory role in the fish
communities of the continental shelf in the Northwest Atlantic (Helser
et al., 1995). Therefore, it is an important component of the continental

Fig. 10. The prediction of the spring silver hake (the black lines with dots) based on the optimized AR4 model for the silver hake data (a) 1st year, (b) 2nd year, (c) 3rd year, (d) 4th year
and (e) 5th year prediction as described in Section 3.3.3. The observed spring silver hake is represented by magenta (positive values) and blue (negative values) bars. The correlation
coefficients (r) between the observation and the prediction are shown on the upper left corners of each panel. The prediction procedure is also summarized in flow diagram III in Fig. 4c.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article)
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shelf marine ecosystems on the Northeast U.S. coast. The shift of the
silver hake biomass, the associated food chain alteration, the fishing
behavior and fishery management will all continue to change in
response to climate forcing; our specific focus here is that aspect of
climate change which is tied to shifts in the latitude of the separated
Gulf Stream. The successful prediction of biological production and
distribution is critical for the fishery management and planning. Our
study here provides a simple, statistically-based prediction of the
physical parameter (Gulf Stream path) and biological spatial distribu-
tion (silver hake center of biomass), thus our results offer a valuable
reference for current efforts in the prediction of biological variability
based on climate indices using more complex models.
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Appendix A. Combined prediction skill

To seek the best set of AR model coefficients for fall Gulf Stream path prediction, we calculate the following three prediction skills, i.e. root mean
square error (RMSE), skill coefficient (ρ) and percentage of explained variance (PEV) between the predicted time series and the observed time series
of fall Gulf Stream and the spring silver hake.

Specifically, the RMSE,ρ and PEV are defined as the following:

∑RMSE = 1
n

(Y − Y )
i=1

n
i p,i

2
(A.1)

ρ =
Cov(Y,Y )

Var(Y)Var(Y )
p

p (A.2)

PEV =
Var(Y)−Var(Y −Y)

Var(Y)
p

(A.3)

where, Y and Yp are observed and predicted values, respectively, and n is the number of time steps. Var(Y)is the variance of time series, Cov(Y,Y )p is
the covariance between Y and Yp. The skill coefficient (ρ) is also often referred to as Brier skill score (von Storch and Zwiers, 2002).

A better prediction corresponds to a smaller RMSE, larger ρ and larger PEV. A certain set of AR parameters corresponds to a certain
combination of three prediction skills. We combine the above three skills and define a new combined prediction skill as

P RMSE ρ PEV= /( + )combo (A.4)

thus the smaller and positive Pcombo indicates a better prediction. The combined prediction skill Pcombo is then introduced and used in this work
to determine the optimal set of the AR model coefficients for each prediction beyond the 1st year, which produces the minimum combined
prediction skill. Pcombo is a more robust criterion than using any one of the three skill measures, i.e., RMSE, ρ and PEV as they occasionally do not
have their optimum values simultaneously. We have checked the cases when this occurs and it appears that the Pcombo criterion is robust in
choosing the optimum AR parameters.

Appendix B. Optimization of AR model coefficients

We demonstrate the optimization process using an AR5 model as an example. At each yearly time step t of the Gulf Stream time series, we make
a prediction using AR5 model parameters (A1, A2, A3, A4, A5, nt) based on observed values at previous two time steps t-5, t-4,t-3, t-2 and t-1 for
AR5; we call it the 1st year prediction for our yearly Gulf Stream data. The combined prediction skill Pcombo is then assessed by comparing the
original time series and the time series of the 1st year prediction. Subsequently, the observed values at time steps t-4, t-3, t-2, t-1 and the 1st year
prediction are used with the AR5 to make the 2nd year prediction. In this way, we make the five prediction time series based on the 1–5 year
prediction at each time step using AR5, and calculate the Pcombo between these five predicted time series and the actual observed time series of fall
Gulf Stream.

As described in earlier, for AR model with order p, AR coefficients A1, A2, …, Ap are determined using the stepwise least square algorithm with
an uncertainty range at 95% confidence level for each parameter (Neumaier and Schneider, 2001). Therefore, these AR coefficients can vary within
the range at 95% confidence level as shown in the case of AR5 (Fig. A1), and the predictions and their skills also vary when the AR coefficients vary
within this. To achieve the goal of finding the best prediction, we allow the AR coefficients Ai (i=1, 2 …p) vary within the uncertainty range and
calculate the corresponding prediction skills. Specifically, our procedure subsamples the 5 estimates for each coefficient distributed equally across
their respective error range. As a result, there are 5p different sets of possible AR coefficients. We then calculate the prediction skills of the
predictions based on 5p sets of AR parameters and in the end, select the set of AR parameters producing the smallest Pcombo. We have tested the
sensitivity of the prediction skills to the choice of the number of different values by allowing the AR parameters have 7 and 9 different values within
its range of 95% confidence level. The results indicate that choosing 5 different values is sufficient for our predictions. Note that we find the optimal
AR coefficients independently for the predictions with different lead times, i.e. 1st year prediction, 2nd year prediction, etc.

There is one common feature of different order AR models, i.e., the optimal parameters Ai are the same as the default set of Ai for the 1st year
prediction, since the default set of Ai is determined with only the observed values, which should be optimal for the year-1 prediction. For later years
of predictions, it is not the case, e.g., the optimum choices of AR5 parameters are different for year 1 to year 5 predictions of fall Gulf Stream (Fig.
A1). Thus, we use the Pcombo criteria to search for the optimal choice of Ai.
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