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ABSTRACT
We investigated the oceanic crustal structure and lithospheric dynamics of the South China Sea
(SCS) basin through a comprehensive analysis of residual gravity anomaly and bathymetry
combined with seismic constraints and interpretation from geodynamic modelling. We first
calculated the residual mantle Bouguer anomaly (RMBA) of the oceanic crustal regions of the
SCS by removing from free-air gravity anomaly the predicted gravitational attractions of water-
sediment, sediment-crust, and crust-mantle interfaces, as well as the effects of lithospheric plate
cooling, using the latest crustal age constraints including IODP Expedition 349 and recent deep-
tow magnetic surveys. We then calculated models of the gravity-derived crustal thickness and
calibrated them using the available seismic refraction profiles of the SCS. The gravity-derived
crustal thickness models correlate positively with seismically determined crustal thickness values.
Our analysis revealed that the isochron-averaged RMBA are consistently more negative over the
northern flank of the SCS basin than the southern conjugate for magnetic anomaly chrons C8n
(~25.18 Ma) to C5Dn (~17.38 Ma), implying warmer mantle and/or thicker crust over much of the
northern flank. Computational geodynamic modelling yielded the following interpretations: (1)
Models of asymmetric and variable spreading rates based on the relatively high-resolution deep-
tow magnetic analysis would predict alternating thicker and thinner crust at the northern flank
than the southern conjugate, which is inconsistent with the observed systematically thicker crust
on the northern flank. (2) Models of episodic southward ridge jumps could reproduce the
observed N-S asymmetry, but only for crustal age of 23.6–20 Ma. (3) Southward migration of
the SCS ridge axis would predict slightly thinner crust at the northern flank, which is inconsistent
with the observations. (4) Models of higher mantle temperatures of up to 25–50°C or >2% less
depleted mantle sources on the northern flank could produce large enough anomalies to explain
the observed N-S asymmetries.
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1. Introduction

The South China Sea (SCS) is located at the junction of
the Eurasian, Philippine, and Indo-Australian plates and
is one of the largest marginal seas in the west Pacific
(Figure 1(a)). Despite its relatively short history of evolu-
tion, the SCS has experienced almost a complete Wilson
cycle (Wilson 1966) from continental rifting and
breakup to seafloor spreading, and then to subduction.
The specific geological setting and unique evolutionary
history make the SCS an ideal natural laboratory for
investigating a variety of important scientific problems.

The SCS can be roughly divided into the northern
continental margin, the southern continental margin,
and the oceanic basin. It is generally accepted that
the oceanic crust in the SCS basin was formed by sea-
floor spreading during the late Oligocene to mid-

Miocene (Taylor and Hayes 1980, 1983; Briais et al.
1993; Li et al. 2015). Extensive geological and geophy-
sical surveys have been carried out over the SCS, includ-
ing the crustal and shallow mantle seismic surveys (e.g.
Qiu et al. 2001; Yan et al. 2001; Hayes and Nissen 2005;
Wang et al. 2006; Zhao et al. 2010; Ding et al. 2016).
Based on analysis of magnetic anomaly data, Taylor and
Hayes (1980, 1983) proposed that seafloor spreading in
the East Sub-basin took place during 32–17 Ma, and this
was modified to 30–16 Ma according to the timescales
of Gradstein et al. (1993) and Cande and Kent (1995).
Briais et al. (1993) suggested that seafloor spreading
began at ~30 Ma in the Northwest and East Sub-basins,
and then propagated into the Southwest Sub-basin
after ~23.6 Ma (Ding and Li 2016), accompanied by a
southward ridge jump (Xu et al. 2011). Based on the
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ocean drilling results of IODP Expedition 349 (Koppers
2014; Li et al. 2015), as well as the deep-tow magnetic
anomaly data (Li et al. 2014), the opening and cessation
ages of the SCS are ~33 and ~15 Ma for the East Sub-
basin, respectively. For the Southwest Sub-basin, the
opening and cessation ages are about ~23 and
16–17 Ma (Li et al. 2015), respectively. These new results
provided critical constraints on the opening scenario of
the SCS. Seismic surveys of the SCS, however, are still
limited only to a few relatively small patches within the
vast SCS sub-basins. Earlier studies have investigated
the basin-scale variations in the crustal structure of
the SCS (e.g. Ludwig et al. 1979; Taylor and Hayes
1983; Liu et al. 1985; Chen and Lei 1987; Trung et al.
2004; Braitenberg et al. 2006; Li et al. 2012). There is a
need to re-examine this basin-scale variability using the
most updated information and to advance understand-
ing of the mantle geodynamic processes.

The SCS spreading process showed important north-
south asymmetries: (1) While various studies have calcu-
lated somewhat different models of the SCS spreading

rates (e.g. Li and Song 2012; Song and Li 2012), the most
updated model based on the relatively high-resolution
deep-tow magnetic surveys revealed that relative to the
southern conjugate, the northern flank was associated
with faster spreading rates during ~33–25 Ma, slower
rates during ~25–22 Ma, and similar rates at ~22–15 Ma
(Li et al. 2014). (2) At the SCS East Sub-basin, the ridge axis
jumped southward at about 23.8 Ma (Briais et al. 1993; Xu
et al. 2011; Li et al. 2015). (3) Relative to the Eurasian plate,
the SCS ridge axis migrated southward during the entire
spreading period of 33–15 Ma (Li et al. 2015). (4)
Distribution of seamounts is asymmetric in the SCS, with
most seamounts located in the northern sub-basins
(Wang et al. 2009). (5) It was proposed that the Hainan
mantle plume might have affected the mantle beneath
the northern SCS (Flower et al. 1992; Yan 2007; Yan et al.
2008, 2015; Xu et al. 2012; Huang et al. 2016; Wei et al.,
2016; Xia et al. 2016). However, the detailed specific
effects of the Hainan plume on the crustal structure and
upper mantle temperature and compositions are still little
known.

Figure 1. (a) Tectonic framework of the South China Sea (SCS). (b) Bathymetry (Smith and Sandwell 1997). Black lines mark the
isochrones of the SCS basin (Briais et al. 1993). Red dots mark the sites of IODP Expedition 349. Double white dashed line marks the
locations of fossile ridges. (c) Satellite-derived free air anomaly (FAA, Sandwell et al. 2014). (d) Sediment thickness (Divins 2003;
Yang. et al. 2015). (e) Oceanic crustal age (Müller et al. 2008). (f) Calculated mantle Bouguer anomaly (MBA). The MBA was
calculated by subtracting from FAA the predicted gravity effects of the water-sediment, sediment-crust, and crust-mantle interfaces
for a reference crustal thickness of 5.5 km. Densities of water, crust, and mantle were assumed to be 1.03, 2.7, and 3.3 × 103 kg/m3,
respectively. The sediment was divided into six sub-layers of increasing density with depth (Wang et al).
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In this study, we used the most updated bathymetry,
ship-borne and satellite-derived gravity, sediment thick-
ness, and crustal age to calculate the gravity-derived and
seismically calibrated oceanic crustal thickness distribution
through the entire SCS ocean basin, and thereby investi-
gate the characteristics of the SCS melt anomalies and
mantle dynamics. We further conducted a series of geo-
dynamic models to quantify the potential contributions to
the observed north-south asymmetry in gravity and crus-
tal structure considering the physical mechanisms of (1)
N-S asymmetric and variable spreading rates; (2) south-
ward ridge jump, (3) southward ridge migration, (4) asym-
metry in mantle temperature, and (5) asymmetry in the
mantle sources with varying degree of mantle depletion.

2. Data analysis

2.1 Data

Four primary datasets were used in the calculation of
this study: Seafloor bathymetry (Figure 1(b)), shipboard
and satellite-derived free-air gravity (Figure 1(c)), sedi-
ment thickness (Figure 1(d)), and crustal age based on
magnetic anomaly (Figure 1(e)).

2.1.1. Bathymetry
The bathymetric data used in this study were extracted as
1-minute grid (Figure 1(b)) from the Global Topography
dataset (V17.1; Smith and Sandwell 1997, http://topex.ucsd.
edu/WWW_html/mar_topo.html), which is a combination
of ship track measurements and satellite altimetry-derived
topography. Much of the shipboard bathymetry measure-
ments were already incorporated in the global bathymetry
dataset, as confirmed by the general good agreement in
bathymetry along individual profiles (Figure 5).

2.1.2. Free-air gravity anomaly (FAA)
The FAA data were derived from global dataset that com-
bined CryoSat-2 and Jason-1 satellite-derived FAA with
shipboard measurements (Figure 1(c), V26.1; Sandwell
et al. 2014, http://topex.ucsd.edu/marine_grav/mar_grav.
html) in 1-minute grid. Neumann et al. (1993) and Marks
(1996) have shown that the satellite-derived free-air
anomalies are consistent with shipboard measurements
for wavelengths longer than 25–30 km.

2.1.3. Sediment thickness
The sediment thickness data (Figure 1(d)) were extracted
from the 5-minute global database of Divins (2003) and
supplemented by the data of Yang. et al. (2015), and were
used to correct for gravitational and loading effects of

sediments. The sediment thickness data used are in gen-
eral agreement with local surveys, although differences in
details do exist (Figure 5(a)), which may introduce some
uncertainties in the calculated gravity anomalies.

2.1.4. Crustal age
The crustal age data in a 6-minute grid (Figure 1(e))
were extracted from the global datasets of Müller et al.
(2008) and complemented by more detailed studies
(e.g. Li et al. 2015). The Müller et al. (2008) dataset has
already compiled and merged the best available mag-
netic anomalies. For much of this study, we analysed
anomalies along individual magnetic isochrons (e.g.
Briais et al. 1993; Li et al. 2015; Figure 1.)

2.2 Thermal corrections

The gravitational effects of lithospheric cooling, i.e. the
thermal corrections (Figure 2), were calculated from a 3D
thermal model. The 3D thermal model extends vertically
from 0 to 100 km depth, assuming vertical heat transfer
(Turcotte and Schubert 2002) in a plate with age given by
Müller et al. (2008). Temperatures were set to be Ts = 0 °C
at the surface and Tp = 1350°C at 100 km depth. This
thermal structure was then converted into a 3D density
grid, Δρ = ρ0α(T0 – T), where T0 and ρ0 are the reference
temperature and density, respectively, and α is the ther-
mal expansion coefficient. T0 = 1350°C, α = 3 × 10–5°C−1,
and ρ0 = 3.3 × 103 kg/m3 were used in the calculation.

As lithospheric age increases, the temperature
versus depth profile change according to the 1D
plate cooling model (Turcotte and Schubert 2002).
However, when the lithosphere is old enough (e.g.
with an age greater than ~100 Ma), the temperature-
depth profiles differ little. While this study analysed
only the crustal structure of the SCS ocean basins,
we need to incorporate the boundary gravitational
effects of the surrounding continental lithosphere in
order to minimize the edge effects in the gravity
modelling. Thus, we experimented with a series of
thermal models (Figure 2), for the assumed age of
50–120 Ma for the surrounding continental litho-
spheric plates with increment of 10 Ma. Different
models of RMBA and crustal thickness variations
were calculated, to test the sensitivity of modelling
results to the assumed age of the surrounding con-
tinental area. Analysis showed that the model results
of the SCS ocean basin were not highly sensitive to
the uncertainties in the assumed mantle tempera-
ture structure beneath the continental margins
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(Figure 2(b)) and there are reasonable fits between
our model results and seismic data.

2.3 Residual gravity anomalies and crustal thickness

Mantle Bouguer anomaly (MBA, Figure 1(f)) was calcu-
lated following the method of Parker (1973) by sub-
tracting from the free-air anomaly the predicted gravity
effects of the water-sediment, sediment-crust, and
crust-mantle interfaces for reference crustal thickness
of 5.5 km. Densities of water, crust, and mantle were

assumed to be 1.03, 2.7, and 3.3 × 103 kg/m3, respec-
tively (Table 1). The sediment layer was divided into 6
sub-layers (Wang et al.), and each sub-layer was
assigned an average density that increased with depth
(Cowie and Karner 1990).

Residual mantle Bouguer anomaly (RMBA) (Figure 3(a))
was then calculated by removing the thermal correction
(Figure 2) from the MBA. Previous studies have shown
that both crust and mantle density variations contribute
to the RMBA (Magde and Detrick 1995; Canales et al.
2002). In this study an end-member crustal thickness

Figure 2. (a) Map of calculated gravity effects of lithospheric cooling, i.e. thermal correction. Crustal age from Müller et al. (2008)
was used for oceanic crust. To minimize edge effect in modelling the gravity of the oceanic crust, a constant lithospheric age (70 Ma
in the case of this map) was assumed for the non-oceanic regions of the study area. (b) Cross-section profile along AA’ on the top
panel. Numbers refer to different model lithospheric ages (50–120 Ma) that were assumed for the non-oceanic regions in the
thermal models. The 70 Ma model for non-oceanic regions is our best-fitting model based on comparison with the seismic profiles
across both the oceanic and non-oceanic regions.
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model (Figure 3(b)) was calculated by downward conti-
nuation of all the RMBA signals to a constant depth with a
crust/mantle density contrast of 0.6 × 103 kg/m3 (Kuo and
Forsyth 1988; Lin et al. 1990; Wang et al).

2.4 Residual bathymetry

Residual bathymetry anomaly (RBA) (Figure 3(c)) was
defined as the observed seafloor bathymetry after sub-
tracting the predicted sediment loading and thermal
subsidence due to plate cooling. The predicted thermal
subsidence due to plate cooling was calculated using
the same 1D mantle thermal model (Turcotte and
Schubert 2002) as used for the RMBA calculation. The
sediment loading correction was calculated assuming
Airy compensation: ΔZ = hs (ρm – ρs)/(ρm – ρw), where
ΔZ is the correction to bathymetry, hs is sediment thick-
ness. ρm, ρs and ρw are densities of the mantle, sedi-
ment, and water, respectively, which are the same as
used in the gravity calculations.

3. Results

3.1 Comparison with seismic profiles

To evaluate the robustness of the gravity modelling
results, we compared our gravity-derived crustal
thickness models to the crustal thickness values
determined by the seismic studies in the SCS ocean
basin (Figures 4–6). We compared 14 seismic profiles
(Yan et al. 2001; Zhou et al. 2005; Zhao et al. 2010;
Lv et al. 2011; Qiu et al. 2011; Ruan et al. 2011, 2016;
Wei et al. 2011; Wu et al. 2011; Ao et al. 2012; He
et al. 2016; Zhang et al. 2016) of the bathymetry,
sediment thickness, and gravity-derived Moho depth
to the seismic measurements, focusing especially on
profiles that transect the SCS oceanic crust
(Figure 4). The gravity and seismic results agree
relatively well in the overall trends of variations
(see selected examples in Figure 5), especially in
oceanic crust (Figure 6). There might be a few
causes of the local differences between the gravity
and seismic models: (1) The sediment thickness data
used in our gravity modelling might lack the resolu-
tion in some localities; (2) There might be lateral
density variations along seismic profiles, which
were not considered in the gravity modelling (e.g.
Zhao et al. 2010; Ruan et al. 2016); (3) Several seis-
mic profiles strike across the continental margin
area, where the gravity edge effects from the
assumed continental lithospheric ages might cause
uncertainties. Although the gravity-derived crustal
thickness model would inevitably differ from that
of the seismically determined crustal structure due
to the fundamental differences in data types and
methodologies, both the gravity and seismic data
provide important constraints on the spatial varia-
tions of crustal and mantle properties of the SCS.

Table 1. Model parameters.
Parameter Description Value Unit

ρm Mantle density 3300 kg/m3

ρc Crust density 2700 kg/m3

ρw Water density 1030 kg/m3

η0 Reference viscosity 1019 Pa s
ηmax Maximum viscosity 1023 Pa s
Cp Specific heat capacity 1250 J/Kg K
k Thermal conductivity 3 W/m K
Q Activation energy 2.5*105 J/mol
R Universal gas constant 8.3114 J/mol

K
Ts Temperature at the surface of

the model mantle domain
0 °C

Tp Mantle potential temperature 1300–1400 °C
U Half-spreading rate 0.5–4 cm/yr
Ur Ridge migration rate 2 cm/yr
g Gravitational acceleration 9.8 m/s2

Ljump Length scale of southward ridge jump 20 km

Figure 3. (a) Calculated residual mantle Bouguer anomaly (RMBA) by removing the gravity effect of lithosphere cooling from MBA.
(b) Map of crustal thickness variations derived from RMBA assuming that all RMBA variations are caused by crustal thickness
variations. An average crustal density of 2.7 × 103 kg/m3 and mantle density of 3.3 × 103 kg/m3 were assumed. (c) Residual
bathymetry anomaly (RBA), calculated from subtracting the predicted thermal subsidence and sediment loading from the observed
seafloor bathymetry.
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3.2 Regional variations in gravity and topographic
anomalies

In the SCS East Sub-basin, the extinct spreading axis
between 116°-119°E can be easily tracked as isolated
patches of negative RMBA (Figure 3(a)) and relatively
thick crust (Figure 3(b)). These patches of relatively thick
crust can range up to 50–100 km in spatial dimension
(Figure 3(a,b)). Correspondingly, the extinct spreading
centre is associated with local residual topographic
highs of up to 2–4 km (Figure 3(c)). Negative RMBA and
positive RBA with similar amplitude and dimensions were

also observed near 115°E at the eastern end of the extinct
spreading axis in the Southwest Sub-basin.

Our results showed prominent north-south asymmetry
in the distribution of RMBA (Figure 3(a)), crustal thickness
(Figure 3(b)), and RBA (Figure 3(c)). In general, the north-
ern flank of the SCS ocean basin is associated with more
negative RMBA, more prominent RBA and thicker crust
(Figure 7). Between chron C8n (~25.18 Ma) and C5Dn
(~17.38 Ma), the isochon-averaged north-south differ-
ences in RMBA are about 20–40 mGal (Figure 7(m)),
crustal thickness differences are about 0.5–1 km
(Figure 7(o)), and RBA differences are about 0.1–0.5 km
(Figure 7(n)), respectively. For chron C9n (~26.93 Ma),
isochron-averaged values of the southern SCS exhibit
negative RMBA, positive RBA, and thicker crust. We sus-
pect that chron C9n might be too close to the southern
continent-ocean boundary (COB), and thus the result for
the chron C9n in the southern flank might be relatively
unreliable due to the gravitational edge effects. The
calculated differences between the N-S isochron conju-
gates are found to be greater than the standard devia-
tions of the along-isochron variations (Figure 7(m–o)),
indicating that the observed N-S asymmetry in RMBA is
relatively robust.

4. Discussion: geodynamic interpretations of
the observed asymmetry

We investigated the potential causes of the asymmetry
in the calculated crustal thickness through 2D numer-
ical modelling of the following five tectonic and man-
tle scenarios: (1) asymmetric and variable spreading
rates, (2) ridge jump, (3) ridge migration, (4) asym-
metric mantle temperatures, and (5) asymmetric man-
tle depletion (Figure 8). We used the finite-element
software package COMSOL Multiphysics 5.0 to calcu-
late the plate-driven flow of incompressible mantle
and the associated thermal structure, assuming a
temperature-dependent viscosity. The equations for
conservation of mass, momentum, and energy are
given by

@ρm
@t

þ ρm�u ¼ 0 (1)

� ρm
@

@t
u� �pþ ηeff�

2u ¼ 0 (2)

ρmCp
@T
@t

þ ρmCpu�T � k�2T ¼ 0 (3)

respectively, where ρm is mantle density, u is
velocity vector, p is pressure, ηeff is effective mantle
viscosity, Cp is specific heat, T is temperature, k is

0 4 8 12

Gravity crustal thickness (km)

0

4

8

12
Se

ism
ic 

cru
sta

l th
ick

ne
ss

 (k
m)

OBS2006-1
OBS2006-2
OBS1993
OBS2009-2
OBS2013-ZN
OBS2014-ZN
G8G0
OBS2011-T1

-2 0 2
0

5

10

TSeis - TGrav (km)

Fr
eq

ue
nc

y (
%

)
a

b m = -0.17 km
σ = 1.2 km

Figure 6. Comparison of the gravity-derived crustal thickness
with seismic profiles for oceanic crust. (a) Values of the gravity-
derived versus seismically determined crustal thickness values
along individual profiles. Shaded area represents the value
differences between the gravity-derived and seismically deter-
mined crustal thickness of less than 1 km. (b) Frequency dis-
tribution of the difference between the gravity-derived and
seismically determined crustal thickness values.

INTERNATIONAL GEOLOGY REVIEW 7



thermal conductivity, and
@

@t
is time derivative. If the

model flow is steady state, the time derivative term
vanishes.

The temperature-dependent viscosity is calculated by

ηtd ¼ η0 exp
Q
R

1
T
� 1
Tp

� �� �
(4)

where η0 is the reference viscosity (1019 Pa·s), Q is
activation energy, and R is the universal gas constant.
The effective mantle viscosity is defined by

ηeff ¼
1
ηtd

þ 1
ηmax

� ��1

(5)

where ηmax is the maximum viscosity (1023 Pa·s, e.g.
Gregg et al. 2009).

In the simulations, mantle flow was driven by impos-
ing horizontal velocities perpendicular to the mid-
ocean ridge along the top boundary of the model
space. The spreading rates of the two ridge flanks
were assumed to be asymmetric and variable for the
first case (Figure 8(a)) but symmetric and constant for
the rest of cases (Figure 8(b–e)). The base of the model
was set to be stress free (Figure 8(a,b,d and e)), allowing
for convective flux without resistance from the under-
lying mantle. In the ridge migration model (Figure 8(c)),
the base of the model was set to move with the ridge
migration rate Ur of 2 cm/yr. The sides of the model
were also stress free. The temperatures at the top and
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the base of the model space were set to Ts = 0°C and
Tp = 1,300–1400°C, respectively. The heat flux across the
left and right sides of the model was assumed to be
zero. Model parameters were given in the Table 1.

Based on the above modelled thermal structure, we
calculated the extent of melting at all points in the
model domain using the BG15 anhydrous melting
model (Behn and Grove 2015). Constant melt productiv-
ity of 1% kbar−1 and an adiabatic gradient of 1.5°C kbar−1

were assumed in the melting model. The mantle com-
positions input into the BG15 model were assumed to be
the DMM compositions of Workman and Hart (2005) or
the depleted DMM compositions (Behn and Grove 2015).
At each melting step, 90% of the generated melt was
removed and accumulated elsewhere, while allowing the
remaining melts and depleted mantle to ascend and be
further melted at the next melting step. The melt pro-
duction rate was defined as the product of the melt
productivity and the mantle upwelling velocity Uz. The
upwelling velocity was determined from the mantle flow
models.

We assumed that once melts are generated in the
mantle, the melt patches would migrate vertically to
the bottom of an impermeable ‘lithospheric lid’ and
then flow upslope along the base of the lid towards
the ridge axis (Sparks and Parmentier 1991; Sparks et al.
1993; Magde and Sparks 1997; Magde et al. 1997).
However, instead of assuming all melts would first mix
at the ridge axis and then partition equally to the two
ridge flanks, we alternatively assumed that most melts
would pool only at the side of the ridge flank where the
melts were generated, and thus contribute only to
crustal thickness of that ridge flank. For each flank, the
crustal thickness was calculated by integrating the
melts production rate over the melting region and
dividing by the spreading rate (Forsyth 1993).

4.1 Asymmetric and variable spreading rates

The half-spreading rate of the SCS varied in the range of
1–4 cm/yr in the East Sub-basin (Li and Song 2012;
Song and Li 2012; Li et al. 2014). We first calculated
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models of constant half-spreading rates based on the
melting scheme of Behn and Grove (2015; Figure 8(a)).
The models predict relative strong increase in crustal
thickness with spreading rate for half-spreading rate
less than 2 cm/yr, but only relatively small increase for
half-spreading rate greater than 2 cm/yr (Figure 14(a)).
The models also predict that the mantle temperature
has major influence on the calculated crustal thickness
(Figure 14(a)).

While there are significant discrepancies in the calcu-
lated SCS spreading rates between various studies (e.g. Li
and Song 2012; Song and Li 2012; Li et al. 2014), analysis
of the relatively high-resolution deep-tow magnetic data
revealed that relative to the southern conjugate, the
northern flank was associated with faster spreading
rates during ~33–25 Ma, slower rates during ~25–
22 Ma, and similar rates at ~22–15 Ma (Li et al. 2014).
Geodynamic calculations based on the Li et al. (2014)
spreading rate models Figures 9, 14(b), S1(a), and S2
predicted up to 0.4 km thicker crust at the northern
flank at ~29 Ma, but ~0.2 km thinner crust at the

northern flank at ~25 Ma. Thus the models of asym-
metric and variable spreading rates would produce alter-
nating thicker and thinner crust on the northern flank,
which cannot explain the observed systematically thicker
crust on the northern flank (Figure 7(m–o)). For the
remaining four models of ridge jump, ridge migration,
asymmetric mantle temperature, and asymmetric mantle
composition sources, respectively, we assumed a con-
stant average half-spreading rate of 2 cm/yr based on
the spreading rate models of Li et al. (2014) .

4.2 Southward ridge jump

A southward ridge jump of ~20 km occurred around
23.6 Ma in the East Sub-basin (Xu et al. 2011; Li et al.
2014, 2015). We used a time-dependent numerical model
to study the effects of ridge jump on melt production and
resultant crustal structure (Figure 10). Steady-state mantle
flow and thermal structure were assumed before ridge
jump (33–23.6 Ma, Figure 10(a, b). We first calculated
mantle flow and temperature fields for a steady-state
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Figure 9. Comparison of the predicted crustal thickness of the northern and southern flanks for the models of asymmetric and
variable spreading rates. Relative to the southern conjugate, the half-spreading rate of the northern flank is calculated to be faster
at ~33–25 Ma, slower at ~25–22 Ma, and similar at ~22–15 Ma, based on the deep-tow magnetic model of Li et al. (2014); (a) Half-
spreading rate of the northern flank was slower relative to the southern flank at 23 Ma. (b) Half-spreading rate was the same on the
northern and southern flanks at 15 Ma; (c and d) After cessation of seafloor spreading, the N-S differences become even smaller. All
models have Tp = 1350°C.

Figure 10. Comparison of the predicted crustal thickness of the northern and southern flanks for the models of southward ridge
jump. (a and b) Before ridge jump; (c and d) After ridge jump; (e and f) After cessation of seafloor spreading.
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model with a half-spreading rate of 2 cm/yr. We then
moved the spreading centre southward by 20 km, and
set up a time-dependent model using the steady-state
results as initial values. The time-dependent calculations
were conducted for every 0.5 Ma for a total time period of
9 Ma (23.6–14.6 Ma).

The southward ridge jump was calculated to cause
higher mantle temperature in the northern flank than the
southern conjugate (Figure 10(c)), generating thicker crust
in the northern flank (Figure 14(c)). Results of calculations
showed several features: (1) The N-S difference in the pre-
dicted crustal thickness reached itsmaximumvalue (~2 km)
when the ridge jump just occurred. However, the N-S
asymmetry in crustal thickness is calculated to be limited
only to crustal ages of 23.6–20 Ma Figures 14(c), S1(b), and
S3. Thus, the southward ridge jump alone cannot explain
the observed N-S asymmetry for a wide crustal age span
from chron C8n (~25.18 Ma) to C5Dn (~17.38 Ma) (Figure 7
(m–o)) (2) The N-S difference in the crustal thickness was
calculated to increase with increasing mantle temperature
due to the ridge jump (Figure 14(d)). (3) About 6 Ma after
the ridge jump, there was little difference in the predicted
crustal thickness between the northern and southern flanks
(Figure 14(c, d)).

4.3 Southward ridge migration

In the East and Southwest Sub-basins, the southward
ridge migration rate was estimated to be 2.4 cm/yr and
1.4 cm/yr, respectively (Li et al. 2015). We set up a steady-
state model with a ridge migration rate Ur of 2 cm/yr to
investigate the effects of ridge migration on mantle flow
and thermal structure. The full thicknesses of the litho-
spheric and asthenospheric layers were assumed to be
100 and 670 km, respectively (Figure 8(c)). A horizontal
velocity of 2 cm/yr to the north was applied at the base of
the model, while we solved for the mantle flow field in
the ridge-fixed reference frame.

The southward ridge migration was calculated to
result in greater vertical velocity on the leading
(south) side of the ridge than that on the trailing
(north) side, generating more melts on the leading
side (Figures S1(c) and S4). As a result, the crust of
the northern flank was calculated to be thinner than
that of the southern flank (Figures 11 and 14(e)). Thus
the southward ridge migration cannot explain the
observed more negative RMBA and thus the inferred
thicker crust on the northern flank (Figure 7(m–o)).
Furthermore, the calculated N-S difference is small
(less than 0.2 km). The N-S difference in crustal thick-
ness was calculated to increase with increasing man-
tle temperature (Figure 14(f)).

4.4 Asymmetric mantle temperature

To examine the effects of asymmetric mantle temperature,
we fixed the mantle temperature of the southern flank at
Tp_south = 1300°C, while changed the mantle temperature
of the northern flank Tp_north to be 1300–1400°C with step
increments of 25°C (Figures 8(d) and 12). The calculated
N-S difference in the crustal thickness (Figure 14(g))
increases with the difference in mantle temperature
Figures 14(h), S1(d), and S5. A rise of 25°C in mantle
temperature could cause an increase of about 1 km in
the N-S difference of the crustal thickness (Figure 14(h)).
Furthermore, we investigated the changes in the asym-
metric thermal structures after the cessation of seafloor
spreading, assuming a steady-state half spreading rate of
2 cm/yr, Tp_north of 1350°C, and Tp_south of 1300°C
(Figure 12). The results show that the differences in the

Figure 11. Comparison of the predicted crustal thickness of the
northern and southern flanks for the models of southward
ridge migration. (a) Age = 15 Ma; (b) Age = 12 Ma; (c)
Age = 0 Ma. All models have Tp = 1350°C.
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thermal structure caused by the initial asymmetric mantle
temperatures were maintained after the cessation of sea-
floor spreading in the SCS Figures 12(b,c) and 15.

4.5 Asymmetric mantle compositions

Here, we examined the influence of mantle depletion
on crustal thickness. We applied the DMM composi-
tions of Workman and Hart (2005) to the northern
flank (Figure 8(e)). For the mantle compositions of
the southern flank, we first extracted a small amount
of melt (1 or 2% melt) from the DMM compositions
of Workman and Hart (2005) using BG15 melting
model (Behn and Grove 2015), and then used this
depleted mantle source as the initial compositions of

the southern flank (Figures 8(e) and 13). The mantle
depletion was calculated to result in slightly thinner
crust on the southern flank Figures 14(i), S1(e), and
S6. For the model of mantle depletion difference of
2% and Tp = 1350°C, the predicted difference in
crustal thickness is about 0.5 km, which is of the
same order of magnitude as the observed N-S asym-
metry (Figure 7(m–o)). The predicted difference in
crustal thickness also increases with increasing man-
tle temperature Figures 14(j) and 15.

5. Conclusions

(1) Systematic north-south asymmetry was observed
in RMBA, gravity-derived crustal thickness, and
RBA, indicating possible asymmetry in melt
input between the two ridge flanks. For crustal

Figure 12. Comparison of the predicted crustal thickness of the
northern and southern flanks for the models of asymmetric
mantle temperature. All models have Tp_north = 1350°C and
Tp_south = 1300°C. (a) Age = 15 Ma; (b) Age = 12 Ma; (c)
Age = 0 Ma.

Figure 13. Comparison of the predicted crustal thickness of the
northern and southern flanks for the models of asymmetric
mantle depletion. All models have Tp = 1350°C and 2% more
depleted mantle source under the southern flank. (a)
Age = 15 Ma; (b) Age = 12 Ma; (c) Age = 0 Ma.
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Figure 14. (a) The calculated crustal thickness as a function of seafloor spreading rate and mantle temperature. (b) The calculated
N-S differences in crustal thickness based on the asymmetric and variable spreading rate model of Li et al. (2014). (c and d) The
calculated crustal thickness models of the southward ridge jump as a function of the time after the jump, showing the predicted
crustal thickness (c) and the N-S difference in crustal thickness (d). (e and f) The calculated crustal thickness models of the
southward ridge migration as a function of mantle temperature, showing the crustal thickness (e) and the N-S difference in crustal
thickness (f). (g and h) Same as (e) and (f) except for the models of asymmetric mantle temperature. (i and j) Same as (e) and (f)
except for models of asymmetric mantle sources of different degree of depletion.
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age between chron C8n (~25.18 Ma) and C5Dn
(~17.38 Ma), the northern flank of the SCS ocean
basin is associated with systematically more
negative RMBA and slightly more prominent
RBA, indicating thicker crust and/or lighter man-
tle beneath the northern SCS than the southern
conjugate. The calculated N-S differences are
greater than the standard deviations of the
along-isochron variations, indicating that the
observed N-S asymmetries in RMBA and gravity-
derived crust are relatively robust.

(2) The extinct spreading axis at the East SCS Sub-
basin is associated with isolated patches of nega-
tive RMBA, thicker gravity-derived crust, and local
topographic highs, indicating local excess mag-
matism along the extinct spreading centre.

(3) Geodynamic models of mantle upwelling and
melting revealed that the model of asym-
metric and variable spreading rates based on
the relatively high-resolution deep-tow mag-
netic analysis would predict alternating thicker
and thinner crust at the northern flank, which
is inconsistent with the observed systemati-
cally thicker crust on the northern flank.
Episodic southward ridge jumps could pro-
duce the N-S asymmetry only for crustal age
of 23.6–20 Ma. Meanwhile, the southward
migration of the SCS ridge axis would predict
slightly thinner rather than thicker crust at the
northern flank. Thus the above models cannot
explain the observed N-S asymmetries in the
SCS. On the other hand, higher mantle tem-
perature of up to 25–50°C or >2% less
depleted mantle sources on the northern
flank could produce large enough anomalies
to explain the observed N-S asymmetries.
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