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A Finite Amplitude Necking Model of Rifling in Brittle Lithosphere 
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We formulate a mechanical model describing the formation of rifts as finite amplitude necking of an 
elastic-plastic layer overlying a fluid substrate. A perfectly plastic rheology is a continuum 
description of faulting in rift zones. Two important aspects of rift evolution are illustrated by this 
model: the evolution of the rift width as extension proceeds and the finite strain that occurs. A region 
at yield initially develops with a width determined by the thickness of the brittle layer, and the 
internal deformation within this yield zone is proportional to the topographic slope. As extension 
proceeds, the surface within the rift subsides, and the width of the subsiding yield zone decreases. At 
any stage of rifting, matedhal in regions just outside the yield zone is deformed but no longer 
deforming. The width of these deformed regions increases with increasing extension. Vertical forces 
due to the mass deficit of the rift depression will flex the elastic layer outside the yield zone, creating 
flanking uplifts. The external force required to maintain active rifting increases with the amount of 
lithospheric stretching, indicating that rifting is a quasi-static, stable process. Because the yield zone 
will revert to elastic behavior if the external force causing extension is removed, the model predicts 
that the rift depression and flanking uplifts will be preserved after extension stops. Our simple 
mechanical model demonstrates the inherent relationship among graben formation, lithospheric 
thinning, and rift shoulder uplift in rift zones. 

INTRODUCTION 

Rifting occurs where lithospheric extension is localized 
into a narrow zone. Rift zones have been identified both in 

continents and on ocean floor [Burke, 1978; Ramberg and 
Neumann, 1978; Easton, 1983; Ramberg and Morgan, 1984; 
Rosendahl, 1987]. Since continental rifts are a precursor of 
new ocean basins and mid-ocean ridge rifts occur where new 
oceanic crust is generated, understanding the evolution of 
rifts is of fundamental significance to the study of plate 
tectonics. Models which attempt to express our 
understanding of rifting mechanisms can be put into two 
major categories. The first category attributes rift structural 
and morphological characteristics to thermal processes in 
the lower lithosphere and asthenosphere. For example, rift 
shoulder uplift has been explained as the result of (1) lateral 
conduction of heat from extended to unextended lithosphere 
[e.g., Cochran, 1983]; (2) small-scale mantle convection 
driven by a lateral thermal gradient [e.g., Buck, 1986]; and 
(3) reequilibrium of a thermally stratified lithosphere in 
which the amount of extension varies with depth [e.g., 
Royden and Keen, 1980; Keen, 1985, 1987]. These models 
are concerned primarily with the thermal and mechanical 
behavior of the lower lithosphere and as theno sphere which 
deform in ductile (viscous) flow at high temperatures rather 
than brittle deformation of shallow lithosphere. 

The second category of models investigate explicitly the 
deformation of brittle lithosphere in rift zones, especially 
those at the initiation stage. Vening Meinesz [1950] first 
suggested that a rift forms in an extending elastic 
lithosphere which fails by normal faulting. He argued that 
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when an initial normal fault causes elastic flexure in a 

brittle lithosphere, a second normal fault will form where 
the flexural stresses are maximum. The initial and 

secondary normal faults thus comprise the boundary of a 
sinking rift graben. Bott [1976] and Bott and Mithen 
[1983] modified Vening Meinesz's model to include a ductile 
layer in the lower crust. In the modified model, while the 
brittle upper crust is stretched by normal faulting and graben 
subsidence, the ductile lower crust flows horizontally 
beneath the subsiding graben. These models, while 
attractive for their simplicity, cannot describe the extensive 
faulting and crustal thinning commonly observed in rift 
zones. 

Deformation of brittle lithosphere in rift zones has also 
been treated as necking of a strong layer overlying a weaker 
substrate. Arternjev and Artyushkov [1971] qualitatively 
considered rifting as necking of a ductile crust which is 
mechanically strong near the surface and weaker at depth. 
They proposed that a perturbation in crustal thickness could 
induce nonuniform extension, which localizes stresses and 

generates a narrow zone of normal faults in the strong upper 
crust. This hypothesis was further developed and tested by 
Zuber and Parrnentier [1986] and Parrnentier [1987], who 
modeled lithosphere as a perfectly plastic layer, a continuum 
description of deformation on many faults. Zuber and 
Parrnentier [1986] found that an initial perturbation in 
lithospheric thickness will amplify under extension. When 
this occurs, extension in the lithosphere will concentrate 
into a zone with a width comparable to the dominant 
wavelength, which depends only on lithospheric thickness 
and theology. These necking instability models, however, 
are based on the assumption of small deformation amplitude 
and are not applicable to later stages of rifting when large 
finite strains have developed. In particular, since the 
analysis assumes a uniform state of horizontal extension 
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onto which small-amplitude perturbations are superimposed, 
extensional deformation is not confined to a narrow zone 

within the rift [Parmentier et al., 1987]. 
In this paper, we formulate a finite amplitude necking 

model of rifting in brittle lithosphere overlying ductile 
(viscous) substrate. Brittle failure and lithospheric 
extension are localized in a plastic yield zone beneath the 
rift basin. We demonstrate that the formation of such a 

region of necking makes it possible to explain lithospheric 
thinning, graben subsidence and rift shoulder uplifts in a 
self-consistent fashion. In the following sections we will 
examine the major characteristics of the plastic zone, its 
interaction with adjacent undeforming brittle lithosphere, 
and its control on rift evolution. 

Momm MI•cmu•rICS 

Studies of the rheology of the continental lithosphere 
[e.g., Goetze and Evans, 1979; Brace and Kohlstedt, 1980; 
Kirby, 1983] suggest a strong variation of strength with 
depth. Brittle deformation occurs in the upper crust, where 
lithospheric strength is controlled by frictional sliding on 
faults and the mode of faulting [Byerlee, 1968]. At greater 
depths, dislocation creep, which is chiefly a function of 
strain rate and temperature, is the dominant deformation 
mechanism. We idealize lithosphere as a brittle layer with 

thickness H and density Pl overlying a fluid with density P a 
(Figure 1). This brittle layer represents the upper 12-15 km 
of a prerift continental crust or the upper few kilometers of 
oceanic lithosphere at a mid-ocean ridge. In general, 
stresses associated with ductile deformation in the lower 

continental crust and oceanic upper mantle depend on the 
width of the necking region and the rate of lithospheric 
extension. Viscous stresses associated with ductile mantle 

flow can influence greatly the short-term (100-200 years) 

postseismic relaxation of crustal earthquakes [Rundle, 1982; 
Savage and Gu, 1985] but should have a second order effect 
on long-term (--1 m.y.) rift basin-scale deformation [e.g., 
Phipps Morgan et al., 1987; Lin and Parmentier, 1989]. 
Ductile (viscous) flow of the crust and mantle along with the 
resulting temperature variations could be treated by 
combining various ductile lithospheric stretching models 
[e.g., Keen, 1985, 1987] with our present analysis for 
necking in a strong brittle lithospheric layer. For 
simplicity, we treat the ductile lower lithosphere beneath 
continental rifts and the asthenosphere beneath oceanic rifts 
as inviscid fluids. 

Lithospheric Faulting and Perfect Plastic Flow 
In an extensively faulted media, if the characteristic 

spacing between faults in the media is much smaller than 
the size of the deforming region, we can approximate the 
motion on faults by perfect plastic flow. Closely spaced 
fractures and faults occur in many continental and oceanic 
rifts. In the Rhine graben, for example, the rift graben is 
framed by two inward facing master fault zones 40 km apart, 
while the rift valley itself is broken into internal tilted 
blocks by many sets of secondary normal faults. The 
characteristic distance between these secondary normal faults 
is only 1 km [lilies, 1972], far smaller than the 40 km 
width of the rift valley. Since we are concerned primarily 
with the overall characteristics of rifting instead of the 
specific motion on individual faults, perfect plastic flow is 
an acceptable approximation to motion on faults. Based on 
this same rationale, perfect plasticity has also been applied 
to describe deformation in mountain belts and accretionary 
wedges [Elliott, 1976; Chapple, 1978; Davis et al., 1983]. 

In our model, the mechanical behavior of a rifted brittle 

lithosphere is characterized by a plastic yield zone embedded 
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Fig. 1. A model of rift zone and definition of geometric parameters. Rheological stratum of rifts is modeled as a 
brittle layer overlying a ductile substrate. The rift zone is characterized as a plastic yield zone embedded in an 
otherwise elastic lithsophere. In general, it is possible for an upper plastic yield zone and a lower plastic zone to 
coexist, with N as the connecting point. The relative sizes of the two plastic zones is described by the location of 
connecting point N. .H.[ is the rift basin depth, and H b is the relif on the lower plastic zone. W A is the width of the 
active rift valley, and w S is the distance between rift shoulders. 
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in an otherwise elastic lithosphere (Figure 1). This model 
does not describe the initiation stages of rifting but assumes 
that many faults defining the yield zone are already present. 
In general, plastic solutions allow the coexistence of an 
upper plastic zone (area A'NA in Figure 1) and a lower 
plastic zone (area I'NI in Figure 1). The location of point N 
is not determined by mechanical equilibrium conditions 
alone but by energy considerations, as will be discussed 
later. The important geometric parameters include the depth 
of rift basin, Ht; the relief on the bottom of the plastic 
layer, Hb; the width of rift valley, WA; and the distance 
between the flanks of rift shoulders,W S. Since the 
mechanical properties of the lithospheric material are 
different inside and outside the plastic zone, different 
mathematical formulations are needed, accordingly. 

Solutions will be developed first for the plastic zone and 
then for the elastic plates. 

Perfect plasticity is characterized by the existence of a 
mechanical yield point beyond which permanent strain 
appears. While most metals at low temperatures obey the 
pressure-independent von Mises failure criterion, soils and 
sands commonly exhibit pressure-dependent yielding 
behavior in accord with the Coulomb (frictional-type) 
criterion. Since the strength of the britfie lithosphere is 
controlled by frictional properties of rocks [e.g., Brace and 
Kohlstedt, 1980], the Coulomb criterion is more appropriate 
for crustal material. Although the two failure criteria predict 
deformation patterns which are different in detail, the 
fundamental features are the same. To maintain both 

generality and simplicity, the mathematical formulations 
that we give are applicable to both von Mises and Coulomb 
materials, while the calculated examples employ the simpler 
von Mises material. 

The yield stress of avon Mises material is equal to a 
pressure-independent parameter k, whose value depends 
mainly on the material type. In this type of material, 
brittle failure occurs along planes on which the maximum 
resolved shear stress '• = k. The von Mises criterion can be 

written as 

(•3-ol) 2/4 = (Ox-Oy) 2/4 + •xy 2 = k 2 (1) 
where O l and o3 are the minimum and maximum tensile 
stresses, Ox, Oy, and '•xy are the stress components in a x-y 
coordinate system (as defined in Figure 2). 

The yield stress of a Coulomb (frictional type) material is 
pressure-dependent. The frictional sliding on a typical 
failure plane is governed by h:l = Co + (-On) tan•, where C O 
and • are the cohesion and angle of friction of the material 
and On is the normal stress across the failure plane (Figure 
3a). In an x-y coordinate system, this criterion is expressed 
as 

(Ox-(•y) 2/4 + '•xy 2 = [(Ox+C•y) sin2(]) + Col 2 (2) 
The von Mises criterion can be regarded as a special case of 
the Coulomb criterion, when Co = k and • = 0. 

Stress Field in Plastic Yield Zone 

The magnitude of the plastic flow strains within the 
central plastic zone is far greater than the elastic strains in 
the adjacent lithospheric plates. When calculating the 
deformation of the plastic zone, these elastic lithospheric 

Y 

A' 0 A 
X 

lines -'" • • o• lines 

N 

Fig. 2. The x-y coordinate system and plastic characteristic lines 
in a rift yield zone. The inclined lines are lines of stress or 
velocity characteristics. For avon Mises material, the stress and 
velocity lines coincide. For a Coulomb-type material, however, 
stress characteristic lines have different inclination angle from 
velocity characteristic lines. The parameters ct and [5 represent 
conjugate characteristic lines. 

plates can be regarded as rigid and the changes in the 
plastic-elastic boundaries due to elastic deformation can be 
neglected [Hill, 1950]. Therefore the deformation of the 
elastic plates is considered only when we later calculate the 
uplift of rift shoulders due to the formation of a rift basin. 

A complete description of flow within the plastic zones 
requires the determination of stress and velocity at each 
point. For plane strain deformation there are five 

unknowns: three components of stresses Ox, Oy, '•xy and 
two components of velocity Ux, Uy. Five independent 
equations are therefore necessary to solve for both stresses 
and velocities. 

The yield criteria, equation (1) or (2), provide one of the 
basic equations for determining stress field. The other two 
basic equations required for the determination of stresses 
come from the consideration that stresses must be at 

equilibrium at each point: 

3Ox/3X + 3•:xy/3y = 0 (3a) 

•y/By + 3•xy/BX = - pl g (3b) 
where g is the acceleration of gravity. 

Although equations (1), (3a) and (3b) are the fundamental 
equations in the plastic problem, the mathematical nature of 
these equations is difficult to understand without further 
derivations. We therefore express the stresses as functions 
of two new parameters o and 0 [Sokolovskii, 1965], where 
• =- p + Co/tan•, p is an average stress, and 0 represents 
the angle between the maximum principal stress direction 
and the x- axis (Figure 3b), 

Ox = o (1 + sin• cos20) - Co/tan• (4a) 

Oy = o (1 - sin• cos20) - Co/tan• (4b) 

Xxy = o sin• sin20 (4c) 
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(a) 

rxy o- n 

(1 + sin lb cos20) ao/ax + sinlb sin20 ao/ay - 20 sinlb 
(sin20 aO/ax - cos20 ao/ay)= 0 (5a) 

sin lb sin20 ao/ax + (1 - sin• cos20) ao/ay + 20 sinlb 
(cos20 aO/ax + sin20 aO/ay) = - pig (5b) 

This system of equations is hyperbolic and can therefore be 
solved by the method of characteristics [Sokolovskii, 1965, 
p.29]. 

The solutions to equations (5a) and (5b) are described in 
terms of stress characteristic lines [Hill, 1950]. In von 
Mises material, the stress characteristic lines (also called 
slip lines) coincide with directions of maximum resolved 
shear stress. Slip lines with a right-handed or left-handed 
sense of shear are called ot lines or [• lines, respectively 
(Figure 2). In an x,y coordinate system, they form a right- 
handed set of curvilinear coordinate axes where the 

algebraically largest (least compressive) principal stress lies 
in the first and third quadrants (Figure 3c). 

Except for a few geometrically simple cases for which full 
analytical solutions can be obtained, the hyperbolic 
equations (5) must be solved numerically. Sokolovskii 

[1965] shows that these equations are reducible to a simpler 
set of equations of characteristics ß 

i 
I 

(b) 

(c) 

Fig. 3. (a) Failure criteria of frictional or Coulomb-type (pressure 
dependent) material. At any point in space the Mohr failure 
envelope consists of two straight lines with slopes of :L-tan• (where 
• is the angle of internal friction) and intercepts of :kC o. (b) Stress 
convention. Compressive stress is negative, with 03>01 
algebraically (03 is the least compressive stress). (c) Relation of 
stress characteristic lines to principal stresses. Stress characteristic 
lines are designated either •t lines or 13 lines depending upon 
whether they have a right-handed or left-handed sense of shear 
across them, respectively. The angle formed by the stress 
characteristic lines is •/2-•; 0 is the counterclockwise angle from 
the x direction to the o 3 direction. 

In this functional transformation, we have assumed that the 

material is at yield so that the failure criteria (equation (2)) 
can be employed to reduce the three unknowns (•x, (•y, and 
Xxy to only two unknowns (5 and 0. Substitution of (4) into 
(3) results in a quasi-linear system of first order partial 
differential equation in (•(x,y) and 0(x,y): 

dy = dx tan(0 • •;) (6a) 

do = 2(I tanq• dO + plg/cosq• (ß sinq• dx + cosq• dy) (6b) 

where e = •:/4- q•/2. The first equation of equation (6a) 
(with minus sign in front of e) describes the geometry of o• 
lines, and the first equation of equation (6b) (with plus sign 
in front of plg/COSq•) describes the relationship between (• 
and 0 along the same o• lines. Similarly, the second 
equations of equations (6a) and (6b) apply to the [1 lines. 
From these basic equations, a slip line field can be 
constructed numerically using finite difference 
approximations. 

The stress boundary conditions are known only at the 
upper and lower surfaces of the plastic yield zone. At the 
upper surface, stress free conditions apply, namely, 

(•n = 0 (7a) 

(•s = 0 (7b) 

At the lower surface (the interface between the plastic zone 
and ductile substrate), the shear stress is zero due to the 
assumed inviscid ductile substrate, and the hydrostatic 
normal stress is given by 

(•n = -Plg H + PagHb (8a) 

Os = 0 (8b) 

where Hb is the vertical displacement of the lower surface 
from its initial height. Since the stress boundary 
conditions in equations (7) and (8) do not involve 
velocities, the stress field in the plastic zone is determined 
independent of velocity field [Hill, 1950]. The procedure to 
determine numerically the slip line field in the plastic zone 
is given in Appendix A. 
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Velocity FieM in Plastic Yield Zone 
Once the stress field has been determined, a velocity field 

can be calculated given sufficient velocity boundary 
conditions. To determine velocity boundary conditions, we 
consider that the two elastic lithospheric plates move away 
from the center with a speed Uo. 

For an incompressible material, the divergence of the 
velocity field must vanish: 

3Ux/3X + 3Uy/3y = 0 (9) 

S' A' A S 

BRITTLE ZONES 

iLAYER EL STIC I 
•' Fx 

A material property of an isotropic plastic material is that 
the principal axes of stress and strain rate coincide [Hill, 
19501: 

2'Cxy/(Ox-Oy) = (SUy/SX + 8Ux/Sy)/(SUx/SX- BUy/By) 
(10) 

Substitution of (6) into (10) gives 

(3Ux/•Jy + 3Uy/•Jx) tan20 + (3Ux/•Jx- 3Uy/•Jy) = 0 
(11) 

Equations (9) and (11) form a system of hyperbolic 
equations for velocity field, whose characteristic lines 
coincide with the stress characteristic lines (slip lines) for 
von Mises material only. Similar to the stress equations, 
these velocity equations are reducible to the equations of 
characteristics [Salencon, 1974]' 

Fig. 4. (a) Calculated plastic zone geometry and stress 
characteristic lines for a rift zone with inclined topography. The 
solid lines are 0t lines and dashed lines, are [5 lines. ( b) Calculated 
velocity field corresponding to stress solutions of Figure 4a. Note 
that major velocity discontinuities occur at the boundary between 
the plastic zone and elastic plates, while secondary discontinuities 
occur along several planes inside the plastic zone. 

duct- uct tan•) d(0-•)/2) - u[3/cos •) d(0-•)/2) = 0 
along an ct hne (12a) 

du[3 + uct/cos•) d(0 + •)/2) + u[3 tan½ d(0 + •)/2) = 0 
along a 13 line (12b) 

From (12) it follows that velocity characteristic lines are 
lines of zero incremental extension and that instantaneous 

discontinuities in the velocity field can occur only in the 
tangential planes across these lines. Finite-difference 
equivalences of equation (12) are used to determine 
numerically the velocity field in the plastic zone (see 
Appendix A). 

RESULTS 

The calculated geometry of plastic yield zones with a 
prescribed rift valley topographic slope is shown in Figure 
4a for avon Mises material. The corresponding velocity 
field in the plastic zones in Figure 4b shows several 
velocity discontinuity planes in the plastic zones. The 
most prominent velocity discontinuity is along the 
boundary between the plastic zones and the elastic 
lithospheric plates (line ABCN and line A'B'C'N). 
Secondary velocity discontinuities occur along several 
planes inside the plastic zones (e.g., line OB and line OC). 
The magnitude of the secondary velocity discontinuities is 
proportional to the topographic slope. 

If the top and bottom of the plastic zones are initially 
flat, deformation within the these zones is considerably 
simpler. The evolution of such plastic zones is shown in 
Figure 5 for a rift with symmetric upper and lower plastic 
zones. Both the stress patterns (left) and instantaneous 
velocity fields (right) are illustrated for different amounts of 

total surface extension AL. At AL = 0, the upper and lower 
boundaries of the yield zone have not deformed, and both 
the ct and I• lines are inclined to the horizontal surfaces at 
angle •;/4. The velocity field at A L = 0 indicates four 
blocks of distinctive instantaneous motion (Figure 5b). 

Simple Shear Discontinuities Framing 
Plastic Yield Zones 

As the two elastic lithospheric plates move apart at a 
velocity u o, the material in the upper plastic zone moves 
downward at speed u o, while the material in the lower part 
moves upward at the same speed. The change of the rift 
zone geometry can be readily observed by comparison of 
the rift configuration at A L = 0 and that at A L -- 0.2 H 
(Figure 5). At AL = 0.2 H, both the upper and lower plastic 
zones become smaller from the initial configulations, but 
they are still connected at the same point. Notice that the 
material within the narrow, shaded bands at AL = 0.2 H was 
within the plastic zone at AL = 0 but now has become a part 
of the elastic plates. A finite amplitude simple shear 
develops discontinuously across the slip lines defining the 
edge of the yield zone. In the example illustrated in Figure 
5, point N is assumed fixed, so are the location of the slip 
lines with simple shear. Clay experiments illustrated in 
Figure 6 [Cloos, 1968] show similar velocity fields to those 
in Figure 5b with narrow lines across which velocity 
vectors change direction dramatically. Similar lines of 
velocity discotinuities have also been observed in sandbox 
experiments [Horsfield, 1980]. 

According to mechanical characteristics and deformation 
history, a rifted brittle lithosphere can be divided into three 
subregions (Figure 5a). Region 1 is within the plastic yield 
zone. The upper plastic zone is the rift graben. The size of 
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DEFORMATION 
PATTERN 

VELOCITY 
FIELD 

AL=O 

A' A 

AL = 0.2H 

AL = 0.4H 

AL = 0.6H 

-H 

(A) (B) 

REGION 1- 
REGION 2: 

REGION 3: 

DEFORMING 

DEFORMED PREVIOUSLY 

UNDEFORMED 

Fig. 5. Evolution of rift geometry in absence of regional isostatic compensation. (a) Plastic zone geometry at various 
stages of rifting. There are three regions with different deformation characteristics and history. Region 1 is within 
the plastic zone. The inclined lines in the plastic zones are the lines of velocity characteristics. Internal deformation 
can occur in this region. In region 2 the material has previously deformed but is presently a part of the elastic plate. 
Region 3 is the uncleformed part of the brittle lithosphere. (b) Velocity fields at various stages of rifting. In general, 
the velocity fields in the plastic zones are not uniform. The example shown is for a special case when the top and 
bottom boundaries of the plastic zones are flat. Note that velocities are discontinuous at the boundaries between the 
plastic zones and the elastic plates. 

this region decreases as rifting progresses. If the 
topography of rift valley is not flat, internal deformation 
will occur within this region and velocity will not be 
uniform as in this simple example. The inclined lines are 
velocity characteristic lines. Region 2 is presently part of 
the rigid lithospheric plate, although it deformed in the past 
by plastic flow. The size of this region increases as rifting 

progresses. Region 3 is undeformed material. In 
continental rifts, major active normal faults were found to 
be within narrow zones framing rift grabens [lilies, 1972; 
Ebinger et al., 1984; Shudofsky, 1985; Rosendahl, 1987]. 
It was also found that all of the minor active faults occur 
only within the rift graben, and the surface scarps beyond 
the major boundary fault system correspond to inactive 
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Fig. 6. (a) Graben formation in clay experiment, in which clay 
graben slid down between blocks after symmetrical pull [Cloos, 
1968]. In this particular experiment, displacement along the 
graben boundary is 20 mm on fight side and 22 mm on left side. 

J J I I 
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• /,,r/l,;- :: •, • I 

_ I 

4--•--.• 2x Fg' •//• • .... • I 

• • •cm 
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Scale • •. (b) Migration of reference •ts during derogation 
[Cloo•, 196S] as traced from successive photographs. Note the 
close sim•afity between this velocity field and the predicted 
vcl•ity field in the upper plastic •nc in Figure 

faults [Gibbs, 1984; Ebinger et al., 1987]. The deformation 
pattern of our model is generally in agreement with these 
observations. 

The predicted surface slope T (Figure 1) of the deformed 
region (in absence of erosion) is given by 

tan T = 0.5 (13a) 
or 

T = tan- 1 (0.5) = 27 ø (13b) 

This slope is inherently determined by the initial surface 
slope (0 ø) and the inclination of the shear slip lines 
framing plastic zones (45 ø ) and is independent of the 
separation velocity of the two elastic plates. 

Although the stress and velocity lines coincide for the 
yon Mises material as in the example of Figure 5, they 
might not in other cases. For the same boundary 
conditions, if a Coulomb-type material with 30 ø of angle of 
internal friction was considered instead, the stress lines 
would incline 60 ø to the flat surface (equation (6a)) while 
velocity lines remain at 45 ø inclination. Since the finite 
strain in plastic zones is determined by the incremental 
accumulation of displacements, it is the velocity 
characteristic lines, not the stress characteristic lines, which 
control the evolving geometry of a rift zone. In addition, 
which of the velocity characteristic lines is active is 
determined by specific velocity boundary conditions. It is 
therefore incorrect to interpret stress characteristic lines as 
faults or even as planes of potential faults, as was suggested 
in the earlier model of Hafner [1951]. 

Although the example illustrated in Figure 5 is for a 
special case when the upper and lower plastic zones are 
symmetric, the conclusions hold for other rifts with 
asymmetric upper and lower plastic zones. See Figure 8 for 
another special example in which there is only an upper 
plastic zone. 

Thinning of Lithosphere and Shrinking 
of Plastic Zone 

As rifting progresses, the plastic zones become narrower. 
This reduces lithospheric thickness beneath the rift valley 
and narrows the width of rift valley (Figure 5). The 
geometric variables of the rift valley and plastic zones can 

be expressed in terms of the layer thickness H, the 
thickness of the upper plastic zone HN, and the total 
amount of surface extension AL: 

Ht = (1/2) AL (if the upper plastic zone is present) (14a) 

H b = (1/2) AL (if the lower plastic zone is present) (14b) 

AH = H t + H b (14c) 

WA = 2HN - AL (14d) 

W S = 2H N + AL (14e) 

where A H is the amount of lithospheric thinning due to 
rifting. We note that while the width of rift valley W A 
narrows, the distance between the flanks of rift shoulder, 
W S, increases. The difference between these two widths, 
therefore, reflects the amount of rift extension. More 
examples are shown in Figure 10. 

Even for rift zones at their early stages of rifting (such as 
the Lake Tanganyika of the East African Rift), stratigraphic 
records on sedimentary basins indicate narrowing of active 
deformation zones [Ebinger et al., 1984, 1987; Rosendahl, 
1987]. Other examples of narrowing of extension zone can 
be found in the Rhine graben [Villemin et al., 1986], the 
U.S. Atlantic passive margin [Steckler and Watts, 1982; 
Kligfield et al., 1984], and the Baikal rift [Zorin and 
Rogozhina, 1978]. 

DISCUSSION 

Stress Distribution in Plastic Zones 

It is easy to verify that the stress field in the upper 
plastic zone (H t < y < H N) is given by 

Ox = -PlgY + PlgHt + 2k (15a) 

Oy = - plgy + plgHt (15b) 

Xxy = 0 (15c) 
Similarly, in the lower plastic zone (HN < y < H-Hb) the 
stress field is given by 
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Ox = -plgY + (Pa-Pl)gHb + 2k (15d) 

Oy = - plgy + (pa-Pl)gHb (15e) 

Xxy - 0 (15f) 

For convenience, we define deviatoric stresses •x, •y, 
•xy as the stresses in excess of the lithostatic overburden, 
namely, in the upper plastic zone, 

•x = Ox + plgy = piglit + 2k 

•y = Oy + plgy = plgHt 

•xy = Xxy = 0 

(16a) • 

(16b) 

(16c) 

Similarly, in the lower plastic zone, 

•x = øx + PlgY = (Pa-Pl)gHb + 2k (16d) 

•y = Oy + plgy = (pa-Pl)gHb (16e) 
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•xy = Xxy = 0 (16f) 

Therefore, when the top and bottom boundaries of the 
plastic zones are flat and when the boundary stresses are 
uniform, the deviatoric stresses in the plastic zones are 
uniform. An example of the deviatoric stress solutions 
(equations (16)) are plotted in Figure 7 for a 10-km brittle 
lithosphere with a yon Mises yield limit of 2k = 80 MPa, a 
value that corresponds to the average brittle strength of 
continental crust [Brace and Kohlstedt, 1980]. 

Minimum Work Solution 

For the deformation of perfect plastic material the 
equilibrium equations alone do not always lead to unique 
stress and velocity fields. An example of this nonunique 
nature can be seen in Figure 1, where plastic solution 
permits point N at any level. The corresponding solutions 
satisfy all boundary conditions as well as the failure 
criterion. Therefore it is necessary to include supplementary 
mechanical considerations. A preferred solution is 
determined by energy considerations. 

The rate of increase of gravitational potential U of plastic 
zones is given by 

dU/dt = Jv - Plguy dxdy (17a) 

where Uy is the vertical velocity, and the integration should 
be performed over the entire plastic zones (areas A'NA and 
I'NI in Figure 1). 

The rate of energy dissipation E by the plastic zones in 
resisting the shear strength of the lithospheric material can 
be evaluated by 

dE/dr = Iv (1/2) (;}ui/;}x j + ;}uj/;}xi ) oij dxdy (17b) 
where ui (i = 1, 2) are the x, y components of velocity field 
and oij (i,j = 1, 2) are components of stress tensor. 

The rate of work W performed on the plastic zones by the 
two adjacent elastic plates and the inviscid substrate is 
given by 
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Fig. 7. Vertical distribution of deviatoric stresses along line SANIJ 
(Figure 1). (a) The long dashed line shows the horizontal deviatoric 
stress •_ as a function of depth. Lithostatic stress is plotted by a 
........................ ,•,,•.•. to/The long dashed nne shows the 

vertical deviatoric stress •y as a function of depth. Again 
lithostatic stress is plotted by a short dashed line. 

dW/dt = Js=•)v uiti ds (17c) 

where t i (i = 1,2) are the normal and tangential components 
of traction forces on plastic zone boundary and u i (i = 1,2) 
are the normal and tangential components of the velocity 
vector. The integration should be performed over the entire 
boundary of the plastic zones (lines A'A, AN, and NA and 
lines NI, II', and I'N in Figure 1). 

We know that the work done by the forces transmitted 
through the elastic plates and by the substrate must equal 
energy dissipated in the plastic deformation plus the change 
in potential energy: 
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dW/dt = dE/dt + dU/dt (18) 

It is straightforward to evaluate the rate of increase of 
gravitational energy of plastic zones during rifting using 
equations (15) and (17a): 

dU/dt = - uoPlg [(HN-Ht) 2 - (H-HN-Hb) 2] (19a) 
Similarly, the rate of work performed by the two elastic 
plates and the inviscid substrate can be elavulated using 
equations (15) and (17c): 

dW/dt = 2uok (H-Ht-Hb) 

- uoPlg [(HN-Ht) 2 - (H-HN-Hb) 2] (19b) 

stress distribution in the plastic zones should be 
reevaluated. In Appendix B, we derive analytic solutions for 
the stress and velocity fields of a viscous half-space with a 
flat surface. We show that although the stress field in the 
viscous half-space is a function of the width of the lower 
plastic zone, the total rate of energy dissipation in resisting 
viscous flow does not depend on the geometry of the lower 
plastic zone. Therefore, the conclusions we have reached 
for inviscid substrate hold valid for viscous substrate as 

well. 

The forces and bending moment acting on the elastic 

plate are calculated by directly integrating the stresses given 

in equations (15) along the edge of the elastic plate (line 

S ANIJ in Figure 1): 

To evaluate the rate of energy dissipation by plastic 
zones (equation (17b)), we note that velocity gradient is 
present only along the plastic zone boundaries (lines AN, 
A'N, NI, and NI' in Figure 1). The resultant tangential 
velocity component along these boundaries is • u o, and 
the resultant shear stress along these boundaries is k. The 
integration in equation (17b) is therefore replaced by the 
summation of stress work along lines AN, A'N, NI, NI' in 
Figure 1, which gives 

Fx TM IS ANI J •x dy 

= 2k(H-Ht-Hb) + (1/2)[plgHt 2 + (pa-Pl)gHb 2] 

+ plgHt(HN-Ht) + (pa-Pl)gHb(H-HN-Hb) 

Fy = IS ANiJ O'-y dy 

(20a) 

dE/dt = 2uok (H-Ht-Hb) (19c) 

From the expressions of equations (19a), (19b) and (19c), it 
is obvious that the fundamental relationship of equation 
(18) is satisfied. 

Examining the deformation history in Figure 5, we notice 
that the gravitational potential of the upper plastic zone is 
reduced during extension while that of the lower plastic zone 
is increased. The reduction rate of the gravitational 
potential is maximum when there is only an upper plastic 
zone (H=HN in equation (19a)). We argue that this is the 
preferred mode of deformation in rifts since the rate of work 
required by the elastic plates and ductile substrate is 
minimumized (equation (19b)). In this preferred solution for 
rifting (Figure 8), the upper plastic zone collapses under its 
own weight; the gravitational potential released is converted 
into energy dissipation in plastic flow. 

When a viscous substrate is considered, additional terms 

due to viscous stresses must be added to the boundary 
conditions of lower plastic zone (equation (8)), and the 

= (1/2)[piglit 2 + (pa-Pl)gHb 2] 

+ plgHt(HN-Ht) + (pa-Pl)gHb(H-HN-Hb) (20b) 

For a specific example with HN = H and p a = P l' the 
calculated forces F x and Fy are plotted in Figure 9a as a 
function of the surface extension AL. We note that the 

required driving force F x increases with the amount of 
extension. The increase in the required driving force is due 
to the deepening of the surface depression at the rift and the 
resulting horizontal forces created by the topography. This 
implies that a greater driving force is required to achieve a 
greater amount of extension. In this case quasi-static, 
stable rifting of brittle lithosphere occurs. If H N • H, the 
required extensional force depends also on the density 
difference between the lithosphere and asthenosphere (Figure 
9b). For a specified rift plastic zone geometry (a given 
H N), smaller driving force is required to cause rifting in a 
lithosphere overlying a less dense asthenosphere (Pa < Pl). 

DUCTILE SUBSTRATE 

Fiõ. $. A rift model in which the work required for lithospheric 
extension is minimized. In this rift there is only one plastic zone 
which forms the rift valley. The motion in the viscous substrate is 
induced by the horizontal separation of the lithospheric plates. The 
direction of viscous flow is shown by arrows on the stream lines. 

Uplift of Rift Shoulders 
The formation of a rift basin causes a mass deficit at rift 

zone and unloads the lithosphere. Since the lithospheric 
plates outside the rift zone have elastic strength, the 
lithosphere responses to the deepening rift basin by 
regional isostatic compensation: flanks of the rift shoulder 
deflect upward by elastic flexure, and the wavelength of the 
deflection is wider than the rift graben itself. The amount 
of elastic deflection can be calculated as a function of 

extension. 

The calculated vertical force Fy increases as the rift basin 
deepens (Figure 9a). This vertical force causes uplift of rift 
shoulders so that the unloading due to rift basin formation 
can be isostatically compensated. We have also calculated 
the bending moment Mo , which can cause uplift of rift 
shoulders as well. When the thin elastic plate outside the 
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Fig. 9. (a) Inset illustrates the forces and bending moment acting 
on the elastic lithosphere, which are calculated by integrating 
deviatoric stresses along line SAN. Solid line shows the horizontal 
deviatoric force F x as a function of total surface extension AL. 
Dashed linc shows the vertical load F y as a fun_•io_n_ o.f •L. This 
example is shown for H N = H, Pa = Pl = .•.UxlO" Mg/m-', k = 40 
MPa. (b) Dependence of the required extensional force on rift 
geometry and the density difference between the lithosphere and 
asthenosphere . This example is shown for AL = 0.1 H. When H N 
= H, there is only an upper plastic zone. When H N = 0, there is 
only a lower plastic zone. Note that for a given H N, the required 
extensional force is smaller for smaller values of pa - PI' 

rift plastic zone is subjected to a linc load Fy and a bending 
moment Mo at x-0, position location of the rift shoulder, 
the equilibrium small deflection õ(x) can be evaluated based 
on thin plate bending equations [Turcotte and Schubert, 
1982, p. 128]: 

15(x) =/2/(2D) exp(-x/t) [-Mo sin(x/t) + (Fy t + Mo)cos(x//)] 

where D = EH3/[12(1-•2)] is the flexural rigidity of the 
elastic plate, E is Young's modulus, and • is Poisson's ratio. 
The flexure length of the elastic plate is l =[4D/(p!g)] 1/4. 
For plausible values of E and • (Table 1), the flexural length 
I of a 10-km-thick elastic plate (H = 10 km) is about 35 
km. 

Vening Meinesz [1950] predicted a rift valley width which 
is controlled by the flexural length of an elastic plate. For 
a 10-km-thick elastic plate with flexural length of 35 km, 
the predicted Vening Meinesz width of rift valley is about 
28 km. In the present model, however, the initial width of 
the rift valley is proportional to the original thickness of 
the upper plastic zone H N. For the minimum work solution 
in which H N = H (Figure 8), we predict a 20-km initial rift 
valley width when the brittle plate thickness H is 10 km. 
For other cases in which H N < H, even narrower initial 
width of rift valley is expected. 

The calculated deflection for different stages of rifting is 
superimposed on lithospheric stretching in Figure 10. It is 
found that every kilometer of plate thinning will create 
roughly 600 m of flank uplift. We also found that about 
95% of rift shoulder uplift is due to the vertical force Fy and 
the effect of bending moment M o can be neglected in 
calculating first-order elastic deflection of the brittle layer. 
This approximation has been made in simple models of 
Vening Meinesz [1950], Heiskanen and Vening-Meinesz 
[1958], and Jackson and McKenzie [1983]. 

Several authors have considered other two processes that 
modify the uplifted rift shoulders: (1) erosion of the rift 
shoulders and sedimentary filling of the rift basin [e.g., 
King et al., 1988; Stein et al., 1988], and (2) additional 
long-term subsidence or uvlift due to reequilibrium of the 
thermally stratified lithosphere [e.g., Salveson, 1976, 
1978; McKenzie, 1978; Keen, 1985, 1987; Hellinger and 
Sclater, 1983; Steckler, 1985; Buck, 1986]. In this paper 
we attempt to focus only on the fundamental characteristics 
of rifting in brittle lithosphere. The erosion and thermal 
processes have not been integrated into the present model. 
A more obvious consequence of erosion is the smoothing of 
rift topography due to the sedimentary filling of rift valley. 
Results of Figure 9a suggest that a rift with smoother 
topography (corresponding to smaller AL) requires smaller 
driving force F x. It is plausible that continuous erosion 
might facilitate further development of a rift by reducing the 
required extensional force. 

Purely mechanical models such as those examined in this 
paper describe rapid rifting in which the rate of lithospheric 
extension is much faster than that of thermal conduction, so 

that isotherms in the lithosphere move with the deforming 
material. In this case, the thickness of the undeformed 

lithosphere depends only on the initial thermal state of the 
lithosphere. On the other hand, if the rate of extension is 
slow, thermal conduction and advection could significantly 
alter the thickness of the brittle lithosphere during rifting 
[e.g., England, 1983; Sawyer, 1985]. Mid-ocean ridge rifts 
are examples of thermally controlled rifts, in which a steady 
state lithosphere thickness is maintained [e.g.,Phipps 
Morgan et al., 1987; Lin and Parmentier, 1989]. The width 
of mid-ocean ridge rifts often varies significantly along the 
axis of slow spreading ridges with wider rift valley observed 
in the vicinity of cold transforms [e.g., Fox and Gallo, 
1984]. Since the width of a rift is proportional to the 
thickness of the brittle lithosphere, the wider rift valley 
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Table 1. Notation 

Symbol Quantity Value Used Units 

Ol 

o3 

Ox 

Oy 
_xy_ 
Cx, Cy, 
k 

Co 
on 

os 

p 

0 

Ux 

Uy 
uot 

Fy 
Mo 
8 

x 

y 

WA 
WS 
H 

HN 
Ht 
Hb 
AL 

1 

Pl 
Pa 
g 
U 

E 

W 

maximum compressive stres 
minimum compressive stres 
normal stress in the x-direction (horizontal) 
normal stress in the y-direction (vertical) 
shear stress 

stresses in excess of lithostatie overburden 

von Mises failure coefficient 40 

cohesive strength 0 
normal stress at top or bottom boundary 
shear stress at top or bottom boundary 
average stress, equal to - (Ol + 03)/2 
angle of internal friction 
counterclockwise angle between x-direction and 03 
velocity component in the x-direction 
velocity component in the y-direction 
velocity component along an ct line 
velocity component along a [• line 
horizontal force per unit length 
vertical force per unit length 
bending moment per unit length 
vertical deflection of elastic plate 
surface slope of deformed regions 
horizontal coordinate 

vertical coordinate 

width of active rift (rift graben) 
distance between rift shoulders 

initial thickness of brittle layer 
thickness of upper plastic zone 
depth of rift valley 
relief of plastic zone at bottom surface 
amount of lithospheric extension at surface 
flexural length of elastic plate 
density of brittle lithosphere 
density of ductile substrate 
acceleration of gravity 9.8 
gravitational potential of plastic zones 
rate of energy dissipation in resisting material 

shear strength 
rate of work by external surface forces on 

plastic zones 
Young's modulus 
Poisson's ratio 

flexural rgidity of elastic plate 
viscosity of ductile substrate 

3.0x1010 
0.25 

Pa 

Pa 

Pa 

Pa 

Pa 

Pa 

MPa 

Pa 

Pa 

Pa 

Pa 
o 

o 

-1 
ms 

-1 
ms 

-1 
ms 

-1 
ms 

Nm-1 
Nm-1 
N 

m 

o 

km 

km 

km 

km 

km 

km 

km 

km 

km 

km 

Mg m -3 
Mg m -3 

-2 
ms 

j s-lm-1 

js-1 m-1 

Js-1 m-1 
Pa 

Nm 

Pa s 

near transforms might simply indicate colder thus thicker 
lithosphere there. 

CONCLUSIONS 

To consider the role of faulting and brittle lithospheric 
deformation, we have formulated a model describing the 
formation of rifts as finite amplitude necking of an elastic- 
plastic layer overlying a fluid substrate. A perfectly plastic 
theology is a continuum description of faulting. This model 
illustrates two important aspects of rift evolution that 
previous models do not treat explicitly: the evolution of the 

rift width as extension proceeds and the finite strain that 
occurs. A region at yield initially develops with a width 
determined by the thickness of the layer and the geometry 
of the bounding slip lines. As extension proceeds, the 
surface within the rift subsides, and the width of the 

subsiding yield zone decreases. At any stage of rifting, 
material in regions just outside the yield zone is deformed 
but no longer deforming. The width of these deformed 
regions increases with increasing extension. Vertical forces 
due to the mass deficit of the rift depression will flex the 
elastic layer outside the yield zone, creating flanking 
uplifts. 
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Fig. 10. Predicted successive rift topography in a 10-km-thick lithospheric plate. The model includes the 
subsidence of rift graben and uplift of rift shoulders by n;gional isostatic compensation. Note that as the rift basin 
deepens, the active rift valley W A narrows, while the distance between rift shoulders W S widens. 

This model makes several important predictions for the 
morphology and structural evolution of rift zones. First, 
faulting should extend to the rift shoulders but not beyond, 
and the rift shoulders will widen as extension accumulates. 

However, the rift, defined as the region in which the surface 
is subsiding, narrows with increasing extension. Models in 
which necking is controlled by ductile flow predict that rifts 
should widen with increasing extension [e.g., Keen, 1985]. 
Field examples in rift zones show that the region of active 
faulting and subsidence narrows' with increasing extension. 
This indicates the important role of deformation within a 
brittle lithospheric layer in controlling rift structure and 
evolution. Second, since the required extensional force 
increases with the amount of extension, lithospheric 
stretching in rift zones is a quasi-static, stable process. 
Finally, because the yield zone will revert to elastic 
behavior if the external force causing extension is removed, 
the model predicts that the rift depression and flanking 
uplifts will be preserved indefinitely after extension stops. 

APPENDIX A: CALCULATION OF STRESS AND 

VELtXrrI• FIELDS IN PLASTIC ZONE 

Stress Field 

The stress field in plastic zones is constructed in a 
piecewise fashion downward from the upper surface and 
upward from the lower surface of the plastic zones. As an 
example, we show how to construct stress and velocity 
fields for the upper plastic zone (area ABCNC'B'A'O in 
Figures 4a and 4b). The procedure for constructing the 
lower plastic zone is the same except that different stress 
boundary conditions (equation (8)), should be used instead. 

Since the upper surface is a free surface, On and Os are 
zero along AOA'. To convert these values into the variables 
o and 0, we use the following expressions [Sokolovskii, 
1965, p. 14]: 

o = p' sinA/sin(A-/5') (A1) 

where 
0 = )• + • (A2) 

p'= [(o n + Cn/tanO) 2 + Os] 1/2 (A3) 

15'= tan-l[os/(On + Cn/tanO)] (A4) 

A = sin- 1 (sin/5'/sin0) (AS) 

•, = •r/2 + 1/2(-A-/5') (A6) 

and 0t is the slope of the upper surface. 
Starting from line AO, we can successively obtain stress 

fields for blocks ABO, BCO and CON according to 
following procedure. 

Step I (block ABO). Suppose we are to calculate both the 
x-y position of point P and the stresses at P from the given 
positions and stresses of points 1 and 2 along line AO 
(Figure 4a). To get the x-y coordinates of point P, we 
apply the the first recurrence formula (with + sign) of 
equation (6a) along line 1P (0t line) and the second formula 
(with negative sign) along line 2P ([• line). The two sets of 
recurrence formula in equation (6b) are then applied along 
line 1P and 2P to determine the values of o and 0 at point 
P. From the known stresses along boundary AO, such 
procedure can be continued to obtain stress solutions at any 
point in block AOB. 

Step 2 (block BOC). Due to a discontinuity in surface 
slope at point O, there is a stress singularity at the point O, 
for which a special formula for stress is needed 
[Sokolovskii, 1965, p. 26]: 

o = (1 + sin0) exp [(n-20) tan0] (A7) 
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Approaching point O from boundary BO and boundary CO, 
the 0 value change from n/2-lx to n/2. Using the known 
stress conditions along boundary BO and formula (A1), we 
can construct the slip line field in block BOC. 

Step 3 (block CON). Due to the symmetric requirement 
about the center line ON, 0 is •;/2 along boundary ON. This 
condition, together with the known stress values at OC, is 
sufficient for calculating stresses at all the points inside 
block CON. Readers are referred to Sokolovskii [1965, p. 
117] for more details in numerical procedures. 

Velocity Field 
Once the slip line field is determined, the velocity field 

can be constructed in a similar piecewise fashion (Figure 
4b). This time, however, we need to calculate velocity in 
the following order: first at block COC'N, second at blocks 
OBC and OC'B', and finally at blocks AOB and A'OB'. 
Horizontal velocity is equal to +u o along boundary ABCN 
and -Uo along A'B'C'N'. Along both boundaries, the vertical 
velocity is zero. The finite-difference forms of recurrence 
equations (12a) and (12b) are used in velocity calculations. 

where I.t is the mantle viscosity, z = x + iy and • = x- iy 
are complex variables. The velocity field is given by 

Uo .... l+i -1 u x + iUy = (•)[-iA+iA-B-B+iC-iC+(z-z)(- + -i)] 2n z+s z-s 

(B4a) 

where 

A = ln( t- z) Itt_7_}-_soo (B4b) 

- (B4c) 

. ..t--> + oo (B4d) C = in (t-z)lt= + s 

The rate of energy dissipation in resisting the viscous 
motion of the substrate is 

dEviscous/dt= OyyUy dx XxyU x dx (B5a) 

APPENDIX B: SOLUTIONS OF STRESS AND VELOCITY 

FIEI2)S IN VISCOUS SUBSTRATE 

In this section we derive the rate of work required to 
deform the viscous substrate underlying the brittle 
lithosphere. The mantle substrate is idealized as a viscous 
half-space with flat top surface. If no slip occurs at the 
interface between the brittle lithsosphere and the viscous 
subtrate, the velocities of the mantle substrate match those 

of the deforming brittle lithosphere at the interface. 
Considering a rift in which the base of the lower plastic 
zone is 2s wide, the required velocities at y = 0 are 

u x = -u o, Uy =0 for -oo < x < -s (B l a) 

u x = 0, Uy = u o for -s < x < +s (Blb) 

Ux = Uo, Uy = 0 for +s < x< +oo (Blc) 

where u x and Uy are the horizontal and vertical velocities 
and Uo is the horizontal velocity of the undeforming plates. 
For these boundary conditions, stress and velocity fields in 
the half-space can be determined uniquely by solving the 
equations on stress equilibrium and mass conservation [e.g., 
Batchelor, 1967]. 

We have obtained the stress and velocity solutions for 
this problem using the complex-variable techniques of 
Muskhelishvili [1953, p.584]. The stress field is given by 

2--(Oyy- Oxx) + iXxy = 
(gUo)[.(z+•)+i(-z+•)+2s + (z+•)+i(z-•)-2s.] 
n (z+s) 2 (z-s) 2 (B2) 

and 

2--(Oxx + Oyy) = 2 Re{(guø)[ © + (l+i) l} I[ z+s -z+s 
(B3) 

where the first term on the right-hand side, the energy 
dissipation due to the work of the vertical normal stress, is 
given by 

I_oo OyyUy dx = (z•tu•)[ _ ln(t)lt._ > 0 + ln(2s)l (SSb) 

and the second term, the energy dissipation due to the shear 
stress, is given by 

XxyU x dx = ( )[21n(t)lt-• oo- ln(t)lt.-> 0- ln(2s)] 
(B5c) 

Substituting Equations (B5b) and (B5c) into (B5a), we arrive 
at 

dEviscous tdt= (8gug)[h(01t--> oo- ln(t)lt--> 0l (B5d) 

We note that the right-hand side of equation (B5d) is not a 
function of the plastic zone width s. This implies that the 
total rate of energy dissipation of the viscous flow is the 
same for different sizes of the lower plastic zone. 
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