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Abstract

There is increasing evidence that submarine groundwater discharge (SGD) is an important source of water and dissolved
materials to the ocean. One of the primary tracers of this process is the quartet of radium isotopes (223Ra, 224Ra, 226Ra and
228Ra), whereby excess activities in surface waters can often be attributed to an input supplied via SGD. This approach
requires the radium end member activity to be well constrained, however, natural variability in groundwater radium may span
several orders of magnitude. Therefore, this variability is usually the main driver of uncertainties in volumetric SGD esti-
mates. To investigate the physical and biogeochemical controls on groundwater radium activities, we conducted a three-year
time series of radium and barium, a chemical analogue for radium, within the subterranean estuary of a coastal aquifer
(Waquoit Bay, MA, USA). Gonneea et al. (2013) demonstrated that movement of the salinity interface within the subterra-
nean estuary is driven by changes in the hydraulic gradient between groundwater level and sea level height. For Waquoit Bay,
seasonal scale sea level change, not groundwater level, was the main driver in hydraulic gradient fluctuations. Seasonal
changes in groundwater chemistry can be attributed to the resulting movement of the salinity transition zone between terres-
trial and marine groundwater. Landward movement of the interface results in a large release of radium isotopes
(226Ra = 1400 dpm 100 L�1) and barium (3000 nmol kg�1) associated with an increase in groundwater salinity. The
magnitude of these releases cannot be explained by in situ production or weathering alone, but is likely due to salinity driven
desorption from surface-bound sediment inventory. The timing of these peak concentrations is not always in phase with mod-
el-derived estimates of SGD; as a result, the groundwater concentration rather than the water flux is the main driver of Ra and
Ba inputs to Waquoit Bay surface waters. The behavior of the subterranean estuary as an ion exchange reservoir has impor-
tant implications for the timing and flux of various nutrients and pollutants that transit this region prior to discharge. In addi-
tion to modulating chemical fluxes via submarine groundwater discharge on seasonal time scales, transgression of the
subterranean estuary may alter the input of chemicals to the ocean on decadal and longer time scales. During this study,
the observed excess flux of 226Ra and Ba from the subterranean estuary can be accounted for with sorbed sediment pools
and accelerating rates of sea level rise in this region.
� 2013 Published by Elsevier Ltd.
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1. INTRODUCTION

Groundwater discharge at the land–ocean interface is
driven by a variety of physical processes (Robinson et al.,
2006; Mulligan and Charette, 2009; Michael et al., 2011).
Fresh, terrestrially-derived groundwater flows to the coast,
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where it mixes with seawater that has inundated the coastal
aquifer (marine groundwater), resulting in a deep circula-
tion cell that rises along the density stratified salinity tran-
sition zone (STZ) and discharges to surface waters (Moore,
1999; Michael et al., 2005; Charette, 2007). In addition,
short temporal period tidal and wave pumping result in sea-
water exchange at the sediment–water interface of the sub-
terranean estuary (Robinson et al., 2006; Li et al., 2009; Xin
et al., 2010; Abarca et al., 2013).

Water discharging across the ocean–aquifer boundary
has a unique 2chemistry since it is a complex mixture of ter-
restrial and marine groundwater that has experienced a
range of different residence times within the subterranean
estuary (STE), the below ground analogue to surface estu-
aries with similarly dynamic salinity and chemical gradients
(Moore, 1999). Trace metal and radionuclide cycling within
subterranean estuaries is expected to have a large influence
on total chemical flux discharging via submarine ground-
water discharge (SGD). Much of our knowledge of chemi-
cal cycling within this zone is derived from studies based on
single time points, with little known about the time scale or
magnitude of temporal variability (Bone et al., 2006; Cha-
rette and Sholkovitz, 2006; Paytan et al., 2006; Windom
et al., 2006; Beck et al., 2007; Perry et al., 2009; Beck
et al., 2010; Santos et al., 2011). Recently Gonneea et al.
(2013) showed that seasonal-scale variability in the coastal
hydraulic gradient results in dynamic movement of the STZ
and corresponding changes in the chemical environment of
the subterranean estuary.

Such seasonal variability is particularly relevant to
radioisotopic tracers that have extended our capability to
quantify SGD (Moore, 2003). These tracers, which include
the radium quartet (223Ra t1/2 = 3.66 d, 224Ra t1/2 = 11.4 d,
228Ra t1/2 = 5.75 y and 226Ra t1/2 = 1,600 y), are enriched in
groundwater, up to several orders of magnitude above
ambient seawater, and upon discharge to coastal waters
their activity is a function only of mixing and decay. How-
ever, to refine the utility of radium isotopes as SGD tracers,
it is necessary to understand their geochemical cycling with-
in the subterranean estuary. Indeed, estimates of SGD
based on radium tracers can only be resolved to the level
that groundwater end member radium activities can be con-
strained, and variability in groundwater radium activity re-
mains the largest source of uncertainty in radium tracer
based SGD calculations (Charette, 2007; Ferrarin et al.,
2008; Moore et al., 2008; Breier et al., 2010). Several studies
to date have identified a seasonal aspect to SGD based on
seasonal changes in radium inventories of surface waters
(Kelly and Moran, 2002; Hougham et al., 2008; Breier
et al., 2010). Seasonal cycles in surface water radium inven-
tories may result either from a change in water flux with no
concurrent change in the groundwater end member activity,
from a steady water flux and dynamic groundwater end
member, or some combination of the two. Thus, it is imper-
ative to understand radium cycling within the STE to make
accurate estimates of groundwater discharge based on ra-
dium tracers.

Most previous research on radium cycling within aqui-
fers has focused predominantly on inland aquifers without
dynamic mixing zones (Tricca et al., 2001; Ku et al., 2009).
Please cite this article in press as: Gonneea M. E., et al. Seasonal cycles i
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In these aquifers, the dominant source of radium is via
in situ production from uranium and thorium parents (Por-
celli, 2008). This is ultimately true of coastal groundwater
systems as well, however, the large inventory of radium ob-
served within coastal groundwater, particularly for the
long-lived isotopes 226Ra and 228Ra, cannot be supported
only by decay and recoil from aquifer sediments immedi-
ately at the coast (Rama and Moore, 1996). Indeed, model-
ing studies that have attempted to evaluate Ra cycling
within the STE have demonstrated that even relatively sim-
ple one-dimensional advective transport models are under-
constrained in terms of the chemical processes affecting Ra
distribution, particularly for the longer lived isotopes
(Krest and Harvey, 2003; Michael et al., 2011; Kiro et al.,
2012). This is due in part to the main factors that influence
radium partitioning between the dissolved and solid phases
(see recent review by Beck and Cochran, 2013). The salinity
of groundwater has long been recognized as a major influ-
ence on the radium partition coefficient (Elsinger and
Moore, 1980; Webster et al., 1995; Gonneea et al., 2008).
In addition, the presence of Mn–Fe oxides has been shown
to increase radium adsorption both in laboratory experi-
ments (Moore and Reid, 1973; Koulouris, 1996; Beck and
Cochran, 2013) and for in situ aquifer sediments (Gonneea
et al., 2008). Recent work by Beck and Cochran (2013) sug-
gests groundwater pH may potentially exert a similar mag-
nitude control on radium partitioning within the
subterranean estuary as groundwater salinity. To gain in-
sight into the mechanisms that control both temporal vari-
ability and the large and sustained flux of radium isotopes
from coastal aquifers, we evaluate both radium and barium
(Ba) cycling within the STE across a three-year time series
of groundwater chemistry. Ba serves as a chemical analogue
to Ra in terms of sorption and redox chemistry, yet is not
influenced by radioactive production/decay processes.

Within the Waquoit Bay subterranean estuary the dy-
namic seasonal movement of the STZ responds to oscilla-
tions in the aquifer hydraulic gradient that are dominated
by seasonal scale sea level variability (Gonneea et al.,
2013). Sediments within the mixing zone are alternately
inundated with terrestrial and marine groundwater over
the course of a year. This study explores the chemical cy-
cling induced by these seasonal changes. Here we present
the first monthly time series measurements of radium and
barium within a permeable sand subterranean estuary.
We will evaluate the relative importance of the geochemical
controls known to affect radium cycling within the Waquoit
Bay STE on seasonal time scales. Finally, to place the
chemical cycling of Ra and Ba within the STE in the con-
text of chemical fluxes via SGD, we use model derived
groundwater fluxes and salinity to calculate total fluxes of
Ra and Ba via SGD on the same monthly resolution as
the groundwater time series.

2. METHODS

2.1. Field site

Waquoit Bay is a shallow estuary on the southern shore
of Cape Cod, MA (Fig. 1). In this region, surface geology is
n radium and barium within a subterranean estuary: Implications
eochim. Cosmochim. Acta (2013), http://dx.doi.org/10.1016/
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Fig. 1. Waquoit Bay, MA, USA. The time series wells were installed within the mixing zone of the subterranean estuary and sampled monthly
during the three-year time series. STZ is the salinity transition zone where mixing between terrestrial and marine groundwater occurs. The
STZ moves in response to the hydraulic gradient across the subterranean estuary. During periods of high hydraulic gradient (generally low sea
level), the salinity interface moves seaward and Ra and Ba adsorb onto sediments, while during low hydraulic gradient, the interface moves
landward, causing release of these elements.
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dominated by sand and gravel glacial outwash plains
formed during the last glaciation �14,000 years ago. The
upper 10 m of the Cape Cod aquifer, where the Waquoit
Bay subterranean estuary is located, consists of fairly
homogenous permeable sediments (Cambareri and Eichner,
1998). Boreholes drilled through the STE of Waquoit Bay
reveal fine to coarse sand (0–10 m) underlain by fine to very
fine sand and silt (Cambareri and Eichner, 1998). Grain size
analysis of three sediment cores from the top 8 m within the
STE indicates that the shallow sediment has a grain size
range from 450 to 650 microns with no vertical structure
apparent (Charette, unpublished data). The primary sand
grains are quartz, with <1% of plagioclase along with traces
of clinopyroxene, amphibole, white mica, magnetite and at
least one other oxide (goethite or hematite) (Charette et al.,
2005). Polymineralic fragments in the sands probably repre-
sent granite, schist, amphibolite and gabbro. Within the
Waquoit Bay subterranean estuary, there are well-defined
regions of Fe-oxides (Charette et al., 2005) and Mn-oxides
that have been shown to sorb radium (Dulaiova et al., 2008;
Gonneea et al., 2008).

These highly permeable sediments result in high ground-
water recharge, with about half of precipitation becoming
recharge (Cambareri and Eichner, 1998). Precipitation aver-
aged 126 cm y�1 from 2004 to 2007 with no clear seasonal
cycle in rainfall (may be accessed at http://cis.whoi.edu/sci-
ence/PO/climate/index.cfm). Since rates of evapotranspira-
tion peak in summer months, the greatest potential for
groundwater recharge occurs during the winter and spring
(Michael et al., 2003). Waquoit Bay experiences diurnal
tides with an average tidal range of 1.2 m. At the head of
Waquoit Bay there is a well-defined subterranean estuary
Please cite this article in press as: Gonneea M. E., et al. Seasonal cycles i
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with a salinity transition zone that occurs over a narrow
region (�1 m thick (Charette et al., 2005)). The salinity
interface moves on seasonal time scales, which results in a
variety of chemical processes, including ion exchange
(adsorption/desorption reactions) and redox cycling (Cha-
rette and Sholkovitz, 2006; Gonneea et al., 2008; Abarca
et al., 2013; Beck and Cochran, 2013). Terrestrial groundwa-
ter discharge accounts for approximately 80% of the flow
through the subterranean estuary at the head of the bay
(Mulligan and Charette, 2006). Further out in the bay
(>100 m from mean sea level), where tidal and wave pump-
ing dominate, the discharge consists of recirculated seawa-
ter. SGD from this location is not considered here since it
does not transit the subterranean estuary and is unlikely
to be an important flux term for the long-lived radium iso-
topes (Michael et al., 2011).

2.2. Field methods

A series of AMSe Dedicated Gas Vapor Probe Tips
were installed with an AMSe Retract-a-Tip probe system
modified for long-term installation at the head of Waquoit
Bay within the subterranean estuary in October 2004
(Fig. 1, Charette and Allen (2006)). When the metal walls
of the piezometer are withdrawn from the ground, a stain-
less steel well point attached to 1=4 inch nylon tubing re-
mains. The well points, each with a screened interval of
2.5 cm, were installed at eight depths below the beach sur-
face across the subterranean estuary ranging from 2.4 to
5.4 m. Samples were collected every month from October
2004 to October 2007 during the same tidal cycle and phase
(four hours past high tide, �3 days before the monthly
n radium and barium within a subterranean estuary: Implications
eochim. Cosmochim. Acta (2013), http://dx.doi.org/10.1016/

http://cis.whoi.edu/science/PO/climate/index.cfm
http://cis.whoi.edu/science/PO/climate/index.cfm
http://dx.doi.org/10.1016/j.gca.2013.05.034
http://dx.doi.org/10.1016/j.gca.2013.05.034
Original text:
Inserted Text
(0-10 

Original text:
Inserted Text
450-650 

Original text:
Inserted Text
-1

Original text:
Inserted Text
http://cis.whoi.edu/science/PO/climate/index.cfm). 

Original text:
Inserted Text
(Michael 

Original text:
Inserted Text
2013; Charette and Sholkovitz, 2006; Gonneea et al., 2008

Original text:
Inserted Text
2006). 

Original text:
Inserted Text
Methods

Original text:
Inserted Text
Allen, 



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

4 M.E. Gonneea et al. / Geochimica et Cosmochimica Acta xxx (2013) xxx–xxx

GCA 8291 No. of Pages 15

15 June 2013
spring tide) to reduce the potential variability associated
with tidal fluctuations, although the salinity mixing zone
discussed here does not respond on tidal time scales (Gon-
neea et al., 2013). Dissolved oxygen, pH, Eh and salinity
were measured with a YSIe sonde after pumping approxi-
mately 1 L (6–13 well volumes, flow rate approximately
200 ml min�1). Samples were then collected for salinity,
trace metals, and radium isotopes (4 L). Salinity, pH, Eh
and dissolved oxygen were stable throughout the sampling,
as verified by YSIe readings, thus we assume that water
was being extracted from the same density horizon, and
not across density gradients (i.e. not from different depths
at this fixed location).

A sediment core down to 7 m was collected in June 2006
from the region of the groundwater time series. Collection
and geochemical analysis of this core has been described
previously and is presented here to aid interpretation of
groundwater geochemical cycling (Dulaiova et al., 2008;
Gonneea et al., 2008). All sediment trace metal data is for
the fraction associated with amorphous and crystalline oxi-
des, as defined by a hydroxylamine hydrochloride and ace-
tic acid chemical leach, with the exception of ion
exchangeable, organic and oxide associated fractions used
to calculate sediment inventory (Hall et al., 1996). All
radionuclide data is for the whole sediment, with the excep-
tion of the adsorbed 226Ra values used to calculate sediment
inventory (Dulaiova et al., 2008; Gonneea et al., 2008).

2.3. Laboratory methods

Radium isotopes were extracted with Mn fibers, rinsed
with Ra-free water to remove salts that interfere with
counting (Sun and Torgersen, 1998), partially dried and
placed within a delayed coincidence counter to measure
224Ra and 223Ra (Moore and Arnold, 1996). The fibers were
counted at four weeks to correct for 228Th supported 224Ra
on the fibers. Samples were then ashed (820 �C, 16 h),
homogenized and capped with epoxy, prior to being placed
within a well-type gamma spectrometer to measure 226Ra
(via 214Pb at 351.9 keV) and 228Ra (via 228Ac at 911 keV)
(Charette et al., 2001). All detectors were standardized
using a NIST-certified Standard Reference Material sorbed
to Mn fibers and prepared in the same manner as the sam-
ples. Detection limits calculated with the Currie Hypothesis
test for these samples were 0.2 dpm (5 dpm/100 L for 4 L
groundwater samples) (De Geer, 2004). 224Ra and 228Ra
activities were decay corrected to the time of collection.
223Ra activities were at or near detection for a significant
portion of the time series so are not reported here. Sediment
226Ra (via 214Pb at 351.9 keV), 228Ra (via 228Ac at 338 keV)
and 224Ra (via 212Pb at 238 keV) activities were measured
on planar-type gamma spectrometers after aging epoxied
samples for at least 3 weeks to ensure secular equilibrium
between 226Ra and its daughter radionuclides. The program
GESPECOR, a Monte Carlo based software used for cali-
bration of pure Ge detectors, was used to calibrate the
detector.

Salinity was measured with a Guideline AutoSal instru-
ment. Groundwater concentrations of dissolved Mn, Fe
and Ba were analyzed via inductively coupled mass
Please cite this article in press as: Gonneea M. E., et al. Seasonal cycles i
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spectrometry on a Finnigan Element II high resolution
ICP-MS at Woods Hole Oceanographic Institution. Each
sample was diluted 1:20 with 1 N Optima nitric acid. In-
dium (In) was used as an internal standard to account for
instrument drift and matrix effects of the solution. Count
rates for all elements were normalized to In measured in
samples and standards.

2.4. Hydrology model

Groundwater flux through the STE at Waquoit Bay was
evaluated with a simulation model of groundwater flow and
salt transport using the USGS code SEAWAT (Mulligan
et al., 2011). The model was used to represent conditions
at Waquoit Bay but was not calibrated to field data, hence
results are considered approximate and largely qualitative.
However, model sensitivity was sufficient to evaluate the
importance of water flux versus groundwater concentration
on radium and barium chemical fluxes via submarine
groundwater discharge.

Briefly, the simulation model is a two-dimensional cross
section of a homogeneous unconfined aquifer below a slop-
ing beach (0.08 m/m). The simulated domain measures
130 m long and 10 m deep. Flow boundary conditions in-
clude variable head along the upland margin and seaward
edge, with no flow across the bottom of the domain and
no recharge across the top boundary. The upland boundary
is coincident with the location of an observation well,
CCC1, which was monitored at 15-min intervals during
most of the geochemical sampling (Gonneea et al., 2013).
Monthly average groundwater levels at this well were spec-
ified as the upland boundary. The marine boundary was
specified as the monthly average sea level from the
NOAA Woods Hole tidal gauge (available at http://tide-
sandcurrents.noaa.gov/station_info.shtml?stn=8447930%
20Woods%20Hole,%20MA) for the period from January
2005 to May 2007. No sea level data from Waquoit Bay exist
for the duration of the field campaign and so the Woods
Hole gauge is used as a surrogate. Linear interpolation be-
tween monthly groundwater levels and sea level data points
was used to estimate boundary conditions at 15-day inter-
vals to coincide with the stress periods used in the model.
Within each 15-day stress period, tidal and upland bound-
ary conditions remain constant but these values can vary
from one stress period to the next. Simulations were run
for the equivalent of 2.3 y (January 2005 to May 2007),
the length of time data were available to define the upland
boundary condition. Model-derived SGD results were aver-
aged over 30 days to coincide with the time series chemical
data and binned into five different groups based on the salin-
ity of the discharging water. Additional details of the do-
main and SEAWAT-specific model parameters can be
found in Mulligan et al. (2011).

3. RESULTS

The time series offers a window into the chemistry of the
subterranean estuary at a fixed point over 3 y. When plot-
ted as a time series, with time on the x-axis, movement of
the salinity transition zone appears as a vertical oscillation
n radium and barium within a subterranean estuary: Implications
eochim. Cosmochim. Acta (2013), http://dx.doi.org/10.1016/
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between periods of high and low salinity at this fixed loca-
tion. Results from the three-year time series are presented in
contour plots in Fig. 2 to highlight the seasonal oscillations
in the various parameters, in box and whisker plots in Fig. 3
to demonstrate the depth dependence and the total variabil-
ity observed in the parameters and as element versus salin-
ity and pH to reveal trends sensitive to those parameters in
Fig. 4.

3.1. Salinity transition zone

The salinity of the subterranean estuary oscillated
throughout the three-year time series and ranged from 0
to 28 (Fig. 2a). At this location within the STE, the depth
range that experienced the largest salinity excursions from
a baseline low salinity was 3.1–4.1 m (Fig. 3a). At this
depth, the salinity was below 2 at least 50% of the time.
Above this, the STE was dominated by terrestrial ground-
water throughout the measurement period, while below
4.1 m, the salinity increased with depth, indicating the
increasing dominance of marine groundwater. Salinity
excursions within the upper fresh portion of the STE were
observed periodically throughout the time series (Novem-
ber 2004, October 2005, February 2006 and June 2007)
and likely resulted from infiltration of bay water during a
high tide and subsequent density driven mixing into the
upper STE. In addition, during February 2006, the entire
STE was dominated by terrestrial groundwater, possibly
due to the sustained high hydraulic gradient from Decem-
ber 2005 to March 2006 (Gonneea et al., 2013). Salinity
Fig. 2. Time series data from October 2004 to October 2007 for (a) salinit
manganese. Also shown (f) is the sorption potential, as determined by the
and (c). Data were contoured in Matlab using a cubic interpolation.

Please cite this article in press as: Gonneea M. E., et al. Seasonal cycles i
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maximums occurred throughout the entire vertical section
of the STE in October 2004, June–December 2005, May
2006, August–November 2006 and August 2007. pH does
not show as pronounced seasonal variability as salinity.
pH is generally 7–8 in the deep marine groundwater, and
lower (5–6) in the terrestrial groundwater and mixing zone
(Fig. 2b). The region above 4.1 m tends to have the largest
dynamic range in pH (Fig. 3b).

3.2. Trace metals and radium

Groundwater Ra activities fluctuated in concert with the
salinity changes in the STE. 226Ra ranged from below detec-
tion (5 dpm 100 L�1, with approximately 20% of the time
series radium samples below detection, mostly terrestrial
groundwater samples) to 1400 dpm 100 L�1 (Fig. 2b). Estu-
arine release at intermediate salinities is apparent, with peak
activities around salinity 15 (Fig. 4c). A radium sorption
edge is apparent, with no 226Ra activity >200 dpm 100 L�1

above pH 6, indicating that pH is a potential control on ra-
dium activities within the STE (Fig. 4d). Activities within
the marine groundwater were relatively constant at 30 to
130 dpm 100 L�1, while the largest releases were observed
in the sediment from 3.1 to 4.1 m that was inundated by ter-
restrial groundwater at least 50% of the time (Fig. 3c).
Groundwater 224Ra and 228Ra displayed similar seasonal
oscillations and activity extremes, from detection to maxi-
mum activities of 11,600 and 5300 dpm 100 L�1, respectively
(Supplementary Figs. 1 and 2). Total sediment radium
showed little variation with depth and averaged 370 ±
y, (b) pH, (c) dissolved 226Ra, (d) dissolved barium and (e) dissolved
change in salinity from time point tn+1 � tn. Note the log scale in (b)

n radium and barium within a subterranean estuary: Implications
eochim. Cosmochim. Acta (2013), http://dx.doi.org/10.1016/
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60 dpm kg�1 for 226Ra, 410 ± 90 dpm kg�1 for 228Ra, and
700 ± 160 dpm kg�1 for 224Ra (supported by 228Th). We as-
sume that 224Ra is in secular equilibrium with 228Th since sed-
iments were aged at least three weeks prior to counting.

Like its alkaline earth counterpart (Ra), dissolved Ba
concentrations also oscillated with the movement of the
STZ from less than 10 to greater than 3,000 nmol kg�1

(Fig. 2c). The greatest Ba increase occurred during high
salinity periods in the band of sediments from 3.1 to
4.1 m. Dissolved Ba was relatively constant (100–
400 nmol kg�1) in the high salinity portion of the STE
(Fig. 3d). As with 226Ra, peak concentrations of Ba are ob-
served around salinity 15 (Fig. 4a). However, estuarine re-
lease is apparent from a salinity of �2.

Oscillations between high and low concentrations were
observed in the dissolved Mn and Fe records (Fig. 2d and
Supplemental Fig. 1). Dissolved Mn tracked the increase
in salinity as the salinity transition zone moved landward
and seaward. Note however that the dissolved Mn was high
(30 lmol kg�1) only within the core of the high salinity zone
(depth >4 m), a region that was marked by sediments
coated with Mn-oxides (Figs. 3b and 4e). Above this region,
there were minimal fluctuations in dissolved Mn with a few
large excursions (80–140 lmol kg�1) above the relatively
constant <1 lmol kg�1 background (Fig. 4e). Dissolved
Fe was also quite low, at or below detection (0.1 lmol kg�1)
for the majority of the time series. Dissolved Fe increased to
Please cite this article in press as: Gonneea M. E., et al. Seasonal cycles i
for groundwater derived chemical fluxes to surface waters. G

j.gca.2013.05.034
20–80 lmol kg�1 several times at shallow depths, coincident
with the first occurrence of surface adsorbed Fe-oxides on
the sediment (Supplemental Fig. 2).
4. DISCUSSION

4.1. Periodic release of radium and barium via ion exchange

Large releases of radium and barium into the groundwa-
ter were observed in the subterranean estuary of Waquoit
Bay and corresponded to fluctuations in salinity. The salin-
ity of the STE at the time series location fluctuated as the
salinity transition zone moved in response to changes in
the hydraulic gradient (Gonneea et al., 2013). Periods dom-
inated by marine groundwater corresponded to low hydrau-
lic gradients and landward movement of the STZ, while
increases in the hydraulic gradient resulted in seaward
movement of the STZ and freshening at the time series loca-
tion. The radium and barium partition coefficients (Kd, the
ratio of adsorbed to dissolved species) are a function of
salinity, such that low salinity periods favor the adsorbed
phase, while an increase in salinity results in a greater dis-
solved fraction (in these sediments in situ Ra Kd � 1000
(L/kg) at salinity 0 and Kd � 90 (L/kg) at salinity 20 (Gon-
neea et al., 2008) and Ba Kd � 1000 (L/kg) for glacial/fluvial
material (Grutter et al., 1992)). In addition, Kd may be in-
n radium and barium within a subterranean estuary: Implications
eochim. Cosmochim. Acta (2013), http://dx.doi.org/10.1016/
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versely related to the groundwater pH, with greater dis-
solved Ra expected at lower pH (Beck and Cochran, 2013).

To determine whether pH or salinity controlled the dis-
solved Ra and Ba concentrations over the time series, we
examined the relationship between changes in salinity and
pH and dissolved Ba and 226Ra across the wide concentra-
tion ranges present in the STE. A change is defined as the
difference in the parameter (i.e. salinity, pH, 226Ra or Ba)
from time point n to time point n + 1. Thus a positive value
indicates an increase in that parameter with time (Fig. 5).
According to the Kd dependence described above, we expect
an increase in salinity to desorb radium and barium, i.e. a
positive relationship between changes in salinity and dis-
solved concentrations, while an increase in pH will result
in sorption, i.e. a negative relationship between pH and
changes in dissolved concentrations. We observe a positive
trend between changes in salinity and changes in 226Ra and
Ba (Fig. 5 and Supplemental Table 1). However, this rela-
tionship varies with location in the subterranean estuary.
For example, there is a much lower slope between salinity
changes and corresponding Ba and 226Ra changes within
the region of Mn–Fe oxide coated sediments (5.5 m) com-
Please cite this article in press as: Gonneea M. E., et al. Seasonal cycles i
for groundwater derived chemical fluxes to surface waters. G
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pared to sediments above this region, likely due to the high
affinity of Mn-oxide coated sediments for Ba and Ra. While
we observe the expected negative relationship between
changes in pH and dissolved 226Ra and Ba, this relationship
is never significant (Fig. 5 and Supplemental Table 1). Fur-
ther evidence that changes in pH are not associated with
sorption and release of Ba and Ra is provided by the lack
of Ba and Ra variability at 2.4 m, where the pH range is
the most dynamic (5–7), but low salinity is maintained.
Given the occurrence of the highest dissolved Ba and Ra
within the region of the largest salinity gradients over time
(3.1–4.1 m) and the significant positive relationship between
changes in salinity and 226Ra (from 3.4 to 4.2 m) and Ba (at
3.4, 4.0 and 5.0 m), we conclude that ion exchange reactions
were driving the large seasonal releases of these elements.
These adsorption/desorption reactions occur on a timescale
of hours such that the dissolved Ra in groundwater is ex-
pected to reach equilibrium rapidly with the sediment Ra
pool (Gonneea et al., 2008).

The similar behavior of Ba and Ra, which suggests that
they had the same source and were driven by similar pro-
cesses, has been observed previously in the STE (Charette
et al., 2005; Gonneea et al., 2008; Kiro et al., 2012). Consid-
ering the three orders of magnitude range in Ba and 226Ra
concentrations, these elements were well correlated over
time and at different depths and groundwater salinities with-
in the STE (all data r2 = 0.5, p < 0.0001). Hence, 226Ra was
behaving like a stable element, and therefore its cycling did
not appear to be controlled by production from its sedi-
ment-bound parent 230Th. Modeling results in the Waquoit
coastal aquifer further support this conclusion. Michael
et al. (2011) determined steady state 226Ra activities as a
function of different production and retardation rates along
a flow path (i.e. as a function of time) within both the terres-
trial and marine groundwater regions of the subterranean
estuary. This model was not able to reproduce the spatial
variability evident in Waquoit Bay subterranean estuary so-
lely as a function of the groundwater residence time and
salinity, likely due subsurface heterogeneity in production/
retardation factors and nonsteady-state conditions (Michael
et al., 2011). This is in contrast to a similar study of the Dead
Sea aquifer, where the groundwater 226Ra activity was ex-
plained by mixing between modified Dead Sea water mixing
with Ra-poor terrestrial water (Kiro et al., 2012).

We hypothesize that the sediments of the subterranean
estuary were acting as a geochemical capacitor for 226Ra
and Ba on seasonal time scales as previously proposed for
the Ganges–Brahmaputra River Delta by Moore (1997).
During periods of low hydraulic gradient across the STE,
landward transgression of the STZ inundated sediments
that had previously been bathed in fresh water with high
salinity water. This salinity increase led to Ba and 226Ra
desorption from sediments as a result of the lower partition
coefficient for these elements at high salinity. When the
hydraulic gradient increased, the flux of fresh water over
these sediments resulted in an increase in sorption, due to
both the decrease in salinity (and concurrent increase in
the partition coefficient) and the prior removal of Ba and
226Ra from sediment surfaces during periods of high salin-
ity (i.e. there was an increase in the ion exchange capacity).
n radium and barium within a subterranean estuary: Implications
eochim. Cosmochim. Acta (2013), http://dx.doi.org/10.1016/
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Previous studies of the STE of Waquoit Bay have
highlighted the importance of redox cycling of Mn and
Fe oxides to alkaline earth elements (such as Ba and Ra)
that have an affinity to sorb to these oxide phases (Charette
and Sholkovitz, 2006; Dulaiova et al., 2008; Gonneea et al.,
2008). While surface bound Ra and Ba on sediments are not
directly controlled by groundwater redox conditions, these
elements do have an affinity for Mn and Fe oxides and thus
were found in the core of the reducing marine groundwater
(Spiteri et al., 2006; Gonneea et al., 2008). Our data support
the idea that the Mn oxide cycle responded to seasonal oscil-
lations in salinity, as the region with elevated dissolved Mn
fluctuated concurrently with salinity (Fig. 2d). The highest
concentration of dissolved Mn was found within the region
of the subterranean estuary dominated by marine ground-
water, at depths greater than 4.5 m for much of the year,
and coincided with the region of high sediment bound
Mn-oxides. This region of Mn oxides likely helped maintain
the relatively constant 226Ra activities found in the saline re-
gion of the subterranean estuary due to effective scavenging
of 226Ra, as the Mn oxide region has about three times the
adsorbed 226Ra compared to sediments in other portions
of the STE (Gonneea et al., 2008). Beck and Cochran
(2013) suggest that the presence of sediment Mn–Fe oxide
coatings effectively buffer dissolved concentrations, as we
Please cite this article in press as: Gonneea M. E., et al. Seasonal cycles i
for groundwater derived chemical fluxes to surface waters. G

j.gca.2013.05.034
observe here in the Mn and Fe curtain regions of the subter-
ranean estuary, where dissolved 226Ra and Ba are elevated
but temporally stable. However, there is no evidence for
Mn oxide dissolution (i.e. high dissolved Mn) in the region
between 3.1 and 4.1 m concurrent with the dynamic cycling
of Ba and Ra. Thus dissolution and precipitation of Mn oxi-
des do not appear to be driving the large seasonal releases of
Ba and Ra. However, it is the presence of Mn–Fe oxides on
sediments throughout the subterranean estuary that resulted
in increased partitioning between the adsorbed and dis-
solved phase since sediments coated with oxides have higher
Kd’s than sediments without these oxides (Gonneea et al.,
2008; Beck and Cochran, 2013). Subterranean estuary sedi-
ments outside the extremely enriched Fe and Mn curtains
have adsorbed Mn of 50–100 lmol kg�1 and adsorbed Fe
of 3000–8000 lmol kg�1. Indeed, we propose that it is the
increase in Fe–Mn oxides on sediments within the STE com-
pared to inland aquifer sediments that is responsible for
these sediments sorbing radium and barium from terrestrial
groundwater flowing into the subterranean estuary. Re-
cently Beck and Cochran (2013) reported a 4–5-fold increase
in Mn and Fe content over eight months in “pristine” sands
deposited on a Virginia beach for replenishment, demon-
strating that sediment alteration within the coastal subterra-
nean estuary occurs rapidly.
n radium and barium within a subterranean estuary: Implications
eochim. Cosmochim. Acta (2013), http://dx.doi.org/10.1016/
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We also considered the importance of barite (BaSO4) for-
mation on scavenging Ra from solution, since this
mechanism has been shown to be important in ocean sedi-
ments (Paytan et al., 1996), laboratory experiments (Beck
and Cochran, 2013) and in the Dead Sea aquifer (Kiro
et al., 2012). If such a mechanism were important we would
expect removal of dissolved Ba and Ra concurrently with
an increase in salinity. In fact, the opposite is observed, with
an increase in salinity concurrent with groundwater Ba and
Ra concentrations, at times above barite saturation. Ba con-
centrations that exceed theoretical barite saturation have
been observed many times in the subterranean estuary, per-
haps due to slow kinetics of barite precipitation or stabiliza-
tion with organic ligands (Shaw et al., 1998; Windom and
Niencheski, 2003; Charette and Sholkovitz, 2006; Santos
et al., 2011). Thus, barite formation does not appear to con-
trol dissolved Ba and Ra within the time series data presented
here. Thus, we do not believe barite formation controls dis-
solved Ba and Ra within the time series data presented here.

4.2. Potential Ra and Ba fluxes to Waquoit Bay surface

waters

We evaluated the influence of temporally changing
groundwater end members on SGD-associated fluxes to
Waquoit Bay surface waters by combining the results of
the hydrodynamic model with the time series chemical data.
Given the dynamic character of the salinity transition zone,
the end member chemistry of discharging water was ex-
pected to be a mixture of water from different regions of
the STE, as has been shown previously by Michael et al.
(2011). The results from the hydrodynamic model provided
both total flux and the salinity of that flux. Thus, we di-
vided the groundwater flux into different pools based on
the salinity of the discharging water. To do this, the mod-
eled groundwater discharge was sorted into five different
salinity groups (0–5, >5–10, >10–15, >15–20 and >20).
Groundwater-derived Ra and Ba fluxes were then calcu-
lated by multiplying average groundwater radium and bar-
ium concentrations times water fluxes within the same
salinity groups. Fluxes were determined for each month
from January 2005 through May 2007 (Fig. 6).

Such a salinity-weighted approach to determining
groundwater chemical fluxes assumes that the chemistry
of the groundwater sampled corresponds to the chemistry
of the modeled water flux for each salinity group. Michael
et al. (2011) demonstrated that the Ra activity of ground-
water was closely tied to the sampling location within the
STE. The 226Ra activity reported by Michael et al. (2011)
for different regions within the STE tend to correspond to
similar salinity groups used in the present study, with the
exception of 226Ra activity used for the >20 salinity marine
groundwater. In the time series data presented here, 226Ra
in the >20 salinity fraction was 41 ± 7.7 dpm 100 L�1, a va-
lue much closer to the activity Michael et al. (2011) re-
ported for discharge away from the mixing zone
(�23 dpm 100 L�1) than the activity of the deep marine
groundwater (�290 dpm 100 L�1) below the mixing zone
(Michael et al., 2011). Thus the fluxes presented here asso-
ciated with the marine groundwater end member may be
Please cite this article in press as: Gonneea M. E., et al. Seasonal cycles i
for groundwater derived chemical fluxes to surface waters. G
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underestimates if much of the saline discharge originates
below the mixing zone.

To calculate the chemical flux of Ra and Ba associated
with groundwater discharge, we only considered water dis-
charging across the full mixing zone of the model (the re-
gion beginning at the CCC1 well and extending 130 m
seaward, see Gonneea et al. (2013) for further details).
We did not consider recirculated water being pumped in
and out of sediments further out in the bay (i.e. >100 m
from mean sea level), which may be a significant flux of
recirculated seawater. This water flux was not considered
in the present study because it has the same 226Ra activity
as bay water (Michael et al., 2011) and thus likely had no
net effect on the 226Ra flux associated with groundwater
transport through the STE.

There is a strong seasonality in the modeled water flux
and salinity of discharging water (Fig. 6). The average
shoreline normalized terrestrial groundwater flux was
3.4 ± 0.46 (minimum 2.6, maximum 4.6) m3 m�1 day�1

and varied little with time. There was a large temporal var-
iability in discharge of marine groundwater of 1.6 ± 1.4
(minimum 0.39, maximum 4.7) m3 m�1 day�1 and associ-
ated submarine groundwater recharge (SGR), the inflow
of bay water into the STE. Model-derived groundwater
fluxes of both terrestrial (salinity of 0) and marine (bay
water salinity of 30) fluxes compare well with previously re-
ported estimates. Terrestrial groundwater discharge rates
along the head of Waquoit Bay determined from a variety
of techniques are reported to be 1.6–1.8 m3 m�1 day�1 (re-
charge method, Cambareri and Eichner (1998)), 3.5 m3 -
m�1 day�1 (seepage meters, Michael (2004)) and
4.0 m3 m�1 day�1 (Darcy method, Mulligan and Charette
(2006). Marine groundwater discharge estimates are more
variable between 0.6 m3 m�1 day�1 (radium isotopes, Mul-
ligan and Charette (2006)) and 6.9 m3 m�1 day�1 (seepage
meters, Michael (2004)).

Groundwater radium activities and barium concentra-
tions were not in phase with the water flux, with maximum
concentrations occurring in October 2005, May 2006,
December 2006, and July 2007 (Fig. 6). Water fluxes peaked
from May to October 2005 and 2006. Since the magnitude
of the change in groundwater radium activities and barium
concentrations was greater than the relative change in water
flux, the amount of radium and barium exported to the bay
was dominated by the changes in STE radium activities and
barium concentrations. The range in 226Ra and Ba fluxes
was 110–5710 dpm m�1 d�1 and 0.1–8.4 mmol m�1 d�1.
This 226Ra flux compares well to a previous flux of
1080 dpm m�1 d�1 in July 2003 reported by Mulligan and
Charette (2006). Integrating across the 2 y of model and
time series data (January 2005 to December 2006), the
shoreline normalized radium and barium fluxes were 67–
84 � 104 dpm m�1 y�1 for 226Ra, 160–280 � 104 dpm m�1 -
y�1 for 228Ra, 300–430 � 104 dpm m�1 y�1 for 224Ra, and
0.59–0.70 mol m�1 y�1 for Ba (Table 1).

Potential uncertainty in these chemical flux measure-
ments may stem from either variability in water flux or
end member concentration. As discussed above, water
fluxes are well within previously reported values, giving us
some confidence in this parameter. Uncertainty in end
n radium and barium within a subterranean estuary: Implications
eochim. Cosmochim. Acta (2013), http://dx.doi.org/10.1016/
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Fig. 6. (a) Model derived submarine groundwater discharge, (b) 226Ra flux calculated with water fluxes from the hydrologic model and (c)
contemporaneous 226Ra end member activities. The water and 226Ra fluxes and 226Ra groundwater activities are divided into five different
salinity end members. Ra flux is not in phase with water flux throughout much of the record since the groundwater end member variability
dominates the radium flux term.

Table 1
Water, Ba and 226Ra budget for the Waquoit Bay subterranean estuary.

Water flux (m3 m�1 y�1) Ba flux (mol m�1 y�1) 226Ra flux (104 dpm m�1 y�1)

Year 1a Year 2 Year 1 Year 2 Year 1 Year 2

Input to STE

Terrestrial groundwaterb 1200 1200 0.15 0.14 18 18
Submarine groundwater recharge (SGR)c 730 620 0.05 0.04 11 9.3

Output from the STE

Submarine groundwater discharge 1930 1820 0.70 0.59 67 84

Excess flux from STE

(output–input) – – 0.50 0.41 38 57
% of input – – 250 230 130 210

a Hydrologic model year 1/2 driven by 2005/2006 groundwater and sea level records. All fluxes are normalized to per meter of shoreline. To
scale fluxes to the entire head of Waquoit Bay for comparison with previous work (i.e. Mulligan and Charette, 2006; Michael et al., 2011),
multiply by 610 m.

b Terrestrial groundwater end member used was: Ba 120 nmol kg�1 and 226Ra 15 dpm 100 L�1 (Charette and Sholkovitz, 2006; Gonneea
et al., 2008).

c Waquoit Bay water (source of recirculating marine groundwater) Ba is 70 nmol kg�1 and 226Ra 15 dpm 100 L�1 (Charette et al., 2001,
2006; Charette, unpublished data).
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member concentrations is difficult to determine since Ba
and 226Ra concentrations were under sampled—that is
there were only eight measurements at each sampling time
point. While this approach allows us to account for
temporal variability, which we found to be large, we cannot
determine the full range of potential Ba and 226Ra values
within the STE at each time point. We discuss in the
next section how the chosen end members impact our eval-
Please cite this article in press as: Gonneea M. E., et al. Seasonal cycles i
for groundwater derived chemical fluxes to surface waters. G

j.gca.2013.05.034
uation of the 226Ra and Ba budgets of the subterranean
estuary.

4.3. Seasonal budgets of 226Ra and Ba within the

subterranean estuary

Since the dynamic temporal scale of the subterranean
estuary was seasonal, we expect fluxes into and out of the
n radium and barium within a subterranean estuary: Implications
eochim. Cosmochim. Acta (2013), http://dx.doi.org/10.1016/
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system to be equal over the course of a year if the system is
at steady state. To determine if the subterranean estuary Ba
and 226Ra budgets were in balance during the two complete
years with water flux data, we calculated inputs to the STE
from both terrestrial groundwater and recharging marine
groundwater (Table 1). Input to the STE from terrestrial
groundwater was calculated using the fresh water flux from
the hydrologic model and terrestrial groundwater end mem-
ber Ba and 226Ra concentrations. Groundwater flowing
into the Waquoit Bay subterranean estuary has a Ba con-
centration of 60 ± 60 nmol kg�1 (n = 44, measured across
multiple years and seasons) and a 226Ra activity of
11 ± 4 dpm 100 L�1 (n = 14) (Charette unpublished data;
Charette and Sholkovitz, 2006; Gonneea et al., 2008). We
used end member concentrations of 120 nmol kg�1 Ba
and 15 dpm 100 L�1 226Ra to ensure we considered maxi-
mum potential fluxes into the STE. The input from submar-
ine groundwater recharge was derived from the bay water
Ba and 226Ra end member concentrations and the SGR flux
in the hydrologic model (Table 1). Bay water Ba and 226Ra
has likewise been measured in multiple seasons and years
and is 56 ± 14 nmol kg�1 (n = 68) and 11 ± 4 dpm 100 L�1

(n = 53) (Charette unpublished data; Charette et al., 2001;
Charette and Sholkovitz, 2006). Again, to ensure maximum
fluxes into the STE, we used 70 nmol Ba kg�1 and 15 dpm
226Ra 100 L�1 as end member concentrations.

This simple model of Ba and 226Ra within the STE sug-
gests that there is an excess flux (i.e. flux out-flux in) out of
the subterranean estuary of both Ba and 226Ra equivalent
to 130–250% of total inputs (Table 1). Changes in either ter-
restrial or marine groundwater fluxes are unlikely to bal-
ance the input deficit, since any increase in these water
fluxes results in a concurrent increase in SGD and associ-
ated export of Ba and 226Ra. Weathering and production
via decay of 230Th (in the case of 226Ra) are also too small
to account for the imbalance. In situ production is
estimated at only 0.007% of the excess 226Ra flux
(44 dpm 226Ra m�1 y�1, production 226Ra = A230-

Th � k226Ra/Kd, with an estimated 230Th of 400 dpm kg�1

and Kd of 1000; 130 m wide interface, 10 m deep). The Ba
flux from weathering is approximately 0.05% of the excess
Ba flux (2.9 � 10�4 mol m�1 y�1, calculated from an aver-
age grain size of 550 microns and Ba weathering rate of
2.7 � 10�10 mol m�2 y�1 (Bowen, 1979; White, 2003)).

Alternatively, the terrestrial groundwater and/or the bay
water Ba and 226Ra end members used in this budget may
be too low. Michael et al. (2011) predicted equilibrium val-
ues for 226Ra within the fresh portion of the STE to be
30 dpm 100 L�1, which is twice our average value, but
would still result in 226Ra inputs to the STE equaling only
of 54–70% of total 226Ra export via SGD. The SGR input
of Ba and 226Ra was only 22–38% of total inputs, thus the
bay end member values would need to be much larger to
bring the Ba and 226Ra budget into balance. The budget
as calculated here already uses end members at the high
end of previously measured values, thus inputs to the sub-
terranean estuary are unlikely to be larger.

This large groundwater Ba and 226Ra flux imbalance
may result from a net sea level rise over the sampling time
period, since sea level appears to be the main control of the
Please cite this article in press as: Gonneea M. E., et al. Seasonal cycles i
for groundwater derived chemical fluxes to surface waters. G

j.gca.2013.05.034
movement of the salinity mixing zone (Gonneea et al.,
2013). Sea level rise would result in sediments with large ad-
sorbed pools of Ra and Ba being inundated repeatedly with
marine groundwater, thereby releasing these elements into
solution as hypothesized previously by Shaw et al. (1998).
Indeed, mean sea level rise was 0.5 cm y�1 from 1990 to
2007, with a large step-wise increase in mean sea level of
5 cm between the periods of 2000–2004 and 2005–2006,
the duration of this study (NOAA, 2012). The northeast
coast of the United States is experiencing accelerating sea
level rise, accounting for the observed dynamic sea level
during this study (Sallenger et al., 2012). It is apparent that
in addition to yearly seasonal oscillations in 226Ra and Ba
flux there are additional releases of these chemically reac-
tive materials. During the preceding lower sea level stands,
these elements were stored in the STE and are currently
being released and exported via SGD.

We can compare the excess flux to the desorbable sedi-
ment pool of 226Ra and Ba in the STE. Given the above
mentioned sea level rise (5 cm) just prior to beginning our
field sampling, approximately 6.5 m3 of aquifer per meter
of shoreline was newly inundated across our model domain
(130 m). The desorbable 226Ra pool in that volume of aqui-
fer (calculated from 100 dpm kg�1 dry sediment, 2.6 g cm�1

sediment density and 0.25 sediment porosity, Gonneea
et al., 2008) is 126 � 104 dpm, 3–4 times greater than ob-
served excess fluxes. Likewise, the desorbable pool of Ba
(110 lmol kg�1 dry sediment, Charette, unpublished data)
present in the same aquifer volume is 1.41 mol, about 2
times greater than the observed excess fluxes. Therefore,
the observed sea-level rise could account all of the excess
226Ra and Ba flux observed in this study.

Our knowledge of sediment geochemistry both in the
subterranean estuary and beyond is limited. Sorbed 226Ra
at one location within the Mn-curtain of Waquoit
Bay reached 320 dpm kg�1, while sorbed Ba of 300–
400 lmol kg�1 has been observed on coastal and inland
sediments (Gonneea et al., 2008; Charette, unpublished
data). It is possible that the sediment pools of 226Ra and
Ba are larger than calculated here and thus accelerating
sea level rise may result in greater export of ion exchange-
able elements such as these. This finding highlights that
there may be a potential increase in chemical flux via sub-
marine groundwater discharge as sea level rises in concert
with predicted climate change.

5. CONCLUSIONS

Radium fluxes to surface waters at the head of Waquoit
Bay are a function of two parameters, the volume flux of
water and the end member radium activity of that water.
In the time series data presented here, temporal variability
in radium concentrations was much greater than the corre-
sponding change in water flux. As a result, radium fluxes
were at times anti-phased with water fluxes. This conclusion
highlights the importance of determining a groundwater
end member radium concentration contemporaneously
with any radium tracer calculation of submarine groundwa-
ter discharge. An increased flux of radium cannot a priori

be assumed to indicate an increase in submarine groundwa-
n radium and barium within a subterranean estuary: Implications
eochim. Cosmochim. Acta (2013), http://dx.doi.org/10.1016/
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ter discharge without understanding how radium cycling
within the subterranean estuary affects the radium activity
of the discharging water.

This temporal disconnect between water and radium
fluxes has important implications for studies that utilize ra-
dium tracer budgets to determine seasonal variability in
SGD. Recently Moore and Shaw (2008) observed an in-
creased radium flux during the summer months in coastal
estuaries off the U.S. Atlantic coast and attributed this to
an increase in SGD due to increased marsh interactions
(i.e. bioirrigation) in the summer time and to a lag between
precipitation and SGD. Kelly and Moran (2002) measured
seasonally variable radium fluxes to the Pettaquamscutt
Estuary, Rhode Island, and observed the highest fluxes of
radium in the summer. Groundwater radium values for this
study were measured once (in August) and used to calculate
SGD values, which they concluded were higher in the sum-
mer than the winter, in phase with the radium flux. A recent
study in this same region collected groundwater during dif-
ferent seasons and recognized that variability in the pore
water activity likely accounted for some of the increased ra-
dium flux observed (Hougham et al., 2008). Increases in ra-
dium fluxes, such as reported here and in the works listed
above, may not be due solely to an increase in submarine
groundwater discharge, but also to an increase in the end
member radium activity. Thus these findings highlight the
importance of understanding the background hydrology
of the system under study when applying radium tracers
of SGD. Furthermore, the assumption of temporally con-
stant radium activities is clearly invalid in the face of signif-
icant temporal salinity changes within the subterranean
estuary. Additional time series measurements of groundwa-
ter chemistry in other subterranean estuaries would confirm
the role seasonal cycling plays in groundwater radium and
barium concentrations within coastal aquifer systems.

Temporal variability in groundwater radium and bar-
ium concentrations ranged over three orders of magnitude
during a three-year time series of the subterranean estuary
of Waquoit Bay. These fluctuations resulted from move-
ment of the salinity interface resulting in a narrow region
(approximately 1 m vertical extent) that experiences large
fluctuations in water chemistry (Gonneea et al., 2013). Con-
current with an increase in salinity within this dynamic re-
gion are large releases of the alkaline earth elements Ba and
Ra, suggesting that ion exchange reactions are the most
important process controlling seasonal variability and that
the subterranean estuary acts as an ion exchange reservoir
for these elements on seasonal time scales. Ra and Ba are
added to terrestrial groundwater upland of the subterra-
nean estuary and are then transported to the salinity-mixing
zone of the subterranean estuary. Here Ba and Ra are con-
centrated onto sediments at the coast due to Mn–Fe oxides
coatings, and then are released or sorbed due to changes in
groundwater salinity.

The behavior of the subterranean estuary as an “ion
capacitor” has important implications for the timing of
the release of chemically reactive constituents via submar-
ine groundwater discharge. For example, SGD-derived
fluxes of contaminants to surface waters involved in salinity
or redox driven reactions could be modulated in a similar
Please cite this article in press as: Gonneea M. E., et al. Seasonal cycles i
for groundwater derived chemical fluxes to surface waters. G

j.gca.2013.05.034
way (e.g. mercury (Bone et al., 2007) and arsenic (Bone
et al., 2006; Jung et al., 2009)). These processes may also re-
sult in the uncoupled transport of anions and cations, as
has been observed for nitrate and phosphate (de Sieyes
et al., 2008; Slomp and Van Cappellen, 2004).

On the time scale of this study, export of Ba and Ra
from the subterranean estuary cannot be balanced with re-
spect to known imports. We contend that this is a result of
long term storage of these cations within the sediments of
the STE as has been hypothesized elsewhere (Moore and
Shaw, 1998; Shaw et al., 1998) and subsequent release dur-
ing the current period of accelerating sea level rise (Yin
et al., 2009; Sallenger et al., 2012). Super imposed upon sea-
sonal oscillations in groundwater chemistry in sync with sea
level fluctuations are other perturbations in sea level,
caused by wind and ocean circulation changes coincident
with El Niño and North Atlantic Oscillation (NAO)
dynamics (Llovel et al., 2011; Sweet and Zervas, 2011).
Interannual climate fluctuations that control sea level and
precipitation (e.g. ENSO and NAO), and thus the position
of the mixing zone within the subterranean estuary, may
ultimately control the timing and magnitude of chemical
and water flux via submarine groundwater discharge. Our
results may also require a reevaluation of any trace element
mass balance models (e.g. Sr (Basu et al., 2001; Beck et al.,
in press) and U (Dunk et al., 2002)) for the ocean that rely
on a steady-state contribution from terrestrial sources such
as SGD.
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