GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION

Christopher Guay

Earth Sciences Division Lawrence Berkeley National Laboratory

Fresh Water Cycle Maintains Stratification of Upper Arctic Ocean

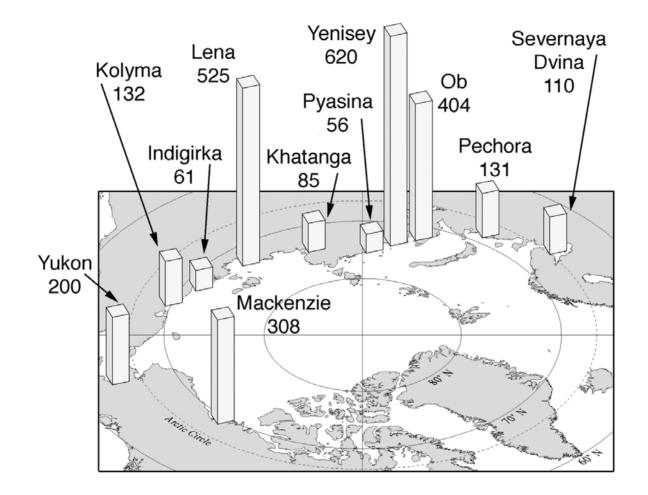
- Stably stratified surface layer
 - -- ice formation
 - -- plankton growth
- Formation of cold halocline layer
- Export of positive buoyancy flux to North Atlantic

CHRISTOPHER GUAY ESD/LBNL

Arctic Ocean Freshwater Budget

ference Salinity = 34	4.4	Goldner (1999), <i>JGR</i> , 104, 29,757-29,7		
FLUX	Q (Sv)	Salinity (PSS)	Effective Freshwater Flux (km ³ yr ⁻¹)	
River runoff	0.108	0.0	3400	
Bering Strait inflow	0.81	32.5	1420	
Net Precipitation (P-E)	0.012	0.0	380	
Arctic Archipelago outflow	-1.37	33.2	-1460	
Barents Sea inflow	1.49	35	-820	
Fram Strait Outflow				
Ice	-0.07	3.5	-1980	
EGC Polar Water	-1.16	33.9	-560	
EGC Atlantic Water	-2.14	34.9	960	
EGC Deep Water	-1.03	34.9	490	
Subtotal	-4.40		-1090	
Fram Strait Inflow				
WSC Atlantic Water	2.65	35.0	-1490	
WSC Deep Water	0.73	34.9	-340	
Subtotal	3.38		-1830	
NET	0.0		0.0	

CHRISTOPHER GUAY ESD/ LBNL


Arctic Ocean Freshwater Budget

ference Salinity = 34.4		Goldner (1999), <i>JGR</i> , 104, 29,757	
FLUX	Q (Sv)	Salinity (PSS)	Effective Freshwater Flux (km ³ yr ⁻¹)
liver runoff	0.108	0.0	3400
Bering Strait inflow	0.81	32.5	1420
let Precipitation (P-E)	0.012	0.0	380
Arctic Archipelago outflow	-1.37	33.2	-1460
Barents Sea inflow	1.49	35	-820
Fram Strait Outflow			
се	-0.07	3.5	-1980
GC Polar Water	-1.16	33.9	-560
GC Atlantic Water	-2.14	34.9	960
GC Deep Water	-1.03	34.9	490
Subtotal	-4.40		-1090
Fram Strait Inflow			
VSC Atlantic Water	2.65	35.0	-1490
VSC Deep Water	0.73	34.9	-340
Subtotal	3.38		-1830
IET	0.0		0.0

CHRISTOPHER GUAY ESD/LBNL

Discharge of Major Arctic Rivers (km³ yr⁻¹)

Total Arctic Runoff: 3400 km³ yr⁻¹ [10% of global total]

CHRISTOPHER GUAY ESD/LBNL

Arctic Ocean Freshwater Budget

erence Salinity = 34	4.4	Goldner (1999), <i>JGR</i> , 104, 29,757-29		
FLUX	Q (Sv)	Salinity (PSS)	Effective Freshwater Flux (km ³ yr ⁻¹)	
River runoff	0.108	0.0	3400	
Bering Strait inflow	0.81	32.5	1420	
Net Precipitation (P-E)	0.012	0.0	380	
Arctic Archipelago outflow	-1.37	33.2	-1460	
Barents Sea inflow	1.49	35	-820	
Fram Strait Outflow				
lce	-0.07	3.5	-1980	
EGC Polar Water	-1.16	33.9	-560	
EGC Atlantic Water	-2.14	34.9	960	
EGC Deep Water	-1.03	34.9	490	
Subtotal	-4.40		-1090	
Fram Strait Inflow				
WSC Atlantic Water	2.65	35.0	-1490	
WSC Deep Water	0.73	34.9	-340	
Subtotal	3.38		-1830	
NET	0.0		0.0	

CHRISTOPHER GUAY ESD/LBNL

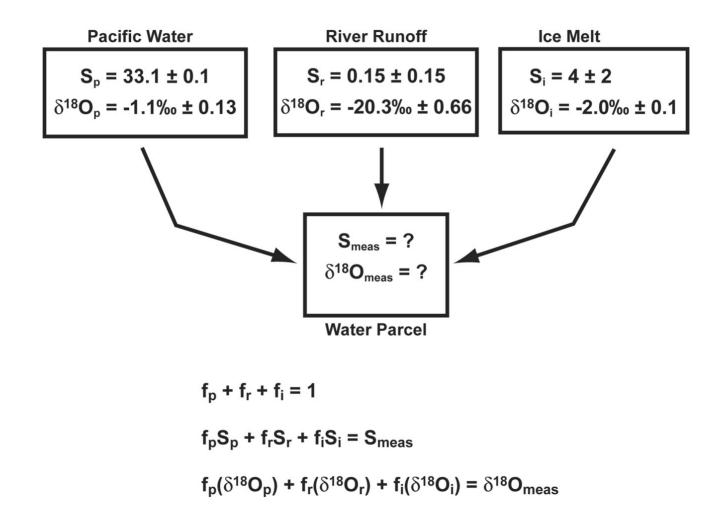
T and S alone are not sufficient tracers of freshwater in upper Arctic Ocean

- Two major freshwater sources: Runoff and Ice-melt
- Temperature is "non-conservative"
 - -- heat gain/loss in open water areas
 - -- seasonal temperature variability of river runoff

CHRISTOPHER GUAY ESD/LBNL

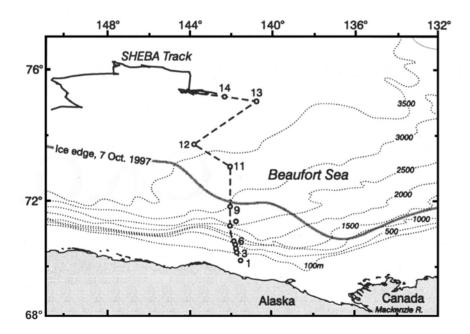
T and S alone are not sufficient tracers of freshwater in upper Arctic Ocean

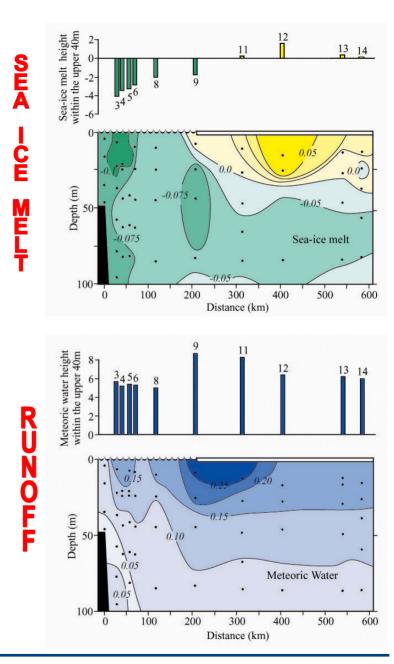
- Two major freshwater sources: Runoff and Ice-melt
- Temperature is "non-conservative"
 - -- heat gain/loss in open water areas
 - -- seasonal temperature variability of river runoff
- Additional conservative tracer: Oxygen isotopes


$$\delta^{18}O(\%) = \frac{({}^{18}O/{}^{16}O)_{\text{sample}} - ({}^{18}O/{}^{16}O)_{\text{SMOW}}}{({}^{18}O/{}^{16}O)_{\text{SMOW}}} \times 1000$$

CHRISTOPHER GUAY

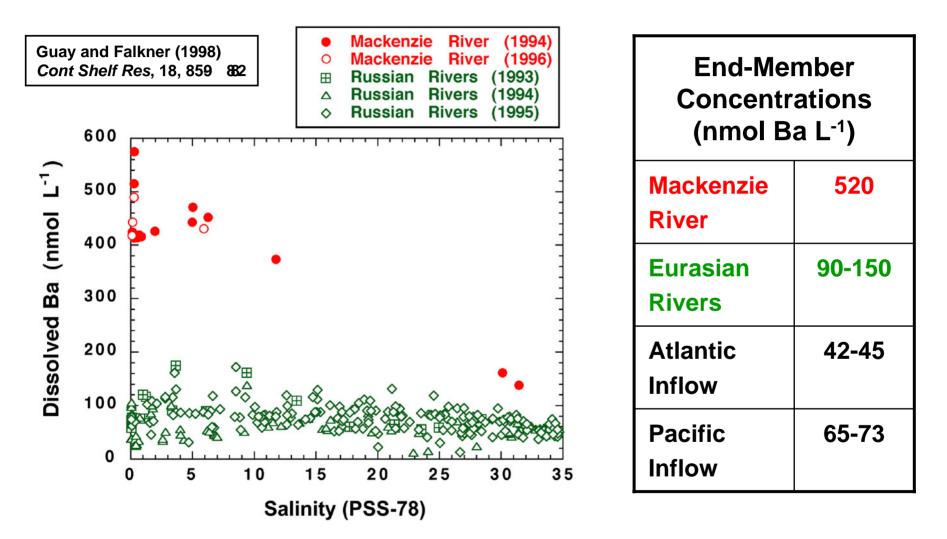
<u>Salinity- δ^{18} O Mass Balance for the Beaufort Sea</u>


[Macdonald et al. (2002), DSR I, 49, 1769-1785]



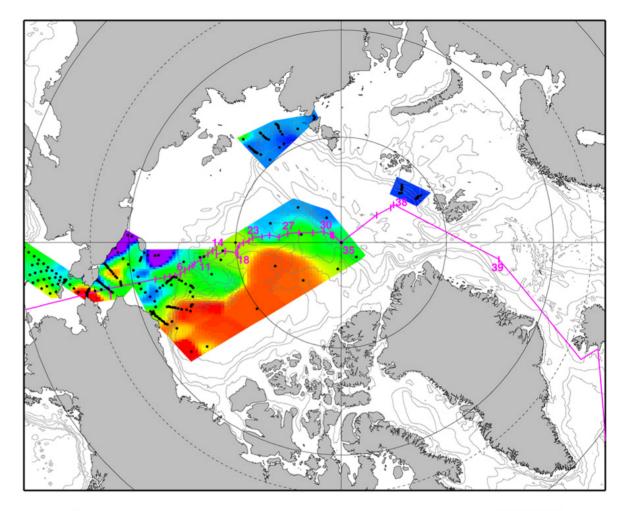
1997 Shelf-Basin Transect to Initial SHEBA Site

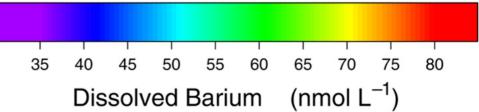
Macdonald et al. (2002) *DSR I*, 49, 1769-1785.



CHRISTOPHER GUAY ESD/LBNL

Dissolved Barium in Major Arctic Rivers

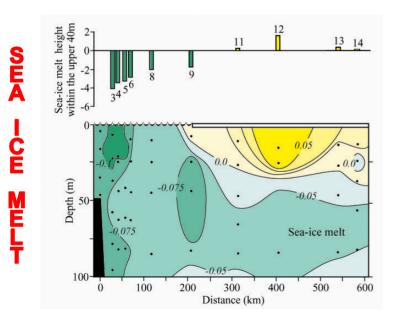


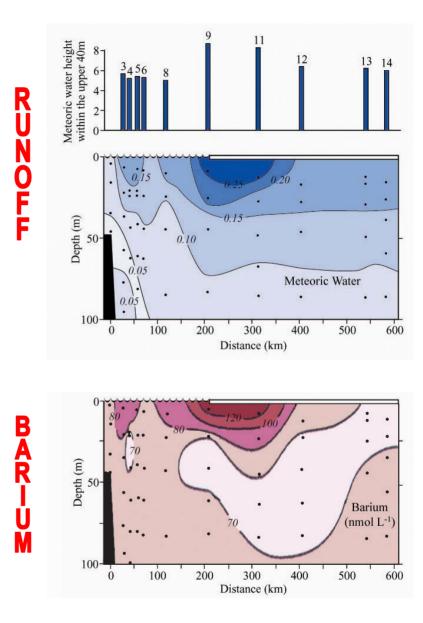

CHRISTOPHER GUAY ESD/LBNL

1993 Surface Mixed Layer

Composite from six cruises

Guay and Falkner (1997) *DSR II*, 44(8), 1543-1569.

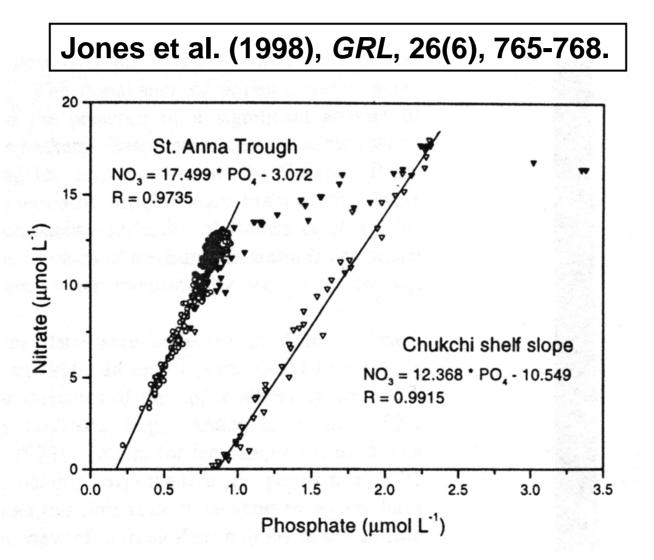




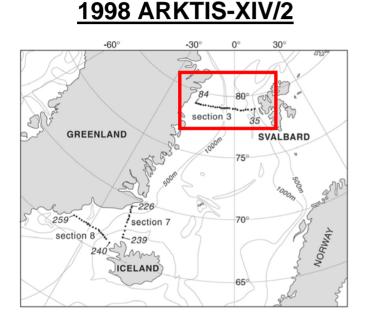
CHRISTOPHER GUAY ESD/LBNL

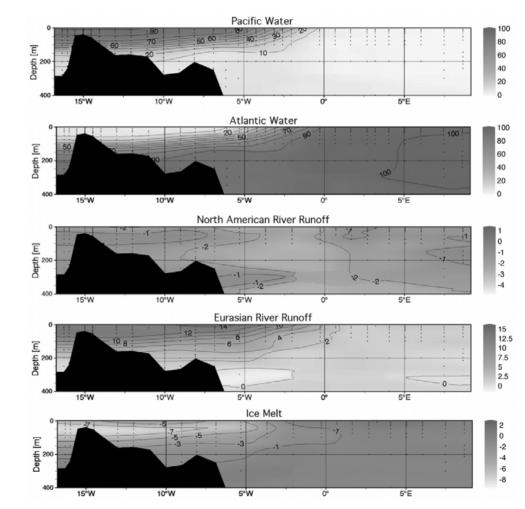
1997 Shelf-Basin Transect to Initial SHEBA Site

Macdonald et al. (1999) *GRL*, 26(15), 2223-2226.



CHRISTOPHER GUAY ESD/LBNL

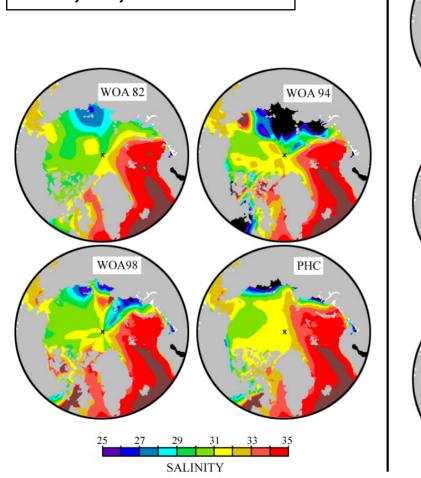

Using Nutrients to Differentiate Atlantic/Pacific Waters

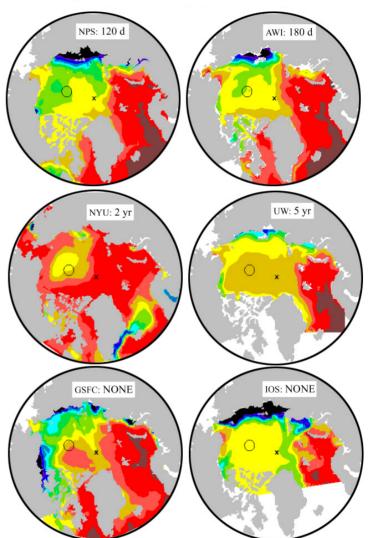


CHRISTOPHER GUAY ESD/LBNL

Water Mass Composition Derived From Multiple Tracers (S, δ^{18} O, Ba, nutrients)

Taylor et al., *JGR* (in press).




CHRISTOPHER GUAY ESD/LBNL

AOMIP April Mean Sea Surface Salinity

Steele et al. (2001) GRL, 28, 2935-2938.

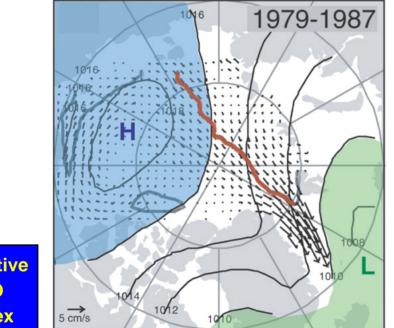
C L I MATOLOGIES

O D

EL

R

E S U L T S



CHRISTOPHER GUAY ESD/LBNL

Response to Shift in Atmospheric Forcing

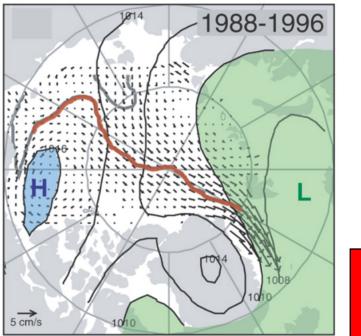

Steele and Boyd (1998), *JGR*, 103, 10,419-10435.

Figure: I. Rigor (UW/IABP)

- Weak polar vortex/high SLP
- Anti-cyclonic ocean circulation
- Eurasian runoff enters at Lomonosov Ridge
- Cold halocline formation in Eurasian Basin

Positive AO Index

- Strong polar vortex/low SLP
- Cyclonic ocean circulation
- Eurasian runoff enters at Mendeleyev Ridge
- Cold halocline retreat from Eurasian Basin

CHRISTOPHER GUAY ESD/LBNL

Scientific Questions

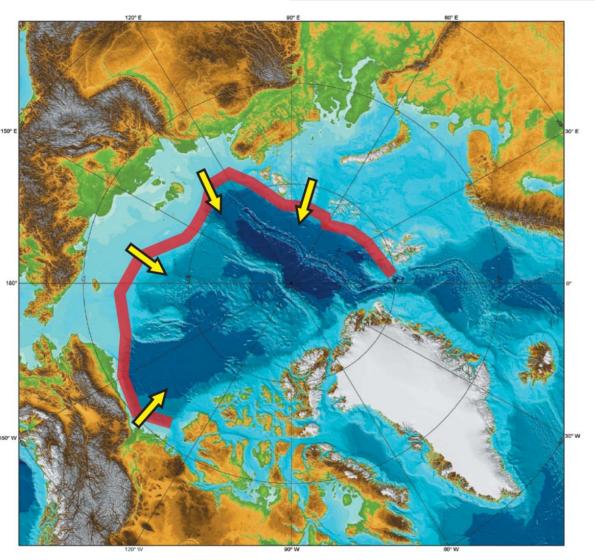
Freshwater cycle

- river runoff
- halocline formation
- ice formation/melting

Arctic Ocean inflows/outflows

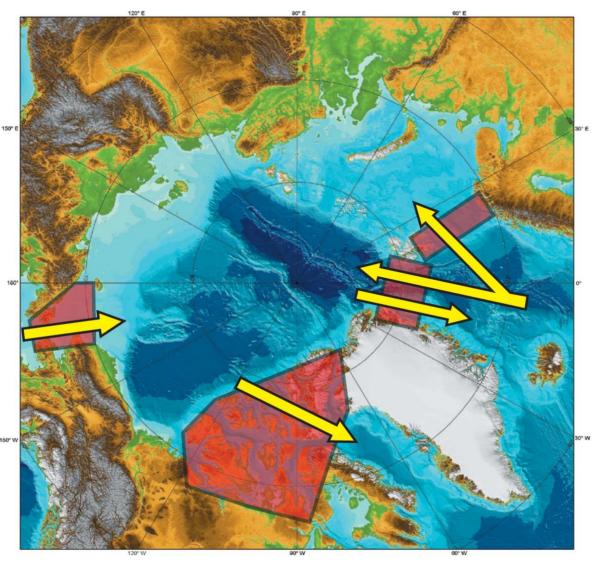
export through Canadian Archipelago

Long-term trends (relation to global climate change?)


- changes in circulation regime
- changes in terrestrial environment/signals
- changes in biota/ecosystem
- changes in carbon cycling

Required Geochemical Measurements

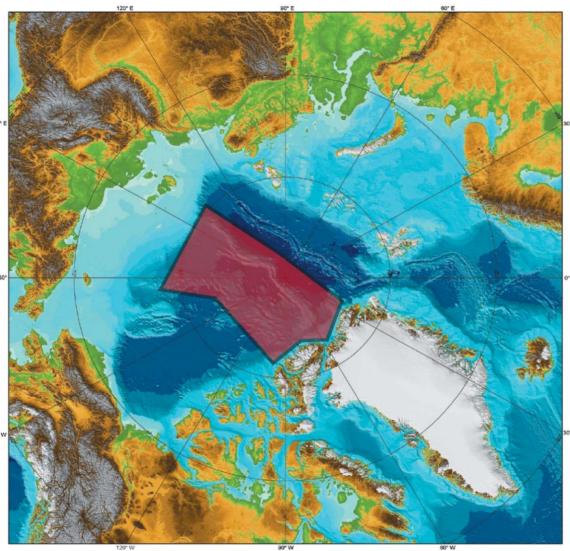
- 1. Circulation tracers
 - -- nutrients (N, P, Si, O₂)
 - -- stable isotopes (d180, d13C, d15N, etc.)
 - -- trace metals (Ba, etc.)
 - -- radioisotopes (¹³⁷Cs, ¹²⁸I)
 - -- DOC, biomarkers
 - -- inorganic C: alkalinity, ΣCO_2 , DIC
- 2. Water mass age tracers
 - -- He-tritium, CFCs
- 3. Particulate flux tracers
 - -- U, Th, POC, PON



Shelf Break

- shelf-basin exchanges
- river water pathways

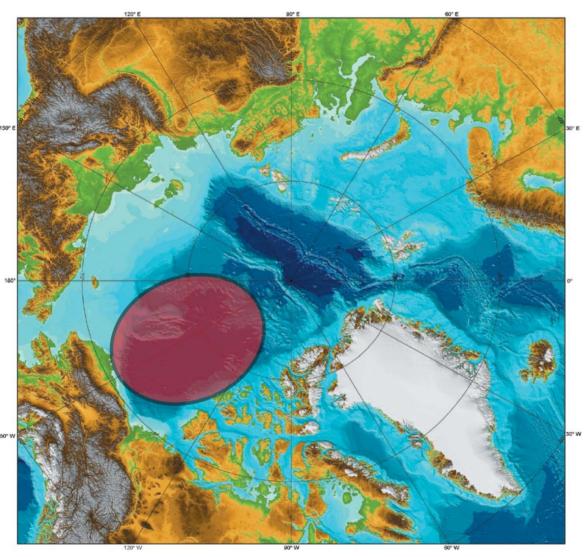
CHRISTOPHER GUAY ESD/LBNL



Inflows/Outflows

- communication with global ocean
- export to North Atlantic areas of deep water formation
- export through Canadian Archipelago

CHRISTOPHER GUAY ESD/LBNL

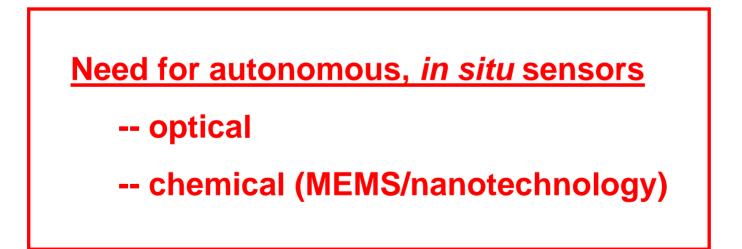


Atlantic/Pacific Front

- boundary between Atlantic/Pacific, Eurasian/North American water mass assemblages
- Transpolar Drift
- area north of Greenland and Archipleago

CHRISTOPHER GUAY ESD/LBNL

Beaufort Gyre


- expands/contracts with changes in circulation regime
- storage/release of freshwater

CHRISTOPHER GUAY ESD/LBNL

FUTURE DATA SETS NEEDED

- Long-term time series
- High-resolution (temporal and spatial) observations

CHRISTOPHER GUAY ESD/LBNL