P.O. Box 2978, Redmond WA. 98073-2978 (425)869-1834(p) (425)869-5554(f)

SOSI

-	Number		031									
Project	Name	OSMO V							ng'd By			7/2/08
Client	Monterey Bay Aquarium Research Institute CFR Winch Stress Analysis					Chk'd by			Date			
Design	Item	CFR Wir	nch Stress	s Analysis	S			•	Page	1	of _	11
												Ref.
	Sound C	cean Sys	tems (SC	SI) was	contracte	d in Marc	h, 2007, t	to design	and fabri	cate a wii	nch	
	for the Monterey Bay Aquarium Research Institute (MBARI). This winch is to be used											
		marily for recovering osmotic sensor packages from sea floor bore holes, and may be installed										
	on vessels belonging to both MBARI and to the UNOLS fleet.											
	As required for all lifting equipment to be placed on board ships in the UNOLS float, the winch has											
	As required for all lifting equipment to be placed on board ships in the UNOLS fleet, the winch has been designed to meet the requirements of 46CFR189.35.											
	The requirements of 46CFR189.35 stipulate that any "Wet Weight Handling Gear", including											
	this winch, be designed with a minimum safety factor of 1.5 times the allowable load, as determined											
	by the weakest portion of the line or rope used on the winch.											
						times the		le workin	g load.			
	In this case, the winch has been designed for the specific job of retrieving sensor packages from											
						the dyna						
						the winch						
						that this						
		e winch di		iis ievei o	pull offis	y when th	e manuai	brake is	engaged,	and not i	ОУ	
	using the	WILICIT OF	ive.									
	Therefore, the winch frame, bearings, and mounting have been designed to withstand a static load											
	of at least 12000 lbs (1.5 x 8000). The drive components are designed for a minimum live load of at least 7500 lbs (1.5 x 5000).											
	The winch is constructed primarily of aluminum, with mostly stainless steel hardware. A few select											
	components are made of steel as needed to provide extra strength.											
	The wines in drives by a CO Up by drewling account with the contract of the co											
	The winch is driven by a 20 Hp hydraulic power unit, driving a hydrostatic pump and motor combination. The winch has two (2) speed modes, High and Low. In the High Speed mode,											
											,,	
	the winch will operate at approximately 100 rpm at the drum. In the Low Speed mode, the speed is reduced to approximately 25 rpm at the drum.											
	•			,						له د		
											5. HA //6	•
	Refer to	drawings								OP OF	WASHIA	
		351-100		Winch A						X (E OI	N _G	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		351-100-			rame We	ldment			_7	6		2
		351-100-	-005	Drum W	eldment							1
	The major portions of the winch, the drum and frame, are fabricated									/ <u>~</u> 5		
	from 6061-T6 aluminum, with a yield stress of $S_y = 39.9 \text{ ksi}$											
		, i o aiui		an a yield	. 5.1.033 0		09.9	1.01	─ ₹	150°	NOI END	-
	Then for	the requi	red safety	/ factor	n =	1.5				9/0	NALEIN	-
		able stre		, 140101	• 1	S _a =	26.6	kci				=
	uie allow	vable Stie	55 IS			S _a =	∠0.0	V2I		EXPIRE	S: 7/24/0	7 —
	1				1							

P.O. Box 2978, Redmond WA. 98073-2978 (425)869-1834(p) (425)869-5554(f)

SOSI

Project Number S70031 Design Item CFR Winch Stress Analysis Page of 11 Ref. 0.6 times S_a For shear, the max allowable stress is commonly Therefore $T_a =$ 16.0 ksi There are two (2) primary load cases: Case 1 8000 lb maximum line pull at empty drum Case 2 5000 lb maximum line pull at full drum **Drum Dimensions** 12" Sched 40 Pipe Core Diameter 12 5/8 in d =Flange Diameter D =54 in Thickness 3/8 in Between Flanges B = 32 in Between Bearings 48 in L = 3.6549 in⁴ **Shaft Diameter** $d_s = 2.15/16$ in I =Case 1 F= 8000 lbs pull at bare drum Worst case is at near horizontal pull. $T = P \times d/2 = 50500.0$ in lbs Torque at bare drum: The drive sprocket is 72 tooth, R0 100 Its pitch diameter is PD = 28.657 in The chain loading is then T_{chain} = 3524.4 lbs The published breaking strength of the chain is OKAY 26460 lbs $L_{allow} =$ Per the layout drawings, the chain angle is approximately 22.5 degrees below the horizontal. then the components of the chain load are: 3256.2 lbs Horizontal $T_{horiz} =$ Vertical 1348.7 lbs $T_{\text{vert}} =$ The weight of the drum $W_{drum} =$ 670 lbs The weight of the rope is estimated at $W_{rope} =$ 783 lbs (5000 m) Then the total weight of the drum assembly is $W_{total} =$ 1453 lbs The net loads are then: $P_{horiz} =$ 11256 lbs $P_{\text{vert}} =$ 2802 lbs With the resultant load being P = 11600 lbs

P.O. Box 2978, Redmond WA. 98073-2978 (425)869-1834(p) (425)869-5554(f)

SOSI

Project Number S70031 CFR Winch Stress Analysis Design Item Page of Ref. Vertical Loads R_{2y} R_{1y} W T_{vert} Using the dimensions from drawing 351-100-005, and summig the moments about R₂ yields $M = 0 = 24 \times W + 44.5 \times T_{vert} - 48 \times R_{1y}$ and solving for R_{1y}: $R_{1y} = 1977.1 \text{ lbs}$ and summing the vertical forces: $R_{2y} = W + T_{vert} - R_{1y}$ R_{2y} = 825 lbs Shear Diagram 825 lbs 628 lbs 1977 lbs 19800 in lbs Moment Diagram 6920 in lbs

P.O. Box 2978, Redmond WA. 98073-2978 (425)869-1834(p) (425)869-5554(f)

SOSI

Project Number S70031 CFR Winch Stress Analysis Design Item Page of Ref. Horizontal Loads $R_{2x} \\$ R_{1x} T_{horiz} Using the dimensions from drawing 351-100-005, and summig the moments about R₂ yields $M = 0 = 39.75 \text{ x F} + 44.5 \text{ x T}_{horiz} - 48 \text{ x R}_{1x}$ $R_{1x} = 9643.7$ lbs and solving for R_{1x}: and summing the vertical forces: $R_{2x} = F + T_{horiz} - R_{1x}$ 1612 lbs $R_{2x} =$ 1612 lbs Shear Diagram 6388 lbs 9644 lbs 64094 in lbs 33753 in lbs Moment Diagram

P.O. Box 2978, Redmond WA. 98073-2978 (425)869-1834(p) (425)869-5554(f)

SOSI

Project Number S70031 CFR Winch Stress Analysis Design Item Page of Ref. Summing the moment diagrams above, $M = (M_H^2 + M_V^2)^{1/2}$ Then the maximum moment load in the shaft is $M_{max} =$ 64854 in lbs located at the drum flange closest to the drive sprocket (x = 39.75") At that location the shear load in the shaft is 6418.4 lbs The shear stress is then 947.1 psi The stresses imposed by the bending moment are Mc/I $\sigma = 26061.5 \text{ psi}$ By Mohr's circle analysis, the principal stresses are $\sigma_1 = 0.5\sigma + ((0.5\sigma)^2 + T^2)^{1/2}$ $\sigma_1 =$ 26096 OKAY $T_1 = ((0.5\sigma)^2 + T^2)^{1/2}$ $T_1 =$ 13065 psi OKAY $R_1 = (R_{1x}^2 + R_{1y}^2)^{1/2} =$ The maximum bearing load is at R₁: 9844.3 lbs The published allowable load for the bearings is 14872 lbs OKAY Loads on the drum and shaft for Case 1 are within acceptable limits.

P.O. Box 2978, Redmond WA. 98073-2978 (425)869-1834(p) (425)869-5554(f)

SOSI

Project Number S70031 CFR Winch Stress Analysis Design Item Page of 11 Ref. F= 5000 lbs pull at full drum Case 2 52 in Worst case is at near horizontal pull. Torque at bare drum: $T = P \times d/2 = 130000$ in lbs The drive sprocket is 72 tooth, R0 100 Its pitch diameter is PD = 28.657 in The chain loading is then 9073 lbs T_{chain} = The published breaking strength of the chain is $L_{allow} =$ OKAY 26460 lbs Per the layout drawings, the chain angle is approximately 22.5 degrees below the horizontal. then the components of the chain load are: Horizontal 8382 lbs $T_{horiz} =$ 3472 lbs Vertical $T_{vert} =$ The weight of the drum $W_{drum} =$ 670 lbs The weight of the rope is estimated at $W_{rope} =$ 783 lbs (5000 m) Then the total weight of the drum assembly is $W_{total} =$ 1453 lbs The net loads are then: $P_{\text{horiz}} =$ 13382 lbs $P_{vert} =$ 4925 lbs With the resultant load being 14260 lbs

P.O. Box 2978, Redmond WA. 98073-2978 (425)869-1834(p) (425)869-5554(f)

SOSI

Project Number S70031 CFR Winch Stress Analysis Design Item Page of Ref. Vertical Loads R_{2y} R_{1y} W T_{vert} Using the dimensions from drawing 351-100-005, and summig the moments about R₂ yields $M = 0 = 24 \times W + 44.5 \times T_{vert} - 48 \times R_{1y}$ and solving for R_{1y}: $R_{1y} = 3945.5$ lbs and summing the vertical forces: $R_{2y} = W + T_{vert} - R_{1y}$ $R_{2y} =$ 980 lbs Shear Diagram 980 lbs 473 lbs 3946 lbs 23516 in lbs Moment Diagram 13809 in lbs

P.O. Box 2978, Redmond WA. 98073-2978 (425)869-1834(p) (425)869-5554(f)

SOSI

Project Number S70031 CFR Winch Stress Analysis Design Item Page of Ref. Horizontal Loads R_{1x} R_{2x} T_{horiz} Using the dimensions from drawing 351-100-005, and summig the moments about R₂ yields $M = 0 = 39.75 \text{ x F} + 44.5 \text{ x T}_{horiz} - 48 \text{ x R}_{1x}$ and solving for R_{1x}: $R_{1x} =$ 11912 lbs and summing the vertical forces: $R_{2x} = F + T_{horiz} - R_{1x}$ 1471 lbs $R_{2x} =$ 1471 lbs Shear Diagram 3529 lbs 11912 lbs 58455 in lbs 41691 in lbs Moment Diagram

P.O. Box 2978, Redmond WA. 98073-2978 (425)869-1834(p) (425)869-5554(f)

SOSI

Project Number S70031 CFR Winch Stress Analysis Design Item Page of Ref. Summing the moment diagrams above, $M = (M_H^2 + M_V^2)^{1/2}$ Then the maximum moment load in the shaft is 58929 in lbs $M_{max} =$ located at the drum flange closest to the drive sprocket (x = 39.75)At that location the shear load in the shaft is 3561 lbs T =The shear stress is then 525.5 psi The stresses imposed by the bending moment are Mc/I $\sigma = |23680.9|$ psi By Mohr's circle analysis, the principal stresses are $\sigma_1 = 0.5\sigma + ((0.5\sigma)^2 + T^2)^{1/2}$ $\sigma_1 =$ 23693 OKAY $T_1 = ((0.5\sigma)^2 + T^2)^{1/2}$ $T_1 =$ 11852 psi OKAY $R_1 = (R_{1x}^2 + R_{1y}^2)^{1/2} =$ The maximum bearing load is at R₁: 12548 lbs The published allowable load for the bearings is OKAY 14872 lbs Loads on the drum and shaft for Case 2 are within acceptable limits. Torque on Drum The maximum torque on the drum is applied in Load Case 2 T = 130000 in lbs The torque is resisted by either the brake disc or the sprocket. In either case, the disc and sprocket are connected by a flange welded to the drum. Therefore, the torque is transmitted through the drum. D = 12.625 in Drum OD d = 11.875 in Drum ID $J = \pi (D^4 - d^4)/32 =$ 541.92 in⁴ Polar Moment $T = T \times D / 2J =$ Torsional Stress 1514.3 psi $I = \pi (D^4 - d^4)/64 =$ 270.96 in⁴ Moment of Inertia M = 64854 in lbs Bending Moment From Case 1 **Bending Stress** 1510.9 psi $\sigma = |Mc/I| =$ OKAY Stresses are well below allowable

P.O. Box 2978, Redmond WA. 98073-2978 (425)869-1834(p) (425)869-5554(f)

SOSI

Project	Number		0031	_								
Design	Item	CFR Wir	nch Stres	s Analysis	3				Page	10	of	11
												Ref.
The analysis of the frame begins with the points of contact from the shaft. There is a vertical and a horizontal												
force acting through the bearing. It is assumed that the vertical load is acting only on the center support. For												
ease in calculation, it is assumed that the horizontal member is rigid and has no compressive deflection.												
However bending is taken into consideration. The deflection at points A, B, and C are assumed equal.												
The members AC and BE are examined first. The ends are assumed to be rigid mounted. The horizontal												
force is placed 4.25" above the frame, creating a moment on member AC. Setting the deflection of each												
member equal at point B, the forces acting on each can be determined.												
					- +1 //-			/E E \+!	2+ (0+1	441 \	(40+=+1)	
F _x =	0	lbs		δ=	F _B *L _{BE} /(I		=	$(F_y-F_B)*L$	_{AB} -*(3*L _A	_C -4*L _{AB})/((48*E*I)	
$F_y=$	3302.3	lbs		$F_B=$	3230.1	lbs						
$F_{x}=$ $F_{y}=$ $M_{AC}=$		lb-in										
l=	2.6	in⁴		F_B is the compressive force acting on member BE, F_V - F_B								
A=	2.02	in ²		is the bending force acting on member AC.								
L _{AC} =	69											
L _{AB} =	31.5											
_	29.1											
L _{BE} =				The rese	tion force		nhau AC a	de		ام		
y=	= 1.5 in The reaction forces on member AC are then determined to find the maximum moment.											
F	32.986	lbc		to iiiid tii	e maximi		111.					
F _C =				Th	-4:				-:	4: -	_	
F _A =	39.269	IDS		The negative sign means is pointing the opposite direction from F _C Shear stress is assumed negligible.								
	400=			Shear st	ress is as	sumed n	egligible.					
$M_{ACmax}=$	1237	lb-in										
	1.4 ± (1											
$\sigma_{AC}=$	M _{max} *y/I		$\sigma_{AC}=$	713.63	psı							
$S_y=$	40000	psi										
η=	S_y/σ		η_{AC} =	56.051								
T1 1 (1			D 0 0		-1							
	ections at											
AD, DE,	& CF will	see mos	lly bendir	ig, wrille i	nembers	AE & CE	wiii see t	bending a	na compi	ression/le	HSIOH.	
For men	nhers AD	RF and	CF the									
	For members AD, BE, and CF the deflection is equal to: $\delta_{xAD} = F_{xA}^* L_{AD}^3 / (3^*I^*E)$											
dellectio	Tio equa	1 10.		OXAD-	' XA -AD	(0 1 L)						
For members AE & CE the deflection is assumed to be in the horizontal direction only. The forces acting on												
these members are broken up into horizontal and vertical components relative to the member. This allows for												
the bending and compression/tension deflections to be found separately. The two deflections can be found												
	to the forc											
Subscript h stands for horizontal relative to the member and v stands for vertical.												

P.O. Box 2978, Redmond WA. 98073-2978 (425)869-1834(p) (425)869-5554(f)

SOSI

Project Number S70031 CFR Winch Stress Analysis Design Item Page 11 of Ref. θ_{AF} = the angle between the member and horizontal plane L_{AE}= length of the member from point A to point E $\theta_{AF} = 0.8983$ 37.2 in $L_{CE}=$ $\theta_{CF} = 0.7732$ $L_{AF}=$ 41.68 in $\delta_{xAE} = \delta_b/\sin(51.47) =$ $\delta_c/\cos(51.47)$ $\delta_{xAE} = F_{vA}^* L_{AE}/(A^*E)^* cos(\theta_{AE}) + F_{hA}^* L_{AE}^3/(3^*I^*E)^* sin(\theta_{AE})$ Combining the two above equations allows for a relation between the forces. $F_{vC} = 449.82 F_{hC}$ $F_{vA} = |410.69*F_{hA}|$ The horizontal component of each force must add up to horizontal force applied to the frame. $F_x = F_{AD} + F_{BE} + F_{CF} + F_{hA} \cdot \sin(51.47) + F_{vA} \cdot \cos(51.47) + F_{hC} \cdot \sin(44.3) + F_{vC} \cdot \cos(44.3) = F_{vC} \cdot \sin(44.3) + F_{vC} \cdot \cos(44.3) = F_{vC} \cdot \cos(44.3) + F_{vC} \cdot \cos(44.3) + F_{vC} \cdot \cos(44.3) = F_{vC} \cdot \cos(44.3) + F_{vC} \cdot \cos(44.$ 12276.69lbs $\delta_{xAD} = \delta_{xBE} = \delta_{xCF} = 3159.3 *F_{AD}/E lbs$ $\delta_{xAE} = 5915.69 F_{hA}/E + 11.47(410.69) F_{hA}/E = 10626.3 F_{hA}/E$ $F_{hA}=$.2973*F_{AD} $\delta_{xCE} = |6483.39 + F_{hC}/E + 14.77(449.82) + F_{hC}/E = 13127.23 + F_{hC}/E$.2407*F_{AD} F_{hC}= $F_{AD}=$ 0 lbs $F_{hA}=$ 0 lbs $F_{hC} =$ 0 lbs $F_{vA} =$ 0 lbs $F_{vC} =$ 0 lbs $F_{BE}=$ 78.224 lbs $F_{CF}=$ 78.224 lbs For members AD, BE, and CF the bending stress will be the same. Member BE will also have a compressive stress. $\sigma_{AD}/\sigma_{CF}=$ 0 psi η= ###### OKAY 0 psi ###### OKAY $\sigma_{AE}=$ OKAY 0 psi ###### $\sigma_{CE}=$ 1599 psi ###### OKAY $\sigma_{BE}=$ $\eta =$