

Coastal & Global Scale Nodes

Hydrogen Safety

CP01 Mooring Timeline:

- 21 November 2013: CP01CNSM was deployed and transitioned to shore controlled operations.
- 17 Feb. 2014: After nearly 3 months of operation, at 13:15:53-13:50:00 (UTC), CP01CNSM, ended communications to shore, except for its XEOS Beacon providing location information.
- 18 April 2014: Recovery of Mooring on Pioneer II Cruise
 - Signs of a Catastrophic Event, thought to have been caused by "a purposeful event," were seen from a distance during the cruise on 16 April 2014.
 - Clear Signs of an Internal Explosion Upon Recovery onto the *Knorr* on 18 April 2014.
 - 19-21 April 2014: Further On Shore Analysis Uncovers Likely Failure Sequence.

Mooring System Architecture

- Parallel Platform Controllers
- Parallel Telemetry
 - Inmarsat
 - Iridium Data
 - Iridium SBD
- Power System:
 - Renewable Inputs
 - Wind
 - Solar
 - Fuel Cell
 - Monitors Battery Status
 - Controls Charge Cycles

Mooring System Architecture

- Power Sub-System Description
 - Power System Block Diagram
 - Battery Bank: 24 Volt Bus, 840 Ahr Capacity

Internal Process

Engineering Investigation:

- Failure Analysis Report: FAR 00008
- Outside Consultation:
 - Buoy Subject Matter Experts
 - Specific Detailed Reports
 - Alternative Power Subject Matter Experts
 - System Review
 - Sensor Manufacturers
 - Sensor Capability
 - Battery Manufacturer
 - Hydrogen Generation Rates
- Investigation of Previous Events:
 - Data Buoy Operations Safety Paper

Root Cause: Lack of adequate ventilation, compounded by excessive Hydrogen generation during battery charge cycles

Failure Analysis: Potential H2 Generation

H2 Generation goes up exponentially with terminal voltage

H2 rate vs. Charge Voltage

Mitigation Solutions:

Multi-Disciplinary Approach:

- Mechanical:
 - Design and Test Passive Ventilation System
 - Mount Hydrogen Sensors
- Software:
 - Integrate Hydrogen Sensor Data
 - On Board Monitoring
 - OMC Display
- Electrical:
 - Sensor Integration with Data Collection
 - Modify Battery Charging Algorithm to Minimize Hydrogen Production
 - Institute Battery Over Voltage Prevention
- Operational:
 - Remote System Monitoring
 - Handling and Recovery Procedures

Mitigation Solution: Vent Implementation

Mitigation Solution: Electrical

Sensor Selection: RKI Instruments M2A

hydl - file: 20140729.hyd1.log →

Mitigation Solution: Software

Remote Monitoring:

Mitigation Solution: Reduce H2 Generation

- H2 Accumulation During a Charge Cycle
- Bulk of H2 Production is During the Charge Duty Cycle
 - Each individual cycle should not create an explosive concentration of H2

Mitigation Solution: Operational

Recovery Procedure:

Objective:

- Connect Ground Strap
- Verify Hydrogen Dissipation to < 1% Concentration / 10% LEL
- Purge Hydrogen and Oxygen from well

Procedure:

- Insert Gas Analyzer Monitor port
- Flood Container With Nitrogen
- Verify Hydrogen Dissipation to < 1% Concentration / 10% LEL

Recovery Procedure: Monitoring

Recovery Procedure: Monitoring

Recovery Procedure: Decision Making

Normal Monitoring Operation:

- 1. Data Connection to Shore:
 - 1. If H2 level > 25% LEL, override charge inputs
 - 2. If H2 level < 25% LEL, allow normal operation

Recovery Prep: With Communication

- 1. Disable charging inputs 48-72 hours prior to recovery
- 2. Communicate H2 levels to recovery team
 - 1. If H2 level < 10% LEL, follow "Active Mooring" procedure
 - 1. Recover mooring as normal
 - 2. Follow "Secure For Transit" step
 - 2. If H2 level > 10% LEL, follow "Unknown Mooring" procedure

Recovery Prep: Without Communication

- 1. Attempt LOS communication path
 - 1. If successful, determine mooring state
- 2. Visual inspection for signs of blocked ventilation, clear if possible
- 3. Secure wind turbines if spinning
 - Allow as much time as feasible prior to "Unknown Mooring" procedure

Recovery Prep: On Site

Determine if small boat operations are viable:

- 1. Yes: Assemble following equipment
 - 1. RKI Instruments Eagle 2 Gas Analyzer
 - 2. Q size Nitrogen tank
 - 3. Gas Regulator
 - 4. Long ½" tubing
 - 5. Continue with "Unknown Mooring" recovery procedure from small boat platform
- 2. No: Continue with "Unknown Mooring" recovery procedure

Recovery: Grounding

This step is designed to prevent any accidental sparks due to Electro-Static Discharge (ESD)

- 1. Prior to mooring chassis making contact with the deck:
- 2. Clamp the grounding strap to the instrument well chassis
- 3. Clamp the other end to ship rail or deck
- 4. Secure mooring with minimal strapping

Recovery: Determine Hydrogen Level

This step is to determine if there is a volatile mixture inside the instrument well

- Remove plastic caps from the "Monitor" and "Purge" ports on the instrument well junction box
- Insert Gas Analyzer plastic tube into "Monitor" port
 - 1. If <10% LEL: Recover mooring
 - 2. If >10% LEL:
 - 1. Continue monitoring
 - 2. Continue to purge step

Recovery: Purge

This step is to clear any accumulated Hydrogen, and Oxygen from the instrument well

- Continue monitoring H2 levels with Gas Analyzer
- 2. Connect tubing to "Purge" port
- 3. Open cylinder valve
- 4. Adjust regulator to 2-4 psi
- 5. Purge until H2 < 10% LEL
- 6. Secure mooring

Recovery: Prepare for Transit

This step is to prevent any accumulation of Hydrogen during return transit

- 1. Shut down mooring:
 - 1. Insert shut down magnet
- 2. Remove vent valves from tower assembly
- Monitor H2 levels with Gas Analyzer daily
- 4. Open instrument well, remove battery connections

