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SUMMARY
This chapter reviews our current knowledge of the gravity and topography of the ter-
restrial planets and describes the methods that are used to analyze these data. First, a
general review of the mathematical formalism that is used in describing the properties
of gravitational fields and topography is given. Next, the basic properties of the gravity
and topography of the Earth, Venus, Mars, and the Moon are characterized. Following
this, the relationship between gravity and topography is quantified, and techniques by
which geophysical parameters can be constrained are detailed. Such analysis methods
include crustal thickness modeling, the analysis of geoid/topography ratios, and mod-
eling of the spectral admittance and correlation functions. Finally, the major results that
have been obtained by modeling the gravity and topography of the Earth, Venus, Mars,
and the Moon are summarized.
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1 INTRODUCTION

One of the most precise ways to investigate the subsurface
structure of a planet is through the analysis of seismic waves.
While such endeavors have proved to be remarkably suc-
cessful for the Earth, the emplacement of a geophysical net-
work that includes seismometers on a terrestrial body such as
Mercury, Venus, Mars, or the Moon is both costly and tech-
nologically challenging (see Chapter 4). Fortunately, alterna-
tive means exist to probe the interior structure of the terres-
trial planets from orbit. One such method, reviewed in Chap-
ter 5, is through analyses of a planet’s time-variable rotation.
Such investigations can measure the moment of inertia fac-
tor (when combined with low-degree gravity measurements)
andk2 Love number, from which constraints on the density
and viscosity profile can be obtained. The magnetic induc-
tion response of a planet to time variable magnetic fields can
be used to determine how the body’s electrical conductivity
(and hence composition) varies with depth. Finally, because
the gravitational field of a planet is sensitive to its internal
density structure, another powerful method that can be used
to probe the subsurface, and which is the subject of this re-
view, is the joint analysis of gravitational and topographic
data.

The past decade has witnessed dramatic advancements
in our understanding and knowledge of the gravitational
fields and topography of the terrestrial planets. These ad-
vances are intimately related to the acquisition of radio
tracking data from orbiting spacecraft (which can be used
to invert for the gravitational field), as well as the collec-
tion of data from orbiting altimeters. As examples, the first
near-global topographic map of the Moon was obtained by
the Clementine mission in 1994 (Zuber et al.1994), and the
topography of Venus and Mars was mapped to high resolu-
tion by the Magellan (Ford and Pettengill1992) and Mars
Global Surveyor (Smith et al.1999) missions which were
placed in orbit in 1990 and 1997, respectively. In addition,
the topography and gravitational field of the Earth has been
continually refined by a series of recent and ongoing mis-
sions.

From a geophysical perspective, the motivation for ob-
taining high resolution gravitational and topographic data is
to place constraints on the interior structure of a planet. As
a result of Newton’s law of gravitation, the magnitude and
direction of the gravitational acceleration exterior to a planet
is completely determined by its internal distribution of mass.
When combined with topographic data and reasonable geo-
logic assumptions, it is possible to invert for important geo-
physical parameters such as crustal thickness, elastic thick-
ness, and crustal and mantle density. These model parame-
ters can then be used to address questions concerning plan-
etary differentiation, crust formation, thermal evolution, and
magmatic processes. As the spatial resolving power of grav-
itational measurements decreases with increasing distance
from the object, such investigations are generally restricted
to the crust and upper mantle.

Very few research articles have been written that review
the gravitational fields and topography of the terrestrial plan-
ets from a comparative planetology perspective: exceptions
includePhillips and Lambeck(1980),Balmino(1993),Bills
and Lemoine(1995), andRummel(2005). The purpose of
this chapter is to both review the current state of knowledge

of the gravitational fields and topography of the terrestrial
planets, and to review the tools that are used to describe
and analyze these data. While gravitational and topographic
data sets can each be used independently to make inferences
about the interior structure of a planet, such results are of-
ten based upon untestable hypotheses and/or are highly un-
derconstrained. Thus, although regional topographic mod-
els have been constructed for some planets, moons, and as-
teroids (such a Mercury (e.g.,Harmon et al.1986;Ander-
son et al.1996a;Watters et al.2001, 2002;Andŕe et al.
2005), Ganymede (Giese et al.1998), Europa (Nimmo et al.
2003b,a), Phobos (Duxbury 1989), and 433 Eros (Zuber
et al. 2000b)), and the longest wavelength gravitational
fields have been constrained for others (such as Mercury
(Anderson et al.1987), Eros (Miller et al. 2002; Garmier
and Barriot 2002), Io (Anderson et al.1996c, 2001a), Eu-
ropa (Anderson et al.1998), Ganymede (Anderson et al.
1996b) and Callisto (Anderson et al.2001b)), this review
will focus on those bodies for which the gravity and topogra-
phy are both characterized to high degree; namely, the Earth,
Venus, Mars, and the Moon.

The outline of this chapter is as follows. First, in sec-
tion 2, a general review of the mathematical formalism that
is used in describing the properties of gravitational fields to-
pography is given. Next, in section 3, the basic properties of
the gravitational fields and topography of the Earth, Venus,
Mars, and the Moon are characterized. Following this, sec-
tions 4–7 discuss the relationship between gravity and to-
pography, and how the two data sets can be used to invert
for geophysical parameters. These methods include crustal
thickness modeling, the analysis of geoid/topography ra-
tios, and modeling of the spectral admittance and correlation
functions. Section 8 summarizes the major results that have
been obtained by gravity and topography modeling for these
planetary bodies, and section 9 concludes by discussing fu-
ture developments that can be expected in this domain.

2 MATHEMATICAL PRELIMINARIES

This section reviews the mathematical background that is re-
quired to understand how gravitational fields and topography
are characterized and manipulated. As most analysis tech-
niques make use of spherical harmonics, the first subsection
defines these functions and introduces certain concepts such
as the power spectrum. The following subsection gives def-
initions that are specific to the gravitational potential, grav-
itational field, and geoid. For further details, the reader is
referred to several key books and articles such asJeffreys
(1976),Kaula (1967),Kaula (2000),Heiskanen and Moritz
(1967) andLambeck(1988).

2.1 Spherical harmonics

Spherical harmonics are the natural set of orthogonal ba-
sis functions on the surface of the sphere. As such, any real
square-integrable function can be expressed as a linear com-
bination of these as

f(Ω) =
∞∑

l=0

l∑
m=−l

flmYlm(Ω), (1)
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whereYlm is the spherical harmonic function of degreel
and orderm, flm is the corresponding expansion coeffi-
cient, andΩ = (θ, φ) represents position on the sphere in
terms of colatitudeθ and longitudeφ, respectively. Alterna-
tive representations include the use of ellipsoidal harmonics
(e.g.,Garmier and Barriot2001) when the function is glob-
ally known, and spherical cap harmonics (e.g.,Haines1985;
Hwang and Chen1997;Thébault et al.2004, 2006) when the
function is known only regionally. In geodesic and gravita-
tional applications, the real spherical harmonics are defined
as

Ylm(Ω) =
{

P̄lm(cos θ) cos mφ if m ≥ 0
P̄l|m|(cos θ) sin |m|φ if m < 0,

(2)

where the normalized associated Legendre functions are
given by

P̄lm(µ) =

√
(2− δ0m)(2l + 1)

(l −m)!
(l + m)!

Plm(µ), (3)

and whereδij is the Kronecker delta function. The unnor-
malized Legendre functions in the above equation are de-
fined in relation to the Legendre Polynomials by

Plm(µ) =
(
1− µ2

)m/2 dm

dµm
Pl(µ), (4)

Pl(µ) =
1

2ll!
dl

dµl

(
µ2 − 1

)l
. (5)

The normalized associated Legendre functions are orthogo-
nal for a given value ofm according to

1∫
−1

P̄lm(µ)P̄l′m(µ) = 2(2− δ0m) δll′ , (6)

and the spherical harmonics are orthogonal over bothl and
m with the normalization∫

Ω

Ylm(Ω)Yl′m′(Ω) dΩ = 4π δll′δmm′ , (7)

wheredΩ = sin θ dθ dφ. Multiplying eq. 1 byYl′m′ and in-
tegrating over all space, the spherical harmonic coefficients
of the functionf can be obtained by calculating the integral

flm =
1
4π

∫
Ω

f(Ω)Ylm(Ω) dΩ. (8)

A useful visualization property of the spherical harmonic
functions is that they possess2|m| zero crossings in the
longitudinal direction, andl − |m| zero crossings in the
latitudinal direction. In addition, for a given spherical har-
monic degreel, the equivalent Cartesian wavelength isλ ≈
2πR/

√
l(l + 1), whereR is the mean planetary radius, a

result known as the Jeans relation. It should be noted that
those coefficients and spherical harmonics wherem = 0 are
referred to as zonal, those withl = |m| are sectoral, and the
rest are tesseral. Furthermore, the zonal coefficientsCl0 are
often written as−Jl.

Using the orthogonality properties of the spherical har-
monic functions, it is straightforward to verify that the total
power of a functionf is related to its spectral coefficients by
a generalization of Parseval’s theorem:

1
4π

∫
Ω

f2(Ω) dΩ =
∞∑

l=0

Sff (l), (9)

where

Sff (l) =
l∑

m=−l

f2
lm (10)

is referred to as the power spectrum of the function. (The
term “power” is here used in the sense of the signal process-
ing literature; namely, the square of the function divided by
the area that it spans.) It can be shown thatSff is unmod-
ified by a rotation of the coordinate system. Similarly, the
cross-power of two functionsf andg is given by

1
4π

∫
Ω

f(Ω)g(Ω) dΩ =
∞∑

l=0

Sfg(l), (11)

where

Sfg(l) =
l∑

m=−l

flm glm (12)

is defined as the cross-power spectrum. If the functionsf
andg have a zero mean (i.e., their degree-0 terms are equal to
zero), thenSff (l) andSfg(l) represent the contributions to
the variance and covariance, respectively, for degreel. Some
authors plot routinely the power per degree,S/(2l + 1), or
the rms amplitude of the spherical harmonic coefficients,√

S/(2l + 1).
One source of confusion with spherical harmonic anal-

yses is that not all authors use the same definitions for the
spherical harmonic and Legendre functions. In contrast to
the “geodesy” or “4π” normalization of eq. 7 (cf.Kaula
2000), the seismology (e.g.,Dahlen and Tromp1998) and
physics (e.g.,Varshalovich et al.1988) communities often
use orthonormal harmonics, whose squared integral is equal
to unity. Alternatively, the geomagnetic community employs
Schmidt semi-normalized harmonics whose squared integral
is 4π/(2l + 1) (e.g.,Blakely1995). A more subtle problem
is related to a phase factor of(−1)m (the Condon-Shortley
phase) that is sometimes applied to either eqs 3 or 4. While
the spherical harmonics used by the geodesy and geomag-
netic communities both exclude this phase factor, those in
the physics and seismology communities often include it.

In order to obtain the spherical harmonic coefficients
flm of a functionf , it is necessary to be able to calculate ac-
curately both the normalized Legendre functions of eq. 3 and
the integral of eq. 8. Methods for efficient calculation of the
normalized associated Legendre functions depend upon the
use of well known three-term recursion formulas. If starting
values used in the recursion are appropriately scaled, as is
summarized byHolmes and Featherstone(2002), these can
be computed to high accuracy up to a maximum spherical
harmonic degree of about 2700. To obtain a similar accu-
racy at higher degrees would require the use of an alternative
scaling algorithm.

The integrals of eq. 8 are most easily performed if the
function f is known on a set of evenly spaced grid points
in longitude. Numerical methods for calculating this inte-
gral generally involve Fourier transforming each latitudinal
band, and then integrating over latitude for eachl and m
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(e.g.,Sneeuw1994). If the function is sampled on ann × n
grid, with n even, and if the function is known to be band-
limited to a maximum degreen/2 − 1, then the spherical
harmonic transform can be computed exactly (seeDriscoll
and Healy1994). Alternatively, the integral over latitude can
be performed using Gauss-Legendre quadrature (e.g.,Press
et al.1992, pp. 140–149). While the integrand of eq. 8 is not
in general a terminating polynomial, if the function is band-
limited to a maximum degreen, n + 1 points in latitude are
sufficient to calculate accurately the spherical harmonic ex-
pansion coefficients. Software for performing spherical har-
monic transforms and reconstructions is available at the au-
thor’s website (see Table 1 for a list of internet resources).

2.2 The potential, gravity, and geoid

If the gravitational accelerationg is expressed as the gradient
of a scalar potentialU ,

g(r) = ∇U(r), (13)

Newton’s law can be used to calculate the gravitational po-
tential at an arbitrary point by a simple integral over the mass
distribution,

U(r) =
∫

V

G ρ(r′)
|r− r′|

dV ′, (14)

wherer represents position,ρ is the mass density andV
signifies that space which is occupied by the body. While
the sign convention of the above two equations is consistent
with that used in the geodesy literature, it should be noted
that other disciplines, such as physics, place a negative sign
in front of each of these. Exterior to the mass distributionV ,
it can be shown that the potential satisfies Laplace’s equation
(e.g.,Kaula2000, Chap. 1):

∇2U(r) = 0. (15)

By use of the above identity and the method of separation
of variables, the potentialU exterior toV can be expressed
alternatively as a sum of spherical harmonic functions:

U (r) =
GM

r

∞∑
l=0

l∑
m=0

(
R0

r

)l

Clm Ylm(Ω). (16)

Here, theClms represent the spherical harmonic coefficients
of the gravitational potential at a reference radiusR0, G is
the gravitational constant, andM is the total mass of the
object. In practice, the infinite sum is truncated beyond a
maximum degreeL that is justified by the data resolution.
The coefficientsClm of eq. 16 are uniquely related to the
internal mass distribution of the body, and methods for cal-
culating these are deferred until section 4. Here, it is only
noted that the degree-0 coefficientC00 is equal to unity, and
that if the coordinate system has been chosen such that it co-
incides with the center of mass of the object, the degree-1
terms (C10, C11 andC1−1) are identically zero.

As a result of the factor(R0/r)l that multiplies each
term in eq. 16, the high frequency components in this sum
(i.e., those with largel) will be attenuated when the observa-
tion radiusr is greater than the reference radiusR0. In con-
trast, if the coefficients were determined at the altitude of an
orbiting satellite, and if this equation were used to determine
the potential field at the surface of the planet, then the high

frequency terms would instead be relatively amplified. Since
the spherical harmonic coefficients always possess some un-
certainty, which generally increases with increasingl, the
process of downward continuing a potential field is not sta-
ble and must generally be compensated by some form of fil-
tering (e.g.,Phipps Morgan and Blackman1993;Wieczorek
and Phillips1998;Fedi and Florio2002).

If the body under consideration is rotating, then an ad-
ditional non-gravitational force must be taken into account
when calculating the potential. In the reference frame of the
rotating body, this can be accounted for by adding to eq. 16 a
pseudo-potential term that is a result of the centrifugal force.
This rotational potential, as well as its spherical harmonic
expansion, is given by

Urot =
ω2r2 sin2 θ

2
= ω2r2

(
1
3
Y00 −

1
3
√

5
Y20

)
, (17)

where ω is the angular velocity of the rotating object.
For some applications, especially concerning the Earth and
Moon, it is necessary to include the tidal potential of the
satellite or parent body when calculating the potential (see
Zharkov et al.1985; Dermott 1979). For a synchronously
locked satellite on a circular orbit, such as the Moon, the
combined tidal and rotational potential in the rotating frame
is (ignoring degree-0 terms that do not depend uponr) given
approximately by

U tide+rot ≈ ω2r2

(
1
3
Y00 −

5
6
√

5
Y20 +

1
4

√
12
5

Y22

)
. (18)

An important quantity in both geodesy and geophysics
is the geoid, which is defined to be a surface that possesses a
specific value of the potential. (Although one could come up
with imaginative names for equipotential surfaces on Venus,
Eros, and Io, among others, the termgeoid will here be used
for all.) As there are no tangential forces on an equipoten-
tial surface (see eq. 13), a static fluid would naturally con-
form to the geoid. The oceans of the Earth are approximately
static and are well approximated by such a surface. In geo-
physics, stresses within the lithosphere are often calculated
by referencing the vertical position of a density contrast to
an equipotential surface. This is necessary when performing
lithospheric flexure calculations, especially when consider-
ing the longest wavelengths.

The heightN of an equipotential surface above a spher-
ical reference radiusR can be obtained by approximating the
potential by a Taylor series

U(R + N) ≈ U(R) +
dU(R)

dr
N +

1
2

d2U(R)
d2r

N2, (19)

and setting this expression equal to a constant

U(R + N) =
GM

R
+

ω2R2

3
, (20)

the value of which is here chosen to be the degree-0 term of
the potential at the reference radiusR for a rotating planet.
Since this equation is quadratic inN , the geoid height can
be solved for analytically at any given position. Analytic ex-
pressions for the partial derivatives of the potential are easily
obtained in the spectral domain from eqs 16 (see 22) and 17,
and spatial renditions of these can be obtained by performing
the inverse spherical harmonic transform.
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Table 1. Internet resources.

Resource Internet address

SHTOOLS: Fortran 95 spherical harmonics code http://www.ipgp.jussieu.fr/∼wieczor/
Planetary Data System (PDS) Geosciences node http://pds-geosciences.wustl.edu/
ETOPO2: Earth topography model http://www.ngdc.noaa.gov/mgg/fliers/01mgg04.html
GTOPO30: Earth topography model http://edcdaac.usgs.gov/gtopo30/gtopo30.asp
SRTM: Earth topography model http://srtm.usgs.gov/ and

ftp://e0srp01u.ecs.nasa.gov
STRM30PLUS: Earth topography model http://topex.ucsd.edu/WWWhtml/srtm30plus.html
WGS84 ellipsoid and “WGS84 EGM96 geoid” http://earth-info.nga.mil/GandG/wgs84/
GGM02: Earth gravity model http://www.csr.utexas.edu/grace/gravity/
EIGEN: Earth gravity models http://www.gfz-potsdam.de/pb1/op/grace/results/
GTDR3.2: Venus topography ftp://voir.mit.edu/pub/mg3003/
Planetary maps with feature names http://ralphaeschliman.com/
Generic Mapping Tools http://gmt.soest.hawaii.edu/

For most cases it is sufficient to use only the first order
terms of eq. 19. Specifically, if the first derivative ofU is
approximated by−GM/R2, then the geoid is simply given
by

N ≈ R
∞∑

l=2

l∑
m=−l

(
R0

R

)l

ClmYlm − ω2R4

3
√

5GM
Y20, (21)

where the degree-1 terms have been assumed to be zero. Al-
though the maximum difference between the first and second
order methods is less than 3 meters for both the Moon and
Venus, differences of up to 20 and 40 meters are obtained
for the Earth and Mars, respectively. The poor performance
of the first-order approximation for the Earth and Mars is pri-
marily a result of the large rotationally inducedJ2 potential
terms.

Despite the simplicity of the above method for obtaining
the height to an equipotential surface, the question arises as
to whichequipotential surface should be used. For the Earth,
a natural choice is the potential corresponding to mean sea
level. However, for the other planets, the choice is more ar-
bitrary. As the above equations for calculating the potential
are strictly valid only when the observation point is exterior
to the body, one manner of picking a specific potential might
be to chose that value for which all points on the geoid are
exterior to the body. (Calculation of the potential below the
surface of a planet would require knowledge of the interior
density distribution.) Another standard definition might be
to use the mean potential on the planet’s equator.

The radial component of the gravitational field is easily
calculated by taking the first radial derivative of eq. 16. Ig-
noring the rotational potential, and using the sign convention
that gravitational accelerations are positive when directed
downward, this is given by the expression

gr =
GM

r2

∞∑
l=0

l∑
m=−l

(
R0

r

)l

(l + 1) Clm Ylm. (22)

Note that this equation differs from that of the potential only
by the inclusion of the additional factors1/r and(l+1). The
second factor gives a greater importance to the higher de-
gree terms, and it is for this reason that plots of the potential
and geoid appear to be “smooth” when compared to compo-
nents of the gravitational field. In terrestrial applications it
is common to calculate the gravitational field on the geoid.

By inserting eq. 21 into eq. 22, and ignoring rotational and
higher-order terms, it can be shown that the radial compo-
nent of the gravitational field on the geoid can be calculated
simply by replacing the term(l + 1) in eq. 22 by(l − 1).
The standard unit for quantifying gravitational perturbations
is the Galileo, where1 Gal = 10−2 m s−2, and when plot-
ting gravitational anomalies in map form, it is conventional
to use mGals.

Finally, it will be useful to characterize the relationship
between the gravitational field and topography in the spectral
domain. For this, let us presume that the radial gravityglm

and topographyhlm are related by

glm = Qlm hlm + Ilm, (23)

whereQlm is a linear non-isotropic transfer function, and
Ilm is that portion of the gravitational signal, such as noise,
that is not predicted by the model (the topography can gener-
ally be considered noise free). IfIlm is uncorrelated with the
topography, then it is straightforward to show that the expec-
tations of bothShh andShg will be unaffected by this signal.
(This can be shown by multiplying eq. 23 byhlm, summing
over allm, and taking the expectation.) In contrast, the ex-
pectation of the gravitational power spectrum will depend
upon the magnitude ofIlm. In particular, for the case where
Ilm is a random variable that is independent of the surface
topography, the expectation of the gravitational power spec-
trum is simply

Sgg(l) = S0
gg(l) + SII(l), (24)

whereS0
gg is the power spectrum predicted exclusively by

the modelQlm, andSII is the power spectrum ofIlm. Thus,
gravitational measurement noise will bias the gravitational
power spectrum by an additive constant.

In quantifying the relationship between gravity and to-
pography it is useful to work with ratios of their cross-power
spectra. One quantity, referred to as theadmittanceis de-
fined by the cross-power of the two functions divided by the
power of the topography (e.g.,Dorman and Lewis1970):

Z(l) =
Shg(l)
Shh(l)

. (25)

This function is not biassed by the presence of noise, and
when the transfer functionQlm is isotropic (i.e., independent
of m), it is an unbiassed estimate ofQl. Another ratio that is
commonly used, which is dimensionless, is
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γ(l) =
Shg(l)√

Shh(l)Sgg(l)
. (26)

If for a given degreel the coefficientshlm and glm pos-
sess a zero mean, the above function is simply the degree-
correlation of the two sets of harmonic coefficients, which
can possess extreme values of1 and−1. While noise will
not bias the admittance function, it will bias the degree-
correlation function towards lower values as a consequence
of the gravitational power spectrum in the denominator of
this expression. The termcoherenceis usually reserved for
the correlation squared, but this definition is not universally
followed. Since squaring the correlation discards its sign,
its use is not advocated here. It is noted that the isotropic
version of eq. 23 predicts that the spectral correlation coef-
ficient should always be±1. Nevertheless, as discussed in
section 7, non-isotropic models yield expressions that are
wavelength-dependent. While other ratios of cross-power
spectra could be constructed, only two will be independent.

3 THE DATA

3.1 The Earth

3.1.1 Topography

Despite the fact that the measurement of the Earth’s to-
pography and bathymetry has been the subject of numer-
ous government supported campaigns, large portions of the
Earth’s surface, namely the oceans, remain poorly charac-
terized. Indeed, from a global perspective, it can be said
that the topography of Venus and Mars is better known than
that of the planet we call home. Until recently, even the el-
evations of the aerial portions of the continents possessed
long-wavelength uncertainties, a result of mosaicking nu-
merous elevation models, each with its own reference sur-
face, along artificial political boundaries. While major ad-
vances have been made in the past decade towards gener-
ating global models, the main deficiency is still the sparse
bathymetry of the oceans.

Numerous topographic models of the Earth’s landmass
have been assembled from various sources over the past
few decades, including ETOPO5 and ETOPO2 (5- and 2-
arcminute resolution,National Geophysical Data Center
2001), GLOBE (30 arcsecond resolution, seeHastings and
Dunbar 1999) and GTOPO30 (detailed documentation for
these and all following topography models can be found at
the appropriate web address listed in Table 1). Currently, the
most accurate model of the Earth’s landmass comes from
radar interferometric data collected by the Shuttle Radar To-
pography Mission (SRTM). During its ten days of opera-
tion onboard the US space shuttle in year 2000, this mission
mapped nearly 80 percent of the landmass between 60◦ N
and 54◦ S with a horizontal sampling of 1 arcsecond (∼30
meters) and an absolute vertical accuracy better than about
10 meters (Rabus et al.2003;Rodŕıguez et al.2005). Be-
cause of the 5.6 cm wavelength of the radar, elevations gen-
erally correspond to the top of the canopy when vegetation
is present.

The bathymetry of the oceans has been measured from
ship surveys using echo sounding for over half a century.
Unfortunately, the ship tracks sometimes possess large nav-

igational errors, and large data gaps exist. As reviewed by
Marks and Smith(2006), many datasets exist that are based
upon these measurements, but each has its own peculiarities.
In the absence of additional ship survey data, one method
that can be used to improve the bathymetry of the oceans
is by combing ship survey data with marine gravity data.
As is detailed bySmith and Sandwell(1994, 1997), marine
gravity anomalies (as obtained from altimeter derived sea
surface slopes) are highly correlated with seafloor topogra-
phy over a restricted wavelength band. By combining pre-
dicted topography from bandpassed gravity anomalies with
the long wavelength bathymetry from shipboard sounding, it
has been possible to obtain near-global 2-arcsecond resolu-
tion estimates of seafloor topography. Nevertheless, it should
be emphasized that such data products are indeed estimates,
and that they may be inappropriate for certain types of geo-
physical modeling.

Global Earth topography models that combine oceanic
bathymetry and landmass topography include ETOPO2 and
SRTM30PLUS. The later of these represents a combination
of the SRTM 30-arcsecond data and theSmith and Sandwell
(1997) predicted bathymetry, with gaps filled by GTOPO30
data, among others. An image of this global topographic
model is displayed in Figure 1. This dataset represents ele-
vations above the “WGS84 EGM96 geoid”, which is a good
approximation of “mean sea level” (see internet documen-
tation in Table 1 for precise definitions). If absolute radii of
the Earth were desired (as is necessary for most methods that
calculate gravity from topography), it would be necessary
to add this geoid, which is referenced to the WGS84 ellip-
soid, and the WGS84 ellipsoid itself. The WGS84 ellipsoid
is a good representation of the Earth’s zonal shape, and pos-
sesses a 21 km rotationally induced difference in elevation
between the equator and polar axis.

3.1.2 Gravity

The gravitational field of the Earth has been mapped by
several techniques, including analyses of satellite tracking
data, terrestrial measurement campaigns, and satellite al-
timetry of the ocean surface (geoid slopes are proportional
to the gravity field in the spectral domain (see, among oth-
ersHwang and Parsons1996;Sandwell and Smith1997)).
The construction of global high-resolution models generally
consists of combing the long-wavelength information from
satellite tracking data with the short wavelength information
in the terrestrial and oceanic altimeter surveys. The model
EGM96 (Lemoine et al.1998) has been the standard refer-
ence for much of the past decade, but this has been super-
seded by data obtained from the recent missions CHAMP
and GRACE.

In contrast to the EGM96 model that is based upon
satellite tracking data from terrestrial stations, the ongoing
missions CHAMP (Reigber et al.2004) and GRACE (Tap-
ley et al.2004) are based upon continuous satellite to GPS
(global positioning system) tracking data. While CHAMP is
a single satellite, GRACE consists of two satellites on iden-
tical orbits of which the distance between the two is mea-
sured to high accuracy by a microwave communication link.
Two of the most recent high resolution models of the Earth’s
gravitational field derived from these data include GGM02C
(Tapley et al.2005) and EIGEN-GL04C (cf.Reigber et al.
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Figure 1. (top) Global topography and bathymetry of the Earth, referenced to mean sea level, of the model SRTM30PLUS. (middle) Radial free-air gravity
from EIGEN-GL04C, obtained after setting the zonal degree-2 term equal to zero, evaluated at a radius of 6378.1 km. (bottom) First-order approximation to
the geoid obtained from the same coefficients as the radial gravity field. All images are in a Mollweide projection with a central meridian of 180◦ W longitude
and are overlain by a gradient image derived from the topographic model.
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2005). GGM02C is based upon GRACE tracking data com-
bined with terrestrial and altimeter based surface measure-
ments and is valid to degree 200 (this can be augmented to
degree 360 by using the EGM96 spherical harmonic coef-
ficients). In contrast, EIGEN-GL04C is valid to degree 360
(λ ≈110 km) and additionally makes use of laser ranges to
the LAGEOS satellites.

Images of the radial gravitational anomaly and geoid,
as determined from eqs 21 and 22, respectively, are shown
in Figure 1 for the model EIGEN-GL04C. For both images,
the zonal degree-2 term that is primarily a result of the rota-
tional flattening was set to zero, and the fields were evaluated
at a reference radius of 6378.1 km. (The shape and potential
of a flattened ellipsoid are well approximated by the degree-
2 zonal harmonic.) The largest gravitational anomalies are
seen to be correlated with topography (such as trenches and
seamounts), and the geoid height is found to vary by about
200 meters. Errors in the geoid and gravity field are esti-
mated to be approximately 30 cm and 8 mGal, respectively.

3.1.3 Spectral analysis

A spherical harmonic model of the Earth’s shape was con-
structed by adding the EGM96 and WGS84 geoid and
ellipsoid, respectively, to the model SRTM30PLUS, and
expanding this gridded data set to degree 719 using the
method ofDriscoll and Healy(1994). For the analyses pre-
sented here, the radius of the ocean floor was increased by
1030/2670 times its depth in order to convert the mass of
the overlying sea water into “rock equivalent topography”
(this model is here designated as SRTMP719 RET). Spectral
and cross-spectral properties of this model and the EIGEN-
GL04C potential are plotted in Figure 2. As demonstrated
in the left panel, the power spectrum of the geoid is about 5
orders of magnitude less than that of the topography, which
is a reflection of the low amplitudes of the geoid undulations
present in Figure 1. The (calibrated) error spectrum of the
potential model demonstrates that the coefficients are well
determined at low degrees, with uncertainties gradually in-
creasing to a near constant value close to degree 100. As a
result of the∼400 to 500-km altitude of the GRACE and
CHAMP satellites, the contribution to the gravitational field
from the orbital tracking data is necessarily limited to de-
grees less than about 100; the higher-degree terms are con-
strained almost entirely by the surface measurements.

The admittance and correlation spectra between the ra-
dial gravity and topography are plotted in the right panel of
Figure 2. The correlation for many of the lowest degrees is
seen to be small, and in some cases negative. Beyond degree
12 the correlation is relatively constant with a value of∼0.6–
0.7, though it should be noted that this function slightly de-
creases with increasing degree beyond degree∼250. If the
surface topography were completely uncompensated, which
should be a good approximation beyond degree 200, then the
admittance would have a near-constant value of2πρ G, or42
mGal km−1 times the surface density in units of g cm−3. The
observed function is everywhere lower than this theoretical
value by a factor of two, and this is a consequence of the fact
that the gravity and topography are not perfected correlated
on a global scale (see discussion in Section 6.2).

3.2 Venus

3.2.1 Topography

The planet Venus possesses a dense atmosphere and is per-
petually enshrouded by opaque clouds of sulphuric acid. In
order to obtain measurements of the surface, it is neces-
sary to make use of electromagnetic frequencies, such as mi-
crowaves, where the atmosphere is transparent. Surface ele-
vations of Venus have been measured from orbit using radar
altimeters onboard the missions Pioneer Venus Orbiter, Ven-
era 15 and 16, and Magellan. Of these, the Magellan space-
craft, which was in orbit between 1990 and 1994, collected
the highest resolution measurements on a near-global scale
(for a detailed description, seeFord and Pettengill1992).

As a result of the elliptical orbit of the Magellan space-
craft, the spatial resolution of the elevation measurements
varied between8 × 10 km at periapse to19 × 30 km at the
north pole (Rappaport et al.1999). Over 4 million range
measurements were ultimately collected, and these were
used to construct a5× 5 km gridded elevation model. With
the exception of a few relatively minor data gaps cover-
ing about 2.6% of the planet’s surface area, coverage of the
planet is fairly uniform. (If data from previous missions are
used to fill the gaps, then just less than 1% of the planet
is not covered at this resolution). Though the spacecraft-
surface range measurements are estimated to have an accu-
racy of less than 10 meters (errors can be larger over rough
and steeply sloping terrain), uncertainties in the spacecraft
orbit at the time of initial processing were sometimes much
greater, especially during superior conjunction. The most re-
cent gravity model ofKonopliv et al.(1999) has consider-
ably improved the spacecraft navigational errors, and these
improved orbit predictions have been used byRappaport
et al. (1999) in a complete reprocessing of the altimetry
data set (archived as GTDR3.2). Horizontal uncertainties in
the footprint locations are insignificant in comparison to the
footprint size, and the RMS radial uncertainty is estimated
to be less than 20 meters.

An image of the Venusian topography (derived from
the spherical harmonic model VenusTopo719; see below) is
shown in Figure 3, where it is referenced to the geoid. While
the hypsometry of Venus is unimodal (e.g.,Ford and Pet-
tengill 1992;Rosenblatt et al.1994), in contrast to that of the
Earth which is bimodal, Venus can be broadly characterized
by its low-lying plains, “continental” plateaus, and volcanic
swells. The most prominent highlands include Aphrodite
Terra, which lies along the equator, and Ishtar Terra, which
is located at high northern latitudes. Ishtar and Aprhodite
Terra differ in that the former is flanked by high elevation
mountain ranges. Isolated domical volcanic provinces that
possess prominent rift valleys include Atla (0◦ N, 200◦ E)
and Beta (25◦ N, 280◦ E) Regiones. The highest topographic
excursion corresponds to Maxwell Montes, located in Ishtar
Terra, which reaches more than 10 km above the surround-
ing plains. (Maps with feature names for Venus, Mars, and
the Moon can be found at the appropriate web address in
Table 1).

3.2.2 Gravity

Models of the gravitational field of Venus have been con-
structed through the analyses of tracking data from the Pio-
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Figure 2. Power and cross-power spectra of the Earth’s radial gravity and topography. (left) Power spectra of the topography (SRTMP719 RET), geoid
(EIGEN-GL04C), and calibrated geoid error. (right) Admittance and correlation spectra of the radial gravity and topography.

neer Venus Orbiter and Magellan spacecraft (for a review,
seeSjogren et al.1997). The orbit of the Pioneer Venus
spacecraft was highly eccentric, and possessed periapse al-
titudes as low as 150 km near the equator. The Magel-
lan spacecraft was initially on an eccentric orbit as well,
but through the technique of aerobraking during the grav-
ity mapping phase of the mission, the orbit was transformed
to a more circular one, with periapse and apoapse altitudes
varying between 155–220 and 350–600 km, respectively.

The most recent model of the Venusian gravitational
field is the degree 180 JPL (Jet Propulsion Laboratory)
model MGNP180U ofKonopliv et al.(1999). Because of
computational constraints at the time, this model was con-
structed in three phases. In the first step, a model to degree
120 was generated using the full unconstrained covariance
matrix and a spatiala priori constraint that depended on
the strength of the gravitational accelerations (such models
are labeled SAAP for Surface AccelerationA Priori). The
second step used this model as the nominal solution, and
then solved for the coefficients from degree 116 to 155 us-
ing the same spatial constraint. For the third step, the coeffi-
cients were determined from degree 154 to 180, but instead
of using a spatial constraint, the spherical harmonic coeffi-
cients were biased towards a global power law (i.e., a “Kaula
rule”). Future models could be improved by performing the
inversion in a single step. As a result of the spatial constraint
that was employed in the first two steps, the spatial resolu-
tion of the model varies dramatically with position on the
surface. While spectral resolutions approaching degree 180
may be realized close to the equator, other regions possess
resolutions as low as degree 40 (see figure 3 ofKonopliv
et al.1999).

Images of the MGNP180U radial gravitational field and
geoid are presented in Figure 3, evaluated at a radius if 6051
km, where the spectral coefficients have been truncated be-
yond degree 65. As a result of the slow retrograde rotation
of Venus, there is no appreciable rotational flattening of the
planet, and theJ2 potential coefficient is thus here included
in contrast to that of the Earth and Mars. These plots show
that most gravitational and geoid anomalies are highly cor-
related with the surface topography. The largest radial grav-
itational anomalies are associated with the volcanoes Maat
and Ossa Mons in Atla Regio, with values reaching about

270 mGal. The high elevations of Maxwell Montes, Beta Re-
gio, and numerous smaller volcanic provinces, are also seen
to possess significant anomalies. Uncertainties in the radial
component of the gravitational field are typically 10 mGal at
the surface, but can be as high as 50 mGal in places.

Like the Earth, the geoid undulations of Venus possess
a dynamic range of only∼200 meters. The largest geoid
anomalies correspond to the volcanic swells of Atla and
Beta Regiones, and the continental regions of Aphrodite and
Ishtar Terra. It is also seen that the plains with the lowest el-
evations possess negative geoid anomalies. Uncertainties in
the geoid are typically 1 meter, but can reach values as high
as 4 m.

3.2.3 Spectral Analysis

A degree 719 spherical harmonic model (VenusTopo719)
was constructed based on the Magellan GTDR3.2 sinu-
soidally projected data product. Missing nodes were filled
by data obtained by the Pioneer Venus and Venera 15/16
missions, the remaining gaps were filled by interpolation us-
ing the GMT (Wessel and Smith1991) command “surface”
with a tension parameter of 0.35, and the spherical harmonic
expansion was performed using the sampling theorem of
Driscoll and Healy(1994). While the resulting power spec-
trum was found to be insensitive to changes in the tension
parameter, the mean planetary radius varied by about one
meter among the various models. A comparison between this
spherical harmonic model and the one ofRappaport et al.
(1999) shows that the latter suffers from an increasing loss
of fidelity with increasing degree (the degree correlation be-
tween the two models is∼ 0.93 at degree 360). While the
cause for this is uncertain, possible explanations might be
the use of inaccurate Legendre functions or the presence of
short-wavelength aliases at high degrees.

Power spectra of the Venusian topography
(VenusTopo719) and geoid (MGNP180U) are shown
in the left panel of Figure 4. These are similar to those of
the Earth, with the exception that the amplitudes of the
degree-1 and -2 topographic terms for Venus are relatively
smaller. On a log-log plot (not shown), a change in slope of
the topographic power spectrum is seen to occur near degree
100 (Rappaport et al.1999). While this feature might be
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Figure 3. (top) Global topography of Venus, derived from the spherical harmonic model VenusTopo719, referenced to geoid. (middle) Radial free-air gravity,
evaluated at a radius of 6051 km, obtained after truncating the spherical harmonic coefficients of MGNP180U beyond degree 65. (bottom) First-order approx-
imation to the geoid obtained from the same coefficients as the radial gravity field. All images are in a Mollweide projection with a central meridian of 60◦ E
longitude and are overlain by a gradient image derived from the topographic model.
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Figure 4.Power and cross-power spectra of the gravity and topography of Venus. (left) Power spectra of the topography (VenusTopo719), geoid (MGNP180U),
and geoid error. (right) Admittance and correlation spectra of the radial gravity and topography.

real, it is also possible that it is related to interpolating
over data gaps before performing the spherical harmonic
expansion. The error spectrum of the geoid is seen to be
greater than the geoid itself for degrees greater than 65.
While the global values of the potential coefficients are
generally unreliable beyond this degree, it should be noted
that the spatial resolution of the gravitational field is a
strong function of position on the surface. Discontinuities in
the error spectrum are artifacts of solving for the potential
coefficients in three separate steps.

The spectral admittance and correlation functions for
the radial component of the gravitational field and topog-
raphy, plotted in the right panel of Figure 4, are seen to dif-
fer significantly from those for the Earth. The admittance is
found to possess values between∼30 and 50 mGal/km for
degrees up to degree 100, whereas for the Earth, the admit-
tance linearly increases from∼0 to 30 mGal/km at degree
100. The correlation between the gravitational field and to-
pography is also significantly higher for degrees less than 40
than it is for the Earth. Nevertheless, beyond degree 60, the
spectral correlation and admittance are seen to linearly de-
crease with increasing degree, which is a result of the poor
determination of the global potential coefficients. It is of note
that both the admittance and correlation for degree 2 are sig-
nificantly smaller than the neighboring values. As these are
unaffected by the slow retrograde rotation of Venus, these
low values may demand an origin that is distinct from the
higher degrees.

Because the Pioneer Venus Orbiter and Magellan space-
craft were in near polar orbits, the gravity field is better
determined for the near-sectoral terms. Sectoral terms cor-
respond to when|m| = l, for which the corresponding
spherical harmonic functions do not possess any latitudinal
zero crossings. By considering only those coefficients where
l − |m| < 20, Konopliv et al.(1999) have shown that both
the admittance and correlation between gravity and topogra-
phy are considerably greater than when considering all co-
efficients combined. In particular, the correlation function
remains close to 0.7 for degrees up to 140, at which point
it decreases substantially. Thus, while high-degree localized
spectral analyses may be justified on Venus, the fidelity of
the spectral estimates will be a strong function of both posi-
tion and the spherical-harmonic degree and order.

3.3 Mars

3.3.1 Topography

Prior to the 1990s, the best Martian topographic models were
constructed by a combination of Earth-based radar data,
spacecraft radio occultations, and stereo and photoclinomet-
ric observations, all of which suffered from either large un-
certainties or a limited spatial extent (for a review, seeEspos-
ito et al.1992). The laser altimeter onboard the Mars Global
Surveyor spacecraft (MOLA; Mars Orbiting Laser Altime-
ter) has since collected an impressive data set that has rev-
olutionized studies of the Martian surface (seeSmith et al.
1999;Zuber et al.2000a;Smith et al.2001b).

After being inserted into orbit in 1997, MOLA made
more than 640 million ranges to the surface over the pe-
riod of four years. The spot size of the laser at the surface
was∼168 m, and these were spaced every 300 meters in
the along-track direction of the spacecraft orbit. The intrin-
sic range resolution of the instrument was 37.5 cm, but range
precision decreases with increasing surface slope, and could
be as poor as 10 meters for slopes near 30◦. While the along-
track orbit errors are less than the size of the laser footprint,
radial orbit errors could sometimes be as high as 10 meters.
Nevertheless, these orbit-induced errors could be minimized
by the use of altimetric crossovers. Crossovers occur when-
ever two altimeter ground tracks intersect, and the difference
in the two elevation measurements is largely a reflection of
errors in the orbit determination. By parameterizing these
uncertainties by a slowly varying function, the crossover
residuals can be minimized (Neumann et al.2001). Such a
procedure was capable of reducing the rms crossover resid-
uals from about 8.3 to 1.8 m. Using these methods, it has
been possible to measure temporal variations in CO2 snow
depth that can reach 2 meters in the polar regions (Smith
et al.2001a).

The topography of Mars (as determined from the 719-
degree spherical harmonic model MarsTopo719; see below)
referenced to the geoid (calculated to second-order accu-
racy) is displayed in Figure 5. Two of the most remarkable
features are the dichotomy in elevation between the northern
and southern hemispheres, and the regionally high elevations
of the Tharsis volcanic province which is centered near the
equator at 100◦ W. These two features give rise to a 3.3 km
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Figure 5. (top) Global topography of Mars derived from the 719-degree spherical harmonic model MarsTopo719, referenced to the geoid calculated to second
order accuracy. (middle) Radial free-air gravity, evaluated at a radius of 3396 km, obtained after truncating the spherical harmonic coefficients of JGM95J01
beyond degree 75 and setting theJ2 term to zero. (bottom) First-order approximation to the geoid obtained from the same coefficients as the radial component
of the gravitational field. All images are in a Mollweide projection with a central meridian of 100◦ W longitude and are overlain by a gradient image derived
from the topography model.
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offset of the center of figure from the center of mass that is
directed toward 64◦ and S 99◦ W, of which the longitudinal
offset is directed towards the Tharsis province. In addition
to these long wavelength features, there is also an∼20 km
difference between the polar and equatorial radii that is prin-
cipally a result of the planet’s rotational flattening.

Other major topographic features include the giant im-
pact basins Hellas (40◦ S, 65◦ W), Argyre (50◦ S, 40◦ W)
and Isidis (15◦ N, 85◦ E), the Elysium volcanic province
(25◦ N, 145◦ E), the rift valley Valles Marineris, and the
prominent volcanoes that are superposed on the Tharsis
province. The highest elevation corresponds to the volcano
Olympus Mons, which rises almost 22 km above the MOLA
reference geoid.

3.3.2 Gravity

The gravitational field of Mars has been successively im-
proved by tracking data obtained from the Mariner 9, Viking
1 and 2, Mars Global Surveyor (MGS), and Mars Odyssey
missions. A major improvement in the gravity models came
with the acquisition of data from the MGS mission (seeYuan
et al.2001;Lemoine et al.2001;Konopliv et al.2006). This
spacecraft was in a near-polar orbit, and during the early
portion of the mission when the orbit was highly elliptical,
tracking data from altitudes as low as 170 km were acquired
at latitudes between 60◦ and 85◦ N. Through the technique
of aerobraking, the spacecraft was put into a near-circular
mapping orbit with periapse and apoapse alitudes of 370 and
435 km, respectively.

The most recent and highest resolution gravity model
of Mars is the JPL degree 95 model JGM95J01 (Konopliv
et al. 2006). This model employs MGS and Mars Odyssey
tracking data in combination with surface tracking data from
the Pathfinder and Viking 1 landers, the latter of which were
used to improve knowledge of the orientation of Mars. Some
of the Mars Odyssey tracking data are from altitudes as low
as∼200 km (primarily over the southern hemisphere), and
aerobraking eventually put the spacecraft into a near-circular
390× 455 km mapping orbit. In the absence ofa priori con-
straints, inversions for the global spherical-harmonic coef-
ficients give rise to an unrealistic power spectrum beyond
degree 60. In order to obtain a higher resolution model with
realistic power, the JGM95J01 model was biased towards an
a priori power law for degrees greater than 59 by use of a
Kaula rule.

An image of the radial component of the JGM95J01
gravity model is plotted in Figure 5, where the spherical-
harmonic coefficients have been truncated beyond degree 75
and theJ2 term set to zero. (A small portion of theJ2 po-
tential is likely related to the non-hydrostatic mass anomaly
associated with the Tharsis buldge (e.g.,Zuber and Smith
1997).) Clearly visible are the large positive anomalies as-
sociated with the volcanoes in the Tharsis plateau, and a
negative gravity moat that surrounds this plateau (Phillips
et al. 2001). Large positive anomalies are also evident for
some of the largest impact basins, such as Isidis, Argyre,
and the buried Utopia basin (45◦ N, 110◦ E) that lies in the
northern plains. A negative gravitational anomaly is clearly
associated with the Valles Marineris rift valley, and nega-
tive anomalies surrounding some mountains and volcanoes
seem to indicate a flexural origin. Formal uncertainties in the

radial gravity are at most 10 mGal (A. Konopliv, personal
communication).

The Martian geoid, as obtained from the model
JGM95J01, is shown in Figure 5. The geoid undulations of
Mars (after removal of theJ2 term) are seen to possess the
largest amplitudes among the terrestrial planets, with a dy-
namic range of over 2.5 km. The signal is clearly symmetric
about the Tharsis province, where a central geoid high is sur-
rounded by an annular low. Other geoid highs are associated
with the impact basins Isidis and Utopia, as well as the Ely-
sium volcanic rise. Uncertainties in the geoid are generally
no more than 2 m (A. Konopliv, personal communication).

3.3.3 Spectral Analysis

The power spectra of the Martian topography
(MarsTopo719; calculated from the gridded datasets
available at the PDS website) and geoid (JGMJ01) are
plotted in Figure 6. In comparison to the topographic
power spectrum, the Martian geoid is seen to have greater
amplitudes by about two orders of magnitude than both
the Earth and Venus. Furthermore, the first 5 degrees of
the Martian geoid are considerably greater than would be
expected based upon an extrapolation of the higher degree
terms. This low-degree signal is likely a consequence of the
lithospheric load and deflection associated with the Tharsis
province (seeZuber and Smith1997;Phillips et al. 2001).
The error spectrum of the geoid is seen to be larger than the
signal for degrees greater than∼75.

The admittance and correlation of the radial gravita-
tional field and topography are shown in the right panel of
Figure 6. The admittance function gradually increases with
increasing degree, attaining a relatively constant value be-
yond degree 30. Beyond degree 65 both the admittance and
correlation decrease as a result of the poor resolution of the
gravity field. While the shape of the admittance function is
somewhat similar to that of the Earth, it is important to note
that the amplitudes are considerably larger at high degrees
(∼100 in comparison to∼35 mGal km−1). Indeed, these
large values are comparable to what would be expected for
uncompensated topography. One apparent anomaly with the
admittance spectrum is the relatively high value of 53 mGal
km−1 for the degree three term.

With few exceptions (such as degrees 4 and 9) the cor-
relation between the gravity and topography is also seen to
be very high, with values between about 0.6 and 0.8. Similar
to the Venusian gravity model, the near-sectoral terms of the
Martian gravity solutions are relatively better determined be-
cause of the near-polar orbit of the MGS spacecraft. When
only these near-sectoral terms are used, the correlation be-
tween the gravity and topography is considerably larger at
high degrees in comparison to the case shown in Figure 6
(seeYuan et al.2001;Konopliv et al.2006).

3.4 The Moon

3.4.1 Topography

The topography of the Moon has been measured by several
means, including satellite altimetry, stereo-photogrammetry,
and radar interferometry (seeWieczorek et al.2006, for a
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Figure 6. Power and cross-power spectra of the gravity and topography of Mars. (left) Power spectra of the topography (MarsTopo719), geoid (JGM95J01),
and geoid error. (right) Admittance and correlation spectra of the radial gravity and topography.

more detailed review). However, because of the Moon’s syn-
chronous rotation, most early studies were restricted either
to the nearside hemisphere, or along the equatorial ground
tracks of the Apollo command and service modules. While
pre-Apollo stereo-photogrammetric studies were succesful
in obtaining regional topographic models with good relative
precision, the long wavelength and absolute accuracies of
these models were much poorer.

The Clementine mission, launched in 1994, was the first
to measure absolute elevations of the lunar surface on a near
global scale (seeZuber et al.1994;Smith et al.1997). North-
south topographic profiles were obtained between 79◦ S and
22◦ N during the first month of this mission, and then be-
tween 20◦ S and 81◦ N during the second. The absolute ac-
curacies of the obtained surface elevations are about 100 m,
the cross-track orbit spacing was about 60 km at the equator,
and the minimum along-track shot spacing was about 20 km
(1◦ at the equator corresponds to 30 km). As a result of the
non-optimal design of the lidar, however, the electronics of-
ten detected many returns, and these needed to be filtered to
determine which, if any, were from the lunar surface. The re-
turns from many shots were ultimately discarded, especially
over the rougher highlands, leading to the acceptance of a to-
tal of 72,548 range measurements. Comparisons with a radar
interferometry-derived topographic model of the crater Ty-
cho (Margot et al.1999a) suggests that a few percent of the
accepted Clementine range measurements are erroneous.

As a result of the polar orbit of the Clementine space-
craft, many overlapping images exist in the polar regions
under varying viewing conditions. These have been used to
construct regional digital elevation models poleward of60◦
having a 1-km spatial resolution (Cook et al.2000; U. S.
Geological Survey2002). While the relative elevations ob-
tained from these studies were tied to the Clementine altime-
ter data near the outer edges of these models, absolute accu-
racy is expected to degraded towards the poles. In particular,
comparisons with independent regional models of the polar
regions based on radar interferommetry data (Margot et al.
1999b) show differences of a kilometer or more.

TheU. S. Geological Survey(2002) topographic model
represents a combination of interpolated Clementine altime-
try and elevation models of the polar regions based on stereo
photogrammetry. This model is presented in Figure 7 where

it is referenced to the geoid, which includes the static grav-
itational model LP150Q and the rotational and tidal contri-
butions of eq. 18. The most dramatic feature of the Moon’s
topography is seen to be the giant South Pole-Aitken impact
basin on the southern farside hemisphere. This impact basin
possesses a total relief of over 10 km, and with a diameter
of over 2000 km, it is the largest recognized impact struc-
ture in the solar system. Other impact basins and craters of
various sizes are seen to have shaped the relief of the lunar
surface, and the extensive mare basaltic lava flows on the
nearside hemisphere, which are relatively younger, are seen
to be comparatively smooth. Also of note is that the Moon
possesses a 1.9 km displacement of its center of figure from
its center of mass in the direction of8◦ N and157◦ W (e.g.
Smith et al.1997).

3.4.2 Gravity

The gravitational field of the Moon has been determined by
analyses of radio tracking data of orbiting spacecraft, which
include data from the Lunar Orbiter, Apollo, Clementine,
and Lunar Prospector missions. While all data contribute
to the lunar gravity models, by far the highest resolution
constraints are obtained from the extended Lunar Prospector
mission when the spacecraft altitude was lowered to approx-
imately 30 km above the surface (for a detailed discussion,
seeKonopliv et al.2001). However, despite this low-altitude
tracking data, because of the Moon’s synchronous rotation,
global models of the gravitational field are severely hindered
by the lack of tracking data over the lunar farside.

While spacecraft have been tracked approximately 20◦

over the lunar limb, there is a sizable portion of the lunar sur-
face that lacks direct tracking constraints. Regardless, as the
long term orbits of lunar satellites are influenced by gravita-
tional anomalies that are present there, some information can
be extracted over these regions when inverting the tracking
data. When noa priori constraints are used in constructing
the gravity model, the field is found to be completely unreli-
able in an approximately 60◦ radius “shadow zone” centered
on the antipode of the sub-Earth point. Globally, such un-
constrained models are only reliable to spherical-harmonic
degree 15. In order to obtain solutions with reasonable char-
acteristics, it is necessary to bias the spherical-harmonic co-
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Figure 7. (top) Global topography of the Moon from the spherical harmonic model MoonUSGS359 referenced to the geoid which includes both the LP150Q
gravitational model and rotational and tidal effects. (middle) Radial free-air gravity obtained from the model LP150Q evaluated at a radius of 1738 km after
truncating the coefficients beyond degree 130 and setting theC20 andC22 terms equal to zero. (bottom) First-order approximation to the geoid obtained from
the same coefficients as the radial gravity field. All images are in a Mollweide projection with a central meridian of 90◦ W longitude and are overlain by the
shaded relief map ofRosiek and Aeschliman(2001). The near- and farside hemispheres are on the right and left halves of these images, respectively.
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efficients towards ana priori power spectrum (i.e., by use of
a “Kaula rule”). Using such methods, the most recent JPL
gravity model LP150Q (Konopliv et al.2001) has been de-
termined to degree 150. Attempts to obtain regional mod-
els on the nearside with a higher resolution can be found in
Goossens et al.(2005, in press).

The LP150Q radial gravity field of the Moon (truncated
at degree 130) is plotted in Figure 7. As the equilibrium
shape of a synchronously locked satellite contains bothC20

and C22 terms, both of these have been removed. (While
these two terms are small at the current Earth-Moon sep-
aration, it has been suggested that the Moon may posses
a fossil shape that was frozen into the lithosphere early in
its orbital evolution (e.g.,Jeffreys1976;Lambeck and Pul-
lan 1980).) The major features of this map include the large
positive gravitational anomalies associated with the nearside
impact basins, colloquially referred to as “mascons” (e.g.,
Muller and Sjogren1968), negative gravity moats that sur-
round some of these basins, and the more noisy and less
constrained farside field. Despite the lack of direct farside
tracking data, it is remarkable that the inferred gravitational
anomalies there correlate with large impact basins. Never-
theless, care should be used when interpreting these anoma-
lies as their amplitudes could be muted, and/or their posi-
tions laterally offset. The uncertainties in the radial compo-
nent of the gravitational field are estimated to be approxi-
mately 30 mGal on the nearside and can reach up to 200
mGal on the farside.

A plot of the lunar geoid is also shown in Figure 7
after removing both theC20 and C22 terms. In contrast
to the Earth, which possesses maximum geoid undulations
of ±100 meters, the dynamic range of the lunar geoid is
more than 700 meters. When considering phenomena such
as basalt flow directions, it is thus necessary to use eleva-
tions that are referenced to the full geoid. Uncertainties in
the geoid are estimated to be approximately 4 meters on the
nearside and 60 meters on the farside.

Finally, it is noted that the orientation of the Moon is
completely described by its three principle moments of iner-
tia, which in turn completely determine the degree-2 gravity
coefficients (e.g.,Lambeck1988). For a synchronously rotat-
ing satellite, the minimum energy configuration is achieved
when the maximum moment of inertia lies along the rota-
tion axis, and when the minimum moment coincides with the
Earth-Moon direction. A 180◦ rotation of the Moon about its
rotation axis would be equally stable as its current configu-
ration.

3.4.3 Spectral analysis

A spherical harmonic model of the USGS topography
was developed to degree 359 and is here designated as
MoonUSGS359. The power spectrum of this model, the
prior model GLTM2C (Smith et al.1997) that is based solely
on altimetry data, and the LP150Q geoid and error are plot-
ted in the left pane of Figure 8. Concerning the two topo-
graphic models, it is seen that the power spectra of these di-
verge near degree 25. Careful inspection of how these mod-
els were constructed indicates that this is a result of using
different methods to interpolate the sparse Clementine data
points. In comparison to the Earth, the power spectrum of
the lunar geoid is seen to be at least an order of magnitude
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Figure 9.Maximum error associated with the Bouguer correction as a func-
tion of the ordernmax used in eq. 30. The Bouguer correction is here defined
as the radial gravitational attraction resulting from surface relief with re-
spect to the mean planetary radius. The true value was approximated by
nmax = 10, the crustal density was assumed to be 2900 kg m−3, and the
radial gravitational anomaly was evaluated at the maximum elevation of the
planet.

more important when compared to the topography spectrum.
The upturn in the geoid spectrum beyond degree 130 is a re-
sult of short-wavelength aliasing in the gravity solution, and
the error spectrum of the geoid is seen to be greater than that
of the geoid itself beyond degree 80. While the global har-
monic coefficients should be considered unreliable beyond
this degree, it should be recognized that the uncertainty in
the gravity field is a strong function of position.

The correlation and admittance spectra for the gravity
and topography models are plotted in the right pane of Fig-
ure 8. The curves in color represent those obtained from the
model MoonUSGS359, whereas the gray curves are for the
model GLTM2C. Both correlation curves show that some
of the lowest degrees of the radial gravity and topography
are anticorrelated. These same degrees possess negative ad-
mittance values, and this is simply a result of the presence
of “mascon” impact basins, which are positive gravitational
anomalies possessing low elevations. Beyond degree 25 it
is seen that both the admittance and correlation spectrum
obtained from the USGS model are somewhat greater than
those from the GLTM2C model. While this is partially the
result of the inclusions of high resolution polar topography
in the USGS model, it is also likely that this is a conse-
quence of the different interpolation schemes used in gen-
erating these models. As a decrease in correlation would be
expected for a lower fidelity model, the USGS model should
probably be preferred over GLTM2C. The decrease in the
USGS admittance spectrum beyond degree 50 is likely to
represent a loss of fidelity in both the gravitational and topo-
graphic models.

4 METHODS FOR CALCULATING GRAVITY
FROM TOPOGRAPHY

Geophysical investigations that employ gravity and topog-
raphy data often attempt to fit the observations with those
predicted from a model that contain several parameters. For
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Figure 8. Power and cross-power spectra of the Moon’s gravity and topography. (left) Power spectra of the topographic models MoonUSGS359 (color) and
GLTM2C (gray), and the LP150Q geoid and error. (right) Admittance and correlation spectra of the radial gravity and topography using MoonUSGS359
(color) and GLTM2C (gray).

Table 2.Gravitational and shape constants.

Parameter Value Source

G 6.6742(10)10−11 m3 kg−1 s−2 Committee on Data for Science and Technology (Mohr and Taylor2005)
The Earth

GM 398.60044151012 m3 s−2 EGM96;Lemoine et al.(1998)
semi-major axis 6378.137 km WGS84;National Imagery and Mapping Agency(2000)
semi-minor axis 6356.7523142 km WGS84;National Imagery and Mapping Agency(2000)
radius of sphere of equal volume 6371.00079 km WGS84;National Imagery and Mapping Agency(2000)
ω 72.92115010−6 rad s−1 WGS84;National Imagery and Mapping Agency(2000)

Venus
GM 324.8585921012 m3 s−2 MGNP180U;Konopliv et al.(1999)
Mean planetary radius 6051.878 km VenusTopo719
ω -299.2410−9 rad s−1 Konopliv et al.(1999)

Mars
GM 42.8283745681012 m3 s−2 JGM95I01;Yuan et al.(2001)
Mean planetary radius 3389.500 km MarsTopo719
ω 70.882182810−6 rad s−1 Yuan et al.(2001)

The Moon
GM 4.9028010761012 m3 s−2 LP150Q;Konopliv et al.(2001)
Mean planetary radius 1737.064 km MoonUSGS359
ω 2.661707310−6 rad s−1 Yoder(1995)

example, lithospheric flexure calculations depend upon sev-
eral unknowns, including the effective elastic thickness of
the lithosphere, crustal thickness, and the density of the crust
and mantle. By comparing predicted gravitational anoma-
lies induced by the deflection of density interfaces with the
observed values, the parameters of such a model can be
constrained. While several methods exist for calculating the
gravitational field related to relief along a density interface,
as is described below, this is oftentimes most easily per-
formed in the spherical harmonic domain.

The calculation of the gravitational potential can be con-
siderably simplified by use of the two identities:

1
|r− r′|

=
1
r

∞∑
l=0

(
r′

r

)l

Pl(cos γ) for r ≥ r′, (27)

Pl(cos γ) =
1

2l + 1

l∑
m=−l

Ylm(θ, φ)Ylm(θ′, φ′), (28)

wherePl is an unnormalized Legendre Polynomial, andγ

is the angle subtended betweenr and r′. (Eq. 28 is com-
monly referred to as the Legendre addition theorem.) By in-
serting these equations into the expression for the gravita-
tional potential (eq. 14), it is simple to show that the spher-
ical harmonic coefficients of eq. 16 (theStokes coefficients)
are equal to

Clm =
1

MRl
0 (2l + 1)

∫
V

ρ(r′) r′l Ylm (θ′, φ′) dV ′. (29)

It is important to note that this formulation of the gravita-
tional potential can only be used when the observation point
is greater than the maximum radius of the body.

Next, consider the case where there is reliefh(θ, φ) ref-
erenced to a spherical interface of radiusD, and where the
densityρ betweenh andD depends only on latitude and lon-
gitude (whenh is negative,ρ is considered negative as well).
For this situation, it is possible to obtain exact expressions
for the corresponding potential coefficients that are similar to
those developed byParker (1972) in the Cartesian domain.
Integrating eq. 29 overr′, and expanding powers of the relief
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in a Taylor series, the potential coefficients of eq. 16, refer-
enced to a radiusD, can be shown to be (seeWieczorek and
Phillips 1998)

Clm =
4π D3

M(2l + 1)

l+3∑
n=1

(ρ hn)lm

Dn n!

∏n
j=1(l + 4− j)

(l + 3)
. (30)

The spherical harmonic coefficients of the density multiplied
by the relief to thenth power have the explicit expression (cf.
eq. 8)

(ρ hn)lm =
1
4π

∫
Ω

[ρ(θ, φ) hn(θ, φ)]Ylm(θ, φ) dΩ, (31)

and when the density is constant, eq. 30 reduces to eq. 9 of
Wieczorek and Phillips(1998). As a result of the inequality
in the identity of eq. 27, this expression for the potential is
only valid when the radiusr is greater than the maximum
elevationD + h. Extensions, special cases, and alternative
forms of this equation have been derived independently sev-
eral times in the literature (e.g.,Chao and Rubincam1989;
Martinec et al.1989;Rapp1989;Balmino1994;Chambat
and Valette2005).

For the common case where the densityρ is constant,
the potential coefficients can be obtained simply by calculat-
ing the spherical harmonic coefficients of the relief to thenth
power. While the sum of eq. 30 is finite, and hence exact, the
number of terms grows linearly with spherical harmonic de-
gree. Nevertheless, as each succeeding term is smaller than
the previous, in paractice, this sum can be truncated beyond
a maximum valuenmax for which the truncated terms are
smaller than the resolution of the gravity model.

For certain applications it is sometimes sufficient to use
the first order term of eq. 30:

Clm =
4π D2 (ρ h)lm

M(2l + 1)
. (32)

This expression is commonly referred to as the “mass-sheet”
approximation, as the calculated gravitational anomaly
would be exact if it arose from a spherical interface with
a surface density ofρ h. (The higher order terms are referred
to as the “finite amplitude” or “terrain” correction.) Using
this expression, the radial gravity (see equation 22) is seen to
asymptotically approach with increasingl the Bouguer slab
approximation of2πρ Gh.

The effect of truncating the sum of eq. 30 beyondnmax
is illustrated in Figure 9 for the specific case of determin-
ing the Bouguer correction of the Earth, Venus, Mars, and
the Moon. The term Bouguer correction here refers to the
contribution of the gravitational potential that results from
the mass between the mean planetary radius and the surface.
The “true” value of the Bouguer correction was calculated
usingnmax = 10, and the maximum difference in the space
domain that results from truncating at lower values ofn was
calculated on a spherical surface corresponding to the max-
imum radius of the planet. As is seen, in order to obtain ac-
curacies of a few mGal, at least the first three terms of eq. 30
are required. Utilizing only the first-order term could incur
errors of a few hundred mGal for regions with high eleva-
tions.

Finally, it is noted that alternative means exist for cal-
culating the theoretical gravitational field of a body, and

that these may be preferrable to the above approach for cer-
tain applications. One method developed byBelleguic et al.
(2005) is quasi-analytic and allows for the calculation of the
potential and gravity at any point in a body (this is in con-
trast to the above approach that is applicable only to radii
greater than the maximum radius). This method starts by
mapping irregularly shaped density interfaces to spherical
ones, and then determines the radial derivatives of the po-
tential and gravitational field on this surface. Using exact
values for the potential and gravity field on an interface ex-
terior to the planet (as obtained from a method similar to
eq. 30), these fields are then propagated downwards using
a first-order Taylor series approximation. This technique is
useful for lithospheric flexure calculations as the net litho-
spheric load is a function of the potential at the major density
interfaces.

A second method for calculating the gravitational field
is based upon approximating the shape of a celestial body
by a polyhedron. Exact expressions for the potential of
a homogeneous polyhedron have been derived byWerner
and Scheeres(1997), and expressions for the corresponding
spherical harmonic coefficients are given inWerner(1997).
The benefit of using this approach is that the resolution of
the model (i.e., the spacing between vertices) can be varied
according to the resolution of the gravitational field. An ap-
plication of this method for determining the interior density
of an asteroid is given byScheeres et al.(2000). Alterna-
tively, one could transform eq. 14 into a surface integral by
use of Gauss’ law and perform the integral numerically for a
given shape model (e.g.,Cheng et al.2002).

5 CRUSTAL THICKNESS MODELING

It is well known that the modeling of potential fields is non-
unique. For our case, eqs 16 and 32 show that any external
gravitational field can be interpreted as a surface densityρ h
placed at an arbitrary radiusD. Nevertheless, by using sim-
plifying assumptions based on geologic expectations, it be-
comes possible to uniquely invert for parameters related to
the interior structure of a planet.

Perhaps the simplest example of such an investigation
is the construction of a planet-wide crustal thickness model.
In this case, the non-uniqueness associated with potential
modeling is removed by assuming that the observed grav-
itational field arises only from relief along the surface and
crust-mantle interface (i.e., the “Moho”), and that the den-
sity of the crust and mantle are constant. It is furthermore
required to assume a mean crustal thickness, or to anchor
the inverted crustal thickness to a given value at a specific
locale. If lateral density variations in either layer could be
constrained by other means, then these could easily be in-
corporated into the model.

The first step is to calculate the Bouguer correction,
which is the contribution to the potential of surface relief ref-
erenced to the mean planetary radius. Subtracting this from
the observed gravitational field yields the Bouguer anomaly,
and this is then ascribed to being caused by relief along the
crust-mantle interface. To first order, this relief could be de-
termined in the spectral domain by downward continuing the
Bouguer anomaly coefficientsCBA

lm to a radiusD, and then
setting these equal to those predicted from the mass-sheet
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approximation of eq. 32. However, two additional factors
generally need to be taken into account in such an analy-
sis. First, downward continuing the Bouguer anomaly am-
plifies short-wavelength noise that is often present in the ob-
served gravitational field. Second, the first-order mass-sheet
approximation may not be sufficiently accurate if the Moho
undulations are large.

By minimizing the difference between the observed and
predicted Bouguer anomalies, as well as an additional con-
straint such as the amplitude of the Moho undulations in the
spectral domain, the Moho relief can be computed via the
following equation (seeWieczorek and Phillips1998):

hlm = wl

[
CBA

lm M (2l + 1)
4π ∆ρ D2

(
R

D

)l

(33)

−D
l+3∑
n=2

(hn)lm

Dn n!

∏n
j=1(l + 4− j)

(l + 3)

]
,

where∆ρ is the density jump across the crust-mantle inter-
face,R is the reference radius of the Bouguer anomaly coef-
ficients, andwl is a filter that stabilizes the downward con-
tinuation procedure. The filterwl should be close to unity for
small l, and decrease in magnitude with increasingl. While
there is no simple analytic solution to this equation, the re-
lief along the crust-mantle interface can be determined using
an iterative approach: First the coefficientshlm are approx-
imated by ignoring the higher-order terms on the right-hand
side, then, using this estimate, the higher-order terms are cal-
culated, and a new estimate ofhlm is obtained. Examples of
crustal thickness models that were obtained using this proce-
dure are shown in Figure 10 for the Moon, Mars and Venus,
and the major modeling assumptions specific to each body
are described below. It is important to note that these mod-
els do not assume that the crust is isostatically compensated;
such a hypothesis could be tested for a given model.

For the Moon, it is known that the mare basaltic lava
flows are considerably denser than upper crustal materials
(∼3100 vs. 2800 kg m−3), and that these can reach thick-
nesses of several kilometers within some of the largest im-
pact basins. Thus, when computing the Bouguer anomaly for
the Moon, the gravitational attraction of these must be esti-
mated. As a result of the variable spatial resolution of the lu-
nar gravity field, it is also necessary to apply a strong down-
ward continuation filter (seeWieczorek and Phillips1998)
in order to suppress unphysical Moho undulations that arise
on the farside. After truncating the potential and topogra-
phy coefficients beyond degree 85, and assuming an aver-
age crustal thickness of 45 km and a mantle density of 3320
kg m−3, the Moho relief was iteratively determined using
eq. 33. The obtained crustal thickness model displayed in
Figure 10 demonstrates that the thickness of the lunar crust
could vary from approximately zero beneath some basins
to more than 100 km in the highlands (seeWieczorek et al.
2006). Neglecting the finite amplitude terms in eq. 33 could
give rise to errors as large as 20 km (Neumann et al.1996).

Crustal thickness models for Mars and Venus are also
presented in Figure 10. The model for Mars is an updated
version fromNeumann et al.(2004) that uses the recent
JGM95J01 gravity model. For this model, the low density of
the polar caps, the higher than typical densities of the Tharsis
volcanoes, and the gravitational attraction resulting from the

core flattening were explicitly taken into account. A mean
crustal thickness of 45 km was assumed, and in downward
continuing the Bouguer anomaly, a filter was constructed
such that the power spectrum of the Moho relief resembled
that of the surface relief. For the Venusian model, a mean
crustal thickness of 35 km was assumed, the potential and
topography coefficients were truncated beyond degree 60,
and densities of 2900 and 3330 kg m−3 were used for the
crust and mantle, respectively. The inclusion of finite ampli-
tude corrections for Venus only affects the obtained crustal
thicknesses by a few kilometers.

6 ADMITTANCE MODELING

In the crustal thickness modeling presented above, the non-
uniqueness associated with potential modeling was removed
by making certain assumptions about the mean crustal thick-
ness and the density of the crust and mantle. These and other
parameters can be estimated if one instead assumes that sur-
face topography is supported by a specific mechanism, such
as Airy compensation or lithospheric flexure. Using such a
model, the relationship between gravity and topography can
be determined, and by comparing to the observed values,
model parameters can be estimated. As is described in the
following two subsections, two methods are in common use;
one is based upon modeling the geoid/topography ratio in
the space domain, whereas the other models the admittance
and correlation functions in the spectral domain.

6.1 Spatial domain

One method that has proven to be fruitful for estimating
the mean crustal thickness of a planet is modeling of the
geoid/topography ratio (GTR) in the space domain. This
technique was initially developed byOckendon and Turcotte
(1977) andHaxby and Turcotte(1978) for the Earth where
it was shown that the isostatic geoid anomaly was approxi-
mately equal to the vertical dipole moment of density vari-
ations within the lithosphere. For the specific cases of Airy
and Pratt isostasy, the ratio between the geoid and topogra-
phy was found to be proportional to the crustal thickness.
This method was derived using a Cartesian geometry, and is
strictly valid in the long-wavelength limit.

An alternative approach has been developed in spheri-
cal coordinates byWieczorek and Phillips(1997) where it
has been shown that the geoid/topography ratio can be ap-
proximated by the expression

GTR = R

lmax∑
l=lmin

Wl Ql, (34)

wherelmin and lmax correspond to the minimum and max-
imum spherical harmonic degrees that are considered,R is
the mean planetary radius,Ql is the linear transfer function
between the potential and topographic coefficients, andWl is
a weighting function that is proportional to the topographic
power of degreel,

Wl = Shh(l)
/ lmax∑

i=lmin

Shh(i). (35)
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Figure 10.Crustal thickness models for the Moon (top), Mars (middle), and Venus (bottom). See sections 5 and 8 for details.

The underlying assumption of this model is that the
geoid/topography ratio is independent of position for a given

compensation model, and this has been empirically validated
for the highlands of the Moon and Mars for the case of Airy
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isostasy (Wieczorek and Phillips1997;Wieczorek and Zuber
2004).

As the power spectra of planetary topography are “red”
(i.e., they possess more power at long wavelengths than short
wavelengths), eq. 35 shows that the largest contribution to
the geoid/topography ratio will inevitably come from the
lowest degrees. As an example, approximately 80% of the
GTR for the Moon is determined by degrees less than 30. As
the topography of the ancient highland crust of a planet is
likely to be isostatically compensated at these wavelengths,
it is common to employ a model based on the condition of
Airy isostasy for these regions. Assuming that the density of
the crust is constant, and using the condition of equal mass
in crust-mantle columns, it is straightforward to show using
eq. 32 that the transfer function between the potential and
topographic coefficients is

Ql =
Clm

hlm
=

4π ρc R2

M(2l + 1)

[
1−

(
R− Tc

R

)l
]

, (36)

whereρc is the density of the crust, andTc is its mean thick-
ness.

In practice, the geoid/topography ratio is determined by
fitting the observations to a straight line within a region that
is believed to be consistent with the employed model. By
utilizing a plot of the predicted GTR vs.Tc (obtained from
eqs 34–36), the crustal thickness can then be estimated for a
given value ofρc. Nevertheless, as the GTR is heavily influ-
enced by the longest wavelength components of the gravity
and topography, several aspects need to be carefully consid-
ered when performing such an analysis.

It is first necessary to ensure that the entire signal of the
geoid and topography are governed by the same compensa-
tion model. While this can never be entirely satisfied, cer-
tain anomalous long-wavelength features can sometimes be
identified and removed. For instance, most planets and satel-
lites possess significant rotational and/or tidal contributions
to their degree-2 shape, and these signatures can be mini-
mized by setting these coefficients to zero. For Mars, in ad-
dition to the degree-2 rotational signature, the longest wave-
length components have been affected by the load and flexu-
ral response associated with the Tharsis province (seeZuber
and Smith1997;Phillips et al.2001;Wieczorek and Zuber
2004). Furthermore, as the degree-1 potential terms are zero
when the gravitational field is referenced to the body’s cen-
ter of mass, any degree-1 topography that exists may need
to be treated separately. Finally, as the GTR is largely deter-
mined by the longest wavelength components of the geoid
and topography, it is necessary that the region of interest be
sufficiently large when regressing the geoid and topography
data.

6.2 Spectral domain

Two major shortcomings associated with modeling the
geoid/topography ratio are that only a single wavelength-
independent parameter is used (the GTR) and the observed
value could be biased by long-wavelength features that are
unrelated to the assumed compensation model (such as lat-
eral density anomalies in the mantle caused by mantle con-
vection). An alternative modeling approach that largely by-
passes these concerns is to model the relationship between

-30

0

30

60

90

120

150

180

Z
F

A
 (

m
G

al
/k

m
)

0 20 40 60 80 100 120 140

Spherical Harmonic Degree

-1.0
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1.0

F
re

e-
A

ir 
C

or
re

la
tio

n

0 20 40 60 80 100 120 140

Spherical Harmonic Degree

Te=10 km, α=0
Te=40 km, α=−.95
Te=40 km, α=−.5
Te=40 km, α=0
Te=40 km, α=.5
Te=40 km, α=.95
Te=70 km, α=0

-1.0
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1.0

B
ou

gu
er

 C
or

re
la

tio
n

0 20 40 60 80 100 120 140

Spherical Harmonic Degree

Figure 11.(top) Free-air admittance, (middle) free-air correlation, and (bot-
tom) Bouguer correlation, for a flexural model with equal magnitudes of
applied surface and subsurface loads. Model parameters correspond to the
planet Mars, withTc = z = 50 km, ρc = 2900 kg m−3, ρm = 3500
kg m−3, andE = 1011 Pa. Solid lines correspond to the case where the
applied surface and subsurface loads have random phases (i.e.,α = 0),
and the dashed lines correspond to the case where these loads are partially
correlated.

the gravity and topography for a certain region in the spec-
tral domain. As wavelength-dependent admittance and cor-
relation functions are obtained, in principle, it is possible to
invert for several model parameters. The major shortcoming
is that the resolution of the gravity and topography becomes
increasingly poor with increasing degreel. This section de-
scribes the basic concepts involved with such a spectral anal-
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ysis applied on a global scale. In section 7, the technique of
obtaining localized spectral estimates will be described.

Let us presume that the potential and topography coef-
ficients are related via an equation of the form

Clm = Qlm hlm + Ilm, (37)

whereQlm is a linear non-isotropic transfer function, and
Ilm is that portion of the potential not described by the
model. For simplicity, it will be assumed thatIlm is zero
(though this assumption will be relaxed later) and that the
topography is noise free. Though the above relationship is
inherently non-isotropic, it is often useful to work with the
power and cross-power spectra of the gravitational field and
topography,Shh, Sgg and Shg, which only depend upon
spherical harmonic degreel. The goal is to fit these three
functions to those obtained from an appropriate model. In
order to remove the model dependence of certain nuisance
parameters, it is convenient to work with ratios of these three
(cross-)power spectra. Although several such ratios involv-
ing powers of these are possible, only two will be indepen-
dent, and it is traditional to use the admittance and corre-
lation spectra as previously defined by eqs 25 and 26. If
a model describing a planet’s gravity and topography is to
be considered successful, then it must satisfy both of these
functions. If one or both of these functions can not be fit for
a given degree, then this is a clear indication that either the
model assumptions are inappropriate for the region being in-
vestigated, or the input data sets are not sufficiently accurate.

If one treats the lithosphere of a planet as a thin elastic
spherical shell overlying a fluid interior (seeKraus 1967),
then a simple relationship exists in the spectral domain be-
tween the load on the lithosphere and its deflection (seeTur-
cotte et al.1981; Willemann and Turcotte1981; Banerdt
1986). If loading at only a single interface is considered (ei-
ther at or below the surface), then the transfer function in
eq. 37 is isotropic (i.e., independent ofm). For this situation,
expressions for the admittance and correlation functions can
be schematically written as:

Z(l) = f (ρc, ρm, ν, E, Te, Tc, z, g, R) , (38)

γ(l) = 1 or − 1, (39)

wheref denotes a functional dependence on the enclosed
parameters. In particular, the admittance function explicitly
depends on the crustal and mantle density, Poisson’s ratio
ν, Young’s modulusE, the elastic thicknessTe, the crustal
thickness, the depth of the loadz, the magnitude of the grav-
itational accelerationg, and the radius of the planet. For an
isotropic transfer functionQl, it is trivial to show that the
degree-correlation function (in the absence of noise) is equal
to the sign ofQl. This model has been amended byMcGov-
ern et al.(2002) andBelleguic et al.(2005) to include in-
phase loads applied to and below the surface when the two
are linearly related by a degree-independent constant. Such
models would include an additional parameterL, which is a
function of the relative magnitudes of the surface and sub-
surface loads. Geologic situations where surface and sub-
surface loads might be perfectly correlated include isolated
volcanoes and impact basins.

An alternative loading model that includes loads applied
to and below the surface was developed byForsyth(1985) in
the Cartesian domain (see alsoBanks et al.2001). In con-
trast to models that take the applied loads to be perfectly in

phase, he assumed that the phase differences of the applied
surface and subsurface loads were random. Such an assump-
tion might be expected to be reasonable for continental cra-
tons where several geologic processes have operated over
extended periods of time (such as erosion, sedimentation,
and magmatism). In contrast to eq. 39, this model possesses
a wavelength-dependent correlation function. A model sim-
ilar to that ofForsyth (1985) has been derived in spherical
coordinates byWieczorek(manuscript in preparation), and
can be schematically described by the following equations:

Z(l) = f (ρc, ρm, ν, E, Te, Tc, z, L, αl, g, R) , (40)

γ(l) = f ′ (ρc, ρm, ν, E, Te, Tc, z, L, αl, g, R) , (41)

where bothf andf ′ represent generic functional dependen-
cies. As an extension toForsyth’s model, this formulation
allows for an arbitrary phase relationship between the ap-
plied surface and subsurface loads that is described by the
additional parameterα, which can possess values between
1 and−1. The expectation of this function is given by the
expression

αl =
∑l

m=−l〈cos ∆lm〉
(2l + 1)

, (42)

where∆lm denotes the phase difference between the two
loads, and〈· · ·〉 is the expectation operator. For random
phases,α is zero, and the model degenerates to that of
Forsyth (1985). When the loads are perfectly in or out of
phase by 0 or 180◦, α = ±1 and the model is analogous to
that ofMcGovern et al.(2002) andBelleguic et al.(2005).

Examples of the predicted free-air admittance and cor-
relation functions are shown in Figure 11 for several values
of the elastic thickness and phase parameterα. These mod-
els were generated using parameters typical for the planet
Mars, and the magnitudes of the applied surface and subsur-
face loads were chosen to be equal. As is seen, these curves
are strong functions of both the elastic thickness andα, and
by considering both the admittance and correlation, it may
be possible to separate the effects of the two. The free-air
correlation function is seen to possess low values over a re-
strictive range of wavelengths that is diagnositic of the elas-
tic thickness. Furthermore, the free-air correlation function
is seen to approach unity at large degrees (l>∼100). In prac-
tice, if a decline of the free-air correlation is observed with
increasing degree, this is usually a good indicator of a loss
of fidelity with the employed gravitational model. The pre-
dicted Bouguer correlation function is also shown for the
same model parameters, and this shows a behavior similar
to that predicted byForsyth’s model. In particular, it is noted
that the Bouguer correlation asymptotically approaches the
value ofα with increasing degree. While the Bouguer corre-
lation is useful for interpretive purposes, its use is not advo-
cated here because the Bouguer gravitational anomaly criti-
cally depends upon the value chosen for the crustal density,
and this is generally not knowna priori.

The preceding discussion explicitly assumed that the
unmodeled gravitational signalIlm in eq. 37 was identi-
cally zero. As mentioned in section 2.2, ifIlm and the to-
pography are uncorrelated, the expectation of the admittance
will not be affected by the presence of such a signal. How-
ever, the expectation of the gravitational power spectrum
will be biased upwards by an additive constantSII , and this
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will tend to bias the correlation function downwards. Fortu-
nately, any theoretical loading model can be easily modified
to incorporate an unmodeled signalIlm that is uncorrelated
with the topography: All one needs to do is add a degree-
dependent constantSII to the theoretically predicted gravita-
tional power spectrum (see eq. 24). It would be a simple mat-
ter to includeSII as an inversion parameter in a generic load-
ing model such as eq. 41, though it is noted that this has not
yet been attempted. WhileIlm is commonly assumed to be
gravitational measurement noise, this need not be the case.
As described byMcKenzie(2003), massive erosion and/or
sedimentation of a lithosphere possessing surface and sub-
surface loads could give rise to a final state where the sur-
face is perfectly flat, but where gravitational anomalies are
present. If this final state were taken as the initial condition
of a subsequentloading event, then the initial gravitational
signature (which is unrelated to the second loading model)
would be expected to be uncorrelated with the subsequently
generated topography.

Finally, it is important to re-emphasize that if a given
model of lithospheric loading is an accurate description of
reality, it must fit both the admittance and coherence func-
tions. If this can not be done, then either the model or data
must be inaccurate. Unfortunately, the vast majority of pub-
lished investigations that use Forsyth-like loading models
employ only the admittance or coherence function. The val-
ues of inverted parameters from such studies, while perhaps
correct, need confirmation by analysis of the other func-
tion. Notable exceptions include the papers by Forsyth and
coworkers (Forsyth1985;Bechtel et al.1987;Ebinger et al.
1989;Bechtel et al.1990;Zuber et al.1989),Phillips (1994),
andPérez-Gussinýe et al.(2004). Similarly, many published
investigations that employ a loading model with only sur-
face or subsurface loads also ignore the correlation func-
tion, even though such models explicitly require this to be
±1 whenIlm is zero. Nevertheless, it must be noted that no
published study has yet attempted to fit both the admittance
and correlation functions simultaneously when an unmod-
eled gravitational signal is present that is uncorrelated with
the topography.

7 LOCALIZED SPECTRAL ANALYSIS

As the spherical harmonics are global basis functions, the
power spectrum as defined by eq. 9 is necessarily represen-
tative of the global properties of the function. In geophysics,
however, it is reasonable to suspect that the spectral proper-
ties of the gravity and topography will vary as a function
of position. For example, the elastic thickness may differ
among geologic provinces as a result of their unique histo-
ries. Alternatively, it might arise that the data are only locally
known, and that one would like to estimate the power spec-
trum based exclusively upon these data.

One way of obtaining localized estimates of a function’s
power spectrum is to first multiply the data by a localizing
window (commonly referred to as a data taper), and then to
expand this windowed function in spherical harmonics (for
a detailed discussion in the Cartesian domain, seePercival
and Walden1993). However, as a result of the windowing
procedure, the resultant power spectrum will differ from the
true value. For the case where the input field is stationary,
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Figure 12. The first three zonal data tapers, bandlimited atL = 17,
whose power is optimally concentrated within colatitudes less than40◦.
The space-bandwidth productN0 is here equal to 4.

and the spherical harmonic coefficients are governed by a
zero-mean stochastic process, it can be shown that the ex-
pectation of the windowed power spectrum is related to the
global spectrum by the following relation (Wieczorek and Si-
mons2005, 2007):

〈SΦΓ(l)〉 =
L∑

j=0

Shh

l+j∑
i=|l−j|

Sfg(i)
(
Cl0

i0j0

)2
. (43)

Here,h represents an arbitrary window bandlimited to de-
greeL, Φ andΓ are the windowed fieldshf andhg, respec-
tively, and the symbol in parenthesis is a Clebsch-Gordan
coefficient (these are related to the Wigner 3-j symbols and
are proportional to the integral of three Legendre functions,
seeVarshalovich et al.(1988)). The expectation of the win-
dowed power spectrumSΦΓ is seen to be related to the global
spectrum by a smoothing operation reminiscent of a convo-
lution.

For a localized spectral analysis, the question naturally
arises as to what form the localizing window should take. In
order to localize the data, it is clear that the amplitude of the
window (or its power) should be near zero outside the region
of interest. Furthermore, as a result of the convolution-like
relationship between the global and windowed spectra, the
bandwidthL of the window should be as small as possible in
order to limit this spectral smoothing. Slepian and coworkers
(seeSlepian1983) previously posed and solved this prob-
lem in Cartesian geometry by finding those windows whose
power were optimally concentrated in a specified region. Us-
ing this same criterion,Wieczorek and Simons(2005) and
Simons et al.(2006) solved for those bandlimited windows
on the sphere that are optimally concentrated for all colati-
tudes less thanθ0. This optimization problem reduces to a
simple eigenvalue equation whose solution yields a family
of orthogonal data tapers; the quality of the concentration is
given by the corresponding eigenvalue. For the case of zonal
functions, it was shown that the properties of these windows
depend almost exclusively on the space-bandwidth product

N0 = (L + 1)
θ0

π
, (44)

and that the firstN0 − 1 windows were near optimally con-
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centrated. As an example, the best three concentrated win-
dows corresponding toθ0 = 40◦, N0 = 4, andL = 17 are
plotted in Figure 12. The number of well concentrated win-
dowing functions can be dramatically increased by making
use of the non-zonal tapers (Wieczorek and Simons2007).
The extension of this method to arbitrarily-shaped concen-
tration regions is given bySimons et al.(2006).

While a method had previously been used in spherical
coordinates where a function is multiplied by a single lo-
calization window (Simons et al.1997), the use of multi-
ple tapers, as originally pioneered byThomson(1982) in the
Cartesian domain, has several key advantages. First, while
the energy of any single window will non-uniformly cover
the concentration region, the cumulative energy of orthogo-
nal tapers is nearly constant for the region of interest. Thus,
an average of spectra obtained from several orthogonal ta-
pers will be more representative of the data than that of a
single taper. Second, while it is generally not possible to ob-
tain the expectation of the localized spectrum since there is
generally only a single field available for analysis, the spec-
tral estimates obtained from orthogonal tapers are nearly un-
correlated, and their average can be considered as an approx-
imation of the expectation. Finally, by using multiple tapers,
it is possible to make an estimate of the uncertainty associ-
ated with a given spectral estimate; this is expected to de-
crease as approximately1/

√
N whereN is the number of

tapers (Wieczorek and Simons2005, 2007).

In performing a localized spectral analysis, there are
several factors that need to be considered. First, it is noted
that if the fieldsf and g of eq. 43 are only known to a
maximum spherical harmonic degreeLfg, then only the first
Lfg − L windowed spectral estimates are reliable. Second,
those localized spectral estimates with degrees less thanL
are heavily biased and possess relatively large uncertainties,
making these of little use for geophysical analysis. Third,
while a multitaper spectral analysis is generally preferable
to using a single taper, the above two concerns present seri-
ous limitations when working with the relatively low resolu-
tion gravity fields of Venus, Mars and the Moon. Depending
on the size of the concentration region, it may be infeasible
to use the larger bandwidths that are required for obtaining
several well concentrated tapers.

Finally, when comparing model results to observations,
it is emphasized that the two must be windowed in the same
manner (e.g.,Pérez-Gussinýe et al.2004). If the analysis is
performed by generating forward models of the gravity field
using the known topography, then it is only necessary to lo-
calize these functions in the same manner as the data. Alter-
natively, if no explicit expression exists forQlm (as in the
model ofForsyth (1985) and that presented in section 6.2,
both of which are statistical in nature), then it is necessary
to window the predicted (cross-)power spectra using eq. 43
before calculating the theoretical admittance and correlation
functions (for the Cartesian analog, see eq. 4.2 ofThomson
1982).

8 SUMMARY OF MAJOR RESULTS

8.1 The Earth

The gravity and topography of the Earth have been used ex-
tensively to decipher the rheological properties of the crust
and upper mantle. The literature is voluminous, and the
reader is referred to several reviews in volume 8 of this se-
ries,Watts(2001), and the references in the papers cited be-
low. Here, only a few subjects will be touched upon that
bear relevance to investigations of Venus, Mars, and the
Moon. These include modeling of the elastic thickness of the
oceanic and continental lithosphere, inelastic flexural mod-
eling, and the modeling of dynamic topography and geoid
signatures associated with mantle convection.

Flexural modeling of the oceanic lithosphere is rela-
tively simple in that loading is primarily a result of the con-
struction of isolated shield volcanoes. Elastic thickness esti-
mates have been obtained by modeling the topographic and
gravity signatures of these features, and it is widely accepted
that the elastic thickness is primarily dependent upon the
age of the plate at the time of loading, withTe being gen-
erally less than about 45 km (for a review, seeWatts2001).
In particular, a plot of the elastic thickness versus age of the
lithosphere at the time of loading resembles the time depen-
dence of the depth to an isotherm (∼300–600◦C) predicted
from a plate cooling model (seeWatts and Zhong2000). This
suggests that the flexural signature has been “frozen” into
the lithosphere as it cooled and that long term viscoelastic
relaxation has been relatively unimportant. Nevertheless, a
description of the initial short-term subsidence of the litho-
sphere (i.e., the first few 10s of ka) requires the use of a
viscoelastic model, and given the relatively restricted age
range of oceanic lithosphere (<200 Ma), it is difficult to dis-
cern if viscoelastic relaxation would be important at longer
timescales. It is important to note that most flexural model-
ing of features on the other terrestrial planets has been for
loads that were emplaced on the lithosphere over a billion
years ago.

Investigations of the continental elastic thickness have
been more contentious. Part of the difficulty arises because it
is not cleara priori as to the importance of subsurface load-
ing and the phase relationship of the surface and subsurface
loads (see section 6.2). A loading model was developed by
Forsyth(1985) that took into account both surface and sub-
surface loading under the assumption that the two were un-
correlated, and application of this method has yielded elastic
thicknesses in the broad range of 5–134 km (Forsyth1985;
Bechtel et al.1987;Ebinger et al.1989;Bechtel et al.1990;
Zuber et al.1989;Pérez-Gussinýe et al.2004). There is cur-
rently some controversy as to whether the values greater than
∼25 km are reliable (compareMcKenzie(2003) withWatts
and Burov(2003)), but this debate will not be definitively
settled until investigators fit both the admittance and cor-
relation functions simultaneously while taking into account
the presence of an unmodeled gravitational signal that is un-
correlated with the topography (see section 6.2). Further-
more, with the exception ofPérez-Gussinýe et al. (2004),
all studies that have inverted for the elastic thickness using
multitaper spectral analysis techniques have done so using
a methodology that is not entirely correct. In particular, the
windowed power spectra from a multitaper analysis repre-
sent a convolution of the true power spectra with that of the
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window (see eq. 4.2 ofThomson1982). Thus, it is neces-
sary to convolve the theoretical (cross-)power spectra with
that of the data tapers before obtaining theoretical windowed
admittance and coherence functions. Regardless, application
of the multitaper method has convincingly shown that the
elastic thickness of some continental regions is not always
isostropic (e.g.,Simons et al.2000, 2003), which is an as-
sumption common to most studies.

While the majority of investigations that model flexure
of the lithosphere assume that it is perfectly elastic, elastic
stresses are often predicted to be in excess of the strength
of geologic materials. A simple modification to the elastic
flexure equation that takes this into account is to replace the
elastic bending moment-curvature relationship with one that
is based upon an elastic-perfectly plastic (EP) model of the
lithosphere’s yield strength (e.g.,Burov and Diament1995;
Mueller and Phillips1995). Here, the strength of the upper
crust is limited by brittle failure, and stresses in the lower
crust and mantle are limited by their ductile strength for
a specified strain rate. Predicted flexural profiles are time-
invariant and can sometimes differ significantly from those
of the perfectly elastic model. As the ductile strength is tem-
perature dependent, these results are sensitive to the assumed
lithospheric temperature gradient.

A more realistic model of lithospheric deformation uses
a time-dependent elastoviscoplastic (EVP) formulation (e.g.,
Albert and Phillips2000; Albert et al. 2000; Brown and
Phillips 2000). The main advantage of these models is that
the strain rates are explicitly calculated, as opposed to as-
sumed as in the EP models. While the best-fit EP and EVP
flexural profiles can be quite similar, it is not cleara priori
how one should estimate the characteristic strain rate that is
required for the EP model without running a full EVP simu-
lation (Albert et al.2000). The EVP models show that signif-
icant decoupling of stresses may occur between the crust and
mantle if the lower crust is sufficiently weak (e.g.,Brown
and Phillips 2000). When this occurs, the effective elas-
tic thickness decreases; the exact value is highly dependent
upon the crustal thickness, load magnitude, and assumed
rheology of the crust and mantle. In constrast, when the
lower crust is strong, the maximum achievable effective elas-
tic thicknesses are consistent with the depth of an∼700◦C
isotherm obtained from a lithospheric cooling model. Flexu-
ral modeling of a volcano growing on a cooling lithosphere
shows that the effective elastic thickness is “frozen” into the
lithosphere shortly after volcanic construction is complete
(Albert and Phillips2000).

Finally, in addition to near-surface crustal thickness and
density variations, significant gravity and topography signa-
tures can be generated by dynamic processes in the mantle,
such as beneath hot spots and subduction zones. While there
are few, if any, convincing examples of plate subduction on
the other terrestrial planets, hot spots similar to the Earth are
believed to exist on both Venus and Mars. Dynamic model-
ing of plumes shows that the major variable controlling the
surface gravity and topography signatures is the depth de-
pendence of the mantle viscosity. In the absence of a shallow
low viscosity asthenosphere, convective stresses generated at
depth are efficiently coupled to the surface, generating large
signals and large corresponding effective depths of compen-
sation. However, the inclusion of a shallow low viscosity
zone can significantly reduce these signatures, and apparent

depths of compensation are found to be significantly shal-
lower (e.g.,Robinson and Parsons1988; Ceuleneer et al.
1988). Joint inversions utilizing mantle density anomalies
from seismic tomography and estimates for the dynamic to-
pography signal imply the existence of a low-viscosity zone
somewhere in the upper mantle, and a gradual increase in
viscosity with depth by an order of magnitude in the lower
mantle (e.g.,Panasyuk and Hager2000).

8.2 Venus

Our knowledge of Venus has dramatically improved since
the acquisition of gravity, topography, and SAR imagery by
the Magellan mission between 1990 and 1994. While the
size and bulk density of Venus were known beforehand to be
similar to that of the Earth, this planet was found to differ
dramatically in that it lacks any clear sign of plate tecton-
ics. A major unanswered question is how this planet loses
its internal heat, and whether or not this process is episodic
or uniform in time. Geophysical analyses have been used to
constrain the crustal and elastic thickness, and the latter has
been used to place constraints on the temperature gradient
within the lithosphere. Reviews concerning the geophysics
of this planet can be found inPhillips et al.(1997),Grimm
and Hess(1997), Schubert et al.(1997), andNimmo and
McKenzie(1998).

The crustal plateaus of Venus generally have low-
amplitude gravitational and topographic signatures within
their interiors and are potential candidates for being isostat-
ically compensated (one notable exception is Ishtar Terra).
By assuming that the surface topography is compensated
at a single interface,Smrekar and Phillips(1991) obtained
best-fit apparent depths of compensation (ADCs) between
50 and 90 km by modeling Pioneer Venus line-of-sight grav-
ity data over Gula, Ovda, Phoebe, Tellus, Thetis and Ulfrun
Regiones. Using higher resolution Magellan dataGrimm
(1994) obtained best-fit ADCs between 20 and 50 km for
Alpha, Tellus, Ovda, and Thetis Regiones. These values are
plausibly interpreted as representing the crust-mantle inter-
face, especially when considering that the crustal thickness
at the mean planetary radius would be thinner given the
high average elevations associated with the above study re-
gions. An analysis of geoid/topography ratios byKucinskas
and Turcotte(1994) found zero-elevation crustal thickness
of 50±7 and 65±13 km for the crustal plateaus of Ovda
and Thetis Regiones, respectively, consistent with the above
mentioned studies.Moore and Schubert(1997) similarly
found values 44±4, 83±8, 75±17, and 75±22 km for Al-
pha, Ovda, Tellus, and Thetis Regiones, respectively. (These
latter estimates might overestimate the zero-elevation crustal
thickness as regional low-pass filtered versions of the grav-
ity and topography were removed before performing the re-
gression.) If any portion of the geoid and topography were
to result from Pratt or thermal compensation, the obtained
crustal thicknesses would represent an upper bound. A spec-
tral admittance study byPhillips (1994) (described below)
obtained a slightly thinner crustal thickness of 30±13 km
for the region of Atla Regio (updated to 38±9 km inPhillips
et al. (1997)).

An addition constraint concerning the thickness of the
Venusian crust is related to its compositional buoyancy. In
particular, if the crust were basaltic in composition, then
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this material should undergo a phase transition at high pres-
sure to the more dense mineral assemblage of eclogite (e.g.,
Grimm and Hess1997). This material could potentially de-
laminate from the crust as a result of its high density, and
the depth of this phase transition might thus constrain the
maximum achievable crustal thickness. For a MORB com-
position, the eclogite phase transition is predicted to occur
at depths of∼70 to 120 km (seeGhent et al.2004) for lin-
ear temperature gradients of 5 and 15 K km−1, respectively.
Inspection of the crustal thickness map in Figure 10 (which
is based upon the premise of an average crustal thickness
of 35 km) shows that crustal thicknesses near 70 km exist
only in the highland plateaus of Ishtar Terra, and Ovda and
Thetis Regiones, suggesting that crustal delamination could
have occurred in these regions. If this crustal thickness map
is an accurate representation of reality, it is curious that the
highland crust is almost exactly twice as thick as the low-
land crust; this potentially could arise by the obduction of
one plate over another.

In contrast to the majority of the highland plateaus, large
apparent depths of compensation and geoid/topography ra-
tios have been found for the the volcanic rises (Smrekar
1994; Kucinskas and Turcotte1994; Moore and Schubert
1995, 1997) and Ishtar Terra (Grimm and Phillips1991;
Hansen and Phillips1995;Moore and Schubert1997). Such
values are not consistent with compensation occurring solely
by crustal thickening, but require either some form of dy-
namic support from the mantle via stresses induced by as-
cending mantle plumes (e.g.,Vezolainen et al.2004), and/or
substantial thinning of a thick (∼300 km) thermal litho-
sphere (Kucinskas and Turcotte1994;Moore and Schubert
1995, 1997). If a low viscosity asthenosphere were present
at shallow mantle depths, as is the case of the Earth, the
predicted GTRs and ADCs resulting from dynamic support
would be cosiderably smaller than measured as a result of
the decoupling of stress between the lithosphere and man-
tle (e.g.,Kiefer et al.1986;Kiefer and Hager1991). These
results seem to imply that in contrast to the Earth, Venus
lacks a low viscosity zone, which is most likely a result of a
volatile-poor mantle. A strong coupling of stresses between
the lithosphere and mantle is the likely cause of the high
spectral correlation between gravity and topography for the
lowest spherical harmonic degrees of Venus (contrast Fig-
ures 2 and 4).

Elastic thickness estimates have been obtained for a
variety of features based exclusively on topographic pro-
files that are indicative of flexure. The benefit of using to-
pography alone is that small features can be investigated
that are not resolved in the current gravity model. Elas-
tic thicknesses of 11–25 km have been obtained by mod-
eling the Frejya Montes foredeep (Solomon and Head1990;
Sandwell and Schubert1992), and∼10–60 km for potential
flexural buldges outboard of coronae (Sandwell and Schu-
bert 1992). Additional features modeled byJohnson and
Sandwell(1994) yield elastic thicknesses of 10–40 km, and
potential subduction related sites possess a range of 6–45 km
(Schubert and Sandwell1995). Predicted stresses are largest
where the plate curvature is greatest, and faulting is gener-
ally visible in the Magellan SAR imagery at these locations.
Modeling by Barnett et al.(2002) yielded best-fit elastic
thicknesses that are consistent with the above studies. Mod-
eling the location of concenctric faulting around Nyx Mons

(a volcano in Bell Regio) implies a best-fit elastic thick-
ness of∼50 km (Rogers and Zuber1998). It is important
to note that the assumption of a perfectly elastic rheology
may be grossly inappropriate for some features. For instance,
the magnitude of the flexure-induced bulge south of Artemis
Chasma implies that significant yielding has occurred within
the lithosphere, and inelastic modeling byBrown and Grimm
(1996) shows that a significant compressive in-plane force is
required at this locale.

The elastic thickness has also been estimated for various
regions of Venus through a combined analysis of gravity and
topography data in the spectral domain. Unfortunately, with
the exception of one study, these investigations have only fit
the admittance or coherence functions, but not both simulta-
neously (e.g.,McKenzie1994;Smrekar1994;Simons et al.
1994, 1997;McKenzie and Nimmo1997;Smrekar and Sto-
fan 1999;Barnett et al.2000, 2002;Lawrence and Phillips
2003;Smrekar et al.2003;Hoogenboom et al.2004, 2005).
While the conclusions of these investigations may be cor-
rect, the robustness of the inverted parameter values, as well
as the fidelity of the gravity model as a function of wave-
length, is difficult to assess. The exception is that ofPhillips
(1994) who investigated the lithospheric properties of Atla
Regio, which is believed to be an active hotspot based on
its geomorphology and previously determined large apparent
depths of compensation. Using the loading model ofForsyth
(1985), which assumes uncorrelated surface and subsurface
loads, it was shown that a single mode of compensation
could not explain the entire wavelength range of the admit-
tance and coherence functions. An inversion utilizing only
the short wavelengths yielded a crustal thickness of 30±13
km and an elastic thickness of 45±3 km. While surface load-
ing by the volcanic constructs in this area dominates, about
10% of the load is required to be located at shallow depths
within the crust. For the long-wavelength range, only the
depth of the subsurface load was well constrained with a
value near 150 km, and the elastic thickness was constrained
only to be less than 140 km.

Finally, by using the obtained elastic thicknesses, or by
forward modeling of inelastic flexure, it is possible to place
constraints on the crustal temperature gradient at the time of
loading. The basic approach is to match the bending moment
implied by the elastic model to that predicted by an inelas-
tic rheology (McNutt1984). While the obtained temperature
gradient estimates lie in the rather broad range of 3–26 K
km−1 (Sandwell and Schubert1992;Johnson and Sandwell
1994;Phillips 1994;Brown and Grimm1996;Phillips et al.
1997), the majority of these lie on the low end, between∼4
and 10 K km−1. This is considerably lower than the ex-
pected Earth-scaled temperature gradient of∼15 K km−1

(e.g.,Phillips 1994), especially when considering that some
of these estimates were obtained where an underlying man-
tle plume might be expected. While such calculations are
critically dependent on the validity of the inelastic strength
model, the assumed strain rate, and the depth dependence
of temperature, these results seem to imply that the back-
ground heat flow of Venus is much less than would be ex-
pected by analogy to the Earth. Such an interpretation is
consistent with a model in which the Venusian lithosphere
formed catastrophically∼500–1000 My, and has since been
conductively cooling (cf.Parmetier and Hess1992;Turcotte
1995;Moresi and Solomatov1998). However, such a model
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is not required, or even preferred, by the cratering history of
the Venusian plains (Hauck et al.1998).

8.3 Mars

Following the acquisition of high resolution gravity and
topography data from the Mars Global Survey and Mars
Odyssey missions, a number of studies have been published
bearing on the crustal and lithospheric structure of Mars.
These investigations have placed constraints on the thick-
ness of the Martian crust, the crustal density, and the elas-
tic thickness, and also imply the existence of dynamic sup-
port of topography and buried mass anomalies. Reviews con-
cerning the gravity, topography and crust of Mars can be
found in Esposito et al.(1992),Banerdt et al.(1992),Zu-
ber (2001),Wieczorek and Zuber(2004), andNimmo and
Tanaka(2005).

The average thickness of the Martian crust has been
constrained by the analysis of geoid/topography ratios over
the ancient southern highlands. After removing the long-
wavelength flexural and load signatures associated with the
Tharsis province, a zero-elevation thickness of57 ± 24 km
was obtained under the assumption of Airy isostasy (Wiec-
zorek and Zuber2004). This range of values is consistent
with estimates based upon the viscous relaxation of topogra-
phy (Nimmo and Stevenson2001;Zuber et al.2000a) and
geochemical mass-balance arguements, both of which re-
quire the crust to be less than∼100 km thick (seeWiec-
zorek and Zuber2004). Crustal thickness modeling further
requires the mean thickness of the crust to be greater than 32
km.

A global model of the crustal thickness of Mars has been
constructed byNeumann et al.(2004) by assuming a mean
thickness of 45 km (see Figure 10). If their assumption of
a constant density crust is correct, the crust of the southern
highlands is predicted to be thicker by about 30 km than the
northern lowlands. However, if the northern lowland crust is
denser than the southern highlands, as implied by the results
of Belleguic et al.(2005), then the actual crustal thickness
difference could be significantly less. The Tharsis province
is seen to possess a relatively thick crust, indicative of pro-
longed volcanic construction, whereas the crust beneath the
major impact basins is considerably thinned, and in some
places nearly absent.

Localized spectral admittance and correlation spectra
have been modeled in spherical coordinates for various re-
gions using the techniques ofSimons et al.(1997) andWiec-
zorek and Simons(2005). In the investigations ofMcGovern
et al. (2002, 2004) andBelleguic et al.(2005), a thin elastic
spherical shell loading model was employed that depended
upon the shell’s elastic thickness, the load density, the crustal
density, and the ratio of the magnitudes of subsurface and
surface loads, which were assumed to be in or out of phase
by 0◦ or 180◦. When the load density differs from that of the
crust, the methodology ofBelleguic et al.(2005) is superior,
and their results are here summarized.

Of all the parameters considered byBelleguic et al.
(2005), the load density of the major Martian volcanoes was
found to be the best constrained with a value of∼3200±100
kg m−3. This range is consistent with density estimates of
the Martian meteorites, which are thought to be derived from
these regions based on their young ages, after the inclusion

of a few percent porosity. Elastic thickness estimates are
somewhat variable, but were found to lie between about 50
and 100 km when only surface loads were considered. How-
ever, when both surface and subsurface loads were modeled,
only upper and lower bounds could be specified for most re-
gions. The crustal density was constrained only beneath the
Elysium rise (which is located in the northern lowlands), and
was found to be identical to the density of the superposed
load. Based on rock compositions at the Mars Pathfinder
site,Neumann et al.(2004) have suggested that the southern
highland crust could possess a density close to 3000 kg m−3.
If this inference is correct, and if the crustal density beneath
the Elysium rise is representative of the northern lowlands,
then this implies a hemispheric dichotomy in crustal compo-
sition. Furthermore, the low elevations of the northern plains
could be a (partial) result of Pratt compensation. Finally, this
study found that the inclusion of less dense subsurface loads
(either compositional or thermal in origin) improved the mis-
fit between the modeled and observed admittance functions.

Elastic thickness estimates for other locales have been
determined using a variety of techniques, but these gener-
ally contain a larger number of assumptions. Modeling of
the geologically inferred flexural moat of the northern po-
lar cap suggests an elastic thickness between 60 and 120 km
(Johnson et al.2000). If the topography of the dichotomy
boundary is flexural in origin, with loading in the northern
plains, then elastic thicknesses of∼31–36 km are implied
(Watters2003). Modeling of 1-D Cartesian admittance func-
tions have been performed byMcKenzie et al.(2002) and
Nimmo(2002), but the validity of the loading model was not
tested by calculating theoretical correlation functions. The
gravity and topography of the major Martian volcanoes were
also modeled in the space domain byArkani-Hamed(2000),
but the finite-amplitude corrections of the modeled gravity
field were not included.

One distinctive feature of Mars is the large geoid and to-
pography signals associated with the Tharsis province (e.g.,
Phillips et al.2001). Two possible end-member explanations
for this observation are that it is either a result of volumi-
nous extrusive lavas that are partially supported by the litho-
sphere, or dynamic topography associated with an underly-
ing plume. Visco-elastic modeling of the geoid and topogra-
phy response to internal buoyant loads implies that a plume
is incapable of producing the totality of the observed sig-
nals (Zhong2002;Roberts and Zhong2004). By modeling
the contributions of both surface and plume signals with a
method that approximates a visco-elastic response, the de-
gree 2 and 3 geoid/topography ratios imply that a plume can
only account for∼15 and 25% of the geoid and topogra-
phy signals, respectively. Using a modified approach that
includes all spherical harmonic degrees,Lowry and Zhong
(2003) inverted for the relative contributions of surface and
internal loads and found that a plume could only account for
a maximum of∼25 and 50% of the observed geoid and to-
pography, respectively.

Finally, it is noted that buried mass anomalies can be in-
vestigated by examination of the residual gravity field after
subtraction of an appropriate reference model. For instance,
by modeling the gravity field of the Syrtis Major region by
surface loading of an elastic shell, an unmodeled localized
density anomaly was found beneath this volcanic province.
The amplitude of this unmodeled anomaly is consistent with
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the presence of dense cumulates of an extinct magma cham-
ber (Kiefer 2004). Using a similar technique, buried mass
anomalies have also been inferred along portions of the di-
chotomy boundary (Kiefer 2005).

8.4 The Moon

The Clementine and Lunar Prospector missions have sig-
nificantly improved our knowledge of the Moon’s gravity
and topography. Unfortunately, the resolution of the gravity
field varies dramatically between the near and farside hemi-
spheres, and the topography derived from the Clementine al-
timeter is the poorest among the Earth, Venus and Mars. In-
deed, the resolution of the nearside gravity field exceeds that
of the topography model. Most investigations have concen-
trated on mapping crustal thickness variations and quantify-
ing the attributes of the nearside impact basins and craters.
A comprehensive review can be found inWieczorek et al.
(2006).

The thickness of the lunar crust has been estimated by
the analysis of geoid/topography ratios over the nearside
highland crust (Wieczorek and Phillips1997). Assuming that
these regions are Airy compensated, updated results pre-
sented byWieczorek et al.(2006) imply an average crustal
thickness of 49±16 km. The crustal structure has also been
locally constrained by seismic means, primarily beneath the
Apollo 12 and 14 stations (see alsoChenet et al.2006), but
these investigations are not entirely in agreement. Initially, a
value of about 60 km was reported byToks̈oz et al.(1974),
but more recent studies imply thinner values of 45±5 km
(Khan et al.2000), 38±8 (Khan and Mosegaard2002), and
30±2.5 km (Lognonńe et al. 2003). When the elevations
of the Apollo stations are taken into account, the measured
geoid/topography ratios are most consistent with the recent
thin-crust seismic estimates.

By assuming values for the mean crustal thickness, as
well as the density of the crust and mantle, it is possible to
construct a global crustal thickness model of the Moon (see
Wieczorek and Phillips1998;Wieczorek et al.2006, and sec-
tion 5). The most notable feature of these models is the dra-
matic thinning of the crust beneath the large impact basins.
This is a natural consequence of the large quantity of mate-
rial that is ballistically excavated during the impact process
(e.g.,Wieczorek and Phillips1999), and it is seen that the
depth of excavation reaches several tens of kilometers be-
neath the largest basins. It seems probable that some basins,
such as Crisium, might even have excavated into the underly-
ing mantle given their inferred near-zero crustal thicknesses.
Nevertheless, despite the great size of the giant South Pole-
Aitken basin on the farside, it appears that its depth of exca-
vation was relatively shallow, and that∼20 km of crustal ma-
terials are present there. If the assumption of a constant den-
sity crust is correct, then the∼1.9 km center-of-mass/center-
of-figure offset implies that the farside crust is thicker than
the nearside hemisphere by about 15 km. However, global
scale variations in crustal composition are known to exist
(seeJolliff et al. 2000), and if these affect the crustal den-
siy, the hemispheric difference in crustal thickness could be
much less.

The largest lunar impact basins (excluding the South
Pole-Aitken basin) are characterized by having low eleva-
tions and large positive gravity anomalies, a signature gen-

erally referred to as amasconbasin. The positive gravita-
tional anomalies are likely a result of both uplift of the un-
derlying crust-mantle interface, and the flexural support of
surface mare basalt flows. Based on estimates of the mare
basalt thicknesses, which can reach a few kilometers within
the central portions of some impact basins, it appears that
the crust-mantle interface has, in some cases, been uplifted
above its pre-mare isostatic position (e.g.,Neumann et al.
1996;Wieczorek and Phillips1999). This hypothesis is sup-
ported by the existence of mascon basins that lack evidence
of mare volcanism (Konopliv et al.1998). Those basins that
are in a pre-mare isostatic state appear to be confined to a re-
gion of the crust that is enhanced in heat producing elements,
and which likely possesses higher temperatures (Wieczorek
and Phillips 1999, 2000). In contrast to the largest im-
pact basins, intermediate-sized craters have negative gravity
anomalies and generally show some form of compensation
(e.g.,Reindler and Arkani-Hamed2001). Only about 15% of
the craters in theReindler and Arkani-Hamed(2001) study
appear to be completely uncompensated, or to possess ex-
cess negative gravity anomalies due to crustal brecciation.
For these intermediate sized craters, there does not appear to
be any correlation of compensation state with crater age or
location.

A few studies have attempted to place constrains on the
elastic thickness of the Moon using both gravity and topog-
raphy data (e.g.,Arkani-Hamed1998;Crosby and McKenzie
2005;Sugano and Heki2004). Most analyses have concen-
trated on the mascon basins, but unfortunately, the validity
of the employed assumptions is often difficult to quantify. A
proper analysis requires an assessment of (1) whether or not
the mascon basins were in an isostatic (or super-isostatic)
state before they were loaded by mare basalts, (2) the geom-
etry and thickness of the mare basalt loads, (3) finite ampli-
tude contributions of the uplifted crust-mantle interface, (4)
both the admittance and correlation functions if the analy-
sis is performed in the spectral domain, (5) a loading model
that takes account of the surface and subsurface loads and
their unknown phase relationship, and (6) the proper diam-
eter of a basin (“main topographic rims” often differ sig-
nificantly from the more relevant diameter of the excava-
tion cavity (Wieczorek and Phillips1999)). An alternative
method for estimating the elastic thickness is by comparing
the location of tectonic features (such as faults and graben)
to that predicted by a specified loading model (e.g.,Solomon
and Head1980). Detailed modeling of the Serenitatis basin
(Freed et al.2001) suggests that its elastic thickness was
about 25 km when the concentric rilles formed, and prob-
ably greater than 70 km when the younger compressional
ridges formed.

Finally, one curious large-scale feature of Moon is the
amplitude of its degree-2 gravity and topography terms. If
the Moon were in hydrostatic equilibrium, then the ampli-
tude of theC20 andC22 terms would be directly relatable
to the Earth-Moon separation (cf. eq. 18). The present day
magnitudes of these coefficients, however, are much greater
than would be expected for equilibrium at the present time.
This has led to the suggestion that the equilibrium shape of
the Moon was frozen into the lithosphere when it was closer
to the Earth early in its orbital evolution (e.g.,Jeffreys1976).
If the observed magnitudes are interpreted as a relict equi-
librium shape, then the corresponding Earth-Moon separa-



30 M. A. Wieczorek

tion is about 25 Earth radii (the current separation is about
60 Earth radii) (Lambeck and Pullan1980). This interpreta-
tion is somewhat problematical as the lunar orbit is predicted
to have receded beyond this distance in less than∼100 My
after the formation of the Earth-Moon system (e.g.,Webb
1982). Alternatively, it is possible that this shape is a result
of large-scale crustal thickness variations, or lateral varia-
tions in mantle density.

9 FUTURE DEVELOPMENTS AND CONCLUDING
REMARKS

The gravitational fields and topography of the terrestrial
planets have become increasingly better characterized since
the discovery of lunar “mascons” by Muller and Sjogren in
1968. While the early data sets were quite sparse, the grad-
ual accumulation of data with each successive space mission
have given rise to near-global gravity and topography spher-
ical harmonic models. Some of the gravity models now pos-
sess spherical harmonic bandwidths greater than 100, and
future missions will surely lead to vast improvements. With
the exception of the Moon, the topography has been mea-
sured to an accuracy that exceeds that of the corresponding
gravity model.

Not only has the resolution of the planetary data sets
continued to improve with time, but so have the analy-
sis techniques. Early investigations were often restricted to
analyses of individual 1-D line-of-sight gravitational accel-
eration profiles. As data coverage became more dense, 2-D
regional models were developed that were more often than
not analyzed using Cartesian techniques developed for the
Earth. Because of the small size of some planetary bodies,
such as the Moon, the assumption of Cartesian geometry
has been called into question, and spherical analysis methods
have proven to be superior. In the past ten years, the full suite
of Cartesian gravity-topography analysis techniques have
been developed for the sphere, including multitaper spec-
tral analysis, the rapid calculation of gravitational anomalies
from finite amplitude topographic relief, and realistic admit-
tance models that take into account surface and subsurface
loading with an arbitrary phase relationship. Though the ap-
proximation of Cartesian geometry may not incur large er-
rors for some small-scale investigations, it is currently just
as easy to use a spherical-based method that possess a com-
parable computational speed.

While much has been learned about the crustal and
lithospheric structure of the terrestrial planets, there is still
much to be done. In particular, in hindsight it is now clear
that many gravity-topography admittance and coherence
studies have used analysis techniques that can yield unre-
liable results. Shortcomings include incorrect application of
the multitaper spectral analysis technique, the neglect of ei-
ther the admittance or correlation function, and the use of a
theoretical admittance model that might be an oversimplifi-
cation of reality. Few studies, even for the Earth, have per-
formed these analyses entirely correctly, and one should be
quite skeptical of the majority of elastic thickness estimates
that have been published for regions where subsurface load-
ing is important.

It is also important to note that the concept of an “elas-
tic” lithosphere is in actuality a gross oversimplification of

reality. Because of the ease of generating a time-invariant
flexural profile from a load emplaced on an elastic plate, we
would like to hope that the obtained “effective elastic thick-
ness” has some meaning. While this might be true for re-
gions where the magnitude of surface and subsurface load-
ing is small, and where inplane forces are absent, it has been
demonstrated that the use of a more realistic rheology can
yield flexural profiles that sometimes are quite different. Un-
fortunately, the most realistic elastoviscoplastic models are
computationally expensive, and are not currently amenable
to a robust inversion procedure using gravity and topogra-
phy as constraints. Though a simpler elastic-plastic formu-
lation could be used in such an inversion, this rheological
model utilizes assumptions that still might be too simplistic.
Nevertheless, it would be appropriate to develop an elastic-
plastic loading model similar to the elastic model described
in section 7. One benefit of such a model is that it would be
possible to invert for the regional heat flow. An additional av-
enue of future research is to compare the locations of surface
faulting with those predicted from elastic, elastic-plastic, and
elastoviscoplastic models.

Finally, it is worth mentioning that significant improve-
ments will be made to our knowledge of the gravitational
fields and topography of the terrestrial planets. In particular,
while the land-based topography for the Earth is now known
to high accuracy, there are still gaps near the polar regions
that could be partially filled by data obtained by the orbiting
GLAS laser altimeter (e.g.,Abshire et al.2005;Schutz et al.
2005;Shuman et al.2006). The soon to be launched satel-
lite GOCE, which contains a gravity gradiometer, will lead
to improved models of the terrestrial gravity field. An area
of active research for the Earth, but also for the other planets
in a more limited sense, is that of measuring and modeling
time variable gravity signatures that are a result of hydro-
logic processes and tidal deformation.

In addition to the Earth, spacecraft missions to the
other terrestrial planets are bound to yield surprises. The
lunar topography will be dramatically improved by the up-
coming SELENE and Lunar Reconnaissance Orbiter (LRO)
missions. Analysis of data obtained from the SELENE re-
lay satellite, as well as dense altimetric cross-overs from
LRO, will furthermore vastly improve our knowledge of the
Moon’s farside gravity field. The gravity field of Mars will
be improved by data obtained from the currently orbiting
Mars Reconnaissance Orbiter. The topography and gravity
field of Mercury will be characterized globally for the first
time from the MESSENGER and BepiColumbo missions. In
addition, missions are currently being proposed to measure
the gravity and topography of bodies in the outer solar sys-
tem, such as the satellites of Jupiter and Saturn.
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Lognonńe, P., J. Gagnepain-Beyneix, and H. Chenet, A new seismic
model for the moon: Implications for structure, thermal evolution and
formation of the Moon,Earth Planet. Sci. Lett., 211, 27–44, 2003.

Lowry, A. R., and S. Zhong, Surface versus internal loading of the Thar-
sis rise, Mars,J. Geophys. Res., E9, 5099, doi:10.1029/2003JE002,111,
2003.

Margot, J.-L., D. B. Campbell, R. F. Jurgens, and M. A. Slade, Topography
of tycho crater,J. Geophys. Res., 104, 11,875–811,882, 1999a.

Margot, J.-L., D. B. Campbell, R. F. Jurgens, and M. A. Slade, Topogra-
phy of the lunar poles from radar interferometry: A survey of cold trap
locations,Science, 284, 1658–1660, 1999b.

Marks, K. M., and W. H. F. Smith, An evaluation of publicly available
global bathymetry grids,Marine Geophys. Res., 27, 19–34, 2006.

Martinec, Z., K. P̌eč, and M. Buřsa, The Phobos gravitational field mod-
eled on the basis of its topography,Earth Moon Planets, 45, 219–235,
1989.

McGovern, P. J., et al., Localized gravity/topography admittance and cor-
relation spectra on Mars: Implications for regional and global evolution,
J. Geophys. Res., 107(E12), 5136, doi:10.1029/2002JE001,854, 2002.

McGovern, P. J., et al., Correction to “Localized gravity/topography
admittance and correlation spectra on Mars: Implications for re-
gional and global evolution”, J. Geophys. Res., 109(E07007),
doi:10.1029/2004JE002,286, 2004.

McKenzie, D., The relationship between topography and gravity on Earth
and Venus,Icarus, 112, 55–88, 1994.

McKenzie, D., Estimatingte in the presence of internal loads,J. Geo-
phys. Res., 108(B9), 2348, doi: 10.1029/2002JB001,766, 2003.

McKenzie, D., and F. Nimmo, Elastic thickness estimates for Venus from
line of sight accelerations,Icarus, 130, 198–216, 1997.

McKenzie, D. P., D. N. Barnett, and D.-N. Yuan, The relationship be-
tween Martian gravity and topography,Earth Planet. Sci. Lett., 195, 1–



Gravity and Topography of the Planets 33

16, 2002.
McNutt, M. K., Lithospheric flexure and thermal anomalies,J. Geophys.

Res., 89(B13), 11,180–11,194, 1984.
Miller, J. K., et al., Determination of shape, gravity, and rotational state of

asteroid 433 Eros,Icarus, 155, 3–17, 2002.
Mohr, P. J., and B. N. Taylor, CODATA recommended values of the fun-

damental physical constants: 2002,Rev. Mod. Phys., 77, 1–107, 2005.
Moore, W. B., and G. Schubert, Lithospheric thickness and man-

tle/lithosphere density contrast beneath Beta Regio, Venus,Geophys.
Res. Lett., 22(4), 429–432, 1995.

Moore, W. B., and G. Schubert, Venusian crustal and lithospheric prop-
erties from nonlinear regressions of highland geoid and topopgraphy,
Icarus, 128, 415–428, 1997.

Moresi, L., and V. Solomatov, Mantle convection with a brittle litho-
sphere: thoughts on the global tectonic styles of the Earth and Venus,
Geophys. J. Int., 133, 669–682, 1998.

Mueller, S., and R. J. Phillips, On the reliability of lithospheric constraints
derived from models of outer-rise flexure,Geophys. J. Int., 123, 887–
902, 1995.

Muller, P. M., and W. L. Sjogren, Masons: lunar mass concentrations,Sci-
ence, 161, 680–684, 1968.

National Geophysical Data Center,ETOPO2 global 2′ elevations [CD-
ROM], U.S. Department of Commerce, National Oceanic and Atmo-
spheric Administration, Boulder, Colorado, USA, 2001.

National Imagery and Mapping Agency,Department of Defense World
Geodetic System 1984: its definition and relationship with local geode-
tic systems, NIMA TR8350.2, 175 pp., National Imagery and Mapping
Agency, 2000.

Neumann, G. A., M. T. Zuber, D. E. Smith, and F. G. Lemoine, The lunar
crust: Global structure and signature of major basins,J. Geophys. Res.,
101, 16,841–16,843, 1996.

Neumann, G. A., D. D. Rowlands, F. G. Lemoine, D. E. Smith, and M. T.
Zuber, Crossover analysis of Mars Orbiter Laser Altimeter data,J. Geo-
phys. Res., 106, 23,753–23,768, 2001.

Neumann, G. A., M. T. Zuber, M. A. Wieczorek, P. J. McGovern, F. G.
Lemoine, and D. E. Smith, Crustal structure of Mars from gravity and to-
pography,J. Geophys. Res., 109(E08002), doi:10.1029/2004JE002,262,
2004.

Nimmo, F., Admittance estimates of mean crustal thickness and density at
the Martian hemispheric dichotomy,J. Geophys. Res., 107(E11), 5117,
doi:10.1029/2000JE001,488, 2002.

Nimmo, F., and D. McKenzie, Volcanism and tectonics on Venus,Annu.
Rev. Earth Planet. Sci., 26, 23–51, 1998.

Nimmo, F., and D. J. Stevenson, Estimates of martian crustal thickness
from viscous relaxation of topography,J. Geophys. Res., 106, 5085–
5098, 2001.

Nimmo, F., and K. Tanaka, Earth crustal evolution of
Mars, Annu. Rev. Earth Planet. Sci., 33, 133–161,
doi:10.1146/annurev.earth.33.092,203.122,637, 2005.

Nimmo, F., B. Giese, and R. T. Pappalardo, Estimates of Europa’s ice shell
thickness from elastically-supported topography,Geophys. Res. Lett.,
30, 1233, doi:10.1029/2002GL016,660, 2003a.

Nimmo, F., R. T. Pappalardo, and G. Giese, On the origins of band topog-
raphy, Europa,Icarus, 166, 21–32, 2003b.

Ockendon, J. R., and D. L. Turcotte, On the gravitational potential and
field anomalies due to thin mass layers,Geophys. J. R. Astron. Soc., 48,
479–492, 1977.

Panasyuk, S. V., and B. H. Hager, Inversion for mantle viscosity profiles
constrained by dynamic topography and the geoid, and their estimated
errors,Geophys. J. Int., 143, 821–836, 2000.

Parker, R. L., The rapid calculation of potential anomalies,Geo-
phys. J. R. Astron. Soc., 31, 447–455, 1972.

Parmetier, E. M., and P. C. Hess, Chemical differentiation of a convecting
planetary interior: Consequences for a one plate planet such as Venus,
—Geophys. Res. Lett., 19(20), 2015–2018, 1992.

Percival, D. B., and A. T. Walden,Spectral Analysis for Physical Applica-
tions, Multitaper and Conventional Univariate Techniques, Cambridge
Univ. Press, New York, 1993.
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