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1. Detailed inverse problem formulation

The method is detailed through a set of constraints on the problem unknowns: the

water-mass proportions, m, all relevant tracer distributions on an underlying grid, ck, and any

remineralization source for nonconservative tracers, q.

Tracer observations are imposed without loss of generality as an equation: ∑
K
k=1{Ek[ck]}=

y+n, where there are K modeled tracers, Ek is a potentially nonlinear mapping of the gridded

fields onto the observational location of observational type and performs the “proxy”

step of relating the modeled tracers to observed quantities, y is the list of many disparate

observations, and n is the noise in the observations. This form takes into account the fact

that paleo-observations may depend upon multiple seawater tracers (e.g., δ18Oc requires

temperature and seawater δ18O), and that this relationship may be nonlinear (e.g., δ18Oc

requires in-situ rather than potential temperature, and Cdw is nonlinearly related to phosphate).

If the tracer observations are restricted to those that are explicitly modeled (e.g., δ18Ow) or to

climatologies where a tracer value is available at all gridded locations (e.g., WOCE salinity

and nutrients), the nonlinear function Ek is reduced to a matrix.

The tracers are constrained by non-observational information, as well. These constraints

include gravitational stability, non-negativity constraints expressed in terms of barrier

functions, and δ13Cas being within the range that has been found in modern-day observations

and models (±1h). To keep the solution within reasonable bounds and also improve the

efficiency of the solution method, the surface tracer deviation is defined relative to a first guess,

Γcbk = c0k +nbk, where Γ picks out the surface values from the global distribution, cbk is

the surface concentration, c0k is the first guess, and nbk is surface deviation away from the

first guess for tracer k. Equations for gravitational stability, non-negativity, and the range of

δ13Cas are symbolically lumped into one set of nonlinear equations for the derivation here:
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Fc[ck] = nc, where nc is the degree to which these equations are inexact.

No direct observations of the interior tracer sources, q, or the water-mass pathway vector,

m, are available, so these unknowns are simply kept within a reasonable range of a first-guess

where, for example, Fq[q,q0] = log(q)− log(q0) = nq, is the deviation from the first guess

local sources, q0. The difference of logarithms assumes and enforces the source to be positive,

and for the order of magnitude of the deviation to be penalized. The pathway parameters, m,

are penalized using an similar nonlinear function, Fm.

1.1. Steady state constraint

Equation (1) in the main text is put into the form of a steady-state constraint by putting all

terms on the left hand side: fik = ∑
N
j=1 mi j c jk + rkqi− cik = 0, for all interior locations i and

tracers k, with fik = cik− cbk at the surface. Mass conservation is one of these constraints, here

denoted to be the k = K +1 tracer: fi,K+1 = ∑
N
j=1 mi j−1, found by substituting c j,K+1 = 1,

ci,K+1 = 1, and rK+1 = 0 above. Any steady-state tracer, k, must satisfy Fk = 0 which is

defined by appending fik at all i locations.

1.2. Solution technique

All constraints are enforced through the method of Lagrange multipliers. For equations

that contain noise, a weighted quadratic form, nT Wn, is added to the Lagrangian function in

order to minimize the sum of squared noise elements. For the steady-state constraint that does

not contain noise, a Lagrange multiplier term is appended to the function for strict enforcement.

Solving for n in terms of the other unknowns of the problem, the Lagrangian function is

L [ck,q,m] = (
K

∑
k=1
{Ek[ck]}−y)T W(

K

∑
k=1
{Ek[ck]}−y) (1)

+
K

∑
k=1
{(Γck− c0k)

T Sk(Γck− c0k)} (2)

+ Fc[ck]
T WcFc[ck]+Fq[q]T SqFq[q]+Fm[m]T SmFm[m] (3)

+
K+1

∑
k=1

µT
k Fk[ck,q,m], (4)
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where W is the observational weighting matrix and Wc is the weighting of the additional tracer

constraints. Sk, Sq and Sm are scaling matrices that enforce bounds and smoothness on the

expected deviation in each surface tracer, interior source, and pathways, respectively. There is

one Lagrange multiplier vector, µk, for each of the K +1 steady-state equations, and note that

the Lagrange multiplier terms do not alter the numerical value of the function.

For tracer climatologies, W is diagonal with the inverse of published error estimates

squared. For the sediment core data, the W matrix has the same form, and the additional

constraint that there be no systematic misfit with depth is appended. Finding the model-data

bias as a function of depth is a linear operation, Zn, an additional constraint can be added to the

previous cost function term. The weighting matrix then becomes W+ZT WzZ, a nondiagonal

matrix. Wz is chosen based on the expected vertical systematic error that arises from random

noise.

The minimum of L is found by seeking a stationary point of the terms (1)-(4). The

partial derivative with respect to each tracer gives a set of (adjoint) equations that is solved

for the Lagrange multipliers by an LU decomposition. The Lagrange multiplier vectors yield

information about how the Lagrangian function will change given a change in a subset the

unknowns, cbk, q, and m, where these variables contain all information necessary to solve for

the global tracer distributions. A quasi-Newton gradient descent method uses this information

to iteratively search for the minimum L [Nocedal, 1980; Gilbert and Lemaréchal, 1989]. All

controls (independent unknowns) are preconditioned by the Cholesky decomposition of the

respective scaling matrix, S, to improve performance.

2. Model-Data Misfits

The use of nondiagonal matrices, as described in the method above, puts emphasis on

capturing the vertical structure of the observations. The model-data misfit as a function of

depth is included in Auxiliary Figures 1-2. Additionally, we include a meridional section of the

δ13C and δ13Cas distributions with pointwise misfits denoted (Auxiliary Figures 3-4). These
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figures indicate that the vertical structure of the observations is captured within the expected

errors. Figure 1.

Figure 2.

Figure 3.

Figure 4.

3. Water-mass analysis

A phosphate-δ13C diagram puts the geographic Atlantic section into the context of

water-mass endmember values and mixing lines. At the core sites that contain measurements

of both Cd and δ13C, we translate Cd to phosphate following Elderfield and Rickaby

[2000] and plot δ13C-PO4 property combinations, where δ13Cas isolines are straight in this

property-property space (Auxiliary Figure 5). Even though the δ13Cas map of this work

appears to have a different vertical structure from the map of Marchitto and Broecker [2006],

the dominant linear relationship between δ13C and phosphate is captured at the core sites,

including the modern-day slope of -0.6h/µmol/kg steepening to -1.3h/µmol/kg during the

LGM. All modern-day δ13Cas core values and all but three LGM δ13Cas core values are within

0.5h of zero after accounting for observational noise, an indication that air-sea disequilbrium

signatures are small in the deep ocean if the recent burning of fossil fuels is eliminated [e.g.,

Olsen and Ninnemann, 2010] and that the water-mass signal in δ13Cas is smaller than the signal

of biological effects. Figure 5.

The change in phosphate-δ13C slope is due to the “effective endmembers,” defined to

be the most representative properties in a given surface region [Gebbie and Huybers, 2011].

Here we define seven surface regions in the Atlantic sector (see Figure 5 for definitions),

where the endmembers are computed by weighting the surface tracer concentrations by the

Atlantic interior volume filled by each location. The modern-LGM difference in slope is

due to the change in δ13Cas of the primary water-masses that make the general linear trend.

In the modern-day, the Labrador and GIN Seas have relatively-high δ13C but low δ13Cas

(-0.4h). Weddell Sea Water has low δ13C but high δ13Cas (0.3h), with the net effect being a

flattening of the overall slope. In the LGM, the pattern is reversed, with relatively-low δ13C

and δ13Cas being colocated in the Southern Ocean, and both quantities relatively high in the
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North Atlantic. The net result is a steepened slope in the LGM.

Even though the effective endmember values aren’t strongly constrained by observations,

there is general agreement between our study and previous studies. Glacial endmember

estimates were previously estimated by extrapolation of mixing lines in a property-property

diagram [AABW: 0.6 to 0.8 nmol/kg, -0.5 to -1.0h δ13C, Marchitto and Broecker, 2006].

Here, we refine their estimates (0.85 nmol/kg, -0.9h), but recognize that any additional

Southern Ocean observations could alter them. Glacial Antarctic Intermediate Water δ13C is

reconstructed to be 0.2-0.3h, in accord with Curry and Oppo [2005]. We also find a large

gradient between upper and lower North Atlantic Water properties, consistent with increased

sea ice and unutilized nutrients in the Nordic Seas [Mix and Fairbanks, 1985], that further

complicates the finding of an interface between northern and southern source waters, as lower

North Atlantic Water is more similar to Antarctic water. Other endmember values will need

to be refuted or refined with additional observations. For example, the Atlantic-wide range of

Cd is 50% greater during the LGM, which together with the conservation of global phosphate

inventory, requires North Atlantic source waters to be even more depleted than they are today

(<0.1 nmol/kg). Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.
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Figure Captions

Figure 1. Comparison of reconstructed error relative to expected error as a function of depth:

standard deviation of model-observation misfit (solid lines) over a 1000 meter running interval

for δ13CDIC (left panel), PO4 (middle panel), and δ18Ow (right panel), and the expected standard

error from published sources or subjective choice as used in the reconstruction method (dashed

lines).
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Figure 2. Error statistics of the LGM solution for δ13C (left panel), Cd (middle panel), and

δ18O (right panel) data from benthic foraminiferal calcite. The reconstructed standard error

over 1000 meter running depth intervals (σ, bold solid line) is compared to the expected stan-

dard error (bold dashed line). The absolute value of the mean misfit or offset (µ) is compared

between the reconstruction (thin solid line) and the expected 95% confidence interval (thin

dashed line).
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Figure 3. The glacial meridional sections collapse all data points onto a western or eastern

section. To account for zonal variations in the core locations, we plot the model-data misfit at

the actual locations of the data. The model-data misfit is included for LGM δ13Cc. Squares

represent data locations in the western Atlantic (west of 35◦W) and circles represent the eastern

Atlantic.



11

latitude [
o
N]

d
e
p
th

 [
m

]

LGM  Western Atlantic δ
13

C
as

 misfit [per mil]

 

 

−80 −60 −40 −20 0 20 40 60 80

5000

4000

3000

2000

1000

0

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

Figure 4. Same as the previous figure but for δ13Cas inferred from core locations with both

δ13Cc and Cd measurements.
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Figure 5. Water mass diagrams in phosphate-δ13C space for the modern (left panel) and LGM

(right panel). Reconstructed tracer-tracer values at the locations with Cd and δ13C observations

(black circles) are placed into the context of δ13Cas (background contours). The effective end-

member values (open circles) enclose the data points, and are defined for the following surface

regions: Weddell Sea (WED), Atlantic Subantarctic (SUBANT), Labrador and Irminger Seas

(LAB), Greenland-Icelandic-Norwegian Seas (GIN), Arctic (ARC), Mediterranean (MED),

and subtropics/tropics (TROP). The modern-day MED endmember is offscale (0.2µmol/kg,

2.2h).
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Figure 6. Western Atlantic Property Atlas: Additional meridional sections that compare

modern and LGM properties along the western Atlantic GEOSECS track are included here for

the following properties: Cdw (this figure) and δ18Oc (next figure). Similar figures for δ13C,

δ13Cas, preformed δ13C, and North Atlantic Water concentration, gnorth, are included in the

main text.
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Figure 7. Same as previous figure but for δ18Oc.
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Figure 8. Eastern Atlantic Property Atlas: Meridional sections along the A16 WOCE tran-

sect are included here for the following properties: δ13C, δ13Cas, Cdw, δ18Oc, and North At-

lantic Water concentration, gnorth.
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Figure 9. Same as Figure 8, but for δ13Cas.
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Figure 10. Same as Figure 8, but for seawater Cd.
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Figure 11. Same as Figure 8, but for δ18Oc.
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Figure 12. Same as Figure 8, but for North Atlantic Water concentration, gnorth.


