
 

 

 

Chapter 6 

 

Thermodynamics and the Equations of Motion 

 
6.1 The first law of thermodynamics for a fluid and the equation of state. 

 
We noted in chapter 4 that the full formulation of the equations of motion 

required additional information to deal with the state variables density and pressure 

and that we were one equation short of matching unknowns and equations.  In both 

meteorology and oceanography the variation of density and hence buoyancy is 

critical in many phenomenon such cyclogenesis and the thermohaline circulation, to 

name only two.  To close the system we will have to include the thermodynamics 

pertinent to the fluid motion.  In this course we will examine a swift review of those 

basic facts from thermodynamics we will need to complete our dynamical 

formulation. 

In actuality, thermodynamics is a misnomer.  Classical thermodynamics deals 

with equilibrium states in which there are no variations of the material in space or 

time, hardly the situation of interest to us. However, we assume that we can 

subdivide the fluid into regions small enough to allow the continuum field 

approximation but large enough, and changing slowly enough so that locally 

thermodynamic equilibrium is established allowing a reasonable definition of 

thermodynamic state variables like pressure, density and pressure.  Experience 

shows this to be a sensible assumption. We have already noted that for some 

quantities, like the pressure for molecules with more than translational degrees of 

freedom, the departures from thermodynamic equilibrium have to be considered. 

Generally, such considerations are of minor importance in the fluid mechanics of 

interest to us.  
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If the fluid is in thermodynamic equilibrium any thermodynamic variable for a 

pure substance, like pure water, can be written in terms of any two other 

thermodynamic variables✿, i.e. 

 p = p(ρ,T )   (6.1.1) 

where the functional relationship in depends on the substance. Note, that as 

discussed before, (6.1.11) does not necessarily yield a pressure which is the average 

normal force on a fluid element.  The classic example of an equation of state is the 

perfect gas law; 

 

 p = ρRT   (6.1.2) 

which is appropriate for dry air. The constant R is the gas constant and is a property 

of the material that must be specified. For air  (from Batchelor)  

 R = 2.870x103cm2 / sec2 degC   (6.1.3) 

One of the central results of thermodynamics is the specification of another 

thermodynamic state variable e(ρ,T) which is the internal energy per unit mass and 

is, in fact, defined by a statement of the first law of thermodynamics.  

Consider a fluid volume, V,  of fixed mass (Figure 6.1.1) 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
✿ For sea water, the presence of salt renders the equation of state very complex.  
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Figure 6.1.1 A fixed mass of fluid, of volume V, subject to body force F, a surface 

flux of heat (per unit surface area) out of the volume, K, and the surface force per 

unit area due to the surface stress tensor. 

The first law of thermodynamics states that the rate of change of the total 

energy of the fixed mass of fluid in V, i.e. the rate of change of the sum of the 

kinetic energy and internal energy is equal to the rate of work done on the fluid 

mass plus the rate at which heat added to the fluid mass.  That is, 
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∫ (6.1.4) 

Let’s discuss each term : 

(a) The rate of change of internal energy. 

(b) The rate of change of kinetic energy. 

(c) The rate at which the body force does work. This is the scalar product of the 

body force with the fluid velocity. 

(d) The rate at which the surface force does work. This is the scalar product of 

the surface stress with the velocity at the surface (then integrated over the 

surface). 

(e)  The rate at which heat per unit mass is added to the fluid. Here Q is the 

thermodynamic equivalent of the body force, i.e. the heat added per unit 

mass. 

(f)  

K  is the heat flux vector at the surface, i.e. the rate of heat flow per unit 

surface area out of the volume. 

 

The terms (a) and (b) require little discussion. They are the internal and kinetic 

energies rates of change for the fixed mass enclosed in V. Note that term (b) is: 

 

                                                                                                                                   
There are tomes written on the subject and we will slide over this issue entirely in 
this course. 
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 d
dt

ρ
V
∫
uiui
2
dV = ρui

dui
dt

dV
V
∫   (6.1.5) 

 

The principal point to make here is that (6.1.4) defines the internal energy as the 

term needed to balance the energy budget. What thermodynamic theory shows is 

that e is a state variable defined by pressure and temperature, for example, and 

independent of the process that has led to the state described by those variables.   

Similarly, term (c) is the rate at which the body force does work. The work is 

the force multiplied by the distance moved in the direction of the force. The work 

per unit time is the force multiplied by the velocity in the direction of the force and 

then, of course, integrated over the mass of the body.  Term (d) is the surface force 

at some element of surface enclosing V and is multiplied by the velocity at that 

point on the surface and then integrated over the surface. Using the divergence 

theorem, 
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∂x j
dV

V
∫ = ui
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∂x j
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V
∫  (6.1.6) 

 

Term (e) represents the rate of heat addition by heat sources that are 

proportional to the volume of the fluid, for example, the release of latent heat in the 

atmosphere or geothermal heating in the ocean or penetrative solar radiation in the 

ocean and atmosphere.  Finally the flux of heat out of the system in term (f) can 

also be written in terms of a volume integral, 

 
 


K in̂

A
∫ dA =

∂K j

∂x j
dV

V
∫   (6.1.7) 

Now that all terms in the budget are written a volume integrals we can group 

them is a useful way as, 
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∫ (6.1.8) 
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The first term on the left hand side has an integrand, which is (nearly) the 

momentum equation if Fi contains all the body forces including the centrifugal 

force. It lacks only the Coriolis acceleration. However, since each term is dotted 

with the velocity one could easily add the Coriolis acceleration to the bracket 

without changing the result. Then it is clear that the whole first term adds to zero 

and is, in fact, just a statement of the budget of kinetic energy 

 

ρ dui
2 / 2
dt

= ρuiFi + ui
∂σ ij

∂x j
  (6.1.9) 

 

The remaining volume integral must then vanish and using, as before, the fact 

that the chosen volume is arbitrary means its integrand must vanish or, 

 

ρ de
dt

= σ ij
∂ui
∂x j

+ ρQ −
∂K j

∂x j
  (6.1.10) 

as the governing equation for the internal energy alone. Since the stress tensor is 

symmetric, 

 

 

σ ij
∂ui
∂x j

= σ ji

∂uj

∂xi
= σ ij

∂uj

∂xi
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1
2

∂ui
∂x j
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⎛

⎝⎜
⎞

⎠⎟
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  (6.1.11) 

The first step in (6.1.11) is just a relabeled form, with i and j interchanged.  The 

second step uses the symmetry of the stress tensor and the last line rewrites the 

result in terms of the inner product of the stress tensor and the rate of strain tensor. 

Since, (3.7.15) 

 

 σ ij = − pδ ij + 2µeij + λekkδ ij   (6.1.12) 
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or with the relation , λ = η − 2 3µ  we have 

 

 σ ij = − pδ ij + 2µ(eij −
1
3
ekkδ ij ) +ηekkδ ij  (6.1.13) 

where the pressure is the thermodynamic  pressure of the equation of state and η is 

the coefficient relating to the deviation of that pressure from the average normal 

stress on a fluid element.  The scalar  

 
 
σ ijeij = − p∇i

u + 2µ eij
2 −
1
3
ekk

2⎡
⎣⎢

⎤
⎦⎥
+ηekk

2  (6.1.14) 

The term eij
2 −
1
3
ekk

2⎡
⎣⎢

⎤
⎦⎥

 can be shown to be always positive (it’s is easiest to do this 

in a coordinate system where the rate of strain tensor is diagonalized).   So this term 

always represents an increase of internal energy provided by the viscous dissipation 

of mechanical energy. Traditionally, this term is defined as the dissipation function, 

Φ , i.e. where, 

 

 Φ = 2 µ
ρ

eij
2 −
1
3
ekk

2⎡
⎣⎢

⎤
⎦⎥

  (6.1.15) 

In much the same way that we approached the relation between the stress 

tensor and the velocity gradients, we assume that the heat flux vector depends 

linearly on the local value of the temperature gradient, or, in the general case 

 

 Ki = ℜij
∂T
∂x j

  (6.1.16) 

 

Again assuming that the medium is isotropic in terms of the relation between 

temperature gradient and heat flux, the tensor ℜij needs to be a second order 

isotropic tensor. The only such tensor is the kronecker delta so  
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ℜij = −kδ ij ⇒ Ki = −k

∂T
∂xi
,
   (6.1.17) 

The minus sign in (6.1.17) expresses our knowledge that heat flows from hot to 

cold, i.e. down the temperature gradient, i.e. 

  

K = −k∇T    (6.1.18) 

 

where k is the coefficient of heat conduction.  For dry air at 200 C, k= 2.54 103 

grams /(cm sec3degC) 

 

Putting these results together yields, 

 

 

 
 

ρ de
dt

= − p∇i
u

reversiblework
 + ρΦ +η(∇i

u)2
irreversiblework  

+ ρQ +∇i(k∇T )   (6.1.19) 

 

The pressure work term involves the product of the pressure and the rate of volume 

change; a convergence of velocity is a compression of the fluid element and so 

leads to an increase of internal energy but an expansion of the volume (a velocity 

divergence) can produce a compensating decrease of internal energy. On the other 

hand, the viscous terms represent an irreversible transformation of mechanical to 

internal energy. It is useful to separate the effects of the reversible from the 

irreversible work by considering the entropy.  The entropy per unit mass is a state 

variable we shall refer to as s and satisfies for any variation δ s 

 

 Tδs = δe + pδ 1
ρ( )   (6.1.20) 

so that,  for variations with time for a fluid element, 
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T ds
dt

=
de
dt

−
p
ρ2

dρ
dt

=
de
dt

+
p
ρ
∇i
u

  (6.1.21) 

Substituting for de/dt into (6.1.19) leads to an equation for the entropy in terms of 

the heating and the irreversible work, 

 

 
 
ρT ds

dt
= ρΦ +η(∇i

u)2 +∇i(k∇T ) + ρQ  (6.1.22) 

 

Since s is a thermodynamic variable we can write, s = s(p,T )  or s = s(ρ,T ) , so 

that, 

 

 

 

ds = ∂s
∂p

⎞
⎠⎟ T
dp + ∂s

∂T
⎞
⎠⎟ p

dT

=
∂s
∂ρ

⎞
⎠⎟ T
dρ +

∂s
∂T

⎞
⎠⎟ ρ

dT

  (6.1.23 a, b) 

Similarly, we can write (6.1.20) in two forms, 

 
Tds = de + pd(1 / ρ)

= d(e + p / ρ) − 1
ρ
dp

  (6.1.24 a, b) 

It is useful to fine another state variable, the enthalpy, h, as 

 

 h = e + p
ρ   (6.1.25) 

It follows from (6.1.23) and (6.1.24) that we can define, 
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cv = T
∂s
∂T

⎞
⎠⎟ ρ

=
∂e
∂T

⎞
⎠⎟ ρ

 = specific heat at constant volume,

cp = T
∂s
∂T

⎞
⎠⎟ p

=
∂h
∂T

⎞
⎠⎟ p

= specific heat at constant pressure.

              (6.1.26 a, b) 

 

so that our dynamical equation for the entropy (6.1.22) finally becomes 

 

 

ρT ds
dt

= ρ T ∂s
∂T

⎛
⎝⎜

⎞
⎠⎟ p

dT
dt

+ T ∂s
∂p

⎛
⎝⎜

⎞
⎠⎟ T

dp
dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ρΦ +η ∇i

u( )2 + ρQ +∇i(k∇T )

= ρ cp
dT
dt

+ T ∂s
∂p

⎛
⎝⎜

⎞
⎠⎟ T

dp
dt

⎡

⎣
⎢

⎤

⎦
⎥ = ρΦ +η ∇i

u( )2 + ρQ +∇i(k∇T )

(6.1.27) 

 

We are almost there. Our goal is to derive a governing equation for a variable like 

the temperature that we can use with the state equation (6.1.1) to close the 

formulation of the fluid equations of motion with the same number of equations as 

variables. We have to take one more intermediate step to identify the partial 

derivative ∂s
∂p

⎛
⎝⎜

⎞
⎠⎟ T

 in terms of more familiar concepts. To do this we introduce yet 

another thermodynamic state variable  

 

 Ψ = h − Ts =Ψ (p,T )   (6.1.28) 

 

Therefore, 

 

 ∂Ψ
∂p

⎞
⎠⎟ T

=
∂h
∂p

⎞
⎠⎟ T

− T ∂s
∂p

⎞
⎠⎟ T

  (6.1.29) 

 

but from (6.1.24) and (6.1.25) for arbitrary variations,  
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 Tδs /δ p − δh /δ p = −1 / ρ   (6.1.30) 

we have, 

 ∂Ψ
∂p

⎛
⎝⎜

⎞
⎠⎟ T

=
1
ρ

  (6.1.30) 

 

In the same way, 

 ∂Ψ
∂T

⎛
⎝⎜

⎞
⎠⎟ p

=
∂h
∂T

⎛
⎝⎜

⎞
⎠⎟ p

− T ∂s
∂T

⎛
⎝⎜

⎞
⎠⎟ p

− s = −s  (6.1.31) 

 

Keep in mind in using (6.1.24) that p is being kept constant in the derivatives in 

(6.1.31) 

 

Taking  the cross derivatives of (6.1.30) and (6.1.31) 

  

 ∂1 / ρ
∂T

⎛
⎝⎜

⎞
⎠⎟ p

= −
∂s
∂p

⎛
⎝⎜

⎞
⎠⎟ T

  (6.1.32) 

 

It is the term on the right hand side of (6.1.32) that we need for (6.1.27) and it is 

 

 ∂s
∂p

⎛
⎝⎜

⎞
⎠⎟ T

=
1
ρ2

∂ρ
∂T

⎛
⎝⎜

⎞
⎠⎟ p

= −
∂υ
∂T

⎛
⎝⎜

⎞
⎠⎟ P

  (6.1.33) 

 

where υ is the specific volume  i.e. 1 / ρ . The increase, at constant pressure of the 

specific volume is the coefficient of thermal expansion of the material, α  is defined  

 

α =
1
υ

∂υ
∂T

⎛
⎝⎜

⎞
⎠⎟ p

=   coefficient of thermal expansion  (6.1.34) 

 

so that,  
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 ∂s
∂p

⎛
⎝⎜

⎞
⎠⎟ T

= −αυ = −α / ρ  

So that finally our governing thermodynamic equation is (6.1.27) rewritten : 

 

 

 
ρ cp

dT
dt

−
αT
ρ
dp
dt

⎡

⎣
⎢

⎤

⎦
⎥ = ρΦ +η ∇i

u( )2 + ρQ +∇i(k∇T )  (6.1.35 a) 

 

In analogy with the viscosity coefficient µ and the kinematic viscosity ν we divide 

the thermal diffusion coefficient k(with dimensions   mL/T3degC) by ρ cp to obtain  

κ the thermal diffusivity (dimensions L2/T, compare ν). 

 

Our other equations are the state equation (6.1.1) 

 

p = p(ρ,T )   (6.1.35 b) 

 

and the mass conservation equation,  (2.1.11) 

 

 
 

dρ
dt

+ ρ∇i
u = 0   (6.1.35 c) 

and the momentum equation ( 4.1.13), 

    

 
ρ d
u
dt

+ ρ2

Ω × u = ρg − ∇p + µ∇2 u + (λ + µ)∇(∇i

u) + (∇λ)(∇i
u) + îieij

∂µ
∂x j

.(6.1.35 d) 

 

Our unknowns are 
 
p,ρ,T , u

6
   while we have 3 momentum equations, the 

thermodynamic equation, the equation of state, and the mass conservation equation, 

i.e. 6 equations for 6 unknowns, assuming that we can specify,  in terms of these 

variables the thermodynamic functions α,µ,η,cp ,k  which we suppose is possible. 
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(If we were to think of the coefficients η,κ,µ as turbulent mixing coefficients it is 

less clear that the system can be closed in terms of the variables p,ρ,T and  
u )  

At this point we have derived a complete set of governing equations and the 

formulation of our dynamical system is formally complete. But, and this is a big 

but, our work is just beginning. Even if we specify the nature of the fluid; air, water, 

syrup or galactic gas the equations we have derived are capable of describing the 

motion whether it deals with acoustic waves, spiral arms in hurricanes, weather 

waves in the atmosphere or the meandering Gulf Stream in the ocean.  This very 

richness in the basic equations is an impediment to solving any one of those 

examples since for some phenomenon of interest we have included more physics 

than we need, for example the compressibility of water is not needed to discuss the 

waves in your bathtub.  

If the equations were simpler, especially if they were linear, it might be 

possible to nevertheless accept this unnecessary richness but the momentum, 

thermodynamic and mass conservation equations are each nonlinear because of   the 

advective derivative so a frontal attack on the full equations, even with the most 

powerful modern computers is a hopeless approach. This is both the challenge and 

the attraction of fluid mechanics.  Mathematics must be allied with physical 

intuition to make progress and in the remainder of the course we will approach this 

in a variety of ways.  Before doing so we will discuss two specializations of the 

thermodynamics of special interest to us as meteorologists and oceanographers. 

 

6.2 The perfect gas 

The state equation (6.1.1) is appropriate for a gas like air for which R is 0.294 

joule/gm deg C (1 joule =107 gm cm2/sec2). It follows that, 

 

 dp
p

=
dT
T

+
dρ
ρ

  (6.2.1) 

so that for processes which take place at constant pressure, 
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 −
1
ρ

∂ρ
∂T

⎛
⎝⎜

⎞
⎠⎟ p

=
1
T

≡ α   (6.2.2) 

 

Thus, for a perfect gas, (6.1.35) becomes, 

 

  

 

 

cp
dT
dt

−
1
ρ
dp
dt

⎡

⎣
⎢

⎤

⎦
⎥ =Φ +

η
ρ

∇i
u( )2 +Q +

1
ρ
∇i(k∇T ),  (6.2.3) 

or, 

 

 

 

cpT
1
T
dT
dt

−
1

cpρT
dp
dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=Φ +

η
ρ

∇i
u( )2 +Q +

1
ρ
∇i(k∇T ),

⇒

cpT
1
T
dT
dt

−
R
cp p

dp
dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=Φ +

η
ρ

∇i
u( )2 +Q +

1
ρ
∇i(k∇T ),

⇒

cpT
d
dt

ln T
pR /cp

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =Φ +

η
ρ

∇i
u( )2 +Q +

1
ρ
∇i(k∇T ),

 (6.2.4 a, b, c) 

We define the potential temperature: 

 

 θ = T
po
p

⎛
⎝⎜

⎞
⎠⎟

R /cp

  (6.2.5) 

 

where p0 is an arbitrary constant.  In atmospheric applications it is usually chosen to 

be a nominal surface pressure (1000 mb). Thus for a process at constant θ (whose 

pertinence we shall shortly see) a decrease in pressure, for example the elevation of 

the fluid to higher altitude, corresponds to a reduction in T. Our thermodynamic 

equation can then be written as, 
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cpT
θ

dθ
dt

=Φ +
η
ρ

∇i
u( )2 +Q +

1
ρ
∇i(k∇T ) ≡ Η ,  (6.2.6) 

where H  is the collection of the non-adiabatic contributions to the increase of 

entropy. If the motion of the gas is isentropic, i.e. if we can ignore thermal effects 

that add heat to the fluid element either by frictional dissipation, thermal conduction 

or internal heat sources, then the potential vorticity is a conserved quantity 

following the fluid motion since in general, 

 

 dθ
dt

=
θ
cpT

Η   (6.2.7) 

We can use (6.2.5) to express the gas law (6.1.1) in terms of the potential 

temperature. We use the thermodynamic relation 

 

  R = cp − cv  (6.2.8) 

which follows from the fact that for a perfect gas the specific heats are constants so 

that, 

 

 e = cvT , h = cpT = e + p
ρ
= T (cv + R)  (6.2.9) 

Then, 

 

 p1/γ

ρ
=

Rθ
po

R /cp
  (6.2.10) 

 

where  

 

 γ = cp cv
 = ratio of specific heats   (6.2.11) 

 

Thus for any process for which the potential temperature is constant,  
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 1
γ p

dp
dt

−
1
ρ
dρ
dt

=
1
θ
dθ
dt

= 0   (6.2.12) 

This relation is very important for adiabatic processes such as acoustic waves that 

are pressure signals that oscillate so rapidly that their dynamics is essentially 

isentropic✦. 

 

6.3 A liquid. 

 
A liquid, like water is characterized by a large specific heat and a small 

expansion coefficient. In such a case the pressure term on the left hand side of 

(6.1.35a) is normally negligible.  We can estimate its size with respect to the term 

involving the rate of change of temperature as, (using δp for the pressure variation 

and δT for the temperature variation): 

 

 

αT
ρ
dp
dt

cp
dT
dt

= O Tαδ p
ρcpδT

⎛

⎝⎜
⎞

⎠⎟
  (6.3.1) 

For water at room temperature α= 2.1 10-4 1/gr degC, cp is about 4.2 107 cm2/sec2 

deg C. For water ρ is very near 1 gr/cm3. To estimate δp we suppose there is a 

rough balance between the horizontal pressure gradient and the Coriolis 

acceleration. That is pretty sensible for large scale flows. That gives a 

δ p = O(ρ fUL) if L is the characteristic horizontal scale suitable for estimating 

derivatives and if U is a characteristic velocity. If the temperature is about 20O C 

(nearly 300O on the absolute Kelvin scale), with U =10cm/sec, and L =1,000 km, 

and if the overall temperature variation is about 10 degrees C, the ratio in (6.3.1) is 

of the order of 10-5, e.g. very small indeed.  Our thermodynamic equation then 

becomes, upon ignoring the pressure term, 

                                                
✸ This is on of the few scientific errors made by Newton who believed that acoustic waves were 
isothermal rather than isentropic. It makes a big difference in the prediction of the speed of sound. 
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 cp
dT
dt

= Η   (6.3.2) 

For simple liquids like pure water the equation of state can be approximated as✿, 

 

 ρ = ρ(T )   (6.3.3) 

Since α ≡ −1
ρ
dρ
dT

 it follows that (6.3.2) can be written,  

 

 

 dρ
dt

= −
αρ
cp

Η (liquid)   (6.3.4) 

However, it is also generally true for a liquid that, as we discussed in Section 2.1 

that for variations of the density such that δρ
ρ

<< 1we can approximate the 

continuity of mass with the statement that volume must be conserved,  i.e. that,  

 

   ∇i
u = 0 .   (6.3.5) 

It is important to keep in mind that (6.3.5) does not mean that continuity equation 

then implies that dρ
dt

= 0 . Rather, that in the comparison of terms in that equation, 

the rate of change of density is a negligible contributor to the mass budget. On the 

other hand in the energy equation  (6.3.4) one can only have dρ
dt

= 0  if the non 

adiabatic term H is negligible. Thus, being able to demand dρ
dt

= 0  requires an  

energy consideration not a mass balance consideration.  The two equations, (6.3.4), 

and (6.3.5) are completely consistent.  Indeed, it is an interesting calculation to 

estimate for the Ekman layer solution we have found, for example, what 

temperature rise we would anticipate in a fluid like water due to the frictional 

                                                
✿ This ignores the effect of pressure on the density which is not accurate for many oceanic 
applications for which there are large excursions vertically. 
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dissipation occurring within  the Ekman layer.  That estimate is left as an exercise 

for the student. 


