
 

 

 
Chapter 10 

 

Bernoulli Theorems and Applications 

 

 
10.1 The energy equation and the Bernoulli theorem 

 

There is a second class of conservation theorems, closely related to the conservation 

of energy discussed in Chapter 6. These conservation theorems are collectively called 

Bernoulli Theorems since the scientist who first contributed in a fundamental way to the 

development of these ideas was Daniel Bernoulli  (1700-1782). At the time the very idea 

of energy was vague; what we call kinetic energy was termed “live energy” and the factor 

1/2 was missing. Indeed, arguments that we would recognize as energy statements were 

qualitative and involved proportions between quantities rather than equations and the 

connection between kinetic and potential energy in those pre- thermodynamics days was 

still in a primitive state. After Bernoulli, others who contributed to the development of 

the ideas we will discuss in this chapter were d’Alembert  (1717-1783) but the theory was 

put on a firm foundation by the work of Euler (1707-1783) who was responsible, like so 

much else in fluid dynamics (and in large areas of pure and applied mathematics). Euler 

was a remarkable person✸.  Although he became blind, he was prodigiously productive. 

He was a prolific author of scientific papers. He was twice married and fathered 13 

children. Talk about energy! 

                                                
✸ Once again we are indebted to “History of Hydraulics”,  Hunter Rouse and Simon Ince,  
1957. Dover Publications , New York. pp 269. 
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We begin our version of the development by returning to the energy equation, 

(6.1.4). In differential form, after writing the surface integrals in terms of volume 

integrals with the use of the divergence theorem, we have, 
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where e  is the internal energy,  F is the sum of all the body forces, including the 

centrifugal force, Q is the rate of heat addition by heat sources and K  is the heat flux 

vector  which we saw could be written in terms of the temperature  as K j = −k
∂T
∂x j

. The 

stress tensor is composed of a diagonal part we have associated with the pressure plus a 

frictional deviatoric part, i.e. 

 σ ij = − pδ ij + τ ij    (10.1.2) 

 

We suppose that the body force per unit mass can be written in terms of a force potential, 

 

  

F = −∇Ψ    (10.1.3) 

and this is certainly true for the combined gravitational and centrifugal force that we  

identify with effective gravity. Note that the dot product of the body force with the 

velocity is 
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This allows us to rewrite (10.1.1), 
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The third step in the above derivation uses the equation of mass conservation and we 

have allowed the potential Ψ to be time dependent, although it rarely is, to make a point 

below. Combining terms and using our definition of the dissipation function and the 

representation of the viscous forces in Chapter 6 e.g. see (6.114), 
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we obtain , 
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 (10.1.7) 

 

For the record, and because it will be useful, remember  that the second law of 

thermodynamics  yields for the entropy, (6.1.22) 
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Note that in the absence of heat sources, heat diffusion and viscous effects, the right 

hand side of (10.1.7) would still not be zero if the potential and pressure were explicitly 

functions of time. This often seems puzzling to people so it is probably a good idea to 

take a moment to review a simple example to make the situation clearer.  Let’s consider 

the one dimensional motion of a mass particle in a potential. You can think about the 

mass on a spring whose restoring force is given by –kx where x is the displacement. The 

equation of motion of the mass particle would be, 

 

 m
d 2x
dt 2

= −kx = −
∂Ψ
∂x
, Ψ = k

x2

2
   (10.1.9 a, b) 

to derive the energy equation we multiply (10.1.9a) by dx
dt

 and obtain, 
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or  
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   (10.1.11) 

 

If the potential is only a function of the displacement, x, then it will be independent of 

time except insofar as it depends on x but if it is a function of time explicitly, the right 

hand side of (10.1.11) will be non zero and mechanical energy will not be conserved.  

This can occur, for example, if the spring constant is a function of time. In fact, if the 

spring constant increases whenever the particle is pulled towards the center of attraction 

and diminishes when the particle is moving away from the center, there will be a constant 

increase in the amplitude of a “free” oscillation.  In fact, all little children recognize this 

intuitively; this is the basis for “pumping” a swing by judiciously increasing and 
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decreasing the pendulum length with time.  So, we should not be surprised if we lose a 

simple energy conservation statement if the potential is time dependent, although that is 

rarely an issue in our work. However, returning to (10.1.7) we see that the pressure, 

through its gradient, acts analogously to a force potential and therefore it is now not 

surprising that on the right hand side of (10.1.7) the local time derivative of the pressure 

will lead to a time rate of change of the total energy. 

If: 

a) the flow is steady so that ∂p
∂t

= 0 , 

b) the flow is inviscid. 

c) there are no heat sources (Q =0) 

d) there is no heat conduction (k=0) 

e) the forces are derivable from a potential that is time independent  so 

that ∂Ψ
∂t

= 0 , 

Then: 

  The quantity  

 

 
 
B =

u 2

2
+ e + p

ρ
+Ψ     (10.1.12) 

is conserved along streamlines which are trajectories for steady flow. Note that the ratio 

p / ρ acts like a potential in (10.1.12). The function B is called the Bernoulli function. 

We defined the enthalpy in Chapter 6 (6.1.25) as 

 h = e + p
ρ

   (10.1.13) 

so that the Bernoulli  function is  

 

 
 
B = h +

u 2

2
+Ψ    (10.1.14) 
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The same conditions that lead to the conservation of B along streamlines for steady flow 

also imply that the entropy is conserved, and which for steady flow, is constant too along 

streamlines so both B and s are constant along streamlines. 

 Now for a general variation of entropy, the state equation (6.1.20) yields, 

 

 T∇s = ∇e + p∇ 1
ρ

⎛
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⎞
⎠⎟

   (10.1.15) 

 

If we take the gradient of the Bernoulli function, 
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  (10.1.16) 

 

whereas the steady momentum equation in the absence of friction is, 

 

 
 
∇ u 2 / 2 + ωa ×

u = −
∇p
ρ

− ∇Ψ    (10.1.17) 

which when added to (10.1.16) yields an unexpected relation between the spatial 

variation of the entropy, the Bernoulli function and the absolute vorticity, 

 

  T∇s = ∇B +

ωa ×

u  (Crocco’s theorem)  (10.1.18) 

also note, that from (10.1.15)  

 

 ∇T × ∇s = ∇ρ × ∇p
ρ2

   (10.1.19) 

which relates the baroclinic production of vorticity to the misalignment of  the 

temperature and entropy surfaces in space. 
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10.2 Special cases of Bernoulli’s theorem 

a) Barotropic flow 

Consider the case of a barotropic fluid so that ∇ρ × ∇p = 0 . This means that the 

density and pressure surfaces are aligned.  Where one is constant the other is also 

constant or, that we can write the density in terms of the single variable p, so that 

ρ = ρ(p) . From (10.1.19) this also implies that T is a function only of s, so that, 

 

 T (s)ds = de + pd( 1
ρ
) = d e + p

ρ
⎛
⎝⎜

⎞
⎠⎟
−

dp
ρ(p)

  (10.2.1) 

Let’s integrate (10.2.1) along a streamline, 

 

 e + p
ρ
=

dp '
ρ(p ')

p

∫ + T (s ')ds '
s

∫    (10.2.2) 

 

Since T is a function only of s the integral  T (s ')ds '
s

∫ , which is  second term on the right 

hand side of (10.2.2), is a function only of s. But s is itself a constant along a streamline 

so that, 

 

 e + p
ρ
=

dp '
ρ(p ')

p

∫ + a constant along the streamline   (10.2.3) 

so that for the case of a barotropic fluid the Bernoulli theorem, (10.1.12) becomes, 

 

 
 
B =

u 2

2
+

dp '
ρ(p ')

p

∫ +Ψ = constant along streamlines   (10.2.4) 

For the case in which the density is constant, this reduces to the more commonly known  

form of Bernoulli’s theorem, 

 

 
 

u 2

2
+
p
ρ
+Ψ = constant along streamlines .  (10.2.5) 
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b) Shallow water model 

Suppose now we consider the shallow water model of section (8.3).  

 

 

 

 

 

 

 

 

 

Figure 10.2.1 The shallow water model. 

 

 

The principal dynamical simplification of such a model is that the vertical velocity is 

constrained by the geometry to be so small that the vertical acceleration term in the 

vertical equation o f motion is negligible and this allows the pressure to be calculated 

using the hydrostatic approximation as discussed in chapter 9. Thus 

  

 ∂p
∂z

= −ρg    (10.2.6) 

and for a fluid of constant density this can be integrated immediately, 

 p = −ρgz + C(x, y,t)    (10.2.7) 

To determine the “constant” C we apply the condition that the pressure match the 

atmospheric pressure ps(x,y,t) on the surface z=h(x,y,t)or  

 

 p = ρg(h − z) + ps    (10.2.8) 

 

For steady flow the momentum equations in the horizontal direction are, 

 

z=h 

H 

z 

x 

g 

p=ps 

ρ = constant 

hb 
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uux + vuy − fv = −ghx − ghsx

uvx + vvy + fu = −ghy − ghsy

  (10.2.9 a, b) 

 

where we have defined 

  

 hs =
ps
ρg

  (10.2.10) 

 

If we eliminate the pressure gradient terms in (10.2.9 a, b) by cross differentiating, we 

obtain,  

 
 
ui∇(ζ + f ) + f +ζ( ) ux + vy( ) = 0   (10.2.11) 

while the equation for mass conservation is , 

 

 uH( )x + vH( )y = 0   (10.2.13) 

which when combined with (10.2.11) yields the conservation of potential vorticity in the 

form we discussed in section 8.3, namely,  for steady flow, 

 

  
 

ui∇
ζ + f
H

= 0  (10.2.14) 

From (10.2.13) we can define a stream function for the horizontal transport,  

 

 uH = −ψ y , vH =ψ x   (10.2.15) 

or in vector form, 

   
uH = k̂ × ∇ψ  (10.2.16) 

 

Since the potential vorticity q = f +ζ
H

is constant  along streamlines, 
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 q =
ζ + f
H

= q ψ( )    (10.2.17) 

 

Applying the identity (7.7.1) to (10.2.9) shows that we can write the momentum 

equations for steady flow as, 

 
 


ωa ×

u = −∇ g{h + hs} +
u 2

2
⎛

⎝
⎜

⎞

⎠
⎟    (10.2.18a) 

 

where  

   

ωa = k̂ ζ + f( )   (10.2.18b) 

 

while the dot product of that equation with the velocity yields the Bernoulli theorem for 

the shallow water model, 

 

 

 

ui∇ g(h + hs ) +
u 2

2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0,

⇒ B ≡ g(h + hs ) +
u 2

2
= constant on streamlines

 (10.2.19 a, b) 

so that the momentum equation (10.2.18) is actually, 

 

  

ωa ×

u = −∇B   (10.2.20) 

 

But since the velocity is given by the streamfunction as in (10.2.16),  

 

 
 


ωa ×

u =

ωa × k̂ × ∇ψ( ) / H = −

ζ + f( )
H

∇ψ  (10.2.21) 

 after using (10.2.18b) which means that the momentum  equation is just, 

 

 ζ + f
H

∇ψ = ∇B   (10.2.22) 
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Since B is a function only of ψ , ∇B =
dB
dψ

∇ψ which with (10.2.22) yields a rather 

remarkable connection between the potential vorticity and the Bernoulli function, 

 

 q(ψ ) = ζ + f
H

=
dB(ψ )
dψ

  (10.2.23) 

 

so that the potential vorticity is directly given by the variation of the Bernoulli function 

from streamline to streamline. 

 

c) Irrotational motion 

 

The permanent presence of the planetary vorticity means that, in principle, the fluid 

atmosphere and ocean always possess vorticity. Nevertheless, as the estimates of 

Chapters 7 and 9 show, the planetary rotation only becomes significant for motions on 

large length scales and long time scales. For motions whose time scale is short compared 

to a day, like the surface waves at the beach, the planetary vorticity is dynamically 

negligible.  In such cases, we know from our discussion of the enstrophy, that in the 

absence of friction and baroclinicity a motion which at any instant, for example the 

instant at which motion is started, is free of vorticity it will remain free of vorticity.  Such 

a state is termed  irrotational.u  The Bernoulli theorem for such motions is extremely 

powerful. Thus, setting Ω   =0, the condition for irrotationality is 

 

  

ω = ∇ × u = 0   (10.2.24) 

 

That condition implies (and in fact, is necessary and sufficient) that the velocity is 

derivable from a potential, ϕ ,  the velocity potential, not to be confused with the 

gravitational  potential, such that, 

 

                                                
u In some texts, especially English, the curl operator is called rot standing for the  
rotation of the vector. The absence of the curl or rotation is a state that is irrotational.  
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u = ∇ϕ   (10.2.25) 

 

It is important to note that it is only the spatial derivatives of ϕ that matter, an arbitrary 

function of time can always be added to the velocity potential without changing its 

physical content.  The momentum equation  (7.7.3) is, again ignoring friction, 

 

 
 

∂u
∂t

+

ωa ×

u = −
∇p
ρ

− ∇Ψ −
1
2
∇ | u |2  (10.2.26) 

If 

1) The fluid is irrotational so that ωa =0 (and so (8.2.25) applies, 

2) The fluid is barotropic so that ∇p
ρ

= ∇
d ′p
ρ ′p( )

p

∫  

then, 

 

 ∇
∂ϕ
∂t

+
1
2
|∇ϕ |2 + d ′p

ρ( ′p )
+Ψ

p

∫
⎧
⎨
⎩

⎫
⎬
⎭
= 0   (10.2.27) 

 

Since the gradient of the quantity in the curly brackets is zero, that quantity must be a 

function, at most, only of time, i.e., 

 

 ∂ϕ
∂t

+
1
2
|∇ϕ |2 + d ′p

ρ( ′p )
+Ψ

p

∫ = C(t)   (10.2.28) 

  

It is not hard to show that the function C(t)  can be taken to be zero. Simply adding a 

function only of time to ϕ leaves the velocity unchanged so that  

  

 ϕ = ϕ̂ + C(t ')dt '
t

∫    (10.2.29) 

leaves the velocity unaltered but the equation (8.2.28) no longer contains the “constant” 

on the right hand side. Therefore, the Bernoulli equation for irrotational motion is, 
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    (10.2.30) 

  

 

  

This form of the Bernoulli equation, which is valid only for irrotational flow is, however, 

not restricted to steady motions, as is the case for (10.2.4). We can, of course, apply it to 

steady irrotational motion. But since in this case ∇B = 0 , it follows from (10.1.18) that a 

steady, irrotational flow must also have its entropy uniform in space.   

 

10.3 Examples of irrotational, incompressible flows. 

 

If the fluid is irrotational and incompressible so that, 

  

  
u = ∇ϕ, ∇i

u = 0   (10.3.1 a, b) 

it follows, by substituting (10.3.1a) into (10.3.1 b) that, 

 

 ∇2ϕ = 0   (10.3.2) 

 

where in (10.3.2) we mean the full three dimensional Laplacian operator.  It is important 

to note that this equation completely takes the place of the momentum equation. With 

both of the strong constraints of (10.3.1 a, b) operating, the flow is very strongly 

constrained to be given by the velocity potential which, in turn is a solution of Laplace’s 

equation (10.3.2) and so is what is termed a harmonic function. 

In the 19th century these ideas were applied to several steady flow problems whose 

solutions so contradicted reality that fluid mechanics was threatened to become a purely 

scholastic activity with no connection to the natural world of physics. Let’s see why this 

happened and whether there are any problems where irrotational flow theory makes 

sense.  

 

 

∂ϕ
∂t

+
1
2
|∇ϕ |2 + d ′p

ρ( ′p )
+Ψ

p

∫ = 0
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Steady flow past a cylinder. 

 

Consider the steady flow past a cylinder of radius R and, neglecting viscosity as 

being small and the fluid flow having started from rest, we imagine it is irrotational and 

suppose it has a constant density as well. The situation is depicted in Figure 10.3.1. 

 

 

 

 

 

 

 

Figure 10.3.1 A uniform flow, U, impinges on a cylinder of radius R. The polar 

coordinate frame is shown. 

 

The problem posed by the flow configuration in Figure 10.3.1, assuming that the motion 

is incompressible and irrotational, is to find a solution of Laplace’s equation that has zero 

radial flow on the surface of the cylinder and approaches the uniform, oncoming flow as r 

goes to infinity. The uniform flow has a velocity potential, ϕ =Ux  so that, in polar 

coordinates, the problem is, 

 

 

1
r
∂
∂r

r ∂ϕ
∂r

⎛
⎝⎜

⎞
⎠⎟
+
1
r2

∂2ϕ
∂θ 2

= 0,

∂ϕ
∂r

= 0, r = R,

ϕ →Ur cosθ, r→∞

  (10.3.3 a, b, c) 

It is a simple matter to check that a the solution satisfying the equation and all the 

boundary conditions is, 

 

U 

x 

y 
r 

θ 
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 ϕ =U cosθ r + R2

r
⎛
⎝⎜

⎞
⎠⎟
, r ≥ R   (10.3.4) 

so that the velocity components are, 

 

 
u(r ) =

∂ϕ
∂r

=U cosθ 1− R2

r2
⎛
⎝⎜

⎞
⎠⎟

u(θ ) =
1
r
∂ϕ
∂θ

= −U sinθ 1+ R2

r2
⎛
⎝⎜

⎞
⎠⎟

  (10.3. 5 a, b) 

 

Recall that the azimuthal velocity is reckoned positive if it is anticlockwise. Note that the 

tangential velocity is a maximum at θ = ±π / 2 . 

It is left as an exercise for the student to show from the velocity fields that the 

streamfunction for the flow is given by, 

 ψ = −U sinθ r − R2

r
⎛
⎝⎜

⎞
⎠⎟

  (10.3.6)♦ 

 

The streamlines of the flow✤ are shown in Figure 10.3.2 

 

 

                                                
♦ The mathematically sophisticated student might notice that the construct 
ϕ − iψ produces an analytic function of the complex variable z=x+iy. 
✤ The solution is not unique. A constant circulation around the cylinder can be added for 
which ϕ = Γ θ

2π( ) . 
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Figure 10.3.2 The streamlines of potential flow past  a cylinder. 

 

One notices immediately the artificial character of the flow, in particular the fore-aft 

complete symmetry. One never sees this in a real life situation. When the flow 

approaches a blunt body like the cylinder the flow typically separates from the body 

leaving a turbulent wake behind the cylinder as shown in Figure 10.3.3which  is a 

reproduction of  a figure from Prandtl and Tietjens, 1934 , Applied Hydro-and 

Aeromechanics,  Dover pp311 (Dover edition1957).  

 

 

 

 

 

y 

x 
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Figure 10.3. 3 Images from the experiments, first carried out in Prandtl’s laboratory in  

Göttingen in the 1930’s. 
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The reason for the artificiality can be traced to the predicted pressure distribution on 

the surface of the cylinder. Using the Bernoulli equation we can obtain the pressure field 

from the velocity . Let the pressure at infinity be the uniform value p0 . We can ignore 

the role of the gravitational potential by imagining the cylinder oriented with its axis 

vertical so that the motion takes place in a plane of constant z.  The total Bernoulli 

function, which is a constant, is then  

 B = p0 +
ρU 2

2
   (10.3.7) 

Elsewhere in the field of motion the pressure is obtained from  

 

 p
ρ
+
u(r )

2

2
+
u(θ )

2

2
=
p0
ρ

+
U 2

2
   (10.3.8) 

Consider the motion of the fluid element on the center-line approaching the cylinder 

along y=0. On this line the component u(θ )  is zero so that the pressure is, from (10.3.8) 

and (10.3.5 a)  

 

 p = p0 +
ρU 2

2
−
ρU 2

2
1− R2

x2
⎡

⎣
⎢

⎤

⎦
⎥    (10.3.9) 

As the fluid approaches the cylinder on the line y=0 the velocity diminishes and, right at 

the cylinder, on x=-R, y=0, the full velocity is zero and the pressure achieves its 

maximum value and is equal to B. As the fluid flows over the top (or bottom) of the 

cylinder it speeds up and achieves its maximum speed of 2U at θ = ± π/2 i.e. at x =0. 

y= ± R and so here the pressure has its minimum value.  The pressure along the line y =0 

and along the rim of the cylinder is shown in Figure 10.3.4 
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Figure 10.3.4 The pressure along  y=0 and the rim of the cylinder.  

The fluid reaches the stagnation point at θ=π and begins to accelerate as it begins it 

journey over the cylinder.  It reaches its maximum velocity at the top (and bottom) of the 

cylinder and then begins to flow against the pressure gradient, between there and the rear 

stagnation point at θ=0. It is flowing in an adverse pressure gradient, i.e. into a region in 

which the pressure gradient is working against the motion but it has enough kinetic 

energy to allow it to reach the point at θ =0 with just enough velocity to make it. It has 

then completely exhausted its kinetic energy in climbing the pressure hill between θ = 

π/2 and θ =0. The pressure has acted as a potential field for the fluid motion and with the 

conservation of this potential and kinetic energy the fluid element is just able to traverse 

the rim of the cylinder. 

Although we have assumed the friction is small, and this may be true almost 

everywhere, we know that for real fluids satisfying the no-slip condition, friction must be 

important in a narrow boundary layer near the solid surface of the cylinder.  Even a small 

amount of friction, acting on fluid elements in the vicinity of the cylinder’s solid 

boundary, will dissipate some of the kinetic energy gained by the fluid element as it flows 

from the high pressure to low pressure region on the front of the cylinder and thus lack 

sufficient kinetic energy to negotiate the full pathway from the low pressure to high 

pressure portion of the path on the rear of the cylinder.  See Figure 10.3.3. Those fluid 

elements that have been in contact with the cylinder long enough to feel the effect of 

friction will not be able to successfully complete the transit. Arriving at some point on the 

rear of the cylinder the adverse pressure gradient will push them back towards the 

x/R 

p0 

p0 + ρU 2 / 2  

po −
3
2
ρU 2  
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oncoming fluid elements. A reverse flow will occur and the flow will separate from the 

boundary, at first as a strong eddy, leading eventually to a turbulent wake behind the 

cylinder.  This failure of potential theory to adequately deal with the motion of bluff (i.e. 

non streamlined bodies) was a depressing failure of theoretical fluid mechanics that was 

not corrected until the combined theoretical and experimental work of Ludwig Prandtl 

(circa 1905) developed the ideas of boundary layer theory for non rotating flows. This 

allowed at least an explanation of the failure of potential flow but it was necessary to wait 

for the advent of high speed computing before direct calculations of the full flow 

evolution was possible theoretically.  

A much more successful application of potential flow theory in the nineteenth 

century occurred in a problem of much more oceanographic interest in which the 

interaction with solid boundaries was not an essential feature and this was the 

development of a theoretical understanding of gravity waves, i.e. the dynamics of  a fluid 

with a free surface under the action of gravity. 

 

1 0 . 4  Irrotational gravity waves. 

 

Consider the motion of an incompressible fluid of uniform density that consists of a 

layer of water of initially undisturbed depth D.  For simplicity the bottom will be taken to 

be flat. See Figure 10.4.1. 

 

 

 

 

 

 

 

 

 

Figure 10.4.1 A layer of water of depth D subject to an atmospheric pressure 

forcing. 

D 
g 

x 

z η 
pa(x,y,t) 
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The fluid motion is of small enough scale so the earth’s rotation can be ignored and if 

viscosity can be neglected, motion starting from rest will remain irrotational. If the fluid, 

like water, can be idealized as incompressible, the velocity potential satisfies Laplace’s 

equation as shown in (10.3.1) and (10.3.2). 

  
u = ∇ϕ, ∇2ϕ = 0   (10.4.1 a ,b) 

 

The problem of gravity waves in water is especially interesting because it is a good 

example of a problem in which the physics is entirely contained in the boundary 

conditions. The governing equation (10.4.1 b) tells us nothing about the evolution of the 

wave field; for that we need to consider the boundary conditions. At the lower boundary 

the vertical velocity is zero, so, 

  w =
∂ϕ
∂z

= 0, z = −D   (10.4.2) 

At the upper boundary, z=η there are two conditions: 

1) The kinematic boundary condition:  The position of the boundary is determined 

by the position of the fluid elements on the boundary. The boundary goes where 

they go. Thus, if the free surface is given by,  

  z = η(x, y,t)   (10.4.3) 

        taking the total derivative of each side of that equation, 

  

 w =
dz
dt

=
dη
dt
, z = η    (10.4.4) 

or in terms of ϕ , 

  

 ∂ϕ
∂z

=
∂η
∂t

+∇ϕ •∇η =
∂η
∂t

+
∂ϕ
∂x

∂η
∂x

+
∂ϕ
∂y

∂η
∂y
, z = η   (10.4.5) 

2) The dynamic boundary condition: 

 At the upper surface the pressure in the water has to match the pressure 

imposed by the atmosphere so that  
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 p = pa (x, y,t), z = η    (10.4.6) 

 

or using the Bernoulli theorem for irrotational motion,  (10.2.30), for a fluid of 

constant density and a gravitational potential Ψ = gz , 

 

 ∂ϕ
∂t

+
∇ϕ 2

2
+ gη + pa

ρ
= 0, z =η   

  (10.4.7) 

We will only consider the relatively easy problem of small amplitude motions 

when the wave amplitudes are small enough so that the nonlinear terms in the 

equations are negligible compared to the linear terms. When will that be so? Let’s 

suppose that the characteristic magnitude of the velocity of the fluid elements in the 

wave is given by U.  Suppose the period of the wave is measured by a scale T and the 

wavelength of the wave is of order L.  Then ∇ϕ = O(U )  which implies that 

ϕ = O(UL) so the condition, 

 

 
|∇ϕ |2<< ∂ϕ

∂t

⇒U 2 <<U L
T

  (10.4.8 a, b) 

or, 

 

 U <<
L
T

= c   (10.4.9) 

so that linearization is possible only if the velocity of fluid elements is small 

compared with the phase speed (the ratio of wavelength to period)  of the wave.  So, 

if we ignore terms that are quadratic in the amplitude of the wave, the boundary 

conditions become, at z = η, 
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∂ϕ
∂z

=
∂η
∂t
,

∂ϕ
∂t

+ gη +
pa
ρ

= 0.

  (10.4.10 a, b) 

The most difficult aspect of the original problem is that the upper boundary 

condition is applied at the position of the free surface, z= η  and this is one of the 

unknowns of the problem.  Such free boundary problems are among the most difficult 

in mathematics. However, the linearization we have done also simplifies this aspect of 

the problem since we are essentially saying that the free surface does not depart 

significantly from its rest position.  Thus, if we have a boundary condition in the 

general form,  

 

 F(ϕ, z,t) = 0, z = η   (10.4.11) 

we can expand the function F in a series about z=0, 

 

 F(ϕ, z,t) = F(ϕ,0,t) + ∂F
∂z
(ϕ,0,t)⎧

⎨
⎩

⎫
⎬
⎭
η + ...  (10.4.12) 

and since the function F is at least linear in the amplitude of the motion keeping linear 

terms only in the boundary condition reduces it to , 

 

 F(ϕ,0,t) = 0   (10.4.13) 

 

so that the boundary conditions on the upper surface, when linearized as in (10.4.10) can 

be (in fact must be for consistency) applied on the undisturbed free surface at z =0 and 

this is an enormous simplification. 

a) Forced waves 
 Suppose the atmospheric pressure field is given by, 

 

 pa = P cos(kx + ly −ω t) = RePe
i(kx+ ly−ω t )   (10.4.14) 
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so that it consists of a pressure wave moving across the water with wavenumber 

K = k2 + l2( )1/2  and phase speed c =ω /K. We can search for solutions to (10.4.1b) in the 

form, 

  

 ϕ = ReΦ(z)ei(kx+ ly−ω t )    (10.4.15) 

which when substituted into (10.4.1 b) yields an ordinary differential equation for Φ, 

 

 d 2Φ
dz2

− K 2Φ = 0    (10.4.16) 

whose solution can be written, 

 

 Φ = AcoshK(z + D) + BsinhK(z + D)   (10.4.17) 

and the application o f the boundary condition at z=-D implies that B=0. Note that to this 

point Laplace’s equation and the lower boundary condition have yielded only a constraint 

on the spatial structure of the motion but very little about its dynamics.  For that we need 

to consider (10. 4. 10, a, b). Eliminating η between the equations yields the boundary 

condition in terms only of ϕ , 

 

 ∂2ϕ
∂t 2

+ g ∂ϕ
∂z

+
1
ρ
∂pa
∂t

= 0    (10.4.18) 

If the pressure field were time independent it would not force a nontrivial velocity 

potential. In that case the full solution would be ϕ =0 and η would hydrostatically 

balance the applied pressure, i.e. η = −
pa
gρ

, the so-called inverted barometer.   In our 

case, though, the pressure is a function of time and a non trivial wave solution is forced. 

Substituting  (10.4.14), (10.4.15) and (10.4.17) into (10.4. 18) yields, 

  

 A −ω 2 coshKD + gK sinhKD⎡⎣ ⎤⎦ = iω
P
ρ

 (10.4.19) 

so that  
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A =
−iωP / ρ

coshKD ω 2 − gK tanhKD{ } ,
⇒

ϕ = Re (−iωP / ρ)ei(kx+ ly−ω t )

coshKD ω 2 − gK tanhKD{ } coshK(z + D)
 (10.4.20) 

or , 

 

 ϕ =ω P
ρ
coshK(z + D)
coshKD

sin(kx + ly −ωt)
ω 2 −ωo

2{ }  (10.4.21) 

 

where we have defined the natural frequency,  

 

 ωo = gK tanhKD( )1/2   (10.4.22) 

From either the condition  (10.4.10 a or b) we can obtain the free surface height,  

 

 

η =
P
ρ
K tanhKD cos(kx + ly −ωt)

ω 2 −ωo
2( ) ,

= −
P
gρ
cos(kx + ly −ωt)

1−ω
2

ωo
2

⎛
⎝⎜

⎞
⎠⎟
,

= −
pa
gρ

1

1−ω
2

ωo
2

⎛
⎝⎜

⎞
⎠⎟

 (10.4.23) 

 

so if the frequency is much less than the natural frequency the free surface height 

responds statically, as the inverted barometer and is 1800 out of phase with the pressure.  

High pressure yields a depressed sea surface elevation. For frequencies that are very high 
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with respect to the natural frequency the free surface elevation is in phase with the 

pressure so that high pressure on the surface yields a rise in sea level.   

The natural frequency,  (10.4. 22) is a function of the wavenumber, or wavelength. 

Let’s take a moment to review what we mean by the wavenumber. 

b) Free waves: For plane waves of the type (10.4.15) the phase θ of the wave is the 

argument of the trigonometric function, 

  

 θ = kx + ly −ωt   (10.4.24) 

so that at any fixed time, the phase is constant on the lines kx+ly = const. as shown in 

Figure 10.4.2 

 

 

 

 

 

 

 

 

 

Figure 10.4.2 A plane wave showing lines of constant phase in the x, y plane. 

 

The phase  increases most rapidly and linearly in the direction of its gradient  and 

 

  ∇θ = î k + ĵ l ≡

K    (10.4.25) 

so that the wave vector is the maximum rate of increase (its magnitude) and gives the 

direction of that increase.  In a distance X along the direction of the gradient, the phase 

increases by an amount 

 δθ = ∇θ X = KX    (10.4.26) 

where K is the magnitude of the wave vector.  The change in phase will be 2π i.e., the 

wave will repeat when δθ  =2π . This defines the wavelength λ   as  

Lines of constant phase (e.g. ridges) 

x 

y 

∇θ  

λ 
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 λ =
2π
K

   (10.4.27) 

Similarly, the rate of decrease of the phase at a point is, 

 ω = −
∂θ
∂t

   (10.4.28) 

and the speed at which the phase of the wave moves in the direction of the wave vector  

is, 

 

 c = ∂X
∂t

⎞
⎠⎟θ

= −

∂θ
∂t
∇θ

= ω
K

   (10.4.29) 

It is very important to note that the phase speed is not a vector velocity. The speed 

(10.4.29) represents the rate at which phase lines move in the direction of K, that is, 

normal to themselves but this does not satisfy the rules of vector composition. For 

example, to calculate the rate at which a line of constant phase θ = kx + ly −ωt  moves in 

the x direction for a fixed value of y, 

 cx = −

∂θ
∂t
∂θ
∂x

=
ω
k

   (10.4.30) 

If the angle between the wave  vector and the x axis is α , (10.4.30) yields, 

 

 cx =
ω
K
K
k
=

c
cosα

≠ ccosα    (10.4.31) 

where the last term on the right hand side of (10.4.31) is what the speed in the x direction 

would be if  the phase speed behaved according to the normal rules of vector 

composition. 

This is a hint that the speed of propagation of the phase lacks the mathematical 

behavior we associate with the propagation of entities that carry momentum and energy 

and you will see in 12.802 that those quantities are more closely related to the group 

velocity of the waves defined by, (for our two dimensional wave) 



Chapter 10 28 

 
 

cg = ∇Kω = î ∂ω
∂k

+ ĵ ∂ω
∂l

   (10.4.32) 

Figure 10.4.3 shows the frequency, phase speed and group velocity (in the direction of 

the wave vector) as a function of wavenumber of the free wave. That is, the wave 

corresponding to the natural frequency. From (10.4.23) this is the wave that can exist in 

the absence of forcing, i.e. it is the free mode of oscillation of the water. Note that for 

each K there are two solutions for the frequency, ω = ±ωo  where the plus sign indicates 

the phase moving in the direction of the wave vector and the minus sign is for a wave 

moving in the opposite direction. 

 

 

 
 

Figure 10.4.3 The frequency, phase speed and group velocity of surface gravity waves as 

a function of wavenumber (inverse wavelength) 

 

Note that the phase speed of the wave is different for different wavenumbers; the waves 

are dispersive, a disturbance composed of a superposition of plane waves in a Fourier 

composition will therefore alter its shape as each component propagates at its own speed. 



Chapter 10 29 

Long waves, i.e. small KD propagate fastest and in the limit of waves that are very long 

compared to the depth , KD<<1, the phase speed becomes independent o f wavelength.  

For very long waves, 

 

 

 

for KD =
2πD
λ

<< 1, ω  gD( )1/2 K ,

c = gD( )1/2 ,
 (10.4. 33 a,b) 

so the phase speed is independent  of wavelength and depends only on the water  depth, 

while for very short waves, 

 

 

for KD =
2πD
λ

>> 1, ω = gK( )1/2

c = g / K( )1/2

 (10.4.34 a, b) 

and the wave frequency and phase speed becomes independent of the water depth.  

The wave amplitude for the free wave (pa=0) is arbitrary in this linear theory and it 

is convenient to choose the x axis to lie in the direction of the wave vector so that the y  

wavenumber is zero. In that case we can write the solution as, 

 

 
η = η0 cos(kx −ωot)

ϕ =
ω0

k
⎛
⎝⎜

⎞
⎠⎟
ηo sin(kx −ω0t)

cosh k(z + D)
sinh kD

  (10.4.35 a, b) 

where (10.3. 35 b) is obtained from (10.4.10 a or  b with pa =0.  

The velocities obtained from (10.4.35 b) are 

 

 

u =
∂ϕ
∂x

=ωoηo
cosh k(z + D)
sinh kD

cos(kx −ωot)

w =
∂ϕ
∂z

=ω0η0
sinh k(z + D)
sinh kD

sin(kx −ωot)

  (10.4.36 a, b) 
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Since we have chosen the propagation direction to be the x axis the motion is two 

dimensional and so it is straight forward to construct the stream function for the motion 

since it is incompressible, 

 

 u = −
∂ψ
∂z
, w =

∂ψ
∂x

   (10.4.37  a, b) 

 

and it follows from (10.4.36 that, 

 

 

 

ψ = −
ω
k
η0
sinh k(z + D)
sinh kD

cos(kx −ωt)

= −
ω
k
η(x,t) sinh k(z + D)

sinh kD

  (10.4.38) 

 

This is a good example of the streamlines not being particle trajectories. The streamlines, 

shown in Figure 10.4.4 give the direction of the instantaneous velocity field but since the 

motion is time dependent and the streamlines keep changing with time the fluid elements 

do not follow the streamline paths on their trajectories. 

 

 

 
c 
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Figure 10.4.4 The instantaneous stream line pattern for a propagating gravity wave. In the 

figure kD=1. The (exaggerated) free surface has been drawn in by hand. 

 

The fluid velocities can also be used to solve for the fluid trajectories.  

 

u =
dx
dt

=
∂ϕ
∂x

=ωηo
cosh k(z + D)
sinh kD

cos(kx −ωt)

w =
dz
dt

=
∂ϕ
∂z

=ωηo
sinh k(z + D)
sinh kD

sin(kx −ωt)

  (10.4.39  a, b) 

 

These are very non linear equations. However, for small displacements of each fluid 

element from its rest position, i.e. for small η0 we can write, 

 

 x = xo + ξ, z = zo +ζ    (10.4.40) 

where the displacements, ξ  and ζ are order  η0 i.e. of order the amplitude of the motion. 

Thus keeping only linear terms in (10.4.39 a, b) yields the much simpler set, 
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dξ
dt

=ωηo
cosh k(zo + D)
sinh kD

cos(kxo −ωt)

dζ
dt

=ωηo
sinh k(zo + D)
sinh kD

sin(kxo −ωt)

  (10.4.41) 

with solutions for the displacements, 

 

 

ξ = −ηo
cosh k(zo + D)
sinh kD

sin(kxo −ωt),

ζ = ηo
sinh k(zo + D)
sinh kD

cos(kxo −ωt)

  (10.4.42 a, b) 

 

The fluid elements execute periodic orbits that are closed ellipses (in linear theory) since 

 

 

ξ2

a2
+
ς 2

b2
= 1,

a = ηo
cosh k(zo + D)
sinh kD

, b = ηo
sinh k(zo + D)
sinh kD

,

  (10.4. 43 a, b, c) 

The ellipses are functions of position in the water column. For fairly deep water the 

ellipses are nearly circular near the surface and become flat at the bottom where z0=-D. 

The trajectories should be compared with the streamlines and the difference clearly 

noted. In particular you should check on the direction of motion the element makes 

around the ellipse as a trough and crest of the wave passes overhead and check whether 

that agrees with your experience at the beach as you bathe in the waves. 

 

 

 

 

 

 

 
a 

b 
d 
 

c 
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Figure 10.4.5 The orbit of a fluid element during the passage of a wave (to the 

right). a) under the trough. b) halfway between the trough and the arriving crest,  c) at the 

crest. d) halfway between the crest and approaching trough. 

 
10.5 Waves in the presence of a mean flow 

 

To prepare for our discussion of internal waves and instability in Chapter 11 

consider the slight modification of the above problem when we consider free gravity 

waves (the forced problem is also easy) in the presence of a mean, steady current oriented 

in the x direction. For simplicity we consider the  waves propagating  along the x axis.  

We can represent the mean flow by the potential ϕM =Ux  and the wave potential by 

ϕ(x, z,t)  so that the total potential will be, 

 

 ϕ total =Ux +ϕ(x, z,t)   (10.5.1) 

 

The wave potential satisfies Laplace’s equation as can be verified by inserting (10.5.1) 

into (10.4.1). The boundary condition on the wave potential at z=- D remains  

  

 ∂ϕ
∂z

= 0, z = −D   (10.5.2) 

The Bernoulli condition at the upper surface is, 

 

 

∂ϕ
∂t

+
1
2

∇ Ux +ϕ{ }( )2 + gη +
pa
ρ

= 0,

⇒

∂ϕ
∂t

+
U 2

2
+U

∂ϕ
∂x

+
∇ϕ( )2
2

+ gη +
pa
ρ

= 0.

 (10.5.3) 

Again keeping only linear terms in the wave amplitude, the linearized upper boundary 

condition becomes, 

 



Chapter 10 34 

 ∂ϕ
∂t

+
U 2

2
+U

∂ϕ
∂x

+ gη +
pa
ρ

= 0   (10.5.4) 

Note that the term  U2/2 is a constant and could be eliminated by redefining the potential 

but this is not necessary. A similar linearization of the kinematic boundary condition,  

(10.4.5) yields,  

 

 ∂η
∂t

+U
∂η
∂x

=
∂ϕ
∂z

  (10.5.5) 

and as before, the boundary condition can be applied at z =0 for the linear problem. 

Solutions for free waves,  (pa =0) can be found again in the form, 

 

  
η = ηo cos(kx −ωt)

ϕ =
ω
k
ηo
cosh k(z + D)
sinh kD

sin(kx −ωt)

  (10.5.6 a, b) 

 

where now, 

 

 ω − kU( )2 = gk tanh kD    (10.5.7) 

so that,  

 

 ω = kU ±ωo    (10.5.8) 

 

The frequency of the free wave is therefore the natural frequency ±ωo , sometimes 

called the intrinsic frequency, Doppler shifted by the amount kU. If the wave is 

propagating with the current the frequency is raised. If it is propagating against the 

current the frequency is lowered and should U = co =
ωo

k
 the wave propagating against 

the current will be stationary. 


