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Boundary Layers:Stratified Fluids

• The presence of density stratification introduces new and very interesting elements to the
boundary layer picture and the nature of the control  of the interior flow by the boundary
layers. As we discussed previously, the vertical velocity pumped out of (or into) the
Ekman layers on horizontal surfaces effected a control on the evolution of the interior,
for example , leading to spin-down.

• One can think of that control as proceeding along the vortex lines of the overall
rotation of the fluid as these are the lines along which information is propagated
(by inertial waves)  for a homogeneous , uniformly rotating fluid.

• When stratification is added information also propagates laterally, by internal gravity
waves (assuming the stratification is gravitationally stable) and frequently this direction
is perpendicular to the rotation direction so one can anticipate a kind of competition
between rotation and stratification in determining the nature of the boundary layer
influence on the bulk of the fluid. This will be the emphasis of our present discussion.



The cylinder problem.
(tip of the hat to the MJQ)
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Equations of motion (steady)
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We will generally assume
this ratio is small.



Boundary conditions

No slip, no normal flow

One or more boundaries may be moving.

Cylinder walls either insulating or at a fixed, given
temperature.



The linear problem

We will consider a problem in which the fluid is driven so
gently that the Rossby number is small enough to allow the
neglect of all nonlinear terms.

When the flow occurs in a cylinder and the forcing and the
motion are axially symmetric the neglect of the
nonlinearity is generally sensible. It is usually the advent of
instabilities of the flow we are going to describe that more
seriously limit the validity of the linearization

Coordinate system r,θ,z with
corresponding velocities u,v,w



Linear equations of motion in cylindrical coordinates.
Axially symmetric motions

!v = ! pr +
E

2
"2
u ! u / r2#$ %&,

u =!!!!!!!!!!!!!
E

2
"2
v ! v / r2#$ %&,

0 = ! pz + T +
E

2
"2
w,

1

r
ru( )

r
+ wz = 0,

w'S =
E

2
"2
T ,

"2
=
1

r

(

(r
r
(

(r
+

(2

(z2



The Ekman layers

Again ζ= z/E1/2, w = E1/2W  near z=0 the Ekman boundary
layer would satisfy
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We can ignore buoyancy forces in the Ekman layer.
They are so thin they remain unchanged.

True only if boundary is horizontal!!



The compatibility condition
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Let the upper boundary, or lid, of the
cylinder be rotating with the differential
speed vT(r).Then the same analysis at the
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Interior equations E <<1
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The vertical velocity and the thermal wind relation
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So the vertical velocity becomes given directly in terms of the
temperature and external forcing
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Interior thermal equation

E

2!S
"2
T
I
+
E
1/2

4
"2

T
I
(r, z ')dz '

0

1

# =
E
1/2

4

1

r

$

$r
rv

T( )

we define the pseudo temperature θ

! = T
I
+ " T

I
dz '

0

1

# . ! =
"S

2E
1/2

!
2
" = #

1

r

$

$r
rv

T( )



The temperature in terms of the pseudo temperature
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We need boundary conditions on all the side walls of the
cylinder to determine the solution.



For σS <1 the streamfunction

the temperature deviation in the Ekman layer is O(E1/2σS), and, as we
shall see, there is no other boundary layer on the horizontal boundaries
for σS <<1 so the interior temperature must satisfy the boundary
conditions on the horizontal boundaries. However, we need to consider
the boundary layers on the side wall to find the appropriate boundary
conditions for the pseudo temperature equation  on r=r0.
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The side wall boundary layers σ S<<1

Write all variables as their interior values plus a boundary layer correction
that by definition vanishes for large values of the boundary layer
coordinate e.g.
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Boundary layer balances for the
correction functions. The
azimuthal velocity v remains in
geostrophic balance.
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The Master Equation

Eliminate all variables with respect to the pressure to obtain:
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The Stewartson Layer

Now we can ask what balances are possible and we note that the
full order of the equation (6th order in r) must be preserved in any
parameter setting. Let’s suppose that terms (a) and (c) are of the
same order. This clearly implies that
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parameter limit of validity of that balance, we can evaluate the order of
term (b) and compare it to terms (a) and (c). Term (b) is

!S / E
2 /3

So for the balance a-c to hold we need

!S < E
2 /3

 
E
2
p
6r / 4

a!"# $#

+!Sprr

b%
+ pzz

c%
= 0



The buoyancy layer(1)

If the inequality is reversed the a-b balance is no longer valid.
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The Hydrostatic layer (1)

The balance b-c yields ! = "S( )
1/2

And this too requires !S > E
2 /3 and, of course, σS <1

When σS =E2/3 the hydrostatic layer and the buoyancy layer merge
to become the E1/3 layer

or , as the stratification increases the Stewartson layer splits into two
sublayers, the hydrostatic layer and the buoyancy layer. Note that the
ratio of their two thicknesses is:
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The overall balances
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The hydrostatic layer balances (1)
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Correction functions in hydrostatic layer
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Hydrostatic layer balances (2)

From continuity equation
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The hydrostatic layer eigenvalue problem (1)

The width of the hydrostatic layer is much greater than the
Ekman layer thickness as long as σS >>E
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So the Ekman layer will act as if the hydrostatic
layer is part of the interior and the ordinary
compatibility condition will apply,
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Hydrostatic layer eigenvalue problem (2)
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and this gives rise to a solution nearly independent of z with a characteristic scale in the
radial direction of E1/4. This calculation is left to the student. This is the second
boundary layer scale of Stewartson for homogeneous fluids

Note that if the stratification is
large v=0 at the boundary and if
the stratification is weak it is the
shear that vanishes.



The buoyancy layer (1)
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The buoyancy layer (2)
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Matching at r = ro: an example

Our goal is to find how the boundary layers translate the physical
conditions on the boundary to conditions on the interior problem, i.e. how
do the boundary layers control the interior (and vice-versa)

At the rim,using the sum of the interior and boundary layer
corrections:
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Matching (2)
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Matching (3)
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Side wall boundary condition
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Example 1:The purely mechanical driven circulation
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The mechanically driven velocity

To determine VO(r)  use the boundary condition at z =0
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vI  as a function of λ
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λ >>1

For large stratification the interior flow satisfies the no slip boundary
conditions on z=0, 1 expunging the Ekman layers. The Ekman layers
are choked off as the stratification increases and the vertical velocity
diminishes.wI falls from O(E1/2)  to order E/σS as the stratification
increases.
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Experiment:
Paul Linden, JFM 1977 79, 435-448

Linden used a sugar solution to stratify the fluid. The flow was in
an annulus,not a cylinder, but otherwise the theory should apply.
The Prandtl number is large σ is about 2.1 103
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Large Stratification, no Ekman layers



Example 2 The heated cylinder, theory and experiment

Consider the same cylindrical geometry but now the top is not
moving differentially. Instead the fluid is driven by an applied
temperature at the upper boundary.
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recall that T refers to the temperature anomaly
around the basic stratification.



The (σS)-1/2 layer

This system was examined experimentally and spanned a rather
wide range of values of S. Indeed, it was rather natural in the
laboratory situation to consider values of σS that were large
compared to unity as well as small values. When σS is large, the
hydrostatic layer has already filled the interior. Indeed, as we shall
show below, a metamorphosis of that layer occurs and a boundary
layer of scale          now exists in the vicinity of the upper, heated
boundary and it plays a role similar to the        layer  on the side wall
for small values of S.
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Equations of motion
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Balances in the σS-1/2 layer

The temperature in this layer is O(1). From the thermal
wind equation this means the vertical shear of v is order 1

v is order σS-1/2 .This in turn implies that u =O(E(σS)1/2) ,w=O(E) and
the lowest order circulation in the vertical plane is limited to the upper
thermal layer for large stratification. The Ekman layers are also, again,
absent for large σS.

Below this layer u and w are so small, in
the interior, that the azimuthal equation
satisfies,
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on both z =0 and 1. Details left for
the student.



Full system outside boundary layers: σS>> E1/2
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An idealized problem
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λ= (a) 0.01, (b) 1.0,
and (c) 100

For small and
moderate λ  the
pseudo
temperature
equation is used.



An experiment

Whitehead and Vetch carried out an experiment in
which the upper surface was forced by a temperature
anomaly whose measured  form was

 



The velocity as seen in dye streaks

 



Theoretical predictions

 



Comparison with experiment

 

λ =42

Good agreement



Example 3: Side wall heating:driven by buoyancy layer

We consider now a case in which the flow is driven by the side
wall buoyancy layer. (Whitehead, J.A. and J. Pedlosky 2000, Circulation and
boundary layers in differentially heated rotating stratified fluid. Dyn. Atmospheres
and Oceans, 31, 1-21)

Ω

heating coil

H(z) is shape of heating
function on side wall



The buoyancy layer suction
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Equations and boundary conditions
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Results of side heating

 

Contours of v

Contours of ψ

 S= 13.44, E=7.5 10-4



Velocity profiles v(z) at various radii

 

Theory                                             Experiment

S= 13.44, E=7.5 10-4



Velocity profiles, larger stratification

 

S = 116.2 and E = 2.2 10-3

Theory                                             Experiment



Further comparison

 
A comparison of the maximum azimuthal velocity from 4
parameter setting between theory and experiment. See Whitehead
&Pedlosky (2000) for details



Further thoughts on the role of stratification.

The Ekman layers and the side wall boundary layers combine to set up a
vertical circulation in the interior that is closed in the side wall layers for
small S.

In our cylinder example it is a two stage process. First the flux in the
Ekman layer forces vertical motion in the interior and also feeds the side
wall layers.

Then the side wall layers flux fluid vertically and establish a heating and
cooling of the interior altering the strong, O(1) circulation through the
thermal wind balance. For large S this can choke off the bottom Ekman
layers and the frictional dissipation there.

If the side walls and the bottom should combine, i.e. should the bottom
be sloping with respect to the stratification, this 2 step program could
coalesce.


