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Boundary Layers: Homogeneous Ocean Circulation

One of the most significant applications of boundary layer 
theory occurs in the treatment of the oceanic general 
circulation

Stommel, H. 1948 The westward intensification of wind-driven ocean currents. Trans. Amer. 
Geophys.Union,29, 202-206. 
1 Munk, W.H. 1950. On the wind-driven ocean circulation, J.Meteor.,7, 79-93 
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circulation in basins of various shapes. Tellus, 2,158-
167.
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The homogeneous model

Simplest model
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The model 

Upper Ekman layer provides a pumping
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Model equations of motion (1) 
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Vorticity equation

Integrating vertically,
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Geostrophic stream function



Equations of motion (2) and scaling
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Governing equation and boundary layer scales
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Relative strength of bottom 
topography to β effect



The singular perturbation problem

δΙ , δΜ , and δS are all small. Boundary layer scales are 
much less than the full basin width. They multiply the 
higher order derivatives.

x =0, y =0 x =xe

y =1 L is the north-south extent 
of the basin.



The interior problem

For a flat bottom interior, when all the boundary layer scales are 
small, the governing equation is :

ψx =we(x,y) Sverdrup relation. 1st order ode in x alone. Only 
determines interior meridional velocity.

Can’t satisfy no slip and can satisfy no normal flow, or ψ =0, only 
on one boundary, east or west but not both.



Two possible (at least) interior solutions

1)Satisfy ψ =0 on western boundary ψ = we(x ', y)dx '
0

x

∫   

or 2) on eastern boundary

example 

ψ = − we(x ',y
x

xe

∫ )dx '

we =−sinπy=vI
ψ1 = (xw − x)sinπy,
u1 = −(xw − x)π cosπy

ψ2 = (xe − x)sinπy
u2 = −(xe − x)πcosπy

τx



An Integral constraint (1)
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C a steady (closed ) streamline.
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An Integral Constraint (2)
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The net input of vorticity on each streamline must be balanced by 
bottom friction and lateral friction (for steady flow)

If there are eddies that flux vorticity integral must include that effect.
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but this last term must be zero for the streamline coincident with boundary.



The Energy constraint

Multiplying by ψ and integrating over the closed basin for steady flow:

weψ =−δs |∇ψ |2 −δm
3 ∇2ψ

2

So that ψ and we must be negatively correlated. On the 
whole this implies a circulation in the direction of the wind 
stress.



The linear boundary layer problem

δ I << δs ,  δm

For a flat bottom, linear eqn. becomes .

ψ x = we − δs∇
2ψ + δm

3∇4ψ

ψI(x,y)=− we(x',y)dx'+Ψ(y)
x
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∫

and interior solution is 



The Stommel model

In the boundary layer, keeping only x derivatives and letting x = δξ

After a single integration in x
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Consider case δm <<δs

Ignore term c (this is a singular perturbation) to 
obtain Stommel’s model of the boundary layer.
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The Stommel solution

φ = A ( y )e − ξ
To satisfy no normal flow 
condition on x =0

A = −ψ I (0, y)
If we try to do the same on the eastern boundary ξ ' = (xe − x) / δ s

φ =
∂ φ
∂ ξ '

bl correction function grows exponentially. No 
boundary layer possible on eastern boundary. 
Hence,Ψ(y) =0 in interior solution

ψ (x, y) = ψ I (x, y) + ψ I (0, y)e− x /δ s ,

ψ I (x, y) = − we (x ', y)dx '
x
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∫

δs=fδ/2ΗβL



The western intensification 

Stommel’s original 
explanation of 
western 
intensification and the 
existence of the Gulf 
Stream due to β
effect.

Controlled by 
boundary layer



The no slip condition and the sublayer

•Need to satisfy no slip condition .So far ignored.

•The vorticity balance of the whole basin depends on the lateral 
diffusion term if no slip condition applies. So far ignored.

To preserve the total order of the system and to satisfy 
the no slip condition we need to include terms b and c 
in boundary layer equation. Now, x= δsξ
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For sub layer define ξ = l η
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Correction function in sublayer

χ(η) χηη −χ=0 Essentially, the 
Stewartson E1/4 layer. 
Independent of β, 
symmetric east west.

χ = Ce−η
δ sub =

A
L2

H o

2ν f
⎡

⎣
⎢

⎤

⎦
⎥

1/ 2

ψ=ψI(x,y)+A(y)e−x/δs +C(y)e−x/δsub

matching ψ (0,y) = 0 = ψ I (0,y) + A(y) + C(y)

ψ x(0,y) = 0 = ψ Ix
(0,y) −

A
δs

−
C

δsub



Total solution (linear)

δs <<1,      δsub << δs
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Velocity profile in boundary layer near western boundary



The dissipation balance (1)

Integrate across basin. Ignore y derivatives in 
dissipation terms. For Ekman pumping independent 
of x,

0=xewe +δsψx(0)−δm
3ψxxx(0)

=0 for no slip

Boundary current has no net vorticity

The contribution of the sublayer to the 
final term is:
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Balances input of vorticity



The dissipation balance (2)

Most of the fluid flowing south in the interior returns in 
the Stommel layer and not the sublayer. On those 
streamlines always outside the sublayer the dissipation 
balance only involves bottom friction, 

Integrating across the basin from just outside 
the sublayer to the eastern boundary, the total 
mass flux balances and:

0 = xewe(0+ , y) + δ sφx (0+ , y),

⇒
0 = xewe(0+ , y) − δ s xewe(0, y) / δ s

Vorticity balance on streamlines 
through Stommel layer



An integral balance for the boundary layer
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wind in the boundary layer 
region



The integral balance with bl approximations
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If the bottom is flat and the no slip condition applies
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y1

y2

∫ = −δm
3 ζx(0,y)dy

y1

y2

∫
the vorticity put into the fluid along latitude y must be 
dissipated in the boundary layer at that latitude to obtain 
a steady state balance. In the presence of an uneven 
bottom the pressure drag can locally enter the balance 
but when integrated along a closed streamline the 
topographic term can give no net contribution (just as 
the planetary or relative vorticity advection)



See Hughes C. W. and B. de Cuevos. 2001 Why western 
boundary currents in realistic oceans are inviscid: A link 
between form stress and bottom pressure torques. J.Phys. 

Ocean. 31, 2871-2885.



Inertial boundary layers

δI >>δm>>δs

Most fluid will go through inertial layer but 
there is not enough dissipation in the layer to 
satisfy the vorticity balance on those 
streamlines

ξ = x /δ I

ψξψξξy−ψyψξξξ+ψξ =0 ψξξ + y = Q(ψ)

Total vorticity conserved on 
streamline



Inertial boundary layer:
Example

δI

U = constant ψξξ + y = Q(ψ)

Far from the boundary the relative vorticity is negligible so

ξ ∞ Q(ψ ) y

ψ     y

Q(ψ )=ψ On all streamlines 
connected to far field



Inertial layer (2)
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Interior flow needs to be westward.

Greenspan H.P. 1962 A criterion for the existence of inertial boundary layers in the oceanic 
circulation. Proc. Nat. Acad.Sci,, 48, 2034-2039.

Pedlosky, J. 1965 A note on the western intensification of the oceanic circulation. J. Marine Res. , 
23, 207-209.

Can’t close circulation

or satisfy no slip.



Inertial sublayer
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vorticity flux through sublayer
could balance vorticity input by  
the wind.

Most streamlines don’t go 
through sublayer.

In Stommel model the streamlines that did not go through the 
sublayer still had a proper vorticity balance. This is no longer 
true.
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Boundary layer Reynolds number 

Inertial/viscous in inertial layer
>> 1

What happens?



Inertial Runaway

Panel a shows the linear solution 
when δI is zero, panel b  shows the 
case for Re=1, panel c shows the 
flow for Re = 1.95  

, while for panel d, Re=4.29, 

δI =.0625, δm =.05

δI =.08125, δm =.05

Circulation intensifies until vorticity is 
dissipated on each streamline.
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The enhanced sublayer

Fox-Kemper allowed the dissipation to locally increase in a 
sublayer near the western boundary. Rei =

δI

δm

When we set a value of A, the momentum mixing coefficient, we are conflating two somewhat
independent physical processes. 

The first is a measure of the unresolved eddy scales and their effect on the large scale flow in 
the interior and the boundary layers. 

The second is a measure of the strength of the interaction of the fluid with the boundary. 

Decreasing the single parameter, A, then reduces both processes. If the interaction with the 
boundary is related to a different physical process than the dissipation of vorticity away from 
the boundary, it seems overly constraining to represent both with a single parameterization. 
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The enhanced sublayer (2)
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The turbulent boundary layer and the role of eddies.

For substantial values of the interior Reynolds numbers the western 
boundary layer becomes unstable to shear instability. The eddies in 
the inertial  portion of the boundary layer, through which most of the 
mean streamlines pass, will flux vorticity to the sublayer where it is 
dissipated by the locally enhanced friction. The process is a three step 
one, instability, flux and dissipation and the student is referred to Fox-
Kemper and Pedlosky for the details of the analysis. The result 
though is striking and shown in the following figure.



The arrested runaway

compare

Control of large 
scale circulation by 
details of dissipation 
in the boundary 
layer.
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