GFD 2007
Boundary Layers: Sloping bottoms in a stratified, rotating
fluid

In oceanic coastal regions, e.g. on the shelf regions
between the coast and the deep ocean, the bottom generally
slopes and the fluid is stratified.

We have already seen the way the thermal boundary layers
on vertical walls can control the interior flow and how the
Ekman layers on horizontal boundaries can do the same for
rotating fluids. Sloping boundaries are a type of hybrid of
these two.

The study of the boundary layer on the sloping bottom
boundary introduces some new and fascinating features to
the analysis. We can only touch on some of the issues in

these lectures.
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A schematic of the bottom boundary layer:
upwelling case
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Flow In x direction U.Ekman flux up the
slope from high to low pressure.



The along slope density gradient

Az = AysIing

In boundary layer

Apl Az = Apl Aysing
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Fluid moving up the slope a distance will produce a density

anomaly 1
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and over a depth of the bottom boundary layer of the order
It would be possible to adjust the speed of the

_ fU current to zero without Ekman layers and their
TONI2 o dissipation. Currents could flow long distances
N*sing without decay.
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Steady, laminar boundary layer on a sloping surface

Following MacCready and Rhines 1993 t g
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Write equations in slant
coordinate frame.
v=Vv'cosd+w'singd

ey l Far from the lower boundary
wW=-V'sind+w'cosé
T, =AT,z'/ D

N=(geAT, /D)~



Z
T = AT. —+ 9(v,z
‘D (y,z)

where
= AT,(zcos@ + ysin@)/ D + 9 (y,z) v ?arggz

Search for solutions independent of y and are only functions
of z.

w identically zero. For largez, u — " U, a constant

v is independent of y

Nonlinear terms in momentum equation
vanish identically.
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2Qcoséd u=—-——+ Av, + bsiné

p, 0y A I1s momentum mixing
coefficient, xis the
—-2Qcosé v=Au, thermal diffusivity.
2O singy = - L 9B oo p IS the pressure perturbation.
P, 07
VN ?sin @ = xb,, a is the coefficient of
thermal expansion. u ,v,b
b=agd are independent of y.
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Boundary conditions and boundary layer equation

V:Qb Z—MC(B(S Insulating condition

onz=0
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If the fluid were homogeneous or if the bottom were flat we would recover the
Ekman layer problem. Using the thermal equation to eliminate b in favor of v yields

v,,., + 4q°v =0,
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If the bottom is flat the bl scale is the Ekman thickness. If
the bottom is vertical, 1.e. If 0=x/2 the scale Is the
buoyancy layer thickness

v =0 at z =0 means C =0. From the thermal equation
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b, = —BNLmee‘oIZ [cosqz +singz ]
20K

And from > -2Qcosf v=Au,

u =

— Be % cosqz + U
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Insulating condition b,=-N’cos6 . B _ 2q/(C()t6’

While the no slip condition on u yields

%K‘ cotd u=U,1-e* oy |

C
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Flow at infinity is not arbitrary. It is part of the solution!



Thermal balance

Frictionally driven flow up the slope

w(z):jv dz=rxootd] 1-e* (cosez +sincg)|

The total is (o0) = K Ccoth = %U

o0

And this follows directly from the integral of the thermal equation

W’ sinf=xh, b =Nosq 2=0



The control of the interior

This result, while at first glance non intuitive, is really just a
manifestation of the control mechanisms we have already met
In our discussion of the linear flow in the cylinder, although
here in a more extreme form.

Part of our unease, Is related to the sense that we ought to be
able to drive the system as we would like and establish some
equilibrium velocity along the isobaths that will differ from
(3.2.14) or that we should, at least initially specify a different
far field along shore flow.

We continue our presentation, following the work of
MacCready, Rhines and Garrett by first considering the latter
possibility.



The “slow” diffusion equation (1).

Same equations, w =0, but with time dependence.
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Non dimensional equations
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Interior equations

op sing op
U|=—E'+bu(7) b, Cosﬁza—z'—&,tan@

Eliminating v between
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Eliminating the pressure in the first two equations a, _ b {Siné’}
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and noting that b is independent of y




The slow diffusion equation (2)

5 [8u,j {1+085i2n29} 5 [8u,j

0z

ot\ oz - 14 o° 0z°
Ssin% @
sinf@ N°
S =—sin’ 6=S,
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— S Effective diffusion coefficient
Hgise = G{ 1+S*J

if o>1, the diffusion
(1 LS. _ ] coefficient would be
{ o J dimensional smaller than in the
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Final form of slow diffusion eqgn.

52 If u is independent of z
ou {1+ oS sin 2 9} a2u and t at z--> Inf.
| |
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To obtain boundary conditions for s.d.e need to consider
boundary layer at sloping bottom.

Boundary layer coordinate

Label correction variables with e

(=71E™"



Boundary layer equations for correction functions

He = =5y T Ve TP These are the same steady
1 equations we dealt with before and
-V, = —Uu , .
R they yield
. 1 op,
otané, = EV7 or + b, cos@, @4\/6
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Boundary layer solution

v, = Ae ““cosal + Be “sinad,

sin @

b, = 08 ——[e ™ {(A-B)sinal ~ (A +B)cosal}],
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c=U1/fL

The frictional boundary layer vanishes to lowest order.

u, must satisfy the no-slip bc at z =0
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Next order boundary layer solution still has v, =0--> A=0

Boundary layer contribution to buoyancy flux yields

oo S ouU
B=—————| —C0SO0+ — =
20SsInf| ¢ SIN O/ 7wyt 4t



Long time solution in boundary layer

As t goes to infinity

h=-FE" i 007 Jalvetod

which is the steady state solution (in
n.d. form) already attained.

Hence it is possible to consider arbitrary interior flows but, at least with the
simple physics here, the boundary layer control eventually expunges the
along isobath flow and yields an asymptotically weak frictional boundary
layer. This, in one sense resolves the conundrum posed by the steady
boundary layer solution in which the interior flow and the cross shelf flow
depended only on the stratification and the vertical thermal diffusion
coefficient. Nevertheless, the solution presented here eventually approaches
that very constrained solution.



Richer Physics
Stress driven flow

_ )

Off shore Ekman flux in upper Ekman layer




variations in the wind stress with y will force an Ekman pumping
at the base of the Ekman layer w,(y). Assume &is small.

fu __L p, +bsind+Ayv, + Ayv

H "yy!

Po In slant frame

~fv+ fwtand=Au, + AU, At base of Ekman layer
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C o pof oy

v, +w, =0,
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Interior solution (1)

Ignore friction in momentum equations. v is
O(E)=A/fD*Implies w is independent of z and hence
equal w, everywhere in the interior. The thermal
equation becomes.(we have assumed an interior

solution for b independent of z)

2 _
WN* =x,b,
1 0
— N2 = Kyb,,
po T 0y Assuming b, vanishes at
1 N2 large negative y where
> b, =- r(y) the stress vanishes




Interior solution (2)

From thermal wind egn.

N? 7
U, = 2 z Unknown barotropic
KH po

contribution

The total interior buoyancy diffusive flux
perpendicular to the lower boundary is:

3, = N2|:KV Ccos O+ Lsin@}
po T,



Bottom boundary layer (again)
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Matching

u, — LE B=0 Foru

1 a—Tsin6’+A:O, For v

Pt oy
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Solution

E(A+ B)=— +x cotd Boundary layer mass flux
2 of

Transport in bottom boundary
layer induced by stratification

Off shore flux balancing and diffusion as in earlier
on shore Ekman flux solution
finally Ao L 0T,
p,f oy




“vertical Ekman #

“horizontal” Ekman#

Definitions

“vertical” and
“horizontal” Prandlt
numbers
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If E,/E,.= O(1) then if

oS >>E "
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Then the interior velocity very
nearly satisfies the no slip
condition on z=0 without the b.l.

_ O-HSE1/2 _|:O-HS

As before




The turbulent bottom boundary layer

Coast
< 7/pf
N2 In this previous example we arrange
to have cold water riding up the Z
shelf under warmer water
(upwelling). \/
S o y
— 0

This enhances the static stability and a laminar model is at least

plausible.The situation is different in downwelling



Chapman Lentz Model

Light water driven under denser water. Expect convective
mixing and a thick turbulent boundary layer. See Trowbridge
and Lentz (1991) and Chapman and Lentz (1997).

The Chapman Lentz (CS ) model:boundary Iayer Is well
mixed and isopycnals are vertical

__________

z:—h(y)\ i
Off shore frictional flow




—fv=—-p, lp,+7°, 1 p,
fuz_py/po

0=-p,-pg
O=u, +v, +w,

up, +vp, +wp, =B

z

At the bottom, z=-h,(y)
B, =0and

Z(h)=-1,

Linear momentum egn.

Non linear thermal egn.

718 stress In fluid In x
direction.

B is the vertical
turbulent density flux.



The CL adjustment problem

CL examine the evolution of a coastal current.

It starts as a narrow current upstream and spreads
laterally due to friction.

The boundary layer thickens as the current flows
downstream.

The current outside the boundary layer is not sheared
vertically.

Using integral budgets for mass, momentum and
buoyancy, eqns for the boundary layer thickness o are
found as well as the interior u.



Results of CL problem (1)
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FIG. 2. Schematic depicting the adjustment and evolution of a nar-
row inflow starting at x = 0. (a) Plan view of the current boundaries
that initially spread, owing to bottom friction, at a rate set by r/fh,.
(b) Evolution of the interior velocity «* and bottom velocity u? with
downstream distance. (c) Along-isobath velocity profiles at various
stages downstream. The bottom boundary layer grows, while the
interior and bottom velocities both decrease, eventually reaching an
equilibrium where the bottom velocity vanishes.

The boundary layer
evolves until finally the
thermal wind brings u
to zero and eliminates
the bottom stress. The
scaling for the bl
thickness is, as before,

fu

H=———
N “siné



Results of CL problem (2)

0.8 1
0.8 1
0.8 1

FIG. 5. Maximum values of (upper) bottom boundary layer thick-
ness, (middle) interior along-isobath wvelocity, and (lower) bottom
velocity at each downstream (x) location for the stratified flow shown
in Fig. 3. Dashed curwves correspond to the unstratified flow in
Fig. 4.

Dashed curves for
N=0.

Note the stratified
current flows
without further
decay after u, goes
to zero.

Want a model to discuss
this equilibrium state that
does not require a 3-d
numerical calculation
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2=-h(y)

Note: interior density Is
fnc. of yand z



Motion is assumed two dimensional--- independent of x

Boundary layer must carry off shore flow.
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Interior(1)

Onshore flux in upper Ekman layer M. =7"/p,f
Ekman pumping velocity 1 o7
O af

Buoyancy flux normal to bottom vanishes and all
perturbations go to zero for large y. The density
IS continuous at

Z=—0Y+0

Below the Ekman layer and above the bbl the
turbulent stress in the fluid interior is zero. Thus

1 or"
V=0 wmw)=

pt oy



Interior (2)
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—W, 0, — Ky —
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In the bottom boundary layer

Mixing Is so intense density is only a function of y but is
continuous with interior. Thus

AY)=alz=-1Y)+o)

2 0 w 2
Py _(h- 5)N " N dy'+1
/00 g ypof gK-HI

Pressure iIs hydrostatic and continuous with
interlor

_—(h—@[z+(h—@/2 N+2 j —gcy—gz
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P, At
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Integral of x momentum eqgn in bl

(Z B h) 1 —h+o
Vb5:T — Vﬁg f v, dz
Pol h

As in CL

Vo= iy chy/f
Pt

If we know V, we then know the surface pressure gradient
for a given boundary layer thickness (still unknown)



It is obvious that the off shore mass flux must balance the on
shore Ekman flux. But it is illuminating to examine the
detailed budget in preparation for the buoyancy budget.

ds\é n
z=-h+o

A

y+4y



Mass balance

wa) o>
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cancel

w@w@% 0

Flux across upper

or bdy of bbl

0z
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Mass continuity with interior

Since v, =0 w.. must match w,

0V, _dt" Ip,t
oy oy '




Diffusive mass flux at
Z upper bdy of bbl

o 8/%\

N5 g; S P

EY,

an an & )
(o2 o _
2 {%Z ’%@@l @(&%@J
Continuity of diffusive flux at top of bbl

yields first term on rhs in terms of interior
variables.



Final budget for buoyancy in bbl

After some algebra

o (Y
9 .62 S L
E ( O, 0—— i | gt )

Eqn. for 6 in terms of which

1o, N a(h 5) N? "
pfoy f oy fKH Pl




velocity in boundary layer, interior velocity

Continuous at z=-h+o

Note that in the absence of stress the bottom velocity in
the bbl is zero as in MacCready and Rhines



ODE for & (1)

Take bottom of form h=-¢ay. Scale lengths with L and
thickness of bbl with a.L.

Consider a stress of form. 7" = ¢ _g~*(/t)

d) 590 ~(l+Fe®)s |=-%, —-FZ, ™
dy| dy
F=—0
apofKH
Ky Ky
T, = —a, s, = —




ODE for & (2)

5% —(+Fe¥)5=—3,(y-V. )—F—z[e-Zay —e™ |5, +C
dy 0 2a H !

Yy, IS starting point for

Co 5{0'_5 (4 Fe ™ )} integration (model not
dy vy valid in apex of wedge)

( A
C= L{_ 92 8'% <0
aN°p, oy ),



-25
0

-h +5 (y) = (O)(c * p*fchI) =1 K fKHb =01 5(.1) = 0.005

| 1
10 15 20 25
T=1, exp(-ay), a = 1 KHIl'KHb = 0.05 Co =-0.0025

5

The boundary layer thickness with respect to the

sloping bottom fora =1, 2, = 0.1, X,=0.05. A
starting value of ¢ of half the depth aty =y, = 0.01
is chosen and C is -0.0025. F =1 has been used.



For larger diffusion coefficients in the interior

,20 -

A5 () 1 (OMe® o) =1k, Ky, =02 §.1)=0.005

25
0

+ -ay
—_-htd

i i
5 10 15

187, exp(-ay), a=1 KHlfKHb =0.1 Co=-0.0025

i
20

25

Y, =02

ZH =0.1

o goes to zero well
| beyond the region

of wind stress.

1 The interior velocity

then satisfies the
zero velocity
condition



When o6 goes to zero

2 W 2 w
b= ) —— |+ N 5a(h—5)+T—
f pic, | T oy or

Ratio of last term to first term then is:

NHfr &S_,, &SE
Plx H E ' E°E

So again, when

E/]j

e 2 >>1interior velocity satisfies bc.
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