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Boundary Layers: Sloping bottoms in a stratified, rotating  

fluid

In oceanic coastal regions, e.g. on the shelf regions 
between the coast and the deep ocean, the bottom generally 
slopes and the fluid is stratified. 

We have already seen the way the thermal boundary layers 
on vertical walls can control the interior flow and how the 
Ekman layers on horizontal boundaries can do the same for 
rotating fluids. Sloping boundaries are a type of hybrid of 
these two.  

The study of the boundary layer on the sloping bottom 
boundary introduces some new and fascinating features to 
the analysis. We can only touch on some of the issues in 
these lectures. 
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A schematic of the bottom boundary layer:
upwelling case
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Flow in x direction U.Ekman flux up the 
slope from high to low pressure. 



The along slope density gradient

θ

Δz
Δy

Δz = Δysinθ

Δρ / Δz = Δρ / Δysinθ

⇒g
∂ρ
∂y

= −ρN2 sinθ,       N2 = −
g
ρ

∂ρ
∂z

In boundary layer



Thermal wind in boundary layer

f
∂ U
∂ z

=
g
ρ

Δ ρ
Δ y

= N 2 s in θ

Fluid moving up the slope a distance will produce a density 
anomaly

Δρ =
1
g

N 2ρo sinθΔy

and over a depth of the bottom boundary layer of the order

H =
fU

N2 sinθ

it would be possible to adjust the speed of the 
current to zero without Ekman layers and their 
dissipation. Currents could flow long distances 
without decay.

f=2Ωcosθ≈2Ω



Steady, laminar boundary layer on a sloping surface 

Following MacCready and Rhines 1993
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Write equations in slant 
coordinate frame.

Ω g

v = v 'cosθ + w 'sinθ
w = −v 'sinθ + w 'cosθ

Far from the lower boundary

T ∞ = Δ T v z '/ D

N= gαΔTv /D( )1/2



Equations of motion (1)

T = Δ T v
z '
D

+ ϑ ( y , z )

= Δ T v z c o s θ + y s in θ( ) / D + ϑ ( y , z ) ϑ
where 

0 for 
large z

Search for solutions independent of y and are only functions 
of z.

w identically zero. For large z, u U, a constant
v is independent of y

Nonlinear terms in momentum equation 
vanish identically.



Equations of motion (2)

 

2 Ω co s θ  u = −
1

ρ o

∂ %p
∂y

+ A v zz + b sin θ

− 2 Ω co s θ  v = A u zz

2 Ω sin θ u = −
1

ρ o

∂ %p
∂z

+ b co s θ

vN 2 sin θ = κ b zz

b = α gϑ

%p

α is the coefficient of 
thermal expansion. u ,v,b 
are independent of y.

∂2 %p/∂y∂z=0f =2Ωcos

A is momentum mixing 
coefficient, κ is the 
thermal diffusivity.

is the pressure perturbation.

θ



Boundary conditions and boundary layer equation

u=0,v=0,bz=−N2cosθ Insulating condition 
on z =0

f 2

A
v = Avzzzz + bzz sinθ

If the fluid were homogeneous or if the bottom were flat we would recover the 
Ekman layer problem. Using the thermal equation to eliminate b in favor of v yields

v z z z z + 4 q 4 v = 0 ,

q 4 =
1
4

f 2

A 2 +
N 2

A κ
s i n 2 θ

⎡

⎣
⎢

⎤

⎦
⎥



Solution for laminar boundary layer (1)

v=Ce−qzcosqz+Be−qzsinqz q4 =
1
4

f 2

A2 +
N2

Aκ
sin2θ

⎡

⎣
⎢

⎤

⎦
⎥

If the bottom is flat the bl scale is the Ekman thickness. If 
the bottom is vertical, i.e. if θ=π/2 the scale is the 
buoyancy layer thickness

v =0 at z =0 means C =0. From the thermal equation

bz = −B
N2 sinθ

2qκ
e−qz cosqz + sinqz[ ]

And from − 2 Ω cos θ  v = A u zz

u = −
f

2 A q 2 B e − qz cos qz + U ∞



Solution for boundary layer (2)

Insulating condition bz=-N2cosθ B= 2qκ cotθ

While the no slip condition on u yields

U ∞ =
f

A q
κ c o t θ u=U∞ 1−e−qzcosqz⎡⎣ ⎤⎦

Flow at infinity is not arbitrary. It is part of the solution!



Thermal balance

Frictionally driven flow up the slope

ψ(z)= v dz
0

z

∫ =κcotθ 1−e−qz cosqz+sinqz( )⎡⎣ ⎤⎦

ψ (∞) = κ cotθ =
Aq
f

The total is U∞

And this follows directly from the integral of the thermal equation

vN2sinθ=κbzz bz =−N2cosθ,    z=0



The control of the interior

This result, while at first glance non intuitive, is really just a 
manifestation of the control mechanisms we have already met 
in our discussion of the linear flow in the cylinder, although 
here in a more extreme form.

Part of our unease, is related to the sense that we ought to be 
able to drive the system as we would like and establish some 
equilibrium velocity along the isobaths that will differ from 
(3.2.14) or that we should, at least initially specify a different 
far field along shore flow. 

We continue our presentation, following the work of 
MacCready, Rhines and Garrett by first considering the latter 
possibility.



The “slow” diffusion equation (1).

Same equations, w =0, but with time dependence.

 

∂v
∂t

+ 2Ω cosθ  u = −
1
ρo

∂%p
∂y

+ Avzz + b sinθ

∂u
∂t

− 2Ω cosθ  v = Auzz

2Ω sinθu = −
1
ρo

∂%p
∂z

+ b cosθ

∂b
∂t

+ vN 2 sinθ = κ bzz

u,v( )=U(u ',v'),      y = Ly',     z = Dz ', t =
D2

κ
t '

%p = ρo fUL%p',      b =
fUL
D

b'

Scaling:



Non dimensional equations

δ =D/L

 

E
2 σ

∂ v
∂ t

+ u = −
∂ %p
∂ y

+
E
2

v z z + b
s in θ

δ
⎛
⎝⎜

⎞
⎠⎟

,

E
2 σ

∂ u
∂ t

− v =
E
2

u z z

− t a n θ  δ u = −
∂ %p
∂ z

+ b c o s θ

E
2 σ

∂ b
∂ t

+
s in θ

δ
⎛
⎝⎜

⎞
⎠⎟

S v =
E

2 σ
b z z

f = 2Ω cosθ E = 2A
fD2 ,   S =

N2δ2

f 2



Interior equations 

uI = −
∂pI

∂y
+ bI

sinθ
δ

⎛
⎝⎜

⎞
⎠⎟ bI cosθ =

∂pI

∂z
− δ u I tanθ

Eliminating v between 

E
2 σ

∂ u
∂ t

− v =
E
2

u z z

E
2 σ

∂ b
∂ t

+
s in θ

δ
⎛
⎝⎜

⎞
⎠⎟

S v =
E

2 σ
b z z

yields

1
σ

∂
∂t

uI −
δ

Ssinθ
bI

⎡
⎣⎢

⎤
⎦⎥
=

1
2

∂2

∂z2 uI −
δ

σSsinθ
bI

⎡
⎣⎢

⎤
⎦⎥

∂uI

∂z
Eliminating the pressure in the first two equations 

and noting that b is independent of y
=

∂bI

∂z
sinθ
δ

⎡
⎣⎢

⎤
⎦⎥



The slow diffusion equation (2)

∂
∂t

∂u I

∂z
⎛
⎝⎜

⎞
⎠⎟

= σ
1 +

δ 2

σ S sin 2 θ
⎧
⎨
⎩

⎫
⎬
⎭

1 +
δ 2

S sin 2 θ
⎧
⎨
⎩

⎫
⎬
⎭

∂ 2

∂z 2

∂u I

∂z
⎛
⎝⎜

⎞
⎠⎟

S
sin2θ
δ2 =

N2

f 2 sin2θ ≡S*

μ d iff = σ

1
σ

+ S *

1 + S *

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Effective diffusion coefficient

μ d i f f( )d im e n s io n a l
= A

1
σ

+ S *

1 + S *

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

dimensional 

if σ >1, the diffusion 
coefficient would be 
smaller than in the 
absence of stratification



Final form of slow diffusion eqn.

∂ u I

∂ t
= σ

1 +
δ 2

σ S s in 2 θ
⎧
⎨
⎩

⎫
⎬
⎭

1 +
δ 2

S s in 2 θ
⎧
⎨
⎩

⎫
⎬
⎭

∂ 2 u I

∂ z 2

If u is independent of z 
and t at z--> inf.

To obtain boundary conditions for s.d.e need to consider 
boundary layer at sloping bottom.

Boundary layer coordinate

ζ = z E−1/2 Label correction variables with e



Boundary layer equations for correction functions

u e = −
∂ p e

∂ y
+

1
2

v eζ ζ
+ b e

s in θ
δ

,

− v e =
1
2

u eζ ζ
,

δ ta n θ e = −
1

E 1 / 2

∂ p e

∂ ζ
+ b e c o s θ ,

s in θ
δ

v e =
1

2 σ S
b eζ ζ

These are the same steady 
equations we dealt with before and 
they yield

∂4ve

∂z4 +4 1+σS
sin2θ
δ2

⎡

⎣
⎢

⎤

⎦
⎥ve =0.



Boundary layer solution

ve = A e − α ζ cos α ζ + B e − α ζ sin α ζ ,

be = σ S
sin θ

δ
e − α ζ ( A − B ) sin α ζ − ( A + B ) cos α ζ{ }⎡⎣ ⎤⎦ ,

u e =
1

α 2 A e − α ζ sin α ζ − B e − α ζ cos α ζ⎡⎣ ⎤⎦ ,

α = 1 + σ S
sin 2 θ

δ 2

⎡

⎣
⎢

⎤

⎦
⎥

1 / 4



Matching conditions

u I + u e = 0,

v I + ve = 0,

∂b I

∂z
+ E −1 / 2 ∂be

∂ζ
= −

S
ε

cosθ ,

ε = U / fL

vI is O(E)
B =0

A=0

The frictional boundary layer vanishes to lowest order.

uI must satisfy the no-slip bc at z =0



Diffusion solution

uI = U∞

2
π

e−ϕ2

dϕ
0

ζ /(μdif t )1/2

∫

Next order boundary layer solution still has ve =0--> A=0

Boundary layer contribution to buoyancy flux yields

B = −
δα

2σ S sinθ
S
ε

cosθ +
δU∞

sinθ πμdiff t

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



Long time solution in boundary layer

As t goes to infinity

be =−E1/2 S
εα

cosθe−αζ cosαζ which is the steady state solution (in 
n.d. form) already attained.

Hence it is possible to consider arbitrary interior flows but, at least with the 
simple physics here, the boundary layer control eventually expunges the 
along isobath flow and yields an asymptotically weak frictional boundary 
layer. This, in one sense resolves the conundrum posed by the steady 
boundary layer solution in which the interior flow and the cross shelf flow 
depended only on the stratification and the vertical thermal diffusion 
coefficient. Nevertheless, the solution presented here eventually approaches 
that very constrained solution.



Richer Physics
Stress driven flow

τ

τ/ρfδ

θ

z

y

N2

Off shore Ekman flux in upper Ekman layer



Equations of motion

variations in the wind stress with y will force an Ekman pumping 
at the base of the Ekman layer we(y). Assume θ is small.

fu = −
1
ρo

py + bsinθ + Avvzz + AH vyy ,

− fv + fw tanθ = Avuzz + AHuyy ,

− f tanθu = −
1
ρo

pz + b cosθ

vy + wz = 0,

v N 2 sinθ + by⎡⎣ ⎤⎦ + w N 2 cosθ + bz⎡⎣ ⎤⎦ = κVbzz +κ Hbyy

At base of Ekman layer

w = we = −
1

ρo f

In slant frame

∂τ
∂y



Interior solution (1)

Ignore friction in momentum equations. v is 
O(E)=Av/fD2.Implies w is independent of z and hence 
equal we everywhere in the interior. The thermal 
equation becomes.(we have assumed an interior 
solution for b independent of z)

wN 2 = κ H byy

−
1

ρ o f
∂τ
∂y

N 2 = κ H byy

bIy
= −

1
ρo f

N 2

κ H

τ (y)

Assuming bI vanishes at 
large negative y where 
the stress vanishes



Interior solution (2)

uI =
N 2

κ H

τ
ρo f 2 z + uo(y)

From thermal wind eqn.

Unknown barotropic 
contribution

The total interior buoyancy diffusive flux 
perpendicular to the lower boundary is:

ℑz = N2 κ v cosθ +
τ

ρo fo

sinθ
⎡

⎣
⎢

⎤

⎦
⎥



Bottom boundary layer (again)

 

v b z z z z
+

4
l 4 v b = 0 ,

l − 4 =
f 2

4 A v
2 1 +

N 2 s i n 2 θ
f 2κ v / A v

⎡

⎣
⎢

⎤

⎦
⎥

 

vb =e−z/l Acosz / l +Bsinz / l[ ]

ub =
f

Av

l 2

2
e−z/l Asinz / l −Bcosz / l[ ]

∂bb

∂z
=−

N2

2κv

δsinθe−z/l A cosz / l −sinz / l( )+B(cosz / l +sinz / l )⎡⎣ ⎤⎦,

wb =
l
2

e−z/l Ay cosz / l −sinz / l( )+By(cosz / l +sinz / l )⎡⎣ ⎤⎦



Matching

 
uo −

f
Av

l 2

2
B = 0 For u

−
1

ρo f
∂τ
∂y

sinθ + A= 0, For v

 
−

1
ρof

∂τ
∂y

+
l
2
(A+B)=0, For w

 
κvN

2cosθ+
N2τsinθ

ρof
−N2l

2
sinθ(A+B) For bz

redundant



Solution

 

l

2
(A+ B) =

τ
ρo f

+κv cotθ Boundary layer mass flux

Off shore flux balancing 
on shore Ekman flux

Transport in bottom boundary 
layer induced by stratification 
and diffusion as in earlier 
solution

finally

 

A =
1

ρ o f
∂τ
∂y

sin θ ,

B = −
1

ρ o f
∂τ
∂y

sin θ +
2
l

τ
ρ o f

+
2
l

κ v co t θ

u o = −
f

A v

l 2

2
B



Definitions

Ev =
2 Av

fD 2 ,   σ v =
Av

κ v

EH =
2 AH

fL2 , σ H =
AH

κ H

“vertical Ekman #

“horizontal” Ekman#

“vertical” and 
“horizontal” Prandlt
numbers



Interior long shore velocity

 

uI =
N2

κH f
τ

ρo f
z

term 1
1 24 34

+
f
Av

l 2

2
2
l

τ
ρo f

term 2
123

−
1

ρo f
∂τ
∂y

sinθ+2κv cotθ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Ratio of terms

 

term 1
term 2

=
N 2

f 2

f
κ H

Dl

=
N 2 D2

f 2 L2

fL2

AH (κ H / AH )
l
D

=
σ H S
EH

Ev
1/2 =

σ H S
Ev

1/2

⎡

⎣
⎢

⎤

⎦
⎥

Ev

EH

⎛

⎝⎜
⎞

⎠⎟

If EV/EH= O(1) then if 

σ H S >> Ev
1/ 2

Then the interior velocity very 
nearly satisfies the no slip 
condition on z=0 without the b.l.

As before

f
A v

l 2

2
≈ 1



The turbulent bottom boundary layer

τ

τ/ρfδ

θ

z

y

N2 In this previous example we arrange 
to have cold water riding up the 
shelf under warmer water 
(upwelling).

This enhances the static stability and a laminar model is at least 
plausible.The situation is different in downwelling

Coast



Chapman Lentz Model

Light water driven under denser water. Expect convective 
mixing and a thick turbulent boundary layer. See Trowbridge 
and Lentz (1991) and Chapman and Lentz (1997).

The Chapman Lentz (CS ) model:boundary layer is well 
mixed and isopycnals are vertical

z=-h(y)
δ

ρ

u
y

z

x

Off shore frictional flow



CL model:
equations of motion

− fv = − p x / ρ o + τ x
z / ρ o

fu = − p y / ρ o

0 = − p z − ρ g
0 = u x + v y + w z

u ρ x + vρ y + w ρ z = B z

Linear momentum eqn.

Non linear thermal eqn.

τx is stress in fluid in x
direction.

B is the vertical 
turbulent density flux.

At the bottom, z=-hb(y)

Bz =0 and 

τx(−h)= −rub



The CL adjustment problem

CL examine the evolution of a coastal current. 

It starts as a narrow current upstream and spreads 
laterally due to friction.

The boundary layer thickens as the current flows 
downstream.

The current outside the boundary layer is not sheared 
vertically.

Using integral budgets for mass, momentum and 
buoyancy, eqns for the boundary layer thickness δ are 
found as well as the interior u.



Results of CL problem (1)

The boundary layer 
evolves until finally the 
thermal wind brings u 
to zero and eliminates 
the bottom stress. The 
scaling for the bl
thickness is, as before, 

H =
fU

N 2 sinθ



Results of CL problem (2)

Dashed curves for 
N=0.

Note the stratified 
current flows 
without further 
decay after ub goes 
to zero.

Want a model to discuss 
this equilibrium state that 
does not require a 3-d 
numerical calculation



Stress driven turbulent bottom boundary layer:
The CL model

z=0
τw(y)

ρΙ (y,z)
ρb(y)

z=-h(y) z=-h+δ

z

y

Note: interior density is 
fnc. of y and z



Equations of motion

Motion is assumed two dimensional--- independent of x

Boundary layer must carry off shore flow.

f u = −
1

ρ o

∂ p
∂ y

,

− f v =
1

ρ o

∂ τ
∂ z

,

ρ
ρ o

g = −
1

ρ o

∂ p
∂ z

,

∂ v
∂ y

+
∂ w
∂ z

= 0 .

τ is turbulent stress in 
fluid

ρ density anomaly

v
∂ρ
∂y

+w
∂ρ
∂z

=
∂
∂y

κH
∂ρ
∂y

⎛
⎝⎜

⎞
⎠⎟

+
∂
∂z

κV
∂ρ
∂z

⎛
⎝⎜

⎞
⎠⎟



Interior(1)

Onshore flux in upper Ekman layer M E = τ w / ρ o f

Ekman pumping velocity
w = we = −

1
ρo f

∂τ w

∂y

Buoyancy flux normal to bottom vanishes and all 
perturbations go to zero for large   y. The density 
is continuous at

z=−αy+δ

Below the Ekman layer and above the bbl the 
turbulent stress in the fluid interior is zero. Thus 

v I = 0 wI = we(y) = −
1

ρ f
∂τw

∂y



Interior (2)

we
∂ρI

∂z
=

∂
∂y

κHI

∂ρI

∂y
⎛
⎝⎜

⎞
⎠⎟

+
∂
∂z

κVI

∂ρI

∂z
⎛
⎝⎜

⎞
⎠⎟

κ VI

∂ρ I

∂z
= − H z=0

 ρI = ρo + ρI (z)+ %ρI (y)let

1
ρo

∂ρI

∂z
= −

H
κVI

ρo

≡ −
1
g

N2



Interior density equation

 
−weρo

N 2

g
=

∂
∂y

κ HI

∂%ρI

∂y
⎛
⎝⎜

⎞
⎠⎟

ρI

ρo

= −z
N 2

g
−

τ w

ρo f
N 2

gκ H I

dy '
y

∞

∫ +1

 

∂uI

∂z
=

g
fρo

∂%ρI

∂y
=

τwN2

ρof2κHI

uI =
z

κ HI

N 2

f 2

τ w

ρo

−
1

ρo f
∂ps

∂y
unknown



In the bottom boundary layer

Mixing is so intense density is only a function of  y but is 
continuous with interior. Thus

ρb(y)=ρI(y,z=−h(y)+δ)

ρb

ρo

= (h − δ )
N 2

g
−

τ w

ρo f
N 2

gκ H I

dy '
y

∞

∫ + 1

Pressure is hydrostatic and continuous with 
interior:

pb

ρo

=−(h−δ) z+(h−δ)/2[ ]N2+z
τw

ρof
N2

gκHI

dy'−gz+
ps

ρoy

∞

∫

ub =
N2

f
∂
∂y

z+[h−δ]/2( )(h−δ)⎡⎣ ⎤⎦+z
τw

ρof
2

N2

κHI

−
1

ρof
∂ps

∂y



Integral of x momentum eqn in bl

Vbδ =
τ(z = −h)

ρo f
Vb =

1
δ

vbdz
−h

−h+δ

∫

Vbδ =
τ(−h)
ρo f

= rub(−h) / f

As in CL

If we know Vb we then know the surface pressure gradient 
for a given boundary layer thickness (still unknown)



Mass budget for boundary layer

It is obvious that the off shore mass flux must balance the on 
shore Ekman flux. But it is illuminating to examine the 
detailed budget in preparation for the buoyancy budget.

n

zt=-h+δ

y

y+Δy

A

ds

z= -h



Mass balance

∂
∂y

vbdz
zt

zb

∫ +wb(zt)−vb(zt)
∂zt
∂y

−wb(zb)+vb(zb)
∂zb
∂y

=0
cancel

n̂ =
k̂ − ĵ ∂zt

∂y
dy 2 + dzt

2( )1/ 2 dy
Flux across upper 
bdy of bblor

∂ V bδ
∂ y

+ w * = 0 w* = wb (zt ) − vb (zt )
∂zt

∂y



Mass continuity with interior

Since vI =0 w* must match we

∂ V b δ
∂ y

+ w e = 0 ,

o r

∂ V b δ
∂ y

−
∂ τ w / ρ o f

∂ y
= 0 .

V b δ =
τ w

ρ o f



Buoyancy budget

 
dyVbδ

∂ρb

∂y
=ℑbĝn ds+dy

∂
∂y

κHb
δ

∂ρb

∂y
⎛
⎝⎜

⎞
⎠⎟

Diffusive mass flux at 
upper bdy of bbl

Vbδ
∂ρb

∂y
= κVb

∂ρb

∂z
−κHb

∂ρb

∂y
∂zt

∂y
⎡

⎣
⎢

⎤

⎦
⎥

z=zt

+
∂
∂y

δκHb

∂ρb

∂y
⎛
⎝⎜

⎞
⎠⎟

Continuity of diffusive flux at top of bbl 
yields first term on rhs in terms of interior 
variables.



Final budget for buoyancy in bbl

Vbδ
∂ρb

∂y
=κVI

∂ρI

∂z
−κHI

∂ρI

∂y
∂zt

∂y
+

∂
∂y

δ κHb

∂ρb

∂y
⎡

⎣
⎢

⎤

⎦
⎥

After some algebra

∂
∂y

κHb
δ

∂
∂y

h−δ( )+κHb
δ

τw

ρofκHI

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=κVI

+
τw

ρof
⎛

⎝⎜
⎞

⎠⎟

2

/κHI

Eqn. for δ in terms of which

−
1

ρo f
∂ps

∂y
=

N2

f
δ

∂ h −δ( )
∂y

+ h
τwN2

ρo f 2κHI

+
τw

ρor



velocity in boundary layer, interior velocity

ub =
N2

f
z +h( ) ∂ h−δ( )

∂y
+

τw

ρo fκHI

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
τw

ρor

uI =
N2

f
(z +h)

τw

ρo fκHI

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
N2

f
δ

∂
∂y

h−δ( )+
τw

ρor

Continuous at z=-h+δ

Note that in the absence of stress the bottom velocity in 
the bbl is zero as in MacCready and Rhines



ODE for δ  (1)

Take bottom of form h=-αy. Scale lengths with L and 
thickness of bbl with αL. 

Consider a stress of form. τ w = τ oe− a ( y / L )

d
dy

δ
dδ
dy

− (1+ Fe−ay)δ
⎡

⎣
⎢

⎤

⎦
⎥ = −ΣV − F2ΣHe−2ay

F =
τ o

αρo fκ H I

,

ΣV =
κ VI

κ H b
α 2 , Σ H =

κ H I

κ H b



ODE for δ  (2)

δ
dδ
dy

− (1+ Fe−ay)δ = −ΣV (y − yo)−
F2

2a
e−2ay − e−2ayo⎡⎣ ⎤⎦ΣH +C,

C = δ
dδ
dy

− (1+ Fe−ayo )
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭y=yo

yo is starting point for 
integration (model not 
valid in apex of wedge)

C = δ −
g

αN2ρo

∂ρb

∂y
⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟ y=yo

< 0



Results

The boundary layer thickness with respect to the 

sloping bottom for a =1, Σv = 0.1 , ΣH= 0.05. A 
starting value of δ of half the depth at y = yo = 0.01 
is chosen and C is -0.0025.  F =1 has been used.



Results (2)

For larger diffusion coefficients in the interior

ΣV

ΣH

δ goes to zero well 
beyond the region 
of wind stress.

The interior velocity 
then satisfies the 
zero velocity 
condition 

=0.2

= 0.1



When δ goes to zero

uI =
N2

f
(z +h)

τw

ρo fκHI

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
N2

f
δ

∂
∂y

h−δ( )+
τw

ρor

Ratio of last term to first term then is:

N2H2

f2L2

fL2

κHI

r
Hf

≈
σS
EH

Ev
1/2 =

σS
Ev

1/2

Ev

EH

So again, when 

σ S
E v

1 / 2 >>1 interior velocity satisfies bc.
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