
 

Chapter 11 

 

Internal Waves and Instabilities 

 
11.1 A two layer model for internal waves. 

 
In the last chapter we considered gravity waves in a single fluid layer and discussed 

the frequency and wave number relation,  e.g. the dispersion relation. Not surprisingly, 

we found that for each real wavenumber there was a real frequency. In this chapter we 

will take up the discussion of a fluid whose density is variable and when , as in the last 

chapter, we add the effect of a mean flow we will find situations in which for some real 

wavenumbers the resulting frequency for free waves is a complex number.  We will have 

to interpret just what that means. We will find that in such cases we can consider the 

original, wave-free state as an unstable equilibrium o f the system that can become 

unstable and spontaneously generate waves. This spontaneous generation is the 

fundamental reason for the existence of fluid turbulence and its manifestations in the 

oceans and atmosphere from small scales to the large scales where eddies and synoptic 

scale disturbances occur.  Although the physics of small scale and large scale instabilities 

differ, the overall approach to the question of the dynamics of instability is the same. 

We begin by taking advantage of the relative simplicity of irrotational flow theory. 

That implies that we are considering scales small enough in space and fast enough in time 

so that the rotation of the Earth can be neglected.  Consider the situation shown in Figure 

11.1.1. 
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Figure 11.1.1 Two fluid layers of different densities and mean flows separated by 

an interface z=η. 

Two fluids, each with constant but distinct densities are separated by an interface, 

originally at z =0. In each layer there is a mean flow, uniform in space and time flowing 

in the x direction.  The speed of each of the flows may be distinct from one another.  A 

perturbation is introduced into the system by perturbing the interface a small amount so 

that the interface departs from the z=0 surface by an amount η(x,t).  In each region the 

density is constant, friction is ignored as being negligible and in the absence of planetary 

rotation, motion started from rest will be, and remain, irrotational. Thus in each region 

above and below the interface, 
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where the index j is 1 for the region above the interface and equals 2 for the region below 

the interface.  At the interface the Bernoulli equation in each fluid yields, 
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and the kinematic condition, applied on each side of the interface is, 
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We consider small perturbations to the streaming motion in each layer and the linearized 

forms of (11.1.2) and (11.1.3) are, as in the last chapter, 
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  (11.1.4 a, b) 

 

and, as before, we can apply these boundary conditions on the undisturbed free surface 

position z=0.  For simplicity, we consider the fluid regions each to be semi-infinite in the 

z direction.  Using the results of the last chapter we recognize that this only means that if 

there are lateral boundaries they are much further away from the interface than a 

wavelength of the disturbance.  A wave-like solution of Laplace’s equation in each region 

that satisfies the condition that the disturbance be finite as z becomes very large is, 
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Using (11.1.5) in the kinematic boundary conditions, yields, 
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or eliminating N0 , 
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The dynamic boundary condition applied at the interface requires that the pressure be the 

same in each layer at the interface. Using the Bernoulli equation (11.1.4) we obtain, 
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at z=0.  Or, 
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With the solutions for the velocity potentials and the interface, this leads to a second 

algebraic equation for  A
1
 and A

2
, namely, 

!
"
2
! "

1( )gk
i(U

1
k !# )

A
1
= i"

1
U
1
k !#( )A1 ! i"2 U2

k !#( )A2  (11.1.10) 

We can then use the kinematic condition (11.1.7a)  to eliminate A2 from (11.1.10) and 

obtain,  
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If A1 is not zero, i.e. if the disturbance is  not trivial, then the quantity in the square 

bracket must vanish.  This yield a quadratic equation for ω in terms of k and the 

parameters of the flow. After a little bit of algebra, 
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 (11.1.12) 

With the frequency determined we can easily find the structure of the wave by using the 

conditions (11.1.7 a, b). Of course, in this linear problem the over-all amplitude of the 

disturbance is arbitrary. But what we  are interested in is the behavior in time and the x 

and z structure of the disturbance.   

To gain insight in to the result (11.1.12) it is helpful to consider some special cases. 

 



 5 
chapter 11 

a) U
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The shear is set to zero and the upper layer has negligible density with respect to the 

lower layer so the system should mimic the simple gravity wave problem of Chapter 10. 

In fact (11.1.12) reduces to ; 

 

 ! = ± gk( )
1/2   (11.1.13) 

which is exactly the dispersion relation for a single layer in the short wave limit (short 

with respect to the depth) . See (10.4.34). 

b) U
1
! 0, U

2
! 0,

"
1

"
2

# 0 , 

 Again, the density of the upper layer is negligible with respect to the lower 

layer so that even though there is now a shear across the interface there is no dynamical 

interaction of the two layers and the frequency is, 
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and the result is identical to the short wave (large depth ) limit of (10.5.7), i.e. the gravity 

wave Doppler shifted by the mean current. 
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Still in the absence of shear across the interface, there is now a jump in density less 

than ρ2 and the frequency is, 
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The form of the dispersion relation is exactly the same as for the single fluid model but, 

and this is true especially if the two densities are nearly equal, the frequency of the wave 

is much less than the single layer model since in that case , 
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The frequency is reduced since gravity, g is replaced by g’ which is called the reduced 

gravity. The free waves has relatively low frequencies with respect to the single layer 

model and the resulting motion seems to the observer beautifully sinuous.  Returning to 

(11.1.7a), the velocity potentials in the two layers have opposite signs and so the x-

velocity in the two layers will be equal and opposite and will be decaying away from the 

interface. Within a wavelength the motion will be exponentially small.  If we considered  

a system with a free, upper surface as well as this interface, the motion due to these 

waves on the interface will tend to be limited to regions near the interface and be nearly 

unobservable at the surface. For that reason these waves are called internal waves.  

If the two layers are shallow compared to a wavelength, the frequency of the 

internal wave is, 

 

  ! = ±k g 'D( )
1/2  (11.1.18) 

 

In a famous experiment  (Figure 11.1.2) , Ekman was able to explain the immense 

difficulty Norwegian, weakly powered , fishing boats had in making their way along 

narrow fjords in which the fresh surface water  and the saltier ocean water  combined to 

make a perfect environment for internal wave generation. When a vessel was moving at 

or near the velocity g 'D( )
1/2 the propulsive energy of the ship was used to make internal 

waves instead of propelling the boat.  It was locally called “dead water”. The locals knew 

they could solve the problem by moving at a different velocity but the explanation had to 

wait for the theory of internal gravity waves.  
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Figure 11.1.2 A reproduction of Ekman’s experiment towing a model boat in a two 

-layer  fresh/salty water  system showing the production of internal gravity waves. The 

figure is from  A. Defant, Physical Oceanography,  vol. II Pergamon Press, 1961. 
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and so the time dependence of  the potential function becomes, 

 e
! i" t

= e
±# t   (11.1.20) 

The root with the plus sign will yield exponentially growing solutions in time. This 

reflects the instability of the basic state that has heavy fluid on top of light fluid. A small 

disturbance will immediately cause the interface to explode in a series of plumes of 

sinking heavy water and rising lighter water. Note that the growth  rate, σ , is larger for 

larger k, i.e. for shorter waves, leading to narrow regions of rising and sinking motion. 
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This is the fundamental region why cumulus  clouds are so narrow in the atmosphere. Of 

course, when the scale gets very small both friction and thermal diffusion become 

important and the full theory of thermal convection informs us that a certain density 

difference is required to overcome the  loss of energy experienced by the plumes before 

convection can occur but  a discussion of this interesting subject is beyond the scope of 

this introductory course. 
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In this example the is no density variation in the fluid but the velocities  of the mean 

flow are different in each layer and so now, 
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The first term on the right hand side of (11.1.21) is just the Doppler shift of the frequency 

by an amount that depends on the average of the velocities of the two streams. The 

second  term is more interesting. It always yields an imaginary contribution to the 

frequency and the corresponding growth rate is larger the small the wavelength o f the 

disturbance.  This a shear instability and  is also called a Helmholtz instability, named for 

the great German physicist who first studied it.  Strong shears will give rise to these small 

scale instabilities and they are the fundamental mechanism for small scale turbulence in 

the atmosphere and the oceans.  The general argument for a continuous profile of velocity 

is as follows: 

Consider a flow in the x direction, as shown in Figure 11.1.3. For definiteness let’s 

suppose is rests between two horizontal plates and, for the moment, let’s ignore friction. 

 

  

 

 

 

Figure 11.1.3 A velocity profile U(z) showing the mean velocity Um as the textured 

line. 
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If the vertical extent of the region is D then the total momentum for the flow in the 

ex direction is (assuming constant density) 

 M = ! udz
0
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" = !DU
m

  (11.1.22) 

Since there is no friction to be considered this total momentum of the flow must be 

conserved since there is no net force acting in the x direction to change it. Now consider 

the total energy of the flow whose general velocity is, 

 u =U
m
+ u '   (11.1.23) 

The kinetic energy is, 
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so that the mean flow possesses the minimum energy consistent with the conservation of 

momentum when its velocity profile coincides with the uniform flow Um. Any 

disturbance that can smooth the velocity profile and reduce its departure from the mean 

will reduce the energy in the mean flow and since total energy is conserved that energy is 

then available for eddying, turbulent motion. For a given mean flow, the stronger the 

shear the more energy is available to feed the instability and produce growth of the 

perturbation and subsequent turbulence. 

The mechanism for the original growth of the disturbance is as follows: Consider 

the interface as it begins to deform as shown in Figure 11.1.4. 

 

 

 

 

 

 

Figure 11.1.5 The schematic to discuss the pressure distribution on the interface 
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Let us move with the average of the velocities so the mean flow is equal and 

opposite in the two layers.  The wave is not propagating in this frame.  As the interface is 

deformed the flow speeds up over the crest of the wave  (much like the flow around the 

cylinder studied in section 10.3). Since !u / !t > 0  there that means the pressure gradient 

will be negative at the crest since, 

 u
t
+ uu

x
= !

p
x

"
  (11.1.25) 

and u
x
is zero at the crest by symmetry.  That also implies that upstream of the crest, at 

the point a in the figure, the pressure will be higher  than at point b. So the mean flow 

will be doing work on the rippled interface delivering energy to the disturbance and this 

accounts for its growth. You should check that the same argument works in the lower 

layer. 

Just as for the case when the densities destabilized the system we must not take the 

prediction of ever increasing growth rate with increasing k seriously. For large k  friction 

will be important but more important yet is that as the scale of the wave shrinks the 

idealization of the shear layer as being infinitely sharp becomes unrealistic. For 

continuous shear profiles, even sharp ones there is usually a wavenumber beyond which 

disturbances are stable. 
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This is the general case and we are prepared for the nature of the result. The density 

structure is stable and by itself will support stable internal waves due to the gravitational 

restoring force that occurs when heavy fluid is lifted into lighter fluid. On the other  hand 

the shear will act to destabilize the flow.  According to 11.1.12 instability, called Kelvin-

Helmholtz Instability  will occur whenever the radicand in that equation becomes  

negative or whenever the shear is strong enough i.e., 
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Note that the condition is scale dependent. According to (11.1.26) short enough waves 

will always be unstable.  This is a flaw in the model as noted earlier. For very small 

wavelength the detailed structure of the shear zone can’t be ignored and when the 

wavelength is of the same order as the width of the shear zone the buoyancy forces can 

stabilize the shear layer.  

These disturbances are often visible in the sky as rolling billow waves.  Some years  

ago John Woods  (J. Fluid Mech. 1968 vol 32pp 791-800) photographed the phenomenon 

on a shallow thermocline in the Mediterranean and his beautiful photos are shown in 

Figure 11.1.6. 
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11.2 The Richardson number 

 

We can generalize the condition (11.1.26) thanks to a beautiful theorem proved by 

L.N. Howard , 1961, J. Fluid Mech. 10,509-512 which clarified an earlier but more 

complex proof by John Miles (same issue of the journal).  But first let us consider  what 

the qualitative condition, in general, might be. Over a region δz the amount of kinetic 

energy available for  transformation into perturbations  (11.1.24) will  be of the order of  

 !"U 2 # !
dU

dz
$z%

&'
(
)*
2

  (11.2.1) 

while the energy expended by raising a fluid element in a background stratification is the 

buoyancy restoring force times the distance moved, !"g#z . But since !" #
d"

dz
$z , the 

energy used to fight the stable stratification is, 
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2   (11.2.2) 

so that the ratio of the energy available to drive the instability compared to the energy 

used up in fighting the stabilizing effect of buoyancy is the ratio of these two expressions. 

Traditionally, the ratio is measured the other way around, i.e. the ratio of the energy 

expended against gravity with respect tot he shear energy available to drive the instability 

is, 
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This non dimensional parameter is called the Richardson number.  For a stratified fluid, 

as we defined it in section 9.3 the buoyancy frequency N  is 
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  (11.2.4) 

so that the Richardson number is    
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For an atmospheric flow the buoyancy frequency is defined in terms of the potential 

temperature, θ, so that  
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And from simple physical reasoning we can expect that the condition for instability will 

be that Ri must be less than some critical value for instability.  We shall show, following 

Howard’s proof , that the critical value is exactly 0.25. 

 

Consider a mean flow in the x direction U(z) and suppose we add a small 

perturbation,  (u’,w’) to the velocity.  We will also assume for simplicity that  the density 

field is composed of a mean density ρs (z) and a perturbation ρ’(x,z,t) and similarly for 

the pressure.  Furthermore, as in the oceanic case the mean density is very nearly equal to 

its average  ρ0 so that in the horizontal  acceleration terms the density can be replaced by 

this constant value,  i.e. the Boussinesq  approximation.  Our linearized equations of 

motion, ignoring friction and assuming the scale is small enough to ignore the effect of 

planetary rotation is:, 
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Cross differentiating the first two equation in x and z to eliminate  the pressure yields an 

equation for the y component of the vorticity,  ! =
"u '

"z
#
"w '

"x
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We define the differential operator, 
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so that (11.2.8) and (11.2.7 d) are , 
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and using (11.2.10 b ) to eliminate the density perturbation from (11.2.10 a) we obtain, 
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Since the motion is two dimensional and incompressible (but not irrotational) we can 

introduce a stream function, 
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z
, w ="

x
  (11.2.12)  

so that , 
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allowing us to write (11.2.11) entirely in terms of ! , 
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This equation is sometimes called the Taylor-Goldstein  equation and has been studied 

for many particular velocity  profiles U(z) and in many case detailed calculations have 

indicated that the Richardson number,  that is the ratio N 2
/U

z

2  had to be somewhere in 

the flow less than 1/4 for instability to arise. Many people felt that there had to be some 

universal criterion of that type but it was not until John Miles presented his proof that it 

was successfully derived. Miles’ proof is rather complex and  accompanied with 

restrictions on the analytic nature of N and U. Howard, in reviewing the paper found a 

much simpler  proof which we present here. 

We look for solutions of (11.2.14) in the form, 

 

 ! = "eik[x#ct ]   (11.2.15) 

where it is the real part of the expression that is implied.  The boundary conditions at  the 

horizontal boundaries, say at  z=0 and z=H are that w’ =0. That implies that φ is zero at 

those boundaries. Using (11.2.15) in (11.2.14) yields, 
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Howard suggested introducing the function , 
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in terms of which, 
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The governing equation for ! then becomes the following equation for G, 
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with boundary conditions Gz=0,       z=0 , H. We can think of (11.1.19) as an eigenvalue  

problem for the phase speed c for a given k. If c has an imaginary  part greater than zero 

the flow will be unstable.  Note that since (11.2.19) has real coefficients if G is a solution 

with an eigenvalue c then G* (the complex conjugate) will  also be a solution with 

eigenvalue c*, a result easily obtained by taking the complex conjugate of  (11.2.19). 

Thus a condition for instability is simply that (11.2.19) have a solution with a complex c. 

As in the usual eigenvalue problems  we obtain useful information about the 

eigenvalue by multiplying the equation by  the complex conjugate of the eigenfunction 

and integrating over the interval (0,H). We note that, 
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and the first term on the right hand side vanishes since G and its complex conjugate 

vanish at the end points. The resulting integral of the equation is, 
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In the factor of the last term on the left hand side we write, 

 

0 
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Our final step is to take the imaginary part of (11.2.21) using (11.2.22). Only the first and 

third terms in (11.2.21) contribute and each in proportional to  ci the imaginary part  of c. 

We obtain, 
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For instability we must have c
i
different from zero. This means the sum of the two 

integrals in the square brackets of (11.2.23) must vanish.  However, the first integral is 

always positive. Therefore if, in the second integral,  N 2
>
1

4
U

z

2  everywhere in the flow 

ci would have to be zero and the flow would be stable to small perturbations.  Therefore, 

a necessary condition  for instability is that, at least somewhere in the flow, the 

Richardson number must be less than 1/4. In fact in many cases studied this necessary 

condition turns out to be sufficient. Observations have also confirmed the pertinence of 

the criterion. Eriksen (J.G.R, 1978, vol. 83 2989-3009) examined long term 

measurements of breaking internal gravity waves near Bermuda and presented  a scatter 

plot of the measured shear and buoyancy frequency when wave breaking turbulence was 

observed. His scatter plot is shown below in Figure 11.2.1. The straight line in the figure 

is the line Ri =1/4 and it is clear that the Richardson number accompanying most of the 

observations of wave breaking were in the range less than 1/4 (note the inversion of the 

axes) Similar observations in the atmosphere have reached similar results, at least 

qualitatively. 
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Figure 11.2.1 A scatter plot of showing the location of observations in Uz ,N space where 

internal gravity wave  breaking is observed (from Eriksen , 1978) 

 

11.3 Baroclinic Instability 

 

Another type of instability also involving shear and buoyancy effects occurs on 

much larger scales in both the atmosphere and the oceans for which the Earth’s rotation is 

crucial for the existence of the instability. This is the so-called baroclinic instability. The 

essence of the phenomenon can be qualitatively understood by considering the thermal 

wind and hydrostatic equations. Again, for simplicity we well use the dynamics of an 

incompressible fluid but the discussion for the atmosphere is nearly identical with 

potential temperature taking the place of the density.   
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As we have seen, the thermal wind equations for an incompressible fluid yield, in the 

zonal (i.e. x) direction, (see eqn. 9.2.25) 
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so that the slope of the density surfaces in the y.z plane is, 
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as shown in Figure 11.3.1 

 

 

 

 

 

 

 

 

 

Figure 11.3.1 The slope of the density surfaces in the presence of a zonal (x) velocity 

increasing in z. 

 

The slope is generally small, in the oceanic case in mid-latitudes it is not larger than 10-3 

but the slope is nevertheless dynamically significant. Consider the virtual (i.e. imagined) 

displacement of the fluid elements shown in Figure 11.3.2. 
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Figure 11.3.3 The position of three fluid elements in position before virtual 

displacements. The direction of the density gradient is also shown. 

 

Element A is below both the elements B and C. Element C is directly above 

element A and in an ocean (or atmosphere) stably stratified it will be lighter than element 

A. If we imagine A lifted slowly to the position of C, the element A would be heavier 

than C and would tend to sink back down towards its original position due to a 

gravitational restoring force. On the other hand, with the sloping density surfaces as 

shown in the figure, element A is lighter than element B even though B is higher than 

element A i.e. at a geopotential surface above it. Thus, if we imagine A moved to the 

position of B, it will arrive at B and be lighter than the surrounding fluid and so the 

buoyancy force acting on it will actually tend to encourage a further motion along that 

direction. 

To calculated the force on the displaced element A at point B we need only 

calculate the Archimedean buoyancy force per unit mass as, 
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assuming the original positions of A and B are close enough for a Taylor Series 

expansion to provide us with an estimate of the density difference, Thus the vertical 

buoyancy force per unit mass is, 
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Figure 11.3.4 The displacement of fluid element A at an angle φ with respect to the 

horizontal where tan! =
"z

"y
  and δs is the distance of the displacement. 

 

The component of the gravitational force along the displacement path, measured positive 

in the direction of the displacement  is  

δy 
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Now consider different displacements. If A is moved to the position of C, δy is zero 

and the force in the direction of the displacement is just !N 2
"s  and we recognize this as 

the restoring “spring constant” force of a mass spring oscillator whose natural frequency 

is N. Indeed, this is why N is called the buoyancy frequency. The restoring force is 

positive as long as N is real representing a stable stratification. If, on the other hand, the 

displacement is made such that ! <" , i.e. the displacement lies within the wedge opened 

up by the sloping density surfaces, then the force in the direction of the displacement will 

be positive, not restoring at all, but instead will push the element further from its original 

position. Thus we anticipate that fluid displacements that take place in the wedge 

between the horizontal (i.e. the geopotential ) and the sloping density surface as shown in 

Figure 11.3.1, will release energy and that the result will be an instability of the original 

zonal flow. The resulting instability is called baroclinic instability because the source of 

the instability is the sloping density surfaces and the instability can be shown to manifest 

itself as a growing wave which in the atmosphere can be identified as a synoptic scale 

weather disturbance and in the ocean in the form of mid-ocean eddies.  

We can estimate the characteristic scale of the disturbance as follows: 

For instability, 
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We need to make an estimate of the ratio of the vertical to horizontal velocity. If D is the 

vertical scale of the motion and L  is the vertical scale of the motion then from 

geometrical arguments and the constraint of the continuity equation we might imagine 

that a good estimate of w/v would be D/L . However, we also noted in section 9.2 that if 

the motion was in quasi-geostrophic balance the horizontal velocity would be non 

divergent to lowest order and the continuity equation at that order will not produce a 

vertical velocity. On the synoptic scale the vertical velocity is produced by the departures 

from geostrophy. We can use the vorticity equation for the vertical component of 

vorticity to estimate w. To lowest order in Rossby number, 

 d!

dt
+ "v = fo

#w

#z
  (11.3.7) 

where ! = v
x
" u

y . If U is a characteristic horizontal velocity, the first term on the left 

hand side is of order, 
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and if this is balanced by the stretching term on the right hand side which is order 

fo
w
D

our estimate for the ratio, w/v would be, 
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and using (11.3.6) we obtain, 
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or for instability the requirement is that the horizontal scale of the perturbation satisfy, 
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or that L exceed the Rossby deformation radius ND/f0. Detailed calculations show that the 

maximum growth rate occurs when the scale of the perturbation is of the order of the 

deformation radius but somewhat larger. This leads to scales of the order of 500 km for 

the atmosphere and 50 km for the oceans and this is precisely the synoptic scale in both 

fluids.  

We can make an educated guess about the growth rates as follows. As in section 

11.1 the growth rate will be the imaginary part of the phase speed of the disturbance and 

we can imagine that the phase speed will be of the order of the flow in which the 

disturbance is embedded. If the disturbance went much faster than the flow it would not 

“see” the shear, the fluid would appear to be essentially at rest and we would not expect 

instability in such a case. We therefore anticipate that, 

 

 Im(c) !U !U
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D   (11.3.12) 

In fact, there is a theorem, originally due to Howard (same reference as for the 

Richardson number proof) that supports this heuristic reasoning. The frequency is the 

wavenumber times the phase speed and the wavenumber is essentially the inverse of the 

characteristic length of the disturbance and we have already noted that the length will be 

of the order of the deformation radius. We therefore anticipate a growth rate, 
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also confirmed by detailed calculations (see GFD chapter 7). 

 

  


