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Abstract— We examine the challenges to underwater vision
that are caused by light refracting through both hemispherical
and planar pressure housing interfaces. As light travels through
water, into a pressure housing, and finally into a camera, it
is bent according to Snell’s law, rendering the typically-used
perspective camera model invalid. Through numerical simulation,
we examine the degree to which the incorrect perspective model
results in 2-D image distortion, and errors in 3-D scene recon-
struction computed using stereo vision or structure from motion.
We focus on the use of hemispherical pressure housing interfaces
with imperfectly mounted cameras, and include comparisons with
cameras behind planar interfaces. We also address the problem of
calibrating a camera model which takes into account the physical
parameters of the pressure housing interface.

I. INTRODUCTION

High-quality digital cameras are increasingly being used
on AUVs and ROVs to produce dense image sets of the sea
floor. While these images are useful data products in and of
themselves (especially when combined into photomosaics [1]),
three-dimensional terrain models represent the next advance in
underwater imaging.

Acoustic techniques can produce high-resolution depth
maps [2], but without visual texture information. Optical
systems can provide very high resolution (on the order of 0.045
degrees per imaged pixel) with low power consumption, and
produce images that humans find easy to interpret. Techniques
from photogrammetry and computer vision, including stereo
vision and structure from motion [3] [4], combine several
images of a single scene into a three-dimensional map. These
techniques extract depth information by triangulating two or
more views of a point in the world, and, with sufficiently
many views, may also compute the locations and internal
geometries of the cameras used to capture the images. While
these techniques are well-understood in air [5], they have yet
to be widely used underwater, particularly when cameras are
attached to moving vehicles (though see [6] and [7]). This
is partially because of the sheer difficulty in building and
deploying underwater vehicles and cameras, but it is also
because of the additional complications brought by the un-
derwater environment, including lighting restrictions, optical
backscatter, and refraction.

In this paper we address the errors induced by refraction,
when cameras are mounted behind hemispherical or planar
air/water interfaces. We begin with an examination of the

underlying physics (section II). We examine both the 2-D
pixel error induced by assuming that no refraction is taking
place (section III), and the corresponding 3-D error induced
by triangulating corresponding pixels from multiple views
(section IV). We then turn to the problem of calibrating a
camera rig to capture the correct physical characteristics of a
system (section V), before a general discussion in section VI.

II. BACKGROUND

In order to construct a 3-D scene model from a sequence
of images, one must have geometric models of the camera
and its motion, and the correspondences between pixels in a
sequence of images. In air, a camera is typically modelled
as a pinhole and an imaging plane, which yields an image
formed by perspective projection. This model is nice to work
with, because perspective projection is a linear operation
(when projective geometry is used), and because the geometric
relationship between a set of cameras imaging a single point
in space induces a constraint (the epipolar constraint) that
simplifies the search for a matching pixel in one image to a
single straight line in any other image. (Other camera models
also induce epipolar constraints, but the epipolar curves are
typically not straight lines [8]).

If a camera is to work underwater, it must be enclosed in a
pressure housing with a transparent interface that allows light
to pass from the water into the camera’s lens. This leads to
refraction, as the light must pass through several media before
it reaches the sensor: a ray of light is bent twice as it moves
from the water into the camera, once when it transitions from
water to glass, and again when it transitions from glass to
air. The amount of bending is dictated by Snell’s Law, and it
depends on the angle between the ray of light and the surface
normal of the interface, and the indices of refraction of the
media: n1 sin θ1 = n2 sin θ2. For this paper, we assume nair =
1, nwater = 1.333, and nglass = 1.46. Clearly, if a ray of light
passes through a change in media such that the light ray and
the surface normal of the boundary are the same (i.e. θ1 = 0),
then no bending takes place. In general, however, refraction
causes a dispartity between apparent light direction, and true
light direction, as illustrated in figure 1.



Fig. 1. Refraction of light from water to air through a hemispherical interface. The straight black line is the apparent path of a light ray, while the blue lines
show the true path. The green lines show surface normals where the light moves from one medium to another. The angles are exaggerated.

Perspective Projection

Because the cameras we use underwater are well-modeled
by perspective projection when they are used in air, we
start with the perspective model, and extend it to encompass
external refraction. The procedure for computing the mapping
between points in space and their images relies on the per-
spective model, which we briefly describe here.

Perspective projection is the process by which a point in
(3-D) space maps to a (2-D) pixel on an image plane. It models
an ideal pinhole camera, which is approximated by most non-
telephoto lenses used in underwater applications. The model
makes use of projective geometry, to keep operations linear
(see [4] for a much more thorough discussion of perspective
projection and projective geometry).

Points X in projective 3-space (P3) map to pixels x in
projective 2-space (P2) via a 3×4 matrix H: x = HX. Actual
pixels (x, y) on the image plane are found from homogeneous
pixels x by scaling x = [x̃, ỹ, w̃]T by so that the third
coordinate is one, i.e. [x, y] = (1/w̃)[x̃, ỹ]. The matrix H
describes the external and internal camera parameters, and can
be broken down as H = K[R|t], where

K =

fx γ cx
0 fy cy
0 0 1


describes the internal parameters: fx and fy are the focal
length of the system, in units of pixel sizes in the x and y pixel
directions; cx and cy are the pixel numbers of the “principal
point” where the optical axis intersects the image plane; and γ
is the skew factor, which captures any nonzero angle between
the x and y pixel directions.

The matrix R is a 3 × 3 rotation matrix, and t is a 3 × 1
translation vector, which together decribe the location of the

camera in space. The matrix T = [R|t] transforms points
referenced to some external frame to the “camera coordinate
frame,” in which the center of projection is at the origin, the x
and y axes are parallel to the x and y directions on the image
plane, and z points out from the center of projection through
the lens and into space.

In addition to the linear operation of projection, the per-
spective model also includes nonlinear terms to capture lens
distortion. We use a 4-parameter model, which includes two
terms each for radial (κ1 and κ2) and tangential (ρ1 and ρ2)
distortion; this model is also used by Bouguet’s MATLAB
camera calibration toolbox [9], and by the OpenCV computer
vision library [10], inspired by [11]. In this model, observed
(distorted) pixels (x̂, ŷ) are related to ideal pixels (x, y) by

x̄ = (x− cx)/fx

ȳ = (y − cy)/fy

r2 = x̄2 + ȳ2

x̂ = x+ (x− cx)(κ1r
2 + κ2r

4 + 2ρ1ȳ + ρ2(r2/x̄+ 2x̄))

ŷ = y + (y − cy)(κ1r
2 + κ2r

4 + 2ρ2x̄+ ρ1(r2/ȳ + 2ȳ))

When projecting a point to a pixel, first the linear op-
eration x = HX is performed, the coordinates are “de-
homogeneized,” and then the observed pixel is found using
the above equations. When computing a ray corresponding to
a pixel, the above equations are first inverted (numerically) to
find the “ideal” pixel location, and then the ray is determined
using

l0 = −RTt

l1 = RT

(x− cx)/fx

(y − cy)/fy

1

 = RTK−1

xy
1





The point l0 is the camera center, in world coordinates, and
the vector l1 points in the direction of the pixel on the image
plane, rotated into world coordinates. A point X is on the ray
if X = l0 + λl1 for some λ.

Underwater Cameras and Spherical Interfaces

There are two schools of thought on interface design: one
can use a flat piece of acrylic or glass (basically a thick
window), or one can use a hemisphere of similar material.
Planar interfaces have the advantages that they are less ex-
pensive and easier to work with than hemispherical interfaces,
and the disadvantages of reduced field-of-view, and increased
distortion due to refraction. An examination of flat refractive
geometry is presented in [12]. When a hemispherical interface
is used with a pinhole camera, and the center of projection
is positioned at the center of the sphere, all refractive dis-
tortion from the hemisphere is eliminated, because all light
rays passing through the center of projection of the camera
are orthogonal to the interior and exterior surfaces of the
hemisphere.

A pinhole camera perfectly mounted to a hemispherical
interface can be calibrated in air using standard techniques
[13], and the calibration will still be valid in water. A perfect
mount is difficult mechanically, however, particularly when
performed at sea. If the camera center is translated at all
from the center of the hemisphere, nonlinear distortions are
induced. Moreover, because refraction takes place away from
the camera’s center of projection, and because the degree of
bending varies from pixel to pixel, the perspective model is
no longer valid. Incoming light rays no longer intersect at a
single point. Perhaps more disturbingly, the image of a straight
line in space is no longer straight, so the perspective epipolar
constraint (the “fundamental matrix” [14]) fails.

A planar interface can be thought of as a hemispherical
interface with an infinite radius. This implies that the ideal
housing would position a camera infinitely far from the inter-
face, which is clearly impractical. Sticking with the perspective
model, then, will always lead to some kind of error in the
mapping from points in space to pixels. The error in the planar
case is also likely to be more extreme than in the hemispherical
case, because the displacement from the optimal position will
be greater.

Since the perspective camera model fails in these cases, it
makes sense to use a physics-baesd model instead. Grossberg
and Nayar’s “raxel” model [15] is a nice starting point; it
simply maps pixels to the rays in space which they image,
which don’t necessarily converge in a single point. While
their model uses rays attached to an imaging system’s caustic
surface, in this case it is perhaps more natural to use the
surface of the glass/water interface itself, and to retain the
perspective model as valid inside the pressure housing.

To map a pixel to the ray it images, the point on the interior
of the interface can be found using the perspective model as
described above, and finding the intersection of the ray with
the interior boundary of the interface. Then, we follow the
light ray through the interface, bending it as necessary, to the

point where it reaches the water, where it bends again. The
imaged raxel is characterized by this point on the exterior of
the interface, and the direction given by Snell’s law:
• Pixel to interior of interface:

l0 = [0, 0, 0]T

l1 = K−1x

pi = intersection of line (l0, l1) with interior of interface

θair = angle between line and interface normal at pi

θg1 = arcsin
sin θair

nglass

qi = surface normal at pi rotated by θg1

• Interior of interface to exterior of interface:

(l2, l3) = line defined by pi and qi

pe = intersection of line (l2, l3) with exterior of interface

θg2 = angle between line and interface normal at pe

• Exterior of interface into water:

θwater = arcsin
sin θg2

nwater

qe = surface normal at pe rotated by θwater

These calcuations yield a description of the imaged raxel in
the camera’s local coordinate frame. The ray starts at pe and
points in the direction of qe.

There are many ways to rotate vectors in 3-D. In our
implementation, we compute θair by taking vector dot products,
and then compute the direction of the ray as it is bent by
rotating the local normal vector by θg1 about the axis given
by the cross product between the local normal vector and
the incoming ray. The rotation itself can be carried out using
unit quaternions. Care must be taken in degenerate cases (for
example, if θair is very near zero, or if the center of projection
is very close to the interface), but these are easy to catch.
The orientation of the vector exiting the interface is computed
similarly.

The image formation model, mapping points in space to
their images, inverts the process described above; because of
the trigonometry involved we compute the inverse numerically.
Once the correct point on the interior of the interface is found,
the imaged pixel is computed using the perspective projection
model.

A full model of imaging systems with hemispherical or pla-
nar air/water interfaces must take into account the relationship
between the camera and the interface, as well as the properties
of the interface itself (sphere radius, and glass thickness).
It is worth noting that symmetries reduce the number of
degrees of freedom (DOF) in both cases from 6 to 3. In the
hemispherical case, camera rotation can be thought of as an
extrinsic property, while in the planar case, camera translation
parallel to the interface, as well as rotation about the optical
axis, can be thought of as extrinsic properties. In other words,
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Fig. 2. Pixel distortion for an example set up, using a 1-megapixel camera
with a 90-degree field of view. This image simulates 2.6 mm of camera
displacement from the center of a hemisphere with radius 8 cm and thickness
2.54 cm. Simulated object distance averages 3 meters from the sphere, with
standard deviation of 50 cm.

these motions of a camera inside a pressure housing do not
affect the magnitude of the bending of light rays, rather just
the direction of the bending, and so they can be modelled as
motions of the pressure housing itself.

III. 2-D PIXEL ERROR

Given that a camera perfectly mounted inside a sphere
can be calibrated in air, it is useful to get a feel for how
severely distorted images will be when the mount is not
perfect. Because the amount of distortion depends on both the
camera motion inside the sphere (three degrees of freedom)
and the distance to the objects being viewed (most generally
one degree of freedom for each imaged pixel), it is difficult
to visualize the distortion. It is straightforward to simulate the
distortion for a typical case, however, as shown in figure 2.
The figure was generated by measuring the pixel displacements
between an ideal camera with known parameters

K =

500 0 500
0 500 500
0 0 1


and no lens distortion viewing a “noisy plane” 3 meters away
and parallel to the image plane, and the same camera viewing
the same points, but placed behind an hemispherical interface
and accounting for refraction. In this particular set up, the
hemisphere is 2.54 centimeters thick, with radius 8 centime-
ters, and the camera is located at (0.0013, 0.001,−0.002)
meters relative to the center of the sphere. This is the pixel
error in the “point-to-pixel” computation described above
when using these parameters.

It is not likely that someone interested in underwater pho-
togrammetry would calibrate their camera in air and assume
that the mount inside the pressure housing would be perfect.
Typically, one instead calibrates the camera in water, using
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Fig. 3. Distortion after optimal recalibration in water (root mean squared
error is 0.036 pixels), using perspective model with lens distortion.

something like the MATLAB calibration toolbox. The perspec-
tive model does not account for refraction, however, so this
“wet calibration” will still result in distorted images. Figure
3 shows the error using the recalibrated perspective model.
In this simulated case, because there is perfect knowledge of
the 3-D location that each pixel images, it is possible to do
an “optimal” calibration, as described in [4]. The recovered
model has

K =

496.6660 0.0279 496.1866
0 496.6598 497.0628
0 0 1.0000


(κ1, κ2, ρ1, ρ2) = (−0.0029, 0.0003,−0.0012,−0.0016)

The model is good enough to reduce distortion to far less than
one pixel width on average, but the distortion still depends on
the distance from camera to the object, and so will increase
as the camera moves closer to or further from the observed
scene.

To visualize how the camera displacement affects image
distortion using this optimal in-water calibration, we ran the
same simulation described above 800 times, starting with the
simulated camera positioned at the center of the hemisphere,
and each time moving the camera 25 micrometers further
from the center, along the same direction vector used above.
For each resulting distortion map, we pulled the distortions
along the main diagonal, and stacked them, producing figure
4. This way, the y axis of the figure cooresponds to camera
displacement, the x axis corresponds to pixel number, and
the color corresponds to displacement, as above. Clearly, as
the camera moves further from the center of the hemisphere,
the effectiveness of the perspective camera model with lens
distortion at compensating for refraction diminishes.

For comparison, we repeated the simulations with a planar
interface, varying the camera location from zero to 2 centime-
ters from the interface, while at the same time varying camera
rotation from zero to 2 degrees about the line x = y in the
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Fig. 4. Pixel distortion as a function of camera displacement from the center
of the sphere. Each line in this image is taken from the diagonal of an image
like that shown in figure 3. The shape of the surface depends on the direction
of camera displacement, but the magnitude increases as the camera moves
from the center of the sphere, regardless of the direction it moves in.
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Fig. 5. Pixel distortion along the diagonal of each of 800 images taken
at different camera-plane distances. The error increases dramatically near the
image corners, but does not significantly change as the camera moves relative
to the planar interface.

image plane. The summary image is shown in 5. It is worth
noting that the error does not change as much over the course
of the simulation as it did in the case of the spherical interface.
This may be because the dominant source of error is induced
by displacement alone, which produces a symmetric distortion
that can be handled to a reasonable extent by lens distortion
terms. The error jumps significantly near the corners of the
images (seen by the bands near the left and right edges of the
error figure), which shows the limitations of using only four
terms for radial and tangential distortion.

A more direct comparison between planar and hemispheri-
cal interfaces is shown in figure 6. It is worth noting that the
overall RMS distortion decreases as the camera moves further
from the planar interface with no rotation. This appears to be
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Fig. 6. Pixel distortion in four different cases. The first three cases are
for planar interfaces. In the first case, the camera is translated away from the
interface from zero to two centimeters. In the second case, the camera is fixed
at one centimeter from the interface, and is rotation from zero to two degrees.
In the third case, which is hard to distinguish from the second, both rotation
and translation happen simultaneously. The fourth case shows displacement
only for a camera with a hemispherical interface.

in conflict with the results of [12], but in fact is not: in this
case we’re examining actual pixel displacements and using
a model that includes lens distortion, rather than examining
the size of the system’s caustic surface. Rotation has a much
more detrimental effect on refraction-induced distortion with
a planar interface, because of its inherent asymmetry. For
reasonable camera displacements, the hemispherical interface
always yields less error than the planar interface.

IV. 3-D RECONSTRUCTION ERROR

Even though unmodelled refraction causes the perspective
epipolar constraint to fail, it is still possible to find corre-
spondences between multiple views of the same scene, and
then to triangulate rays from the corresponding pixels into
depth estimates. When using the standard perspective model,
the depth estimates will be incorrect, because the pixel-to-ray
mapping is wrong. Even if one were to compensate for all
2-D error by adding higher-order lens distortion terms, the
3-D mapping will still be incorrect, because the rays that are
actually imaged by the system do not intersect in a single
point, which is assumed by the perspective model.

To quantify the 3-D reconstruction error, we take the simu-
lations described above one step further. We compare the esti-
mated locations of 3-D points computed given perfect image-
to-image correspondences, and using the physics-based models
and the optimal (but incorrect) “wet-calibrated” perspective
models described above:

• Use the physics-based model to compute which points on
a simulated plane 3 meters from the camera are imaged
(pixel-to-ray step).

• Use the physics-based model to compute which pixels
image these points when the camera has moved 0.75
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Fig. 7. Reconstruction error for known corresponding points between a
pair of images. The simulated camera motion is 75cm, and the distance
to the imaged plane is 3m. The correct reconstruction is in red, while the
reconstruction without modelling refraction is in blue.

meters (point-to-pixel step). Some of these pixels will
be outside the camera’s field of view.

• Use the perspective model to compute rays for these
corresponding pixels (pixel-to-ray step with perspective
model).

• Triangulate these rays to compute depth estimates. We do
this by finding the 3-D point that has the minimum sum
of squared distances to the two rays.

We repeated these steps using both a hemispherical interface
and a planar interface, with the same glass thickness and
sphere radius used above. For the hemispherical case, the
camera was located at (0.0013, 0.001,−0.002) meters relative
to the sphere center, as before, for the planar case, the camera
was 5 millimeters behind the plane, rotated one degree about
the x = y line. The spherical reconstruction error is shown in
figure 7, and the planar reconstruction error is shown in figure
8. There is less error in the hemispherical case (generally less
than a millimeter) than in the planar case (on the order of
about a centimeter). In fact, the error induced by unmodelled
refraction is likely to be less than that caused by imperfect
estimates of camera motion in this particular case of a single
stereo pair. The shape of the error surface is perhaps the
most interesting result of the simulation – clearly it is not an
easily-modeled function, and if one were to attempt to build a
large 3-D model from several overlapping sets of images, the
accumulated error caused by the unmodelled refraction would
quickly lead to inconsistencies in the reconstruction.

V. CALIBRATING WITH REFRACTION

Using the perspective projection camera model with refrac-
tion added as a “second layer” makes modelling the entire
imaging system much simpler than using a completely general
imaging model. Camera calibration can be done in two steps:
the first is a traditional in-air perspective calibration, and the
second adds the terms accounting for refraction. In both the
planar and hemispherical cases, there are three degrees of free-
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Fig. 8. Reconstruction error for known corresponding points between a pair
of images taken behind a planar air/water interface. The camera motion is the
same as in figure 7. Only pixels visible by both cameras are shown.

dom to account for camera motion inside the pressure housing,
and one degree of freedom to account for the thickness of the
interface. The hemispherical case also has a degree of freedom
for the hemisphere’s radius. In practice, the parameters of the
interface can be measured directly, and they do not change,
so only the three degrees of freedom accounting for camera
motion need to be determined.

Fortunately, determining these remaining degrees of free-
dom is fairly straightforward, using an ordinary (though wa-
terproof) planar checkerboard calibration target with known
dimensions. These targets are frequently used for in-air per-
spective calibration, so requiring one for the second phase
of calibrating for refraction is not onerous. The benefit of
this technique is that no external measurements need to be
known in advance, except for the internal geometry of the
checkerboard pattern. In particular, the location of the checker-
board in space relative to the camera is solved for by the
optimization, rather than measured by hand. A single image
of the target presents nine degrees of freedom that must be
found, of which three are relevant for the model (the remaining
six capture the location of the target relative to the camera-
centric coordinate frame). The image will preferably contain
checkerboard corners that are close to the image edges, as this
is where the distortion is most prevelant, so pixel estimation
errors will be minimized.

Only one image of the target is necessary to calibrate the
refraction terms in the model, though multiple views of the
target will likely produce better results given the interdepen-
dencies between the unknown parameters. The best estimate
of the 6-DOF target location for each view depends upon
all of the other parameters in the system. This leads to a
nested optimization approach, in which the outer optimization
attempts to solve the 3-DOF camera location, and the inner op-
timizations each solve for the target locations given the camera
location estimate. Because the image formation process (point-
to-pixel operation) is modelled numerically, the optimizations
to determine the refraction parameters and target locations are



also carried out numerically (using Levenberg-Marquardt, for
example). Each inner optimization step is numerically well-
behaved, but the outer optimization needs a reasonable starting
guess, because the overall pixel reprojection errors tend to be
small. We intend to refine our understanding of the calibration
process in future work.

VI. CONCLUSIONS

When taking pictures underwater, some degree of refraction
is inevitable. We have shown the degree to which refraction
leads to image distortion, and subsequent errors in 3-D es-
timation. For a typical setup, 2-D distortion can be largely
compensated for with nonlinear lens distortion terms in the
perspective projection model, and 3-D error is small compared
to that induced by errors in camera motion estimation and pixel
correspondence estimation. But these attempts to minimize
refraction-induced distortion will ultimately fail when several
images are used together for large-scale photomosaicking and
structure from motion modelling. Moreover, we have shown
that calibrating an underwater camera including terms that
model the pressure housing interface and its refraction effects
is not prohibitively difficult.

Perhaps the best reason not to use a camera model which
accounts for refraction is that a large amount of software exists
which relies on the perspective model. The underlying math,
and in particular the perspective epipolar constraint, makes
working with cameras modelled by perspective projection
easier. On the other hand, stereo correspondence algorithms
which use the epipolar constraint to limit search will miss
matching pixels, especially near the image edges where the
error in the perspective model is greatest. One alternative is
to use an orthographic, rather than perspective camera model,
though these are only approximately valid, and only when
using lenses with long focal lengths and narrow fields of view.
With an orthographic camera, a planar interface is preferable
to a hemispherical interface, because all light rays are assumed
to be parallel to each other, and orthogonal to the image plane.
Most underwater applications demand the use of wide-angle
lenses, however, to capture the maximum amount of seafloor
area per image as is practical.

The next step of this research will be to use the physics-
based model on underwater imagery to create large-scale
photomosaicks and 3-D models using structure from motion.
The first step of this process will be a more careful analysis
of calibration. We also intend to further refine our under-
standing of reconstruction error, by individually examining
the influences of errors in subpixel correspondence estimation,
and in camera motion estimation. Finally, we wish to further
reconcile the numerical simulations made here with the more
analytical approach of [12] into a general understanding of the
underwater imaging process.
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