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ABSTRACT

Mesoscale eddies shape the Beaufort Gyre response to Ekman pumping, but their transient dynamics are

poorly understood. Climate models commonly use the Gent–McWilliams (GM) parameterization, taking the

eddy streamfunction c* to be proportional to an isopycnal slope s and an eddy diffusivityK. This local-in-time

parameterization leads to exponential equilibration of currents. Here, an idealized, eddy-resolving Beaufort

Gyre model is used to demonstrate that c* carries a finite memory of past ocean states, violating a key GM

assumption.As a consequence, an equilibrating gyre follows a spiral sink trajectory implying the existence of a

damped mode of variability—the eddy memory (EM) mode. The EMmode manifests during the spinup as a

15% overshoot in isopycnal slope (2000 km3 freshwater content overshoot) and cannot be explained by the

GM parameterization. An improved parameterization is developed, such that c* is proportional to an ef-

fective isopycnal slope s*, carrying a finite memory g of past slopes. Introducing eddy memory explains the

model results and brings to light an oscillation with a period 2p
ffiffiffiffiffiffiffiffiffi
TEg

p
’ 50 yr, where the eddy diffusion time

scale TE ; 10 yr and g ’ 6 yr are diagnosed from the eddy-resolving model. The EM mode increases the

Ekman-driven gyre variance by g/TE’ 50%6 15%, a fraction that stays relatively constant despite both time

scales decreasing with increased mean forcing. This study suggests that the EMmode is a general property of

rotating turbulent flows and highlights the need for better observational constraints on transient eddy field

characteristics.

1. Introduction

The Beaufort Gyre, a major anticyclonic circulation

feature in the Arctic Ocean, hosts a substantial fraction

of the overall Arctic freshening (Haine et al. 2015). The

large-scale gyre circulation has been directly linked to its

freshwater content (FWC) via the process of Ekman

pumping that converges relatively fresh surface waters

and deepens the halocline (e.g., Proshutinsky et al.

2002). The Ekman pumping arises due to transient an-

ticyclonic winds that cause significant gyre variability on

interannual and longer time scales. However, observa-

tions indicate that the halocline depth (roughly equiva-

lent to the FWC) varies, but does not always mimic, the

variability in the strength of the anticyclonic wind stress

(e.g., Proshutinsky et al. 2009; Giles et al. 2012).

Understanding andmodeling the variability of the large-

scale gyre circulation and the associated FWC remain a

challenging problem.

The availability of FW sources, the strength of Ekman

pumping, and interactions with the Atlantic layer are all

factors external to the large-scale circulation that have

been studied with respect to Beaufort Gyre variability

(Proshutinsky et al. 2002; Giles et al. 2012; Martin et al.

2014; Morison et al. 2012; Stewart and Haine 2013; Lique

and Johnson 2015; Lique et al. 2015). A recent study,

however, emphasized internal dynamics of the gyre and

demonstrated that the large-scale halocline deepening

due to Ekman pumping is counteracted by the cumula-

tive action of mesoscale eddies (Manucharyan and Spall

2016), a dynamical balance similar to that of the Ant-

arctic Circumpolar Current (ACC; Marshall and Radko

2003) or the Weddell Gyre (Su et al. 2014).

Unlike the ACC, which might be in a so-called eddy

saturation regime with weak equilibrium sensitivity of
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its transport and density structure (Böning et al. 2008;

Tansley andMarshall 2001; Hallberg andGnanadesikan

2001; Munday et al. 2013; Abernathey and Cessi 2014),

the Beaufort Gyre appears to be highly sensitive to

variations in the Ekman pumping (Proshutinsky et al.

2002; Manucharyan and Spall 2016). This implies that a

continuing melting of the sea ice and/or changes in the

atmospheric winds that alter the Ekman pumping would

lead to substantial changes in the halocline depth and

hence in the freshwater budget of the entire Arctic

Ocean. Since the Arctic Ocean is rapidly changing, it is

important to understand mechanisms behind the tran-

sient gyre adjustment.

Manucharyan et al. (2016) point out that the eddy field

also plays a key role in Ekman-driven gyre variability.

Because of the tendency of the eddy streamfunction to

oppose the Ekman transport, a large-scale circulation

(i.e., averaged over small-scale eddies) has to be a stable

dynamical system that equilibrates on a time scale inversely

proportional to the eddy diffusivity K (Manucharyan et al.

2016). These theoretical conclusions rely upon the use

of a conventional Gent–McWilliams (GM) eddy pa-

rameterization (Gent and McWilliams 1990; Gent

et al. 1995) that takes the isopycnal eddy thickness

fluxes to be proportional to large-scale halocline

thickness gradients:

v0h0(x, t)52K=h(x, t), (1)

where v 0 and h0 are the velocity and halocline thickness

perturbations due to time-dependent motions and the

overbar denotes an ensemble average.

The GM parameterization is used in nearly all climate

models that do not resolve mesoscale eddies and re-

quires specification of an eddy diffusivity. Marshall and

Radko (2003) demonstrate that the equilibrium iso-

pycnal slope s of an eddying baroclinic current is directly

related to K. In addition, Manucharyan et al. (2016)

show that the temporal variability of s also depends on

the sensitivity of eddy diffusivity to halocline slope

dK/ds (see section 4). Thus, climate models that use too

small (large) values of eddy diffusivity would result in

too deep (shallow) halocline. If the models prescribe too

weak (strong) sensitivity of eddy diffusivity to isopycnal

slope the temporal variability of the currents would be

overestimated (underestimated). TheGMparametersK

and dK/ds can be either diagnosed from eddy-resolving

models or with sufficient coverage inferred through

observations.

A key assumption of theGMparameterization, which is

to be challenged in this manuscript, is that the eddy fluxes

at a particular point in time and space depend only on the

large-scale state of the ocean at the same point in time and

space. The assumption of temporal and spatial locality can

be questioned from both observational and numerical

modeling evidence. Observations suggest that mesoscale

eddies (in a form of coherent vortices) can persist in the

open ocean for years, propagating large distances from

their formation regions (Chelton et al. 2011). With respect

to the Arctic Ocean, using a numerical model Spall et al.

(2008) discuss how shelfbreak eddies propagate away from

their formation region and can be further transported by

the mean current of the Beaufort Gyre. Manucharyan and

Timmermans (2013) discuss a self-propagationmechanism

of the submixed layer Arctic eddies that are observed to

advect the buoyancy and potential vorticity anomalies up

to 500km away from their presumed formation regions

(Timmermans et al. 2008). Thus, it is reasonable to assume

that a large-scale eddy field does not only depend on a

current state of the ocean but carries a finite memory of its

past states and a history of dissipative processes.

We illustrate the persistence of eddy properties sche-

matically in Fig. 1. Consider the equilibration of an ocean

that is populated with blue eddies that are less energetic

than the equilibrium-type red eddies (Fig. 1, left). By

different types of eddies we imply the existence of sta-

tistical eddy properties, that is, sizes, eddy kinetic energy,

or eddy transport, that are generated by the mean flow.

While the mean currents are generating the red-type

eddies, the number of blue-type eddies will be decreasing

as they are dissipated or absorbed by the mean flow

(Fig. 1, center). Eventually, the ocean will be populated

only with the equilibrium-type red eddies (Fig. 1, right).

Since the eddy transport is associated with an eddy field

that has a memory, it is important to understand the time

scales of this eddy adjustment process and how it feeds

back on the evolution of the large-scale current.

In this manuscript, we use an idealized eddy-resolving

model of the Beaufort Gyre (section 2) to present evi-

dence that eddy memory significantly affects the gyre

dynamics (section 3). We discuss dynamical constraints

that a conventional local-in-time GM parameterization

imposes on large-scale ocean dynamics (section 4) and

suggest an improvement that includes the eddy memory

effect (section 5). Using the new eddy parameterization

we bring to light a low-frequency mode of variability of

large-scale flows associated with the eddy memory (sec-

tion 6). Characteristics of the mode and its effects on the

variability of the ocean circulation are assessed in section

7. We summarize and discuss implications in section 8.

2. Model configuration

We use an idealized model of the Beaufort Gyre in a

configuration identical to the one used in Manucharyan

and Spall (2016, see their appendix A). The gyre is
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represented by a cylindrical ocean basin (radius R 5
600km, depth 900m) driven by an anticyclonic surface

stress t(r) corresponding to a uniform Ekman pumping.

The fluid dynamical equations are solved using the

MITgcm in its three-dimensional hydrostatic configu-

ration (Marshall et al. 1997). A 4-km horizontal reso-

lution along with variable in-depth vertical resolution

between 10 and 60m is sufficient to permit Rossby

deformation-scale eddies (the baroclinic deformation

radius is about 20 km in these simulations). The salinity

is restored at the edges of the gyre to a fixed salinity

profile that consists of a 50-m-deep surface layer of

relatively fresh waters of salinity 29, followed by a lower

layer of salinity 34 [values are chosen to mimic the hy-

drography of the Beaufort Gyre (Steele et al. 2001)].

Strong salinity restoring leads to a fixed halocline depth

at the gyre boundaries. This configuration, as high-

lighted in earlier studies (Manucharyan and Spall 2016;

Manucharyan et al. 2016), provides an infinite reservoir

of freshwater and thus the results here should be treated

as an upper bound on the possible fluctuations in the

halocline volume. Consistent with Manucharyan and

Spall (2016), we include a continental slope: lateral

boundaries are vertical down to 300m, below which the

depth increases linearly to the bottom of the basin

penetrating 100 km toward the center of the gyre (see

Fig. 2b). Note that Manucharyan et al. (2016) consid-

ered a flat topography case, which is more applicable to

the interior of the gyre. However, we demonstrate in

section 8 that the continental slope is essential for the

gyre dynamics discussed here.

3. Signatures of eddy memory

Spinup simulations are initialized with a horizontally

uniform stratification (50-m initial halocline depth) and

forced with a spatially uniform, temporally invariant

Ekman pumping [corresponding to a linear stress profile

t0(r)5 t̂r/R, where t̂ is the magnitude]. Following the

development of the mesoscale eddy field, the idealized

Beaufort Gyre model achieves a statistical steady state

after several decades (Fig. 2a). Note that this time scale

is significantly longer than the 5-yr-long e-folding equili-

bration in a flat basin case considered in Manucharyan

et al. (2016). The prolonged equilibration is entirely due to

the presence of a continental slope in our simulations. The

slope suppresses the development of instabilities and lo-

cally reduces the mesoscale eddy diffusivity (Isachsen

2011; Stewart and Thompson 2013) that leads to longer

eddy diffusion time scale. Note that, because the gyre dy-

namics are governed by a halocline thickness diffusion

equation, any localized reduction in the eddy diffusivity

would have a basinwide influence on the halocline depth

and its equilibration time scale.

The equilibrium corresponds to a vanishing residual

circulation that is supported by the eddy buoyancy

transport that counteracts the Ekman transport. Most of

the eddy kinetic energy is concentrated in the upper

layer corresponding to the first baroclinic mode (see

Fig. 2b). Characteristic eddy velocities in the upper

200m of the gyre are 0.05–0.1m s21. These eddies are

about 100–200km in diameter but are relatively weak

compared to more intense but smaller-scale submixed

layer eddies (about 20 km in diameter) commonly ob-

served via the ice-tethered profilers (Zhao et al. 2014).

Nonetheless, these larger-scale eddies are responsible

for maintaining key properties of the halocline such as

its depth and adjustment time scale.

In our idealized gyre simulations, the FWC [conven-

tionally defined as a domain-integrated measure of salt

content relative to a reference salinity Sref (e.g.,

Proshutinsky et al. 2002)] is directly proportional to the

FIG. 1. Conceptual representation of the mesoscale eddy field illustrating the persistence of eddies in time during

the equilibration process (e.g., during an Ekman-driven spinup). Red eddies have statistical properties that corre-

spond to the equilibrium state, while blue eddies correspond to an earlier equilibrium state. The transitional eddy

field (center) is a mixture of the different type of eddies.
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volume of water above the haloclineV and to the salinity

difference DS across the halocline:

FWC5
DS

S
ref

V, where V5 2p

ðR
0

hr dr (2)

and h is the halocline depth. While the equilibration of

the gyre FWC and eddy kinetic energy (EKE) can be

crudely viewed as an exponential adjustment, a closer

consideration reveals important deviations (Fig. 2a). In

particular, there exists a significant overshoot of the

FWC that lasts for several decades (Fig. 2a, red). The

maximum depth of the halocline (at year 30) is up to

10–15m deeper than its equilibrium value (Fig. 2b). This

corresponds to a FWC overshoot of about 2000km3

(Fig. 2a), which is comparable to an observed Beaufort

Gyre FWC increase of 3000km3 over the past two de-

cades (Haine et al. 2015).

During the early stages of the spinup, the generated

eddies are less energetic as the currents are weak. As a

result of their persistence, the halocline deepens beyond

its equilibrium because the eddy field is insufficiently

energetic to counteract the Ekman transport (see Fig. 2a

around model year 10). After the FWC reaches its

maximum values and the halocline is at its deepest levels

(around model year 20), the eddy field becomes overly

energetic, generating excessive thickness fluxes that re-

duce the halocline depth back to its equilibrium. This

cycle is manifested as an overshoot in the EKE that is

lagged with respect to the FWC by about 5–7 yr (Fig. 2a,

blue). We note that this overshoot behavior is not only

associated with the ‘‘cold’’ spinup from the state of rest

but also exists for perturbation experiments starting

from a fully turbulent equilibrated state (additional ex-

periments are not shown here as they are qualitatively

similar).

These lagged overshoots in EKE and FWC are sig-

natures of an oscillatory mode that operates in addition

to the exponential decay. Since we observe only one full

oscillation before the gyre equilibrates, this mode is

heavily damped and needs external forcing to be sus-

tained. Nonetheless, the existence of this damped mode

does not fit into our traditional understanding of the

mesoscale eddy dynamics as viewed through the lens of

the local-in-time GM parameterization.

4. Dynamical implications of GM parameterization

Here, we briefly discuss the conventional GM param-

eterization and a key constraint that it imposes on the

evolution of large-scale flows. In particular, we focus on

the dynamics of a large class of currents that are forced by

transient Ekman pumping with nonzero mean. When the

diabatic forcing is small compared to the mean Ekman

pumping, the time-averaged state corresponds to a van-

ishing residual-mean circulation. Transient forcing,

however, can produce significant deviations from the

equilibrated state.

The GM parameterization operates under the as-

sumption of slowly evolving ocean dynamics such that

at any given moment in time and space the mesoscale

eddy field can be considered in equilibrium with local,

FIG. 2. (a) Equilibration of the simulated Beaufort Gyre from rest (initial halocline depth is spatially uniform at

50m) for the reference case t̂5 0:015Nm22. The time evolution of the FWC (red) and the theoretical prediction

based on the GM parameterization (black dashed) are given by the right-hand y axis. The FWC overshoots its

equilibrium value by about 2000km3. The evolution of the domain-integrated EKE5 r(u21 y2)/2 (thin blue, kgm21 s22)

and a fifth-order polynomial fit to the EKE time series (thick blue) is shown by the left-hand y axis. TheEKEmaximum

lags the FWCmaximum by about 7 yr. (b) Equilibrium distribution of EKE (color, kgm21 s22); the maximum EKE is

over the continental slope where baroclinicity is strong. Contours indicate the equilibrium salinity distribution (iso-

halines between 29 and 34 spaced by 0.5). The equilibrium halocline S 5 31.25 and the halocline location at t 5 20 yr

(time of maximum overshoot) are given the solid and dashed red curves, respectively. The vertical axis has been

squeezed by a factor of 8 in the region below 200m where the stratification and EKE are weak.
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large-scale currents. In particular, it assumes that the

eddy streamfunction c*5K(s)s is proportional to the

time-dependent halocline slope s(t) and an eddy diffu-

sivity K that can be slope dependent (Visbeck et al.

1997) but is typically not time dependent. Near the

equilibrium halocline slope s0(r), the perturbation eddy

streamfunction c0*5K0s0 1K(s0)s
0 can be expressed as

c0*(r, t)5 ~K(r)s0(r, t), (3)

where primes denote perturbations from equilibrium

and ~K is a constant-in-time effective eddy diffusivity for

the perturbations

~K(r) 5

�
dK

ds
s
0
1K

�
s5s0

. (4)

Note that the eddy diffusivity for a linearized system is

always larger than the background diffusivity becauseK

is expected to monotonically increase with s. For ex-

ample, Visbeck et al. (1997) suggest a linear dependence

of the eddy diffusivity on halocline slope, which is found

to be appropriate for the Beaufort Gyre (Manucharyan

et al. 2016). In this case, ~K5 2K(s0), a factor of 2 in-

crease. For eddy-saturated currents, like the ACC, the

term (dK/ds)s0 might provide a dominant contribution

to the effective eddy diffusivity ~K.

In cylindrical coordinates the halocline thickness

evolution under the GM parameterization obeys a

forced diffusion equation:

h
t
5

1

r
( ~Krh

r
)
r
1w

E
, (5)

where wE(r, t) is the time-dependent Ekman pumping,

and r is the radial coordinate [for a derivation, see ap-

pendix A of Manucharyan et al. (2016)]. The eddies act

as a thickness diffusion because GM parameterization

assumes the eddy thickness flux to be proportional to the

halocline slope (c*;hr). Note the use of ~K instead ofK

in Eq. (5) since it is written for perturbation variables.

Equation (5) provides further insight into the halo-

cline volume dynamics. Consider the least-damped

eigenfunction h of the diffusion operator on the right-

hand side of Eq. (5):

1

r
(r ~Kh

r
)
r
52

h

T
E

, (6)

where TE ;R2/ ~K defines the gyre equilibration time

scale (inverse of the smallest eigenvalue).Manucharyan

et al. (2016) demonstrate that higher-mode ei-

genfunctions of this eddy diffusion operator are highly

damped (damping time scale increases quadratically

with the number of zero crossings) and hence only the

least-damped eigenfunction can significantly contribute

to changes in the halocline volume. Thus, integrating

Eq. (5) over the domain, keeping only a contribution

from the least-damped eigenmode, and using Eq. (6), we

arrive at

_V52
V

T
E

1W
E
, (7)

where the overdot indicates the time derivative, and

WE is the Ekman transport (domain-integrated Ekman

pumping projection onto the least-damped eigenmode).

Equation (7) demonstrates that under the GM param-

eterization the large-scale currents are constrained to

equilibrate exponentially, that is, no internal oscillations

are possible. Numerical simulations, however, demon-

strate that an eddying current can significantly deviate

from exponential equilibration (Fig. 2), exhibiting os-

cillatory behavior that cannot be captured by the local-

in-time GM parameterization.

5. Eddy memory parameterization

Here, we introduce an improvement to the GM pa-

rameterization by accounting for the eddy memory and

validate its relevance in the eddy-resolving model.

a. Parameterization

We make a key assumption that the eddy stream-

function has a finite memory of past states:

c*(t)5
1

g

ðt
2‘

~Ks(t 0) exp
�
2
t2 t 0

g

�
dt 0 , (8)

where g is the eddymemory time scale, and this definition

is applicable for sufficiently small perturbations away

from themean state such that ~K does not depend on slope

perturbations s. In a fully nonlinear formulation, a

constant-in-time ~K should be replaced by a slope-

dependent eddy diffusivity K that can vary in time. The

integral form of Eq. (8) implies that the present eddy

transport (at time t) consists of contributions of past

transports (at times t 0 , t) with weights that are expo-

nentially decreasing with time toward the past. Contri-

butions from past transports quantify the eddy

persistence (see Fig. 1 and discussions thereof). Note that

in the limit of no memory g / 0 or in equilibrium s(t)5
constant, this parameterization [Eq. (8)] is identical to the

conventional GM parameterization [Eqs. (3)–(4)].

Since ~K is defined by the mean state and hence is in-

dependent of time, our parameterization can be written

in the following way:
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c*(t)5 ~Ks*(t), and (9)

s*(t)5
1

g

ðt
2‘

s (t0)exp
�
2
t2 t 0

g

�
dt 0 , (10)

where we have defined an effective slope s* that con-

tains memory of past transports and governs the eddy

transport. Alternatively, one can define an effective

eddy diffusivity Keff 5 ~Ks*/s such that c*5Keffs; how-

ever, the effective diffusivity is not a physically relevant

quantity, and it can be inconvenient to use in practice. For

example,Keff is unbounded when eddies generated in the

past are still contributing to the transport while a present

slope is negligibly small (i.e.,Keff / ‘ when s/ 0). The

extremely large Keff is misleading since a physically

relevant eddy transport (c*5Keffs) is finite. Hence,Keff

cannot be directly interpreted as a measure of the me-

soscale eddy activity. We thus choose to proceed with

our analysis using the effective slope s* [Eq. (10)] as a

physically relevant and singularity-free quantity that

defines the eddy thickness transport.

Differentiating Eq. (10) with respect to time leads to

an alternative definition of the effective slope

ds*

dt
52

s*

g
1

s

g
. (11)

It implies that s* is exponentially pulled back to the actual

slope s on a time scale g. Integrating Eq. (11) forward in

time is an efficient and simple method of calculating s* in

numerical models as it avoids heavy calculations of the

integral in Eq. (10) at every time step. Note that the eddy

memory can lead to periods of upgradient thickness

transport when s* and s have different signs. However,

Eq. (11) implies that the eddy memory does not affect

steady or slowly evolving mean currents for which s*’ s

and hence the long-term average of the eddy thickness

transport is always downgradient.

The eddy memory parameterization [Eq. (10)] in-

volves an effective slope that is an additional prognostic

variable defining the eddy transport. This approach is

complementary but different from mixing length argu-

ments (Holloway 1986) that use EKE (or characteristic

eddy velocity) as a variable to determine the intensity of

the eddy transport [see an example for the ACC in

Ferrari and Nikurashin (2010) and Sinha and

Abernathey (2016)]. While both s* and EKE can be

linked to the eddy transport using scaling laws, these are

conceptually different measures of turbulent flows. The

eddy kinetic energy (EKE; y 02 1u 02) does not contain
information about a correlation between velocity and

thickness anomalies that constitute the eddy transport

(c*; y0h0). Hence, additional arguments are needed to

link EKE to eddy transport. However,mesoscale eddies,

viewed as coherent vortices, propagate in space and

persist in time together with their corresponding iso-

pycnal thickness anomalies (e.g., quasigeostrophic eddy

currents explicitly depend on layer thickness anoma-

lies), implying not only a persistence of EKE but also a

persistence of a thickness flux. Thus, we consider the

eddy streamfunction (a measure of eddy tracer fluxes)

as a dynamically relevant quantity that has a finite

memory of past ocean states.

b. Diagnosing eddy memory

We now quantify the impact of the eddy memory as it

relates to the eddy thickness transport in the eddy-

resolving Beaufort Gyre model. We diagnose time se-

ries for the eddy streamfunction c*(t) by calculating the

eddy thickness fluxes during the gyre spinup simulation.

Figure 3a demonstrates that c*(t) and s(t) when plotted

against each other have a relationship characteristic of a

spiral sink. First, the eddy field and halocline slope do not

equilibrate following a conventional straight line path

predicted by the GM parameterization; for example, the

blue curve has large deviations from the straight line in

Fig. 3a. Instead, away from equilibrium the eddy

streamfunction evolves more slowly compared to the

halocline slope (blue curve is above the dashed black

curve in 3a). Second, the diagnosed c* and s loop ap-

proaches the equilibrium in a spiraling trajectory with a

quickly decaying radius of the spiral (see the black arrows

around 0, 0 in Fig. 3a). Physically, this view is consistent

with the isopycnal slope overshooting its equilibrium

value (Fig. 2a) because the mesoscale eddy field at that

time is not fully developed. At the peak of the isopycnal

overshoot, the excessively baroclinic currents start to

generate overly energetic eddies thatweaken the currents

below their equilibrium strength. Such a dynamical be-

havior is consistent with a damped oscillator.

We do not know the value of g a priori, but we can

attempt to infer it by assessing the correlation between

the eddy streamfunction and the effective slope defined

by Eq. (10). Calculations show that there is indeed an

optimal value of g ’ 6 yr that enhances the correlation

(Fig. 3b, blue). Throughout the gyre equilibration c* is

better approximated as a linear function of s* rather

than s (Fig. 3a), with the best linear fit of ~K5 150m2 s21

(Fig. 3a, black dashed).

The inferred eddy diffusivity ~K is smaller than the

value reported in Manucharyan et al. (2016) because of

the continental slope that suppresses baroclinic in-

stabilities. The continental slope also plays a major role

in enhancing the eddy memory, since in the interior of

the gyre g ’ 2 yr (Fig. 3b, red). This suggests that there

might be a relation between the magnitude of eddy

memory and the eddy adjustment time scale that is
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inversely proportional to the eddy diffusivity. Thus, for

regions with high eddy diffusion, the eddy memory is

small and vice versa.

6. Emergence of the eddy memory mode

Now that we have established the physical basis and

diagnosed the eddy memory in the gyre, we proceed to

reveal the newly emerging dynamics. Although most of

the following derivation will focus on the evolution ofV,

the eddy memory affects all related gyre characteristics

such as FWC and s. Applying our modified GM pa-

rameterization, the perturbations in halocline depth h

with respect to the equilibrium or mean state of the gyre

evolve following a thickness diffusion equation:

h
t
5

1

r
( ~Krh

r
*)

r
1w

E
, and (12)

h
t
*52

h*
g
1

h

g
, (13)

where we have introduced an effective halocline depth

h* as hr*5 s*. The two terms on the right-hand side of Eq.

(12) represent the divergence of the eddy thickness flux

and the Ekman pumping. Note that we consider axi-

symmetric solutions in cylindrical coordinates, and all

variables in Eqs. (12)–(13) are perturbations from the

equilibrium state corresponding to forcing by the mean

Ekman pumping.

Combining the equations above to eliminate h* we

obtain

h
tt
1

1

g
h
t
5

1

g

�
1

r
(r ~Kh

r
)
r

�
1

�
_w
E
1

w
E

g

�
. (14)

Note that themodel-diagnosed eddymemory is spatially

inhomogeneous, but for simplicity of the analytical

analysis, we are assuming a constant parameter g, which

should be interpreted as an effective memory that af-

fects the bulk gyre dynamics. In the absence of forcing

(wE 5 0) this equation describes the equilibration of the

gyre by exponentially damped waves. To further illu-

minate the dynamics, let us consider the evolution of the

halocline volume V. Domain integrating Eq. (14),

keeping only a contribution from the least-damped ei-

genmode, and using Eq. (6), we arrive at

€V1
1

g
_V1

1

gT
E

V|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Damped oscillator

5 _W
E
1

W
E

g|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Ekman forcing

, (15)

where the overdot indicates the time derivative, and

WE is the Ekman transport [as in Eq. (7)].

Equation (15) illuminates the core internal dynamics

behind the equilibration of the halocline, an externally

forced damped oscillator. The ratio of the eddy memory

to the eddy adjustment time scale g/TE determines

whether solutions are either overdamped (non-

oscillatory) or underdamped (oscillatory). Note that in

the absence of memory (a limit of g / 0) Eq. (15) be-

comes identical to an exponential decay equation

[Eq. (7)], derived using a conventional GM parameter-

ization. However, if the eddy memory is sufficiently

large (g. 0.25TE, as shown below) the system oscillates

with the frequency v0 expressed as

v
0
5

ffiffiffiffiffiffiffiffiffi
1

gT
E

s
, (16)

FIG. 3. (a) Eddy streamfunction plotted as a function of the halocline slope s anomaly (blue) and as a function of the

effective halocline slope anomaly s* for the optimal memory (red). Arrows denote the direction of increasing time. A

linear fit c*5Ks* (K5 150m2 s21) is given by the dashed line. (b) Correlation between the residual streamfunction

c* and the effective halocline slope s* [Eq. (10)] plotted as a function of the eddy memory g for two regions: (i) over

the sloping bottom near the boundary (r 5 550 km) (blue) and (ii) in the interior of the gyre (r5 400 km, red). The

optimal memory time scale is the value of g that maximizes the correlation.
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andhence the periodT0 5 2p
ffiffiffiffiffiffiffiffiffi
gTE

p
would be proportional

to the geometricmeanbetween the eddymemory andeddy

diffusion time scales. Using our model-based estimates for

the Beaufort Gyre (g ’ 6yr, TE ’ 10yr), we obtain a

period of theEMmodeT0’ 50yr. The damping time scale

for the oscillations is given by 2g 5 12yr (much shorter

than its period), and hence the mode is highly damped,

requiring continuous external forcing to be sustained.

While the EMmode has a distinct multidecadal period, its

amplitude has a significant response to a wide range of

forcing frequencies because of its strong damping. We

speculate that the transience of the atmospheric Beaufort

high pressure system can efficiently energize this mode.

Solving Eq. (15) for the initial conditions from the

spinup simulation (shown in Fig. 2a), takingWE5 0 since

there are no Ekman pumping perturbations during the

spinup, and using g 5 6yr (as implied by Fig. 3b, red)

significantly improve the theoretical prediction of the

numerically diagnosed evolution of FWC (see Fig. 4a). In

particular, our new theory captures the amplitude and

duration of the overshoot in addition to the overall ex-

ponential equilibration. Furthermore, it captures a lag

between the peaks in FWC and the eddy transport (ob-

serve that FWC* is proportional to c* in Fig. 4a). Since

the inclusion of the EMmode dramatically improves the

representation of the halocline dynamics, we proceed to

explore several of its major implications.

7. Role of the EM mode in halocline dynamics

a. Halocline equilibration

The equilibration of the FWC anomalies is repre-

sented by damped oscillations that can be expressed in a

form of complex exponentials V ; exp(2lt), where the

real part of l corresponds to the amplitude decay rate

and the imaginary part of l corresponds to the oscilla-

tion frequency. Plugging this solution into Eq. (15), we

get two possible values:

l
1,2

5
1

2g
6

1

2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

4g

T
E

s
. (17)

If g . 0.25TE, the solution oscillates as l has an imagi-

nary part. These oscillations decay in amplitude with

time and, for arbitrary initial conditions, their decay rate

corresponds to the smallest of the real parts of the two

characteristic equation roots [Eq. (17)]. The inverse of

the decay rate is the time scale of the gyre equilibration

Teq, which depends on both g and TE. In the absence of

memory (g / 0), l 5 1/TE and hence Teq 5 TE, consis-

tent with an exponential gyre equilibration that was dis-

cussed in section 4. The presence of memory g/TE , 0.5

leads to a reduction of the equilibration timemaking the

gyre more stable despite the presence of the oscillations

(by increased stability we imply larger decay rates). In

fact, having a memory g 5 0.25T0 reduces the equili-

bration time by a factor of 2. This is a critical damping

limit where the gyre approaches equilibrium state in the

fastest possible way without oscillating. Common ex-

amples of such critically damped systems include door

closers seen onmany hinged doors or shock absorbers in

car suspensions.

Thus, the fundamental gyre dynamics are strongly

dependent on the ratio g/T. It is an underdamped os-

cillator if g . 0.25TE and is a faster-equilibrating over-

damped oscillator for g , 0.25TE. For g . 0.5TE the

FIG. 4. (a) FWC equilibration for the Beaufort Gyre spinup simulation in an eddy-resolving model (red) and its

theoretical prediction based on theGMparameterization (black dashed). Themodified theory that includes the eddy

memory effect is shown in blue; the effective value of FWC* is given by the dashed red curve [FWC* is defined byEq.

(2) using h* instead of h]. (b) The relationship between eddy memory g and the eddy diffusion time scale TE as

diagnosed from a series of numerical simulations of the Beaufort Gyre forced by different Ekman pumping. The TE

diffusion time scale is smaller for large Ekman pumping because of the larger-eddy diffusivities. Dashed curves show

boundaries between the dynamical regimes as determined from Eq. (17): g/TE 5 f0.25, 0.5g.
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equilibration becomes slower as compared to the

memoryless limit. In this limit, the prolonged memory

results in the eddy field that is in large disequilibrium

with the current forcing such that the overshoots and

undershoots in the isopycnal slopes are less damped.

Our numerical simulations conducted for a wide range

of Ekman pumping forcing suggest that there is a re-

lation between the two time scales. Figure 4b shows that

for a wide range of mean Ekman pumping, most of the

diagnosed time scales lie close to g 5 0.5TE, a boundary

at which the gyre equilibration time Teq 5 2g 5 TE [as

inferred from Eq. (17)] would be exactly equal to the

eddy diffusion time scale. Indeed, stronger Ekman

pumping forcing leads to shorter time scale because of

the large-eddy diffusivities. However, a strong flow

would lead to a faster reduction in the persistence of the

eddy field due to enhanced eddy–mean flow in-

teractions. The opposite occurs for weak Ekman

pumping. A mechanistic understanding of the parame-

ter regime where the ratio g/TE is constant remains an

open question.

b. Enhanced halocline variability

The FWC of the gyre in our surface stress–driven

simulations is directly proportional to the halocline

volumeV. Consider now the variability ofV for the gyre

forced by transient Ekman pumping by numerically

simulating Eq. (15). We take the parameters g 5 6 yr

and TE 5 10 yr as diagnosed from the eddy-resolving

model. For simplicity, we representW(t) as a white noise

process that has equal energy at all frequencies and

highlight the impact of the EM mode by comparing a

simulation to the case of g 5 0.

Figure 5a compares the FWC evolution with and

without memory. The amplitude of FWC variations is

larger with the EM mode due to the overshoots that

are particularly prominent when decadal trends are

present. For example, near years 70 and 130 the EM

mode gives an additional 2000 km3 of FWC anomaly

for a gyre that would otherwise have a 4000 km3 os-

cillation in FWC. That is a 50% increase in the am-

plitude of FWC, comparable to the observed FWC

increase of 3000 km3 in the Beaufort Gyre (Haine

et al. 2015).

It is perhaps more illustrative to assess the effects of

EMmode in frequency space. According to Eq. (15), the

spectrum of V depends on the eddy memory in the fol-

lowing way:

j ~Vj2 5s2 v2 1 g22

(v2 2v2
0)

2 1v2g22
, (18)

where s2 represents the spectral energy of the Ekman

transport WE (a white noise process with equal energy

distribution for all frequencies) and v22
0 5 gTE, as de-

fined in Eq. (16). In the memoryless limit (g 5 0) we

recover an expected red noise spectrum:

j ~Vj2 5 s2

v2 1T22
E

when g/ 0. (19)

For comparison, both spectra (with and without mem-

ory) are plotted in Fig. 5b, demonstrating an enhanced

energy at all frequencies. The two spectra approach the

same values at very low frequencies (for which s*’ s)

as well as at high frequencies for which Ekman

pumping dominates the dynamics and eddies do not

play a significant role. Note that the frequency vmax of

peak EM-mode energy is significantly shifted from

v0 toward lower values; in particular, Eq. (18) dictates

FIG. 5. (a) Ekman-induced evolution of the FWC anomalies with (red) and without (blue) eddy memory, as

simulated byEqs. (15) and (7), respectively. Ekman transportWE time series are represented by awhite noise process

with zero mean. The eddy diffusion time scale is the same for both runs (TE 5 10 yr) and eddy memory g 5 6 yr. The

difference between the two time series is shown in gold. (b) Power spectral density of FWC variability with (red) and

without (blue) eddymemory; the spectra are indistinguishable from the theoretical predictions by Eqs. (18) and (19),

respectively. The gray area emphasizes the enhanced variance due to the eddy memory.
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that vmax ’ 0.34v0 when g 5 0.5TE. However, it is the

maximum relative increase of spectral energy that occurs

at v 5 v0.

We can assess a total variance of V by taking the in-

tegral of its power spectral density over all frequencies:

Var(V)5 2

ð‘
0

j ~Vj2 dv5
T
E
s2

2

�
11

g

T
E

�
. (20)

Here, the integral has been calculated exactly via

the Cauchy’s residue theorem, making use of the in-

tegrand having four simple poles on a complex plane

z560:5ig21 6 0:5g21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
211 4v2

0g
2

p
. Equation (20) im-

plies that the EM mode enhances the variance by a

fraction g/TE. The ratio of the diagnosed values for

g and TE is g/TE 5 0.56 0.15 (see Fig. 4b), and hence the

expected increase in FWC variance should be 50% 6
15%. Note that the standard deviation is a square root of

variance such that the contribution of the EM mode is

approximately 0.25g/TE. Overall, the standard deviation of

FWC time series is about 2000km3 without and 3000km3

with the EM mode. Thus, Fig. 5 together with our analyt-

ical calculations demonstrates a clear enhancement of

FWC variability due to the EMmode. This extra variance

is not accounted for in climate models that implement

local-in-time eddy parameterizations.

8. Summary and discussion

An Ekman-driven, eddy-resolving model of the

Beaufort Gyre was used to assess the large-scale impacts

of the eddymemory. The key manifestations of the eddy

memory are the overshoots in halocline slope and a

lagged development of the eddy kinetic energy (Fig. 4).

These features cannot be represented by the conven-

tional GM parameterization that assumes time locality

of eddy fluxes.

Overshoots in FWC of the simulated Beaufort Gyre

reach 2000km3, a magnitude comparable to FWC vari-

ations observed over the past two decades. Note that

because there are no sufficient observations of the eddy

field in the Arctic Ocean, previous attempts to explain

the gyre variability via Ekman pumping likely carry a

significant uncertainty due to the eddy thickness fluxes

that are unaccounted for.

Using a transformed Eulerian-mean theory, we di-

agnose the time-dependent eddy streamfunction c* and

show that it is more closely related to the effective slope

s* that takes into account the history of ocean evolution

(Fig. 3a) than to the present value of isopycnal slope s

(as assumed by theGMparameterization).With Eq. (8),

we have introduced an improvement of a GM parame-

terization by relaxing its key assumption of time locality.

The improved parameterization reproduces well the

transient behavior of the eddy-resolving gyre model

(Fig. 4a).

Our theoretical analysis of the proposed parameteri-

zation reveals that the eddy memory leads to an emer-

gence of a decadal variability mode that has a period

2p
ffiffiffiffiffiffiffiffiffi
TEg

p
(approximately 50 yr for the Beaufort Gyre).

Despite the EM mode operating on multidecadal time

scales, it increases the overall isopycnal slope variance

by a fraction of g/TE ’ 0.5 that stays relatively constant

for a wide range of mean forcing (Fig. 4b). This suggests

that in eddy-dominated flows there might be an inverse

relation between eddy memory g and eddy diffusivity ~K

(since TE ;R2/ ~K).

Note that in this manuscript we have identified the

bulk memory of the current as it relates to the cumula-

tive thickness transport of the eddy field. Nonetheless,

specific dynamics of individual eddies that can lead to a

current having a memory remain unclear.We expect the

extent of memory to depend not only on eddy growth

rates but also on eddy dissipation rates and on the in-

tensity of the inverse energy cascade. These processes

can suppress the eddy transport and affect not only the

eddy memory but also the eddy diffusivity.

To emphasize the role of eddymemory, we havemade

several simplifications. We have used a memory as a

parameter characteristic of the entire current. However,

the spatial heterogeneity of the eddy diffusivity implies

that eddy memory might also be spatially variable. In-

deed, Fig. 3b demonstrates that the memory is signifi-

cantly enhanced over the continental slope, a region

with weakened eddy diffusivity. The halocline evolution

[Eq. (12)] is valid for a general case of spatially de-

pendent eddymemory, but its analytical treatment is too

convoluted to highlight the essential dynamics. Instead,

we have simulated the evolution of Eqs. (12) and (13)

with an enhanced memory near the coast and confirmed

that our key conclusions still hold (not shown). Note that

the continental slope occupies only a small portion of

the gyre (about 100km wide); however, the bulk mem-

ory that has been diagnosed from FWC evolution is

close to the local memory on the continental slope. This

implies that the enhanced eddy memory, even in local-

ized regions, impacts the interior gyre dynamics.

Another potentially important factor that was omitted

in our theory is vertical diffusion (a diabatic process).

Mixing is likely to be important over the continental

slope at the boundary where there are freshwater sour-

ces. In theArctic Ocean vertical diffusivity estimates are

small O(1026 to 1025)m2 s21, but this weak mixing

might still play a role in water mass transformations. In

particular, enhanced mixing near gyre boundaries can

restrict the availability of freshwater sources and thus
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limit the temporal variations of the FWC. In our gyre

simulations we have used a relatively high estimate of

vertical diffusivity (1025m2 s21), and we have confirmed

that the amplitude of the overshoot due to the eddy

memory mode increases by a factor of 2 when the ver-

tical diffusivity is reduced to 1026m2 s21 (see Fig. 6).

The reasons for such a dramatic suppression of the EM-

mode amplitude by vertical mixing remain unclear.

We note that a low-frequency energy enhancement

resembling the EM mode has been reported for other

turbulent atmospheric and oceanic flows. For example,

Thompson and Barnes (2014) highlight a 20- to 30-day

periodic variability in the large-scale Southern Hemi-

sphere atmospheric circulation. They suggest it arises

because the time rate of change of the eddy heat flux is

proportional to the baroclinicity of the flow. Using the

similarities between our mathematical formulations we

can infer that for the atmospheric flow g ’ 2 days is of

the order of an inverse of the Eady growth rate. In ad-

dition, Sinha and Abernathey (2016) demonstrate that

the ACC has a maximum response to external forcing

at a period of 4 yr. They interpret the ACC behavior

from an energetic perspective that also bears mathe-

matical resemblance with our eddy transport de-

scription. Assuming the EM mode is pertinent, the 4-yr

time scale implies that g ’ 2 months for ACC [note that

g’ 0:24v21
max from Eq. (18) assuming g 5 0.5TE]. Con-

sistent with our results, the inferred ACC memory is

close to a time lag between EKE and APE evolutions

[see Fig. 12 in Sinha and Abernathey (2016)]. Given a

zonal current of about 0.1m s21, the eddy field with a

memory of 3 months can influence ACC dynamics for

about 800 km downstream.

The climate modeling community is constantly seek-

ing to improve predictions of the mean climate. How-

ever, it is just as important, especially in the context of

recent climate change, to simulate and understand low-

frequency climate variability, which is largely dictated

by ocean dynamics. We have demonstrated here that

mesoscale eddies can provide yet another mechanism of

low-frequency variability for baroclinic currents. This

effect may be amplified by potential feedbacks that in-

volve atmospheric buoyancy fluxes that are in many

cases coupled with the ocean dynamics. We thus argue

that the implementation of eddy parameterizations that

account for eddy memory and an assessment of their

implications for coupled climate dynamics is a necessary

step forward in climate modeling.
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