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ABSTRACT

The Rossby wave, linear, normal modes for a barotropic fluid in a basin on the b plane are calculated in the
presence of a thin barrier, which nearly divides the basin in two. Narrow gaps allow one subbasin to communicate
to the other. In the case of a meridional barrier it is shown that the modes split into two categories: either full-
basin modes, which have strong expression in both subbasins, or subbasin modes, which are limited to one or
the other of the subbasins. The full-basin modes have natural frequencies very close to the eigenfrequencies of
the basin in the absence of a barrier, while the subbasin modes oscillate at the eigenfrequencies of the subbasins
as if they were isolated. In the former case, the oscillation is accompanied by strong flow through the gaps in
the barrier while, in the latter case, there is essentially no flow through the barrier.

If the barrier is opened by adding additional gaps, some of the modes turn from subbasin modes to full-basin
modes.

If the barrier is zonally oriented rather than meridionally oriented, the clear distinction between the two mode
types disappears, although it is still possible to associate each of the modes with a subbasin mode restricted
predominantly to one or the other of the subbasins.

The analytic theory, based on a narrow-gap assumption, is checked and extended by considering a linearized
numerical model for the forced response of the basin. Of particular significance is the ability of localized forcing
in one subbasin to excite oscillations of the full basin in spite of narrow gaps that restrict the communication
between adjacent subbasins.

1. Introduction

The circulation of the deep ocean is strongly influ-
enced by the presence of the midocean ridge system,
which acts as an incomplete barrier to the deep circu-
lation. The deep ocean is divided into subbasins by the
presence of the ridge system, and the communication
between the subbasins takes place largely through nar-
row gaps in the ridge offered by the faults in the ridge
structure. In a recent paper, Pedlosky et al. (1997, here-
after PPSH) examined the steady circulation of a bar-
otropic fluid in which an ocean basin is nearly divided
in two by a meridional barrier, which allows commu-
nication between the two subbasins only through narrow
gaps in the barrier that models the ridge. They found
that the ridge was surprisingly ineffective in blocking
the steady circulation between the two subbasins in spite
of their near isolation. The degree of communication
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between the two subbasins is measured by the value of
the streamfunction on the ridge segment, CI, while the
streamfunction is set to zero on the basin’s outer bound-
ary. The determination of CI, and so of the flux between
the subbasins, follows from an application of the mo-
mentum circulation integral constraint around the ‘‘is-
land’’ formed by the ridge segment.

As shown by Godfrey (1989), the original constraint
can be replaced by a more convenient integral contour
that encircles the island’s western edge and proceeds
along latitude circles to the eastern boundary. The lin-
earized version of this constraint is called the ‘‘Island
Rule,’’ and one of the goals of the study of PPSH was
to assess the robustness of this simplified rule when
nonlinearity is important. In a barotropic model with
no-slip conditions on all solid boundaries, it turns out
that the relative vorticity fluxes, which could, in prin-
ciple, alter the results of the island rule, were always
very small. PPSH speculated that this result, which de-
pends on the self-cancelation of the relative vorticity
flux with no-slip conditions, would perhaps be modified
in a baroclinic model where the eddy-thickness flux
could contribute a non-self-canceling contribution to the
potential vorticity flux. This encouraged us to examine
a simple two-layer baroclinic numerical model in which
the boundary layer flow on the eastern side of the ridge
becomes baroclinically unstable, resulting in the devel-
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FIG. 1. A snapshot of a two-layer circulation experiment. The ridge
segment is represented by the gray region in the center of the basin.
The flow is driven by an anticyclonic wind stress pattern resulting
in a circulation that intensifies to the east of the island. Eddies are
clearly visible in each layer. (a) Upper layer. (b) In the second layer,
in which the mean flow is less dominant, large basin-scale variance
can easily be seen. (c) The island constants for each layer showing
the eventual periodic oscillation of the flow around the island in each
layer. In this experiment the ratio of the inertial boundary-layer thick-
ness to the Munk layer thickness is 0.75. The streamfunction is non-
dimensionalized by the steady, linear, inviscid island rule circulation,
4 3 106 m3 s21 for this case.

opment, locally, of a set of deformation radius-scale
eddies. Figure 1 shows a snapshot of the resulting flow
in the two layers from one of our calculations. The flow
is driven by an anticyclonic wind stress pattern, which
results in a circulation of the type already described in
PPSH. It intensifies on the eastern side of the island
where a recirculation domain is formed. In the model,
baroclinic instabilities of the boundary current give rise
to a baroclinic eddy field. What we found particularly
provocative in the preliminary calculations was the ev-
idence, provided by the circulation pattern in layer two
(where the mean flow is relatively weak), that the var-
iance included structures evocative of basin-scale Ross-
by normal modes (Pedlosky 1987). Such structures have
been found in our numerical calculations for both weak-
ly and strongly nonlinear boundary layer flows. Note
that in both Figs. 1a and 1b the activity on the eddy
scale is restricted to the eastern subbasin while basin-

scale disturbances, especially clear in the lower layer,
exist in both subbasins and have full meridional basin
extent. Figure 1c shows the time history of the stream-
function on the island in each layer. After an initial
adjustment period of about 1200 days these (spatial)
constants settle into a periodic oscillation whose periods
are roughly consistent with estimates, not given here,
of basin-scale normal modes for the baroclinic model.
The question that then intrigued us was how it was
possible to excite basin-scale normal modes in a situ-
ation where the forcing, in this case the eddy field, tends
to be concentrated in one of the two subbasins so nearly
isolated from the other. That is, are there such full-basin
normal modes even when the two subbasins are nearly
isolated from one another and can communicate only
through very narrow gaps?

It seemed to us that the first question to address is
the nature of the Rossby normal modes in a basin nearly
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FIG. 2. A schematic of the full basin with a thin ridge nearly
separating the basin into two. Small gaps of width d K L allow
communication between the two subbasins. The ridge is located at
x 5 xt . The zonal width of the basin is xe and its meridional extent
is L.

bifurcated by a narrow ridge system with only narrow
gaps providing routes of communication between the
subbasins. Our preliminary intuitive notion was that the
Rossby normal modes in a basin such as that depicted
in Fig. 2, where d K L, would to the first approximation
be represented by the union of the two sets of the normal
modes for each subbasin, taken separately, with perhaps
a small ‘‘leakage’’ of energy to the other basin.

However, the circulation integral constraint around
each island (see section 2) disallows such a simplistic
picture and, indeed, it follows that the set of normal
modes falls instead into two categories. One type of
mode is a full-basin mode in which each side of the
basin oscillates in synchrony. The other is, as expected,
limited to one or another of the subbasins. Which one
occurs depends on the meridional structure of the mode
and its ability to satisfy the circulation integral condition
without involving the other subbasin. We believe it is
significant that the gravest mode in the system turns out
to be a full-basin mode, easily excited by localized forc-
ing in one of the subbasins. The important implication
is that local time dependence, produced by local process,
can still involve the whole basin in time-dependent fluc-
tuations even in the presence of extensive topographic
barriers in the basin that might be expected to shield
parts of the basin from regions of forcing. While pure
basin normal modes may never be observed in the nat-
ural ocean, they are the building blocks with which
basin-scale variability can be efficiently described. Al-
though we have focused on the structure of the normal
modes in the basin, the reader will appreciate that the
more fundamental question addressed is the possibility
of the transmission of energy through the narrow gaps
from one subbasin to the next, which is more general
than the normal mode problem.

In section 2 we formulate the mathematical problem

for the Rossby normal modes. The integral condition is
derived and its implications for the mode problem are
clarified. For the case of the geometry in Fig. 2, an
analytical approach is developed for the normal-mode
problem, and the dispersion relation and the eigenfunc-
tions are found. In section 3 the problem is somewhat
generalized by considering the modifications that occur
when a gap is opened in the middle of the ridge/barrier,
which serves to illuminate the fundamental role of gaps
in providing basin-scale modes.

In section 4 we discuss the problem in which the ridge
is oriented in a purely zonal direction, which introduces
some new features to the normal mode problem.

Results of a linear numerical model of the forced
response of the basin are included for each of the prob-
lems outlined above. This is done to illustrate the ability
of local forcing to excite global modes in the nearly
bifurcated basin and serves as a useful check on the
analytic theory, which involves some approximations
based on the smallness of d/L and which are not required
by the numerical calculation.

Section 5 summarizes our results and discusses the
implication for the general circulation problem and out-
lines the direction of future research.

2. Formulation: Single ridge
We consider the small-amplitude, nondissipative free

modes of motion in a basin configured as in Fig. 2. For
simplicity the widths of the northern and southern gaps,
d, are taken equal. It is important to note that the barrier,
which is our simple model of a midocean ridge, is placed
at an arbitrary longitude in the basin. In particular, the
ratio of the zonal extents of each subbasin is not the
ratio of integers. This is done to guard against the pos-
sibility that a normal mode with a frequency appropriate
for one subbasin would ‘‘accidentally’’ excite its neigh-
bor and so disguise itself as a full-basin mode. In this
study we examine the simplest case of a barotropic fluid.

The eigenvalue problem for the normal modes has
some special aspects of interest. The presence of the
detached barrier renders the region of the flow multiply
connected. For each such segment a new condition, the
conservation of circulation around the island, must be
satisfied. Each condition is accompanied by an unknown
constant value of the streamfunction on the segment. It
is important to recognize that, since each constant is
accompanied by an additional integral constraint, the
overall normal mode problem remains homogeneous. A
similar, but distinct, constraint arises for the normal
modes of a baroclinic fluid or a barotropic flow with a
free surface where the nontrivial value of the stream-
function on the rim of the basin is required to satisfy
mass conservation (see Flierl 1977; Pedlosky 1987).

a. Theory
The governing equation of motion is assumed to be

the linear, quasigeostrophic potential vorticity equation
on the b plane (Pedlosky 1987)
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2]¹ c ]c
1 b 5 0, (2.1)

]t ]x

where c is the geostrophic streamfunction and the other
variables have their standard definitions. The basin is
taken to be rectangular. Its north–south extent is L and
its east–west extent is xe. The barrier is placed at x 5
xt and fails to completely separate the basin into two
independent parts only because of the presence of two
gaps at the terminal extremes of the barrier. The gaps
each have width d K L.

On the perimeter of the basin c must be constant and
we can consistently choose that constant to be zero. On
the barrier c will be some other (spatial) constant.

We look for free solutions of (2.1) in the form

c 5 f (x, y),i[vt1k(x2x )]te (2.2)

which leads to the Helmholtz equation for f ; that is,

¹2f 1 k2f 5 0, (2.3)

if we choose k 5 b/(2v). In (2.2) and in similar sub-
sequent formulas, the real part of the complex expres-
sion is assumed.

On the barrier, the streamfunction is given by

c 5 CIeivt (2.4)

so that on each side of the ridge (whose finite thickness
is ignored)

f 5 CI, x 5 xt. (2.5)

It is useful to rewrite the problem in nondimensional
variables. If we choose L as the length scale and bL as
the scale for the frequency, the governing equation re-
mains (2.3) but where now all variables are nondimen-
sional and where now k 5 1/(2v). The range in y be-
comes (0, 1) while xe and xt refer to their scaled, non-
dimensional values. Since f vanishes at y 5 0 and 1,
it is useful to represent the solution as a sine series in
y. Further, it is convenient to express the solution sep-
arately in each subbasin. It follows that the solution on
the left- and righthand subbasins can be written:

sina xnf 5 B sin(npy)OL n sina xn51 n t

sina (x 2 x )n ef 5 A sin(npy), (2.6)OR n sin(a x )n51 n te

where

an 5 [k2 2 n2p2]1/2 xte 5 xt 2 xe. (2.7)

At x 5 xt the streamfunction, and hence f must be
equal to CI, on the barrier. At the same time the stream-
function must fall to zero at y 5 0 and y 5 1. We assume
that for d (here scaled by L) K 1, it is sufficient to
represent the streamfunction over the whole range of y
approximately as

y/d, 0 # y # d
c 5 C 1, d # y # 1 2 d (2.8)I
(1 2 y)/d, 1 2 d # y # 1.

This implicitly assumes that the scale of the motion
is generally greater than the scale of the gap, d, so that
flow through the gap is smooth and unidirectional within
the gap. Other, simple forms for the profile of flow
through the gap yielded similar results. If (2.8) is applied
to (2.6) it follows that

sinnpd
nA 5 B 5 22C [(21) 2 1] . (2.9)n n I 2 2n p d

Note that this implies that An and Bn would be zero
for even values of n, yielding a zero contribution to the
streamfunction unless one of the denominator terms in
(2.6) was zero. This condition is equivalent to the con-
dition that one of the subbasins is in resonance with an
even n mode. Even n modes correspond to streamfunc-
tions that are odd around y 5 ½, so such normal modes
must be limited, if they exist, to one or another of the
subbasins. Since the flow through the two narrow gaps
must be equal and opposite in barotropic, quasigeo-
strophic theory (since there is no mass storage on either
side of the basin), the even n modes have the wrong
symmetry for interbasin communication.

The final condition determining the dispersion rela-
tion for the modes is the integral condition on the cir-
culation around the ridge. As PPSH show, in the absence
of forcing, nonlinearity, and dissipation the integral con-
straint reduces to the conservation of circulation; that
is,

]
u · ds 5 0, (2.10)R]t CI

where CI is the contour encircling the ridge. For any
infinitesimally thin ridge (2.10) becomes

12d 12d

y (x , y) dy 5 y (x , y) dy. (2.11)E t1 E t2

d d

Here xt1 and xt2 refer to the position of either side of
the ridge and where y is the meridional velocity. Ap-
plication of (2.11) to the solution given by (2.2), (2.6),
and (2.9) yields the final dispersion relation:

sin2npd sina xn en 2C [(21) 2 1] a 5 0.OI n3 3n p d sina x sina xn51 n t n te

(2.12)

Note that the dispersion relation only involves Fourier
modes for which n is odd. These are the modes that
possess a nonzero average value of meridional velocity
along each side of the ridge. On the other hand, the
modes composed of sine functions with n even trivially
satisfy (2.11) and are not governed by (2.12). Thus the



2336 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

TABLE 1. Frequencies of the full-basin modes. The frequency of
the four largest frequencies v of the normal modes for the case xt 5
(0.15)1/2 and d 5 0.1. Corresponding to each frequency is the normal-
mode frequency, , for the same full basin in the absence of thev̂
barrier.

v (m) v̂

0.1089 1 0.1125
0.0708 2 0.0712
0.0504 3 0.0503
0.0384 4 0.0386

total set of eigenvalues comprise two subsets. First, so-
lutions of either

sinanxt 5 0 (2.13a)

or

sinanxte 5 0 (2.13b)

for n even correspond to subbasin modes. For example,
modes limited to the lefthand subbasin have normal-
mode frequencies:

1
v 5 (2.14a)nm 2 22p[n 1 (m/x ) ]t

for which

fL 5 sin(mpx /xt) sinnpy, fR 5 0, (2.14b)

and n 5 2, 4, 6, · · · .
While another set of modes limited to the righthand

subbasin is given by

1
v 5 (2.15a)nm 2 22p(n 1 (m/x ) )te

and

fR 5 sin(mpx /xte) sinnpy fL 5 0, (2.15b)

also for n 5 2, 4, 6, · · · , for integral m.
These modes correspond to CI 5 0 and hence to no

mass transfer through the gaps. These normal modes are
limited to one of the subbasins with no expression in
the neighboring subbasin. Modes with the alternative
meridional symmetry, for example, symmetric around
the midlatitude of the basin must involve both subbasins
in order to satisfy the circulation condition (2.11). For
these modes, to which only odd n contribute, the dis-
persion relation is given by (2.12). These are the full-
basin modes. The subbasin modes given by (2.14) and
(2.15) are identical to the normal modes of a basin with-
out topography and are well known (Pedlosky 1987).
Therefore, we concentrate our discussion on the full-
basin modes.

The solution of the dispersion relation (2.12) is easily
obtained numerically. In Table 1 the first four (highest)
frequencies are given as obtained from (2.12). Along
with these frequencies are listed the normal-mode fre-
quencies for a given x-modal wavenumber m each for
the y-modal wavenumber n 5 1, that is, for f 5

sin(mpx/xe) sinnpy. It is remarkable how close the two
frequencies are to one another. It appears that the me-
ridional barrier is surprisingly ineffective in altering the
basic mode of oscillation of the basin.

The corresponding eigenfunctions for f are shown
in Fig. 3. We call these functions the membrane func-
tions since they are solutions of the Helmholtz equation
(2.3). This function must be multiplied by the traveling
wave factor as given by (2.2) to obtain the complete
solution. Note that the square of the membrane function
yields, for the meridional barrier, the distribution of
mean-squared variance in the model.

Figure 3a shows the membrane function correspond-
ing to the spatially gravest mode. Its frequency, as we
see from Table 1, is very close to the m 5 1, n 5 1
mode of the classical problem without the barrier and,
indeed, the overall structure is reminiscent of the m 5
1 mode. There are distinctive differences, especially in
the vicinity of the barrier. A large closed cell in f exists
to the east of the barrier. The crowded streamlines at
the gaps indicate the rush of fluid from one subbasin to
the next during the oscillation. Figures 3b and 3c show
the modes that correspond to the n 5 1, m 5 2, and m
5 3 modes of the classical, barrier-free problem and the
qualitative correspondence to those wavenumbers is ob-
vious. Figure 3d presents a qualitatively interesting
change. The frequency of this mode is very close, as
Table 1 shows, to the no-barrier mode m 5 4, n 5 1.
The eigenfunction shows a considerable presence of the
n 5 3 Fourier mode in y. Indeed, the structure of this
mode is rather complex consisting of one cell to the
east of the ridge, which appears to be a banana-shaped
n 5 1 mode, while to the west of the ridge an n 5 3
structure is apparent. There is no particular significance
to east and west determining this modal structure. If the
barrier were moved to the mirror point xt ø 0.6217, the
same structure would appear but reflected around the
barrier. Of course the complete streamfunction consists
of the product of the membrane function and the ap-
propriate traveling wave whose wavenumber k 5
1/(2v). Figure 4 shows the fourth mode at four stages
of the cycle showing the composite character of fixed
modal shape and traveling wave.

Quite clearly, the presence of the barrier has a pro-
found effect on the structure of the modes although the
frequencies of the oscillations remain close to the bar-
rier-free case. Calculations, not shown here, demonstrate
only a slight variation in the normal-mode frequencies
as the gap width d decreases. If d 5 0.02, for example,
the gravest-mode frequency falls to 0.091. For the high-
er m modes the effect is slighter.

We emphasize that in addition to the modes shown
in Figs. 3 and 4, there are the subbasin-scale modes
restricted to one or the other of the two subbasins. The
amplitude of the oscillation is zero in the other subbasin.
Their frequencies are given by (2.14a) and (2.15a). For
the same value of xt and d as in Table 1, these subbasin
mode frequencies are given in Table 2. The modal
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FIG. 3. The membrane function f for the first four eigenmodes in the presence of a meridional barrier at x 5 xt 5 (0.15)1/2 ø 0.387 for
d 5 0.1. In this case, xe 5 1. (a) The gravest mode (m 5 1), (b) the second mode (m 5 2), (c) the third mode (m 5 3), and (d) the fourth
mode (m 5 4). The index m corresponds to the mode of the basin without the barrier closest to the normal-mode frequency obtained from
(2.12).

shapes are given by (2.14b) and (2.15b) and are not
shown.

b. Numerical model results

The numerical model used in this study is based on
the Miami Isopycnal Coordinate Ocean Model (MI-
COM) documented by Bleck et al. (1992). Only a brief
summary of the model is included here, the model equa-
tions are given in appendix B, and details of the solution
procedure and model configuration can be found in
Bleck et al. (1992) and PPSH. A number of simplifying
assumptions have been made for the present study. The
temperature and salinity are constant within each iso-
pycnal layer, so the model effectively carries only the
potential density field. There is only one active layer so
that the pressure gradient is due only to variations in

the surface elevation. The model has been made adia-
batic by turning off the diapycnal mixing and surface
buoyancy forcing. The only forcing in the system is a
body force parameterization of a surface or interfacial
stress. The nonlinear terms in the momentum equations
have been set to zero, so all calculations presented in
the remainder of the paper are linear (the model cal-
culation in Fig. 1 contains the nonlinear terms). There
is no explicit viscosity or thickness diffusion in the mod-
el. Because the model solves for the free surface height
there is no need to independently specify the pressure
on the island, as is required for models that make the
rigid-lid approximation.

The model is configured in a square basin of width
L 5 2000 km with a flat bottom at 16 000-m depth. The
Coriolis parameter varies linearly with latitude as f (y)
5 f 0 1 by, where f 0 5 0.5 3 1024 s21 and b 5 2 3
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FIG. 4. Mode 4, corresponding to the membrane function of Fig. 3d at phases (a) 0, (b) p/4, (c) p/2, and (d) 3p/2.

TABLE 2. The four highest frequencies of the subbasin modes.

v (m) (n) Subbasin

0.061 65 1 2 Right
0.048 73 1 2 Left
0.041 57 2 2 Right
0.028 74 2 2 Left

10213 cm21 s21. The deformation radius at the middle
of the basin is approximately Rd 5 5.7 3 109 cm, giving
L/Rd 5 0.035. Smaller values of Rd shift the resonance
of the basin modes to lower frequency; however, the
results are qualitatively unchanged. We have sought to
make L/Rd as small as possible by choosing an artifi-
cially large depth (within computational constraints) in
order to make a quantitative comparison with the bar-
otropic theory in the preceding section. The island is
one grid point wide and located at 780 km from the
western boundary. The gaps at the northern and southern
ends of the island are 200 km wide. These values cor-
respond to the previously defined nondimensional var-
iables xt 5 0.39 and d 5 0.1. The model is forced with
an oscillatory wind stress between 1500-km and 2000-
km longitude. The meridional distribution of the wind
stress is given by

1, y , ys1 p(y 2 y )st(y) 5 1 1 cos , y , y , ys n5 6[ ]2 (y 2 y )n s
0, y . y . n

(2.16)

The wind stress curl is confined between latitudes ys 5
700 km and yn 5 1300 km and is thus symmetric about
the midlatitude of the basin.

A series of forced numerical calculations was carried
out in which the frequency of the wind forcing (non-
dimensionalized by bL) was varied from v 5 0.03 to
v 5 0.12. Resonant basin modes are indicated by peaks
in the amplitude of the streamfunction variance evident
in Fig. 5. The width of the peak is controlled by the
duration of the calculations (500 days) because, while
the resonant response continues to grow linearly in time,
the amplitude of the response at off-resonant frequencies
equilibrates at some lower amplitude. The frequency of
the model resonances correspond to the theoretical fre-
quencies for the n 5 1 modes discussed in the previous
section. The frequency of the gravest mode in the model
is 4% lower than the theoretical frequency, while the
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FIG. 5. Maximum variance of the modeled streamfunction within
the basin as a function of forcing frequency (500-day integration
time). Dashed lines indicate theoretical frequencies of the n 5 1, m
5 1, 2, 3, and 4 modes. The streamfunction has been nondimen-
sionalized by the transport around the island expected from the linear
island rule if the wind forcing were held constant in time.

frequencies at the m 5 2 and m 5 3 modes are within
1%, and the m 5 4 mode is within 5% of the theoretical
result. The m 5 2, n 5 2 and m 5 1, n 5 2 modes of
the right subbasin are not excited, even though they have
resonant frequencies within the forcing frequencies, be-
cause the forcing is symmetric about the midlatitude of
the basin. This forcing was chosen in order to isolate,
as much as possible, the n 5 1 modes discussed in
section 2a.

The spatial structure of the modes is indicated in Fig.
6. The m 5 1 and m 5 2 modes compare very closely
with the theoretical result. The m 5 3 mode at v 5
0.05 has a similar structure to the theoretical result in
the zonal direction, but the eastern subbasin also con-
tains some higher-order structure in the meridional di-
rection. It is likely that the n 5 3, m 5 1 mode of the
eastern subbasin has been partially excited by the os-
cillatory forcing as its resonance lies close in frequency
space at v 5 0.0466. The structure of the peak at v 5
0.036 (corresponding to the m 5 4 mode) reflects ele-
ments of the theoretical structure, including the m 5 4
zonal structure and the higher-order meridional structure
in the western basin. However, there is also a strong
element of an n 5 3 mode in the eastern subbasin,
probably a signature of the n 5 3, m 5 2 mode of the
eastern subbasin, which has frequency 0.0358.

These results demonstrate that the theoretical basin-
scale modes derived above can be excited by localized
forcing in one of the subbasins. Resonant responses are
found in the model for forcing near the theoretical fre-
quencies of the basin modes, while smaller amplitude
responses with a horizontal structure determined by a
superposition of near-resonant modes are found at in-
termediate frequencies. The structure of the flow
through the gaps found in the model is nearly linear for
these cases (not shown), validating the assumption of a

linear streamfunction profile across the gaps that was
used to close the theory.

The results also suggest that the oscillatory behavior
found in the two-layer, wind-driven calculation shown
in Fig. 1 is the signature of a similar basin-scale normal
mode in which the western subbasin is excited by flow
through the narrow gaps at the northern and southern
tips of the island. The higher mode structure to the east
of the island is probably a signature of an n 5 3 eastern
subbasin mode that has frequency similar to the n 5 1
basin-scale mode.

3. Two ridge segments

Figure 7 shows a situation in which the ridge is
pierced by another gap midway along its length. To
simplify the resulting algebra and to make the results
more immediately understandable, we have chosen a
case in which the middle gap is precisely halfway along
the ridge between its termini and we have chosen the
northern and southern gaps to be equal, d, and the mid-
dle gap to equal 2d. The results of further generaliza-
tions of the geometry should be obvious and qualita-
tively minor. We label the upper ridge segment with the
index 1 and the southern segment with index 2.

a. Theory

The principal new addition to the problem is that there
are now two ridge constants to determine, C1 for the
northern ridge and C2 for the southern ridge. The prob-
lem development follows the analysis of section 2 very
closely. Thus on each side of the ridge system:

i{k(x2x )1vt}tc 5 e A sina (x 2 x ) sinnpy, (3.1a)OR n n e
n51

i{k(x2x )1vt}tc 5 e B sina x sinnpy, (3.1b)OL n n
n51

where, again, k 5 1/(2v).
On x 5 xt the streamfunction satisfies

 y
C , 0 # y # d2 d

1
C , d # y # 2 d2 2 (y 2 1/2 1 d) 1 1

c 5 C 1 (C 2 C ), 2 d # y # 1 d2 1 22d 2 2

1
C , 1 d # y # 1 2 d1 2

(1 2 y)C , 1 2 d # y # 1.1 d

(3.2)

Should C1 differ from C2 there would be flow
through the central gap for the mode. On the other hand,
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FIG. 6. Streamfunction variance from the model for forcing frequencies (a) 0.104, (b) 0.070, (c) 0.050, (d) 0.036, corresponding to the
theoretical membrane functions in Figs. 3a–d.

if they should be equal, there would be no flow through
the gap.

The analysis is now straightforward. One relation be-
tween the coefficients An and Bn follows from equating

both (3.1a) and (3.1b) to (3.2) on x 5 xt. Then the
integral constraint (2.11) is applied on each segment
separately. A little algebra then yields the following
equations for C1 and C2:

a sina x sinnpd np npn n e n ncosnpd[(21) 2 1] 1 2 sin sinnpd 3 C 2 (21) C 1 (C 2 C ) cosO 2 1 1 23 3 5 6 [ ]dn p sina x sina x 2 2n51 n t n te

5 0, (3.3a)

a sina x sinnpd np npn n e n ncosnpd[(21) 1 1] 2 2 cos cosnpd 3 C 2 (21) C 1 (C 2 C ) cosO 2 1 1 23 3 5 6 [ ]dn p sina x sina x 2 2n51 n t n te

5 0, (3.3b)
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FIG. 7. (a) The configuration of a ridge with a central gap as well as gaps at its termini. (b) Schematic of the ‘‘odd’’
mode structure nearly identical to that of section 2. Note that there is no flow through the center gap. (c) Schematic
of a class of higher meridional modes that are even n modes and maintain a substantial flow through the gap. (d) and
(e) Schematics of higher n even modes that are limited to one or the other of the subbasins.

where again xte 5 xe 2 xt.
Consider first (3.3b). For odd n the braced cosine

functions are zero, so only even n 5 2m with m an
integer needs to be considered. In that case, (3.3b) be-
comes

â sin( â 2x ) sin2mpdm m e m 2[(21) 2 1]O 3 3dm p sinâ 2x sinâ 2xm51 m t m te

3 (C 2 C ) 5 0, (3.4a)1 2

where
1/2

1
2 2â 5 2 m p ,m 2[ ]4v̂

v̂ 5 2v.

For (3.3a) all the terms for n even are zero and the
sum extends only over n odd, yielding

a sina x sinnpdn n e (n11)/2[cosnpd 1 (21) sinnpd]O 3 3dn p sina x sina xn odd n t n te

3 (C 1 C ) 5 0.1 2 (3.4b)

The interpretation of these results follows easily.
Equation (3.4a) should be compared with (2.12). It fol-
lows that (3.4a) is the dispersion relation for a basin
that has an aspect ratio in which the zonal to meridional
lengths have doubled and the nondimensional gap
widths have doubled, but otherwise the dispersion re-
lation is identical. This corresponds to modes exactly
as those in section 2, but whose scale is half the total
meridional scale and identically folded over and reflect-
ed into the lower half of the basin. That is, they represent
a second meridional harmonic mode as illustrated sche-
matically in Fig. 7c. The frequency v 5 . The fre-v̂ /2
quency is reduced by ½ because the characteristic length
scale of the mode is half of the basin, that is, L /2. To
satisfy (3.4b) it follows that for this mode C1 5 2C2,
so there is a flux through the central gap as indicated
in Fig. 7c. Qualitatively, this is merely the mode of
section 2 reflected around the midpoint of the basin.
This mode is constructed of the Fourier modes n 5 2m
for m odd and consists of the Fourier sinnpy modes for
n 5 2, 6, 10, · · · .

On the other hand, (3.4b) yields a mode constructed
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FIG. 8. Streamfunction variance from the model with forcing at the
resonant frequency for the n 5 2, m 5 1 eastern subbasin mode (v
5 0.061 65) with (a) a single meridional ridge and (b) two meridional
ridge segments separated by a narrow gap at the midlatitude of the
basin.

from the solution of the Fourier sine series with n 5 1,
3, 5, . . . terms. To satisfy (3.4a) we must now have C1

5 C2 so that there is no flow through the center gap
for these ‘‘odd’’ modes. For these modes the central gap
plays very little role at all, and the mode is nearly iden-
tical to the odd modes found in section 2. There is a
slight difference associated with the second cosine func-
tion within the braces in (3.4b), which results from the
fact that the circulation integral extends a distance 2d
less, because of the middle gap, than in the case of
section 2 when the gap is absent. The difference is mi-
nor. These modes correspond then to the modes already
found, and are indicated schematically in Fig. 7b.

Finally, solutions constructed of the Fourier sine modes
with n 5 4, 8, 12, 16, · · · , which are the Fourier modes
unused in the construction of the two mode types discussed
above, automatically satisfy the circulation condition on
each ridge segment. They are indicated schematically in
Figs. 7d and 7e and are purely subbasin modes.

The presence of the gap in the middle of the ridge
has allowed some of the normal modes, previously con-
fined to one or the other of the subbasins, to now become
full-basin modes. As more gaps are opened in the ridge,
higher modal structures, including some of those in Figs.
7d and 7e, will become full-basin modes. It is remark-
able how the opening of a slight gap in the ridge, al-
lowing the communication of the pressure signal from
one subbasin to the other, can so dramatically alter the
structural character of the normal modes.

b. Numerical model results

The role of the gap in facilitating the communication
between basins at frequencies close to the resonant fre-
quency for n 5 2 in one of the subbasins is now dem-
onstrated. The streamfunction variance for two model
calculations is shown in Fig. 8. The model is forced
over a small region in the southern part of the eastern
subbasin at a frequency v 5 0.061 65, the resonant
frequency for the n 5 2, m 5 1 mode for the eastern
subbasin. As expected, the eastern subbasin is readily
excited. In the absence of a gap in the meridional island,
all of the variance is trapped in the eastern basin (Fig.
8a). Limiting the communication between basins to the
northern and southern gaps does not allow for the prop-
agation of any even mode variance from one subbasin
to the other. This is because the island constant requires
that the flow through one gap be equal and opposite to
the flow through the other gap, thus allowing only in-
formation that is antisymmetric about the midlatitude
to be communicated through the gaps. The meridional
island is very effective at isolating adjacent subbasins
to even modes of variability and, as previously dem-
onstrated, is quite ineffective at isolating adjacent basins
to odd modes of variability.

The introduction of a small gap at the middle of the
basin eliminates this constraint because the streamfunc-
tion constant on the two islands need not be the same,

as discussed above. The resulting variance shows that
both subbasins are excited with strong flows through all
three gaps, in qualitative agreement with the circulation
sketched in Fig. 7c. There are of course many possible
combinations of subbasin modes and island segments that
could be explored. We show this simplest extension from
the single island case to demonstrate the importance of
the island circulation integral and the island constant in
controlling the communication between adjacent basins
and the structure of the flow far from the island.

4. Zonal barrier
We now consider the situation illustrated in Fig. 9. The

basin is once more nearly divided into two subbasins by



SEPTEMBER 1999 2343P E D L O S K Y A N D S P A L L

FIG. 9. The configuration for the case of a zonal barrier. The barrier
is located at y 5 yt and the two subbasins now communicate through
narrow gaps located at the zonal extremities of the barrier. Again,
the gaps have width d K L.

a barrier but this time the barrier lies along a latitude circle
and is located at y 5 yt. Once again the gaps at the ends
are small, d K L. The new orientation of the barrier leads
to important changes in the modal problem.

a. Theory

From a technical point of view it follows that although
the form of the solution (2.2) is still a useful represen-
tation of the solution, the function f can no longer be
constant on the barrier. Indeed, f must be chosen to
cancel the x variation of the traveling plane wave on
the ridge so that the streamfunction there remains only
a function of time and not of x. That is, on the ridge

f 5 CIe2ikx, (4.1)

where once again k 5 1/(2v). Related to this technical
alteration is the loss of symmetry associated with the
membrane function f. It is no longer a simple odd-or-
even function of x around the midlongitude point of the
basin. It follows from this that the separation into full-
basin modes and subbasin modes will no longer obtain
so that now all modes will be manifest on either side

of the basin. There is no solution for which both cI 5
0 and ]c/]y dx is zero on one side of the barrier.12d#d

Nevertheless there will be, as shown below, a tendency
for some modes to be more energetic in one or the other
of the subbasins depending on the frequency of the mode.

The analysis is analogous to the case of the meridional
barrier. The solution for f is represented in terms of
Fourier representation in x; that is,

Nf 5 f

5 A sina (1 2 y) sinmpx, y $ y , (4.2a)O m m t
m51

Sf 5 f 5 B sina y sinmpx, y # y . (4.2b)O m m t
m51

We have chosen xe 5 1 for simplicity. As before,

am 5 (k2 2 m2p2)1/2. (4.3)

Also as before, we assume that on the barrier c 5
CI and falls linearly to zero at the boundary of the basin.
This implies that

x/d, 0 # x # d
2ikx f 5 C e 1, d # x # 1 2 d (4.4)I 

(1 2 x)/d, 1 2 d # x # 1,

which should be compared with (2.8). Note again that
in (4.4) d is the nondimensional gap width (scaled by L).

The circulation integral constraint is now
12d 12d]c ]c

(x, y ) dx 5 (x, y ) dx. (4.5)E t1 E t2]y ]yd d

The satisfaction of (4.4) and (4.5) yields the relation
between the set (Am, Bm) and the island constant CI,
and is given in appendix A. The circulation integral (4.5)
then yields the dispersion relation for the normal modes.
After some algebra,

G sinam mC 5 0, (4.6a)OI a sina y sina (1 2 y )m51 m m t m t

where

2mp sin2mpd
2 2 2 2 mG 5 [a 1 (m p 1 3k )(21) cosk(1 2 d)]m m4dam

4k
2 2 2 2 2 2 2 m1 [2m p cos mpd 2 (m p 1 k ) sin mpd](21) sink(1 2 2d)

4dam

2 2 28km p cosmpd 8k mp sinmpd
m m1 [sinkd 2 (21) sink(1 2 d)] 2 [coskd 1 (21) cosk(1 2 d]. (4.6b)

4 4da dam m

The complexity of this dispersion relation, in con-
trast to that of the meridional barrier, is directly re-

lated to the structure of the membrane function given
in appendix A, which has to cancel the x variation in
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FIG. 10. The gravest normal mode for the zonal barrier, v 5 0.0792. The streamfunction is shown at (a) vt 5 0,
(b) vt 5 p/4, (c) vt 5 p/2, and (d) vt 5 3p/4. For this case d 5 0.1 and yt 5 0.45.

the traveling wave component of the solution along
the ridge.

In spite of the complexity of (4.6) it is fairly easy to
find the solutions for v numerically. This is rendered
even easier when we discover that the normal-mode
frequencies are always very close although not equal to
the normal-mode frequencies for each of the subbasins.
For example, Fig. 10 shows the normal mode with the
largest frequency for the case yt 5 0.45. The mode is
shown at four phases during the oscillation, that is, at
vt 5 0, p/4, p/2, and 3p/4. The mode consists of a
traveling set of vortical structures that are dominant in
the northern subbasin. However, it is clear that there is
significant motion in the lower subbasin. As mentioned
earlier, the separation of the normal modes into full-
basin and subbasin modes, as occurred for the meridi-
onal barrier, no longer is apt for the zonal case. The
frequency of this normal mode (scaled by bL) is v 5
0.079 15 and this should be compared to the Rossby
normal-mode frequency for a basin consisting only of
the northern subbasin. That frequency is v 5 0.0767
for m 5 1, n 5 1. The proximity of these frequencies
makes the dominance of the mode in the northern sub-
basin intuitive. The normal mode with the next largest

frequency is found at v 5 0.066 42 and is shown in
Fig. 11. In this case the mode has its principal expression
in the southern subbasin. The frequency of the gravest
mode for a basin with the dimensions of the southern
subbasin would be v 5 0.0653 if the gaps between the
two subbasins were completely closed.

For modes with lower frequencies, the normal-mode
frequencies become more densely spaced, and the sep-
aration between northern and southern mode types is
less pronounced. For example, Fig. 12 shows the case
for v 5 0.0436. This mode has a strong expression in
both subbasins. Of course, for the lower frequency
modes the x wavenumber of the traveling wave com-
ponent increases and the scale in x decreases inversely.

If we examine the snapshots of the modal structure,
it is clear that there are points during the oscillation
when the modes leak less into the other subbasin than
at other times. This is connected to the march of the
value of the streamfunction on the barrier. For the grav-
est mode, shown in Fig. 10, we have plotted the stream-
function from the solutions (2.2) and (4.2) along the
latitude of the barrier at y 5 yt as shown in Fig. 13.
(This also serves as a check on how well our truncated
Fourier series, in which 50 modes are retained, is able



SEPTEMBER 1999 2345P E D L O S K Y A N D S P A L L

FIG. 11. As in Fig. 10 except that v 5 0.066 42.

to represent the solution.) We see that the island constant
oscillates harmonically, and at the phase v 5 p/2 the
constant falls to zero. At this moment there is no flow
through the gap. The two subbasins are essentially iso-
lated, and the dominant signal is in the northern basin.
At other points in the cycle, for example, at vt 5 3p/4,
there is a strong variation of the streamfunction across
the gaps. This leads to substantial flow through the gaps,
and communication is established between the two sub-
basins as shown in Figs. 13a,b,d.

Thus both for the case of the meridional barrier, as
well as for the zonal barrier, Rossby normal modes that
involve the full basin are obtained. In the zonal barrier
case there is no separation between full-basin modes
and subbasin modes as was the case for the meridional
barrier studied in section 2. Furthermore, the frequencies
for the zonal case are closer, for all modes, to the nor-
mal-mode frequencies for the separate subbasins than
is the case for the meridional barrier. We understand this
to be a reflection of the stronger inhibition of meridional
motion for the case of the zonal barrier and consequently
a lesser restoring agency due to the b effect. Neverthe-
less, even in this case, the energy leaks substantially
from one subbasin to the other, and this is especially
true at low frequencies.

b. Numerical model results

The structure of the variability excited for the case
of a zonal island has also been investigated numerically.
Two snapshots of the streamfunction in the model forced
with frequency v 5 0.079 15 at phase 0 and p/2 are
shown in Fig. 14. The general character of the circu-
lation predicted by the theory is reproduced in the mod-
el, although there are some differences. The strength of
the interbasin exchange is larger in the model and, as
a result, the strengths of the lows in the northern half
of the basin are slightly reduced at zero phase. At phase
p/2 there is no net circulation around the island, in
agreement with the theory. However, the multidirec-
tional flow through each of the gaps does not agree with
the unidirectional flow assumed in the theory. This dif-
ference may be responsible for the enhanced circulation
around the island found in the model.

At the frequency of the next mode, v 5 0.066 42,
the model produces a circulation similar to that pre-
dicted by theory (Fig. 15). The wavelength and sense
of the recirculations is the same as predicted by the
theory; however, once again there is a stronger inter-
basin exchange and circulation around the island in the
model. Reducing the gap width below d 5 0.1 reduces
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FIG. 12. As in Fig. 10 except that v 5 0.0436.

FIG. 13. The streamfunction along the line y 5 yt at the four phas-
es of the oscillation shown in Fig. 10.

the multidirectional flow through the gaps and the net
circulation around the island, bringing the model results
in closer agreement with the theory, which assumes d
K 1.

5. Discussion

We have found full-basin Rossby normal modes in
basins nearly cleaved in two by a barrier allowing com-
munication between the subbasins only through a small
number of narrow gaps. This rather surprising result is
a direct consequence of the application of the circulation
integral around the barrier ‘‘island,’’ which requires,
generally, a strong circulation on each side of the barrier
unless special symmetry conditions are met by the
modes. The presence of the gaps allows a strong pres-
sure signal to link each side of the basin to the other.
We believe this result has important consequences for
the variability of the abyssal ocean. This result should
be compared with the study of Anderson and Killworth
(1977), who examined the role of a (small) ridge ex-
tending the entire basin length in which only the sub-
basin modes obtained.

In the case of a meridional barrier, which is our crude
model of a midocean ridge, the frequencies of the full-
basin normal modes are very close to the frequencies
of the basin modes in the absence of the barrier. Sub-
basin modes, in which the motion is limited to one of
the two subbasins, only occur for those symmetries that
allow the subbasin mode to satisfy the circulation in-
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FIG. 14. Streamfunction from the model for the zonal island case
with forcing frequency 0.079 15 at phase (a) 0, (b) p/2. These are
to be compared with the theoretical circulation in Figs. 10a and 10c.

FIG. 15. Streamfunction from the model for the zonal island case
with forcing frequency 0.066 42 at phase (a) 0, (b) p/2. These are
to be compared with the theoretical circulation in Figs. 11a and 11c.

tegral constraint alone. For example, with gaps at each
end of the basin, modes with odd symmetry around the
midlatitude of the basin would satisfy the integral con-
straint (2.11) for the subbasin modes. We have shown
then how increasing the number of gaps transforms
some of the isolated subbasin modes into full-basin
modes.

Each additional piercing of the ridge requires a higher
along-ridge wavenumber in the adjoining basin to sat-
isfy the integral constraint yielding a full-basin mode
with a higher meridional mode number.

Note that it follows that were the basin nearly divided
by a peninsula, that is, a barrier attached to, say, the
northern boundary of the basin, only subbasin modes
would be possible as the sole remaining gap would be
ineffective in allowing a mass flux between the two

subbasins. This coincides with the requirement that c
be zero on the peninsula (since it is attached to the outer
boundary of the basin) so that no net flow occurs be-
tween the tip of the peninsula and the southern boundary
of the basin. The occurrence of a gap at the northern
end of the island allows the set of basin-scale normal
modes discussed in section 2 to spring into being.

As shown in PPSH, when the gap becomes narrow
enough so that frictional forces become large enough
to support a significant pressure drop across the gap,
the isolated barrier can metamorphose, dynamically,
into a peninsula. As shown here, this will have a dra-
matic effect on the communication of natural variability
from one sector of the basin to another. In PPSH we
showed that the gap had to become increasingly narrow
in latitudinal extent the narrower the barrier became in
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longitudinal extent. It will be extremely interesting to
test for the critical width of the gap that eliminates full-
basin normal modes in a laboratory experiment of the
type reported in PPSH. Such experiments are planned
for the future. For the narrow ridgelike barriers de-
scribed here, we anticipate that the gaps would have to
be considerably narrower than a Munk boundary layer
thickness to eliminate the full-basin modes.

The zonal barrier discussed in section 3 possesses
only full-basin modes, although the nature of the normal
mode is such that during different phases of the oscil-
lation the normal mode briefly resembles the subbasin
mode of one of the two subbasins. In this case the nor-
mal modes have frequencies close to the normal-mode
frequencies of each of the subbasins.

The excellent agreement between the numerical re-
sults, in which the normal modes are found by a fre-
quency scan for resonance of the forced problem, and
the analytical normal-mode calculation encourages us
to believe that the normal modes might be easily excited
in both the laboratory and the natural ocean. The im-
plications of the latter possibility would be quite striking
if true. Spatially localized forcing due to a wide variety
of causes, within the frequency band of the normal
modes, could be expected then to yield full-basin var-
iability in spite of the apparent barriers to communi-
cation between the subbasins in the abyssal oceans.

In future work we intend to study the effects of non-
linearity, in particular the role of eddy shedding at the
barrier termini, on the basin normal modes and on the
general problem of interbasin communication of vari-
ability. The interaction of the normal modes with mean
flows and instabilities also deserves further and detailed
study. Naturally, given the results already shown in Fig.
1, we intend to extend our results to baroclinic models
of the circulation. The geometry of our model itself is
highly idealized, and it will be of interest in examining
the role that more realistic representations of the to-
pography will play in the dynamics, especially in ex-
amining the impedance of the flow between adjacent
subbasins. Both the topography of the ridge segment,
or island, and the bottom topography of the straits rep-
resented here by simple gaps in the barrier, are in reality
far more complex and present challenges for future
work.
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APPENDIX A

Fourier Coefficients for a Zonal Ridge
The condition (4.4) yields for the Fourier coefficients

in (4.2)

2impx
m 2ik 2ikd m 2ik(12d)A sina (1 2 y ) 5 C [(1 1 (21) e ) 2 cosmpd(e 1 (21) e )]m m t I 4vdam

2 2 2m p 1 k sinmpd
2ikd m 2ik(12d)1 2C [e 2 (21) e ], (A.1)I 4[ ]a dm

while

sina (1 2 y )m tB 5 A . (A.2)m m sina ym t

APPENDIX B

The Numerical Model Equations

The MICOM solves the primitive equations in iso-
pycnal coordinates, which are included here for refer-
ence. The horizontal momentum equation, with no
cross-isopycnal mass flux is given by

2]v v
1 = 1 (z 1 f )k 3 v 1 = Ma]t 2

t
215 2g 1 (Dp) = · (ADp=v) 2 c v, (B.1)DDp

where v 5 (u, y) is the horizontal velocity vector, p is
the pressure, k is the vertical unit vector, z 5 ]y /]x 2
]u/]y is the relative vorticity, M 5 gz 1 pa is the Mont-
gomery potential, a is the specific volume of the layer
(constant), Dp is the pressure thickness of the layer, and
A is an eddy viscosity coefficient. The b-plane approx-
imation is used here, with f 5 f 0 1 by. The model is
forced with a wind stress of strength t . There is no
explicit subgrid-scale mixing in the model (A 5 CD 5
0). The standard lateral boundary conditions are no-slip
for momentum and no flux for density. However, for
the linear calculations reported in this paper, the lateral
viscosity is identically zero so that free-slip and no-slip
boundary conditions give identical results. We have also
repeated many of the central calculations of the paper
with viscosities of O(100 m2 s21) and find very similar
results using both free-slip and no-slip boundary con-
ditions.
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In the absence of cross-isopycnal mass fluxes, the
continuity equation is represented as a prognostic equa-
tion for the layer thickness Dp,

]Dp
1 = · (vDp) 5 0. (B.2)

]t

For the present application with no surface buoyancy
forcing, no cross-isopycnal mass flux, and uniform tem-
perature and salinity within each layer, the conservation
equations for these thermodynamic variables maintain
constant values within each layer and thus are not pre-
sented here. The complete model equations and details
about the numerical methods used to integrate the equa-
tions, can be found in Bleck et al. (1992).
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